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Abstract

The thesis investigates the impact of quasidiagonality on the classification programme, the
programme being the attempt to classify nuclear separable simple unital C∗-algebras fulfilling
the UCT-condition. The programme achieved prominent progress during the last couple of
decades, and finally culminated into the classification theorem in the finite nuclear dimensional
case. The theorem, however, assumed quasidiagonality of all traces on the aforementioned type
of C∗-algebras. The thesis specifically pursues the proof of this particular assumption being
automatic, a deep theorem due to Aaron Tikuisis, Stuart White and Wilhelm Winter in 2015.
This includes an in depth analysis of quasidiagonality in the nuclear separable framework
in terms of ultrapowers, von Neumann algebras induced from traces of such C∗-algebras,
KK-theory of nuclear C∗-algebras and comparison theory. Towards the end, the connections
between the Tikuisis-White-Winter theorem and the classification programme, the Blackadar-
Kirchberg problem alongside the Rosenberg conjecture are provided.

Abstract

Denne afhandling undersøger den indflydelse som quasidiagonalitet har haft p̊a klassifika-
tionsprogrammet. Programmet er et forsøg p̊a at klassifisere nukleære, separable, simple, C∗-
algebraer med enhed, der opfylder UCT-kriteriet. Indenfor de seneste årtier har man opn̊aet
et gennembrud og endeligt fuldendt klassifikationen under yderligere forudsætninger. Den
ekstra antagelse vedrører quasidiagonalitet af samtlige spor. Afhandlingens primære formål
omhandler at p̊avise overflødeligheden af denne forudsætning. Sætningen der giver anledning
til dette blev udledt af Aaron Tikusis, Stuart White og Wilhelm Winter i 2015. Hertil inklud-
eres en analyse af quasidiagonalitet for nukleære separable C∗-algebraer beskrevet i termer af
ultraprodukter, von Neumann algebraer som afstammer fra spor, KK-teori af nukleære C∗-
algebraer samt strikt-sammenligningsteori. Imod slutningen angives sammenhængen mellem
den førnævnte hovedsætning og klassifikationsprogrammet, Blackadar-Kirchberg problemet og
Rosenberg-formodningen.
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Introduction

Classification theory of C∗-algebras is central to the thesis and serves as the primary motivation.
Classification theory attempts to convey complete invariants attached to some prescribed class of
C∗-algebras. Such invariants are frequently described in terms of K-theoretic data or modifications
thereof. One of the earliest and ramifying accomplishments of such kin is the complete classification
of UHF - and AF-algebras, which originates back the Glimm. Glimm succeeded in characterizing
UHF-algebras solely through supernatural numbers. Thereafter, Elliott achieved a classification of
AF-algebras using the (ordered) K0-group associated to C∗-algebras. It was further revealed that
the aforementioned classification of UHF-algebras may be encapsulated in the K0-group.

These pioneering classifications, alongside Elliott’s classification of AT-algebras in 1989, sparked
embers towards searching for a classification theory of nuclear separable C∗-algebras. Nuclear C∗-
algebras have dominated the C∗-algebraic scene for decades. Elliott himself conjectured a certain sub-
class of such C∗-algebras to be classified via K-theoretic data, although the conjecture was thwarted
for the nuclear separable C∗-algebras. In an attempt to remedy the loss, added restrictive properties
were posed upon the C∗-algebras. The additional features required were in particular simplicity and
the UCT-condition. With no counterexamples, seemingly, lurking around, this spurred motivations
of answering the following question: Let N represent the class of nuclear, simple, separable, unital
C∗-algebras fulfilling the UCT-condition;

can we classify members of N in terms of K-theoretic data?

After decades filled with devoted attempts and partial answers, the greatest marvel achieved is
probably Elliott, Gong, Niu and Lin’s classification in 2015. It engages the original question raised
above with two major modifications. Firstly, nuclearity was insufficient and finite nuclear dimension,
a stronger property, took its place. The second major modification was the entry of quasidiagonality
of every bounded tracial state.

Quasidiagonality originates back to Paul Halmos in the seventies, who introduced it as an ap-
proximation alteration to block-diagonality of bounded operators acting on Hilbert spaces. Following
Voiculescu’s compelling work on the matter, an abstract characterization attached to C∗-algebras
was established and the notion of quasidiagonal traces was hereby spawned. Later on, quasidiago-
nality emerged in the classification programme. Ergo, determining the scenario in which quasidiag-
onality (of C∗-algebras and their traces) became a pivotal task. Prior to the Tikuisis-White-Winter
theorem, the following question remained unanswered:

Are traces of members in N automatically quasidiagonal?

Indeed, answering this question provides both a connection betweenN and quasidiagonality together
with simplifying the classification result into the original designation, vis-a-vis the intriguing class
N . The Tikuisis-White-Winter theorem provides an affirmative answer to the question. In fact, it
answers an old conjecture of Rosenberg as well. Rosenberg proved that if the reduced C∗-algebra
associated to a discrete group G is quasidiagonal, then G must be amenable. He further conjectured
the converse statement to be valid, albeit the answer has remained unanswered until 2015 with a
partial answer for the elementary amenable groups due to Rørdam, Sato and Ozawa being present
since 2013. A full-fledged answer, in the affirmative, of Rosenberg’s conjecture was granted by the
Tikuisis-White-Winter theorem.

1



2 CONTENTS

There are other various applications of the theorem. The thesis does not exert itself to include
a survey of every existing one, but Rosenberg’s conjecture alongside the classification programme
will be explored. As another problem to be encountered in detail will be the Blackadar-Kirchberg
problem. The conjecture asks whether the converse in, the nuclear separable setting, of the valid
statement that quasidiagonal C∗-algebras are stably finite holds. The converse is generally false,
without nuclear counterexamples to be found currently. In the thesis, we supply a partial answer by
throwing the UCT-condition alongside simplicity into the mix of assumptions.

The final long-standing conjecture, to be discussed in brevity during the thesis, is the Toms-
Winter conjecture. It predicts the equivalence of the most frequently occurring invariants for the
class N , including finite decomposition rank, finite nuclear dimension, strict comparison and Z-
stability. It remains to be verified in its full shape currently. Fortunately, solace is to be found in the
monotracial case through a plethora of results derived by several participants in conjunction with
the theorem of Tikuisis-White-Winter theorem. We shall present an overview of how this may be
deduced towards the end of the thesis.

A vague overview of how the thesis pursues the proof of Tikuisis, White and Winter’s theorem
is found beneath. This includes the list of primary sources exploited during the process and the
structure of the thesis. Some crucial results are omitted in the thesis, however, references and their
roles are supplied in an attempt to ensure a sense of completeness.

· Chapter 1: The first chapter is devoted to establishing the necessary background knowledge,
conventions and notation. It will feature some proofs of the theory that was hitherto unknown to
the author. The primary sources used in the chapter are [31], [9], [30] and [29].

· Chapter 2: The second chapter carries an exposition of ultrapowers and von Neumann algebras
associated to C∗-algebras admitting traces. It serves the purpose of developing the setup required
to build the skeleton of the main theorem in the shape of three maps. The primary sources used
here are [41], [35] and [9]

· Chapter 3: Here the three aforementioned maps are built after having discussed quasidiagonality
in the nuclear separable setting. The majority of results is based on the main article [42] and [30].
Furthermore, a fake proof of the main theorem is granted for emphasis on the general idea.

· Chapter 4: This chapter takes the KK-theoretic aspects into account, including a survey regarding
the entrance of the UCT-condition. The issue solved here concerns the so-called stable uniqueness
result of Dardalat and Eilers. The primary sources are [35], [16] and [18].

· Chapter 5: The final chapter conveys a full-fledged proof of the main theorem in [42] and applica-
tions. It is solely based on [42] together with a vast amount of older classification natured results
used during the applications.

Prerequisites: A solid understanding of basics in C∗-algebras, and deeper concepts thereof includ-
ing but not limited to nuclearity, exactness, quasidiagonality etc., is absolutely imperative. Finally,
K-theoretic knowledge corresponding to the first seven chapters in [29] will be highly helpful.

Acknowledgement. I wish to express my sincere gratitude to my advisor Mikael Rørdam, without
whom I would not have been capable of grasping the theory used throughout the thesis. Nor would
my former project, which paved the way for the thesis, have taken place. Your patience and uncanny
ability to connect the theory into a greater perspective continues to surprise me. The subject has
been quite challenging and the ordeal has often reminded me of Sysiphus’ struggle. To my fortune,
you have been supportive throughout the process and by the mesmerizing words of Albert Camus’:
,,I can only imagine Sysiphus a happy man”.

Comment. The thesis leans heavily on my former project [30], so the reader is highly encouraged
to have a copy nearby if the background knowledge exhibited therein seems unfamiliar. With these
comments and the introduction given; let us set sail and start, ab initio.



Chapter 1

Preliminaries

1.1 Setup

We commence our voyage towards quasidiagonality of nuclear C∗-algebras by establishing various
conventions. First and foremost, C∗-algebras will not be unital nor separable unless specified oth-
erwise. In continuation hereof, ∗-homomorphisms are never unital without mentioning either. We
mainly use the capital lettersA,B,C andD to represent C∗-algebras. We prioritize using the symbols
π, %,Λ, σ and γ for ∗-homomorphisms while reserving ϕ,ψ for linear maps. Ideals of C∗-algebras will
by default be two-sided closed involutive algebraic ideals. Hilbert spaces are a priori non-separable,
although we blatantly assume these to be infinite dimensional and reserve H,K to symbolically
represent these. Furthermore, in a normed space we write a ≈ε b if ‖a− b‖ < ε.

LetA be any C∗-algebra. We will frequently employ the notationAr to symbolically represent the
closed ball in A of radius r. The dual space A∗ of A is implicitly endowed with the weak∗-topology.
Elements in A∗ will be represented by ω, mostly. The weak∗-topological subspace of states, which is
compact whenever A admits a unit, is represented by S(A).

Throughout the entire thesis, a trace will be the placeholder for bounded tracial state. Adopting
this convention, we keep the usual notation T (A) for the trace simplex on A consisting of all traces
acting on A. This is known to constitute a convex weak∗-compact space in A∗ whenever A is unital.
We reserve τ to denote traces, commonly writing τA for emphasis on the ambient algebra.

· For each positive integer n, we denote the C∗-algebra consisting of complex n×n-matrices by Mn.
The standard (unnormalized) tracial functional will be denoted by Trn whereas the unique trace
on Mn, i.e., the normalization of Trn, will be denoted by τn.

· Fix some Hilbert spaceH. The C∗-algebra consisting of bounded operators acting onH is written
as B(H). The sets F(H) and K(H) will represent the finite rank - and the compact operators acting
on H, respectively. In the separable scenario, we abbreviate these subspaces F and K instead. In
fact, K(H) is known to be the sole ideal in B(H).

· Suppose Ω denotes a locally compact Hausdorff topological space. The space consisting of con-
tinuous functions f : Ω −→ C vanishing at infinity will have the symbol C0(Ω) attached. This
is known to be unital if and only if Ω is compact, in which case C0(Ω) = C(Ω). A frequently
exploited fact, referred to as the Riez-Markov-Kakutani representation theorem, concerns C0(Ω)
and its dual: A bounded positive linear functional ω hereon attains the form

ω(f) =

∫
Ω

f dµ, f ∈ C0(Ω),

for some unique regular Borel measure µ on Ω.

Due to the Gelfand-Naimark classification of commutative C∗-algebras, we may and shall assume
that commutative C∗-algebras arise of the form C0(Ω) for some suitable locally compact Hausdorff
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space Ω. Recall that for a commutative C∗-algebra, the character space Spec(A) defines a weak∗

locally compact space Hausdorff space.

Theorem 1.1.1 (Gelfand-Naimark). Let A be a commutative C∗-algebra and write Ω = Spec(A).
Then there exists a ∗-isomorphism Γ: A −→ C0(Ω), unital if A admits a unit. When A is separable,
the space Ω becomes second countable.

Including a complete classification of commutative C∗-algebras, the Gelfand-Naimark theorem pro-
vides an enigmatic machinery, the continuous functional calculus. We require some terminology to
aptly present it. Given a C∗-algebra A together with some nonempty subset M ⊆ A, denote the C∗-
subalgebra of A generated by M via the symbol C∗(M), abbreviating C∗(a1, a2, . . . , an) whenever
a1, a2, . . . , an are elements belonging to A. Thus a normal element a in A generates a commutative
C∗-algebra C∗(a). The second ingredient necessary is the spectrum. The spectrum of some element
a in a unital C∗-algebra A is the nonempty set

σ(a) =
{
z ∈ C : z1A − a /∈ GL(A)

}
,

where GL(A) indicates the topological group of invertible elements in A. In the non-unital case, one
regards a as an element in the unitization (see below).

Theorem 1.1.2 (The Continuous Functional Calculus). For every normal element a belonging to
some C∗-algebra A, the inverse isomorphism in theorem 1.1.1 given by f 7→ f(a) is an isometric
∗-epimorphism, which is unital should A admit a unit. Moreover,

· for any ∗-homomorphism π : A −→ B between C∗-algebras, one has π(f(a)) = f(π(a));

· for any element f in C0(spec(A)), one has σ(f(a)) = f(σ(a)).

The continuous functional calculus yields numerous indispensable tools, including the existence of
positive square roots, but exhibiting each of these will deter from the overall theme. The fundamental
properties exploited are assumed to be quaint, although certain ones may perhaps be mentioned
during the thesis to serve as reminders. Let some C∗-algebra A be momentarily fixed.

· The set of self-adjoint elements in A will be denoted by Asa and the set of positive elements by
A+. To represent positivity of an element a, one further writes a ≥ 0. The set of self-adjoints
thereby admits a partial order ≤ defined by stipulating that a ≤ b if and only if b − a ≥ 0. It
is a non-trivial fact that A+ under this relation determines a norm-closed cone. Additionally, we
adopt the short-hand |a| := (a∗a)1/2 throughout the thesis.

· The set of unitaries is denoted by U(A) whereas the set of projections is symbolically represented
by Proj(A). Whenever we work within B(H), we abbreviate these U(H) and Proj(H), respectively.
A basic result states that projections p, q in A fulfill q ≤ p if and only if pq = qp = q.

· Recall that an element v in A is called a partial isometry should v∗v and vv∗ be projections or
equivalently if v = vv∗v. One thereof declares that two projections p, q in A are Murray - von
Neumann equivalent, written p ∼ q in symbols, if and only if there exists some partial isometry
v inside A such that v∗v = p together with vv∗ = q hold. One writes q � p if there exists some
projection p0 in A satisfying q ∼ p0 ≤ p. Lastly, we call p and q orthogonal whenever pq = 0.

· There are two frequently used decomposition rules. Every element a belonging to A decomposes
into a C-linear combination of self-adjoint elements; one may write a = Re(a) + i · Im(a) for two
self-adjoint elements Re(a), Im(a) inA, called the real and imaginary part respectively. Moreover,
any self-adjoint element a in A decomposes into a linear combination a = a+ − a− consisting of
positive elements, respectively called the positive part and negative part.
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We proceed to displaying several features of the unitization; the unitization will emerge numer-
ous times. Suppose A denotes a non-unital C∗-algebra. The unitization A+ associated to A is the
involutive algebra A⊕ C endowed with the multiplication

(a+ z1A+)(a0 + z01A+) := aa0 + za0 + z0a+ zz01A+ ,

and the remaining algebraic operations are the obvious component-wise ones. The unitization may
be equipped with a norm turning it into a unital C∗-algebra containing A as an ideal. We implicitly
impose this structure on A throughout the thesis. The unitization therefore admits the following
short-exact sequence:

0 // A
ιA // A+ qA // A+/A ∼= C // 0.

In the above, ιA denotes the canonical ∗-monomorphism given by a 7→ a + 01A+ and qA is the
quotient map. Through the short-exact sequence, one may easily deduce a functoriality property
of A+ described as follows. Suppose A,B are C∗-algebras. Let π : A −→ B be any bounded linear
map (resp. ∗-homomorphism). Then there exists a unique unital bounded linear map π+ : A+ −→ B
(resp. unital ∗-homomorphism) making the diagram

0 // A
ιA //

π

��

A+ qA //

π+

��

C //

id

��

0

0 // B
ιB // B+ qB // C // 0

commute with exact-rows. Here qA is the ∗-epimorphism given by a + s1A+ 7→ s1E with qB being
the resembling one for B. Thus π+ sends an element a+ s1A+ in A to π(a) + s1B+ .

For the sake of reference, a few versatile inequalities are supplied. Suppose one has self-adjoint
elements a, b inside some unital C∗-algebra A. Since the spectrum of a belongs to the closed ball of
radius ‖a‖ in A, some functional calculus applied to the continuous function f : σ(a) −→ R+ given
by the assignment t 7→ ‖a‖ − t yields

a ≤ ‖a‖1A. (1.1)

Appealing to (1.1), the relation 0 ≤ a ≤ b in A easily entails that ‖a‖ ≤ ‖b‖. Moreover, the partial
ordering on Asa is conjugation invariant, meaning a ≤ b implies that cac∗ ≤ cbc∗ for all c in A.
Hence, in conjunction with (1.1), this observation provides the inequality

b∗a∗ab ≤ ‖a‖2b∗b, for all a, b ∈ A. (1.2)

Every positive linear functional ϕ on A obeys a Cauchy-Schwarz inequality, i.e, one has

|ϕ(a∗b)|2 ≤ ϕ(a∗a)ϕ(b∗b), for all a, b ∈ A. (1.3)

Prior to addressing hereditary subalgebras, we establish some notation associated to the GNS-
construction. Per usual, ∗-homomorphism π : A −→ B(H) of an involutive algebra A will be called a
representation. We refer to π as being non-degenerate provided that π(A)H is dense in H. A vector
ξ in H is cyclic for π if π(A)ξ is dense in H. Let ω be a state acting on a C∗-algebra A and denote
by (πω,Hω, ξω) its associated GNS-triple. Then

ω(·) = 〈πω(·)ξω, ξω〉. (1.4)

The vector ξω is cyclic for πω. In particular, πω becomes faithful precisely whenever ω is faithful.
The corresponding universal representation of A, meaning the maximal non-degenerate faithful
representation of A, will be denoted by the pair (πu, Hu).

For pure states additional salient features may be deduced. Recall that a representation π of
A is irreducible if it has no nontrivial invariant subspaces, that is, any subspace V ⊆ H such that
π(a)V ⊆ V for each a inAmust be a copy of C. A result of Segel asserts that the GNS representation
πω is irreducible if and only if ω is pure, see proposition 3.13.2 in [34].
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1.2 Heredity, Approximate Units, Excision and Fullness

Properties regarding ideals and approximate units are taken into account here. We shall further
discuss hereditary subalgebras, since they will appear constantly. Hereditary subalgebras play an
important role for nuclear C∗-algebras; these inherit nuclearity. The definition of an approximate
unit varies slightly throughout the literature. As such settling some conventions must be done.

Definition. Let A be some C∗-algebra.

· A left approximate unit ofA is a net (ei)i∈J ⊆ A of positive contractions such that limi∈I eia = a. A
right approximate unit ofA is the obvious analogue and we further call (ei)i∈J an approximate unit
should it be both simultaneously.

· A is called σ-unital if it admits a countable approximate unit.

Every C∗-algebra admits an approximate and every left (resp. right) closed algebraic ideal I inside
some C∗-algebra admits a right (resp. left) approximate unit. Ideals in C∗-algebras determine C∗-
algebras heavily resembling their ambient algebra. The notion encapsulating this is heredity, which
thus “enlarges the framework” of ideals.

Definition. Let A denote some C∗-algebra.

· A C∗-subalgebra B of A is hereditary if whenever a ≤ b for positive elements a in A and b in B,
then a must be contained in B.

· Given a positive element b inB, the corresponding set her(b) := bAb is referred to as the hereditary
C∗-subalgebra generated by b. The element b is said to be strictly positive if her(b) = A.

The reader has been deceived slightly. A priori the hereditary algebra generated by some positive
element does not appear hereditary, despite the subtle suggestions. We will justify the terminology
including some correspondences to ideals shortly. Let us initially consider a typical example.

Example. Let A denote a C∗-algebra containing a nonzero projection p. The unital C∗-algebra
pAp, commonly called the corner of p, constitutes a hereditary subalgebra in A. Indeed, if b ≤ pap
for some elements a, b in A+, then p⊥bp⊥ ≤ p⊥papp⊥ wherein p⊥ = 1A+ − p. The right-hand side
must be zero since p is orthogonal to p⊥, whereby 0 = ‖p⊥bp⊥‖ = ‖b1/2p⊥‖2 holds. It follows that
pb1/2 = b1/2p = b1/2 in A. Therefore one must have

b = pb1/2b1/2p = pbp ∈ pAp,

as required. Corners are encountered non-stop in the thesis, so do keep the example in mind.

The majority of used features for hereditary subalgebras is present beneath. Additionally, we shall
rarely refer to these throughout the thesis and instead treat these as being standard results.

Proposition 1.2.1. Suppose A denotes some C∗-algebra.

(i) For every left closed ideal I in A, the set I ∩ I∗ is a hereditary subalgebra in A.

(ii) The assignment I
µ7→ I ∩ I∗ defines a one-to-one correspondence from the set of ideals onto

the set of hereditary subalgebras in A having B 7→ IB as inverse, where

IB := {a ∈ A : a∗a ∈ B}.

In particular, every ideal corresponds to exactly one hereditary subalgebra.

(iii) B ⊆ A is a hereditary subalgebra if and only if bab0 ∈ B is valid for all a ∈ A and b, b0 ∈ B.

(iv) For any positive element b, her(b) is the smallest hereditary subalgebra in A containing b.
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Proof. (i): It is evident that I ∩ I∗ defines a C∗-subalgebra in A. For heredity, suppose 0 ≤ a ≤ b
occurs with a ∈ A and b ∈ I ∩ I∗. Choose a right approximate unit (eα)α∈J of I. Due to

(1A+ − eα)a(1A+ − eα) ≤ (1A+ − eα)b(1A+ − eα)

being valid for each index α in J , one may deduce that

‖a1/2(eα − 1A+)‖2 = ‖(eα − 1A+)a(eα − 1A+)‖
(1.1)

≤ ‖b1/2(eα − 1A+)‖2.

The right-hand side tends to zero by hypothesis. Ergo the containment a1/2 = a1/2 limα∈J eα ∈ I∩I∗
is valid, whereof a must likewise lie therein.

(ii): Let us justify that IB in fact constitutes a left algebraic ideal, leaving the remaining properties
to entertain the reader. Let a be an element in A and b be another in B. According to (1.2) one has
(ab)∗ab ≤ ‖a‖2b∗b ∈ B. By definition of IB along with heredity of B, ab must belong to IB . When
a, b both belong to B one has

(a+ b)∗(a+ b) ≤ (a+ b)∗(a+ b)∗ + (a− b)∗(a− b) = 2a∗a+ 2b∗b.

Each term on the right-hand side belongs to B, hence a + b must belong to IB . To prove that
I 7→ I ∩ I∗ is the inverse of B 7→ IB , we confine ourselves with one composition, i.e., µµ−1 is the
identity. Let B be some hereditary subalgebra of A. The inclusion B ⊆ IB ∩ I∗B is clear. Upon
decomposing into the positive and negative parts, verifying the reverse inclusion of the respective
positive cones suffices. If b belongs to (IB ∩ I∗B)+, then b2 must lie inside B by definition of IB . This
in turn forces b to belong to B+ as required.

(iii): Based on the correspondence µ, any hereditary subalgebra B ⊆ A is of the form B = I ∩ I∗
for some closed left ideal I E A. Thus any element x = (ba)b0 with a ∈ A and b, b0 ∈ B must be
contained in I. The same holds for its adjoint x∗ because b ∈ I∗ by assumption.

Conversely, letB be any C∗-subalgebra insideA such that bab0 ∈ B whenever a ∈ A and b, b0 ∈ B
hold. Suppose a ≤ b for positive elements a ∈ A and b ∈ B. Fix an approximate unit (eα)α∈J in B.
In a manner resembling the proof of (i), one acquires

‖a1/2(eα − 1A+)‖2 ≤ ‖b1/2(eα − 1A+)‖ → 0.

Therefore a = limα∈J eαaeα belongs to B as desired.
(iv): Part (iii) immediately reveals that her(a) must be hereditary. As such a ∈ her(a) remains to

be justified. On the merits of (iii) once more, it suffices to express a as some norm limit of elements in
her(a). For this, choose some approximate unit (eα)α∈J therein. Then a2 = limα∈J aeαa ∈ her(a),
hence a must likewise lie therein. Voila.

The preceding proof is a testament to the strength of approximate units. However, one occasionally
tackles commutator approximations, especially when approaching quasidiagonality. An empowered
version of approximate units are therefore paramount to manufacture. This was achieved in [2] and
[33], stated as the main results. We adopt the convention of writing [a, b] := ba− ab.

Definition. An approximate unit (eα)α∈J contained in some C∗-algebra A is quasicentral provided
that it asymptotically commutes with elements in A, that is,

lim
α∈J
‖[eα, a]‖ = 0

for all a in A.

Proposition 1.2.2 (Arveson, Pedersen). A quasicentral approximate unit may be extracted from
the convex hull of an existing approximate unit in some C∗-algebra A. The approximate unit may
further be chosen to be countable whenever A is separable.
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The next device to be derived is excision for pure states. The theorem is due to Akemann, Anderson
and Pedersen in [1]. We present the notion and the aforementioned theorem modulo Kadison’s
transitivity theorem, which may be recovered in theorem 5.2.2 [31] for a rigorous proof.

Theorem 1.2.3 (Kadison’s transitivity theorem). Let A be a non-trivial C∗-algebra admitting an
irreducible representation π : A −→ B(H). If ξ1, . . . , ξn form a linearily independent set of vectors
in H and η1, . . . , ηn are some additional vectors in H, then there exists some element a in A such
that π(a)ξk = ηk for every k = 1, . . . , n.

Kadison’s theorem is the saving grace when excising pure states. We present the proof in the unital
scenario for quasi-completeness after introducing the notion of excision.

Definition. Let A be some C∗-algebra. A net (eα)α∈J consisting of positive contractions is said to
excise a state ω acting on A if

lim
α∈J
‖e1/2
α ae1/2

α − ω(a)eα‖ = lim
α∈J
‖eαaeα − ω(a)e2

α‖ = 0

and ω(eα) = 1 for each index α and for every a in A.

Theorem 1.2.4 (Akemann-Anderson-Pederson). All pure states on a C∗-algebra may be excised.

Proof. Suppose ω denotes a pure state on some C∗-algebra A. We restrict ourselves to the unital
case for simplicity. Let (πω,Hω, ξω) be its associated irreducible GNS-triple. The set

Lω = {a ∈ A : ω(a∗a) = 0}

is known to constitute a closed left-algebraic ideal. We initially verify that one has kerω = Lω +L∗ω,
so suppose a+ b∗ belongs to Lω + L∗ω. Using (1.3) repeatedly one obtains

|ω((a+ b∗)1A)|2 ≤ ω(a∗a) + ω(bb∗) + ω(aa∗)1/2ω(bb∗)1/2 + ω(bb∗)1/2ω(a∗a)1/2 = 0,

granting the inclusion Lω+L∗ω ⊆ kerω. For the reverse inclusion, let a be some element in the kernel
of ω. Due to (1.4), the vectors πω(a)ξω and ξω are orthogonal. Letting η1 = ξω and η2 = 0, Kadison’s
transitivity theorem guarantees the existence of some element b inB for which πω(b)ξω = ξω together
with πω(ba)ξω = 0 hold. Thus (1.4) combined with ξω being cyclic imply that ω((ba)∗ba) = 0, so ba
must belong to Lω. A similar observation yields the containment (1A − b)a ∈ L∗ω. One acquires

a = ba+ (1A − b)a ∈ Lω + L∗ω.

The identity kerω = Lω +L∗ω follows. To produce the excising net, let (eα)α∈J be any approximate
unit of the hereditary subalgebra Lω ∩ L∗ω. Put uα := 1A − eα. Then (uα)α∈J consists of positive
contractions such that limα∈J auα = 0 for each element a in Lω. Furthermore, the element a−ω(a)
belongs to kerω, so it must be of the form v + w∗ for some v, w in Lω according to the previous
identity. Therefore one may deduce that

lim
α∈J
‖uαauα − ω(a)u2

α‖ = lim
α∈J
‖uα(a− ω(a))uα‖

= lim
α∈J
‖uαvuα + uαw

∗uα‖

≤ lim
α∈J
‖vuα‖+ lim

α∈J
‖uαw∗‖ = 0

Finally, since eα belongs to Lω + L∗ω = kerω, one has ω(uα) = 1. This complete the proof.

We close the section by discussing fullness and simplicity. Simplicity is among the profound assump-
tions granting classification results for C∗-algebras and will appear often. Afterwards, we connect the
notions by comparing strengths. Towards the end of the section a significant lemma will be proved
for future purposes.
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Definition. SupposeA andB are C∗-algebras. Let a be any element inA. Define the algebraic ideal
generated by a to be the algebraic two-sided ideal

Ialg(a) :=

{ n∑
k=1

xkayk : xk, yk ∈ A, n ∈ N
}
.

· A is said to be simple if it only admits trivial ideals.

· A is said to be algebraically simple if it only admits trivial algebraic ideals.

· A nonzero element a ≥ 0 belonging to A is full provided that Ialg(a) is norm-dense in A.

· In the presence of units, a unital ∗-homomorphism γ : A −→ B is full provided that γ(a) is full in
B for each nonzero a belonging to A.

Evidently, simplicity entails that every element must be full and any unital ∗-homomorphism having
a simple C∗-algebra as codomain must be full. For positive elements in the unital setting, fullness
poses strict algebraic structure. Phenomena of such sort may strike the reader as being undesirable.
However, it becomes a key-ingredient during the proof of the Tikuisis-White-Winter theorem.

Lemma 1.2.5. Let A be some unital C∗-algebra. If a denotes a positive full element in A, then
there exist elements b1, . . . bn in A such that

1A =

n∑
k=1

bkab
∗
k.

Proof. The proof will be executed in three steps. At first, via density of Ialg(a) one may approximate
the unit 1A in terms of elements in Ialg(a). In particular, one may extract an element w in Ialg(a)
fulfilling 1A ≈1 w. Hence w must be invertible. Being an algebraic ideal, Ialg(a) must contain the
element w−1w = 1A. One may thereof find some elements x1, . . . , xm, y1, . . . , ym in A satisfying

1A =

m∑
k=1

xkayk.

Fix momentarily some elements x, y inA. Due to 0 ≤ (x∗−y)∗a(x∗−y) = xax∗+y∗ay−xay−y∗ax∗
one may deduce that xay ≤ xax∗+ y∗ay. Applying this observation to each pair of elements xk and
yk from before, with k ≤ m being some positive integer, one may infer that

1A ≤
m∑
k=1

(xkax
∗
k + y∗kayk). (1.5)

Now, if 1A ≤ v for some element v in A, then 1A = rvr∗ for some additional element r contained
in A. Indeed v − 1A ≥ 0 forces invertibility of v, hence one simply selects r = v−1/2. Invoking this
observation to the right-hand side of (1.5) yields such an element r. Let n = 2m+ 1, then stipulate
that b1 = rx1, . . . , bm = rxm and bm+1 = ry∗1 , . . . , b2m+1 = ry∗m to acquire

1A
(1.5)
=

m∑
k=1

rxka(rxk)∗ +

m∑
k=1

ry∗ka(ry∗k)∗ =

n∑
k=1

bkab
∗
k.

This proves the claim.

Remark. The lemma provides an “if and only if” statement in the presence of a unit. Certainly,
assume that A is a unital C∗-algebra, containing some nonzero positive element a, admitting some
elements b1, . . . , bn for which we have 1A = b1ab

∗
1 + . . .+bnab

∗
n. If so, the unit must belong to Ialg(a),

whereby Ialg(a) = A.
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1.3 Remarks on Tensors and Limits

Among the wealth of functorial constructions used during the thesis, the most unavoidable ones are
arguably the tensor products and inductive limits. The purpose of the current section will be to
establish notations and conventions attached, albeit we shall investigate traces on minimal tensor
products in detail. The section will furthermore have additional emphasis on UHF-algebras.

Recalling Tensor Products

Theoretical background equivalent to the material gathered in section 3.1–3.5 of [9] is presumed
well-known. However, certain statements leaning on states will be exploited during the progress.
Due to the necessity of such, we tacitly include various results attached. Let in the following A,B,C
and D be C∗-algebras. The involutive algebraic tensor product of A with B is denoted by A � B,
whereas the minimal and maximal tensor product closures are denoted by A ⊗ B and A ⊗max B,
respectively. Let ϕ : A −→ C and ψ : B −→ D be bounded linear maps.

· The unique induced map from A � B into C � D defined on elementary tensors through the
assignment a⊗ b 7→ ϕ(a)⊗ ψ(b) will be symbolically represented by ϕ⊗ ψ.

· For C = D, the unique induced map from A � B into D defined on elementary tensors through
the assignment a⊗ b 7→ ϕ(a)ψ(b) will be symbolically represented by ϕ× ψ.

· For C = D = C, the unique induced linear functional on A � B defined on elementary tensors
through the assignment a⊗ b 7→ ϕ(a)ψ(b) will be symbolically represented by ϕ� ψ.

If each map ϕ,ψ is positive or defines a ∗-homomorphism, then the induced maps evidently enjoy
the respective properties.

Lemma 1.3.1. Suppose A,B are unital C∗-algebras admitting states ω0, ω respectively. Suppose
‖ ·‖α represents either the minimal or maximal norm on A�B. Under these premises, the induced
positive linear functional ω � ω0 extends to a state on A⊗α B.

Proof. According to the Hahn-Banach extension theorem, the sole obstruction is discontinuity.
Hence it suffices to verify boundedness of ω0�ω. We adopt a Krein-Milman convexity type argument.
Let initially ω, ω0 be pure. Extract excising nets (ei)i∈I0 and (pi)i∈I for both pure states. Let a⊗ b
be an elementary tensor in A�B. Letting J := I0 × I one may from

‖(ei ⊗ pi)(a⊗ b)(ei ⊗ pi)− ω0(a)ω(b)(ei ⊗ pi)2‖ ≤ ‖(eiaei − ω0(a)e2
i )⊗ pibpi‖

+ ‖ω0(a)e2
i ⊗ (pibpi − ω(b)p2

i )‖ → 0

conclude that (ei ⊗ pi)i∈J excises ω0 � ω. Ergo for each element x in A�B one acquires

|(ω0 � ω)(x)| = lim
j∈J
‖(ω0 � ω)(x)(ej ⊗ pj)2‖ = lim

j∈J
‖(ej ⊗ pj)x(ej ⊗ pj)‖ ≤ ‖x‖.

It follows that ω0, ω must be contractions if they are pure states, so that these extend to A ⊗α B.
Suppose nowω0 andω are general states. According to the Krein-Milman theorem, for every tolerance
ε > 0 one may find α1, . . . , αn, β1, . . . , βm in R+ subject to α1 + . . .+αn = β1 + . . .+ βn = 1 along
with pure states ϕ1, . . . , ϕn on A, and ψ1, . . . , ψm on B such that

n∑
k=1

αkϕk ≈ε/2 ω0, respectively,

m∑
k=1

βkψk ≈ε/2 ω. (1.6)

From the pure case one acquires

(ω � ω0)(x) ≈ε
n∑
k=1

m∑
`=1

αkβ`(ϕk � ψ`)(x) ≤
n∑
k=1

m∑
`=1

αkβ`‖x‖ = ‖x‖.

for each x in A�B. Upon ε > 0 being arbitrary, the sought conclusion holds.
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We will invoke Kirchberg’s slice lemma to address faithfulness of induced traces on tensor products,
in view of the preceding lemma. We avoid diving into the proof.

Corollary 1.3.2. For unital C∗-algebras A,B admitting faithful traces τA, τB, respectively, the
uniquely determined induced trace τA ⊗ τB extending τA � τB remains faithful.

Proof. The tracial property of τA⊗τB stems from continuity and the state condition from lemma 1.3.1.
Concerning faithfulness, write τ = τA ⊗ τB and consider the ideal Lτ = {a ∈ A : τ(a∗a) = 0}.
Seeking a contradiction, suppose τ cannot be faithful . Being an ideal in A ⊗ B, it must be hered-
itary, whereby Kirchberg’s slice lemma, see lemma 4.1.9 in [35], provides some element z fulfilling
z∗z = a⊗ b ∈ A�B together with zz∗ ∈ Lτ . Ergo one acquires 0 = τ(z∗z) = τA(a)⊗ τB(b) > 0, a
contradiction.

A Remark on Inductive Limit Algebras

Inductive limits emerge occasionally, especially classes arising as such that are subject to classifica-
tion theory, the C∗-algebras in play are AF - and UHF algebras. These classes are crucial, especially
the latter. The main objective of the current section is to eliminate potential notational conflict in
the future, leaving details to a combination of [29] and [30]. The central types of inductive limits will
be countable ones, hence we restricts ourselves hereto.

Definition. Let A denote some category. An inductive sequence in A is a sequence (An, πn)n≥1

consisting of pairs in whichAn denotes an object inside A and πn : An −→ An+1 denotes a morphism
therein. The maps πn are called the connecting morphisms.

An inductive limit of the inductive sequence is a pairing (A, {π∞n }n≥1), where A is some object
in A and each π∞n : An −→ A is a morphism making the diagram

An

π∞n   

πn // An+1

π∞n+1||
A

commute for every positive integer n. Moreover, A must fulfill the following universal property:
For any additional inductive limit (B, {%∞n }n≥1) attached to the common inductive sequence, there
exists a unique morphism γ : A −→ B making the diagram

A
γ // B

An

π∞n

``

%∞n

>>

commute for every positive integer n.

Notice that upon invoking the universal property twice, an inductive limit is uniquely determined up
to isomorphism in A . Thus one may speak of “the inductive limit” if existence has been guaranteed.
We denote the limit by lim−→(An, πn) whenever it exists. Proofs may be uncovered in chapter 6 of [29].

Proposition 1.3.3. Let (An, πn)n≥1 denote an inductive sequence comprised of C∗-algebras having
∗-homomorphisms as morphisms. Then the inductive sequence has a limit (A, {π∞n }n≥1) such that

∞⋃
n=1

π∞n (An)

becomes norm-dense in A, that is,
⋃∞
n=1 π

∞
n (An) serves as a model for lim−→(An, πn).
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A highlighted application of inductive limits revolves around infinite tensor algebras of unital C∗-
algebras. Infinite tensor algebras yield fruitful characterizations of UHF-algebras. If the reader is
unfamiliar with the concept of infinite tensor algebras, the technical details may be found in [30].

Definition. SupposeA1, A2, . . . are unital C∗-algebras. The spatial infinite tensor product is defined
to be the inductive limit

∞⊗
n=1

An := lim−→

( n⊗
k=1

Ak, ιk

)
.

Here ιk denotes the unital ∗-monomorphism given by a 7→ a⊗ 1Ak+1
.

We turn our gaze towards concrete examples arising hereby, namely AF - and UHF algebras. We
will afterwards depict a few properties associated to UHF-algebras specifically.

Definition. An inductive limit attached to an inductive sequence (Fn, πn)n≥1 consisting of finite
dimensional C∗-algebras Fn and ∗-homomorphisms πn : Fn −→ Fn+1 is referred to as being approx-
imately finite dimensional, abbreviated AF.

The subclass of AF-algebras whose members are inductive limits of sequences (Mn(k), πk)k≥1 in
which πk : Mn(k) −→Mn(k+1) is a unital ∗-homomorphism and (n(1), n(2), . . .) is some sequence of
natural numbers is the class of uniformly hyperfinite algebras, abbreviated UHF.

For UHF-algebras keeping track of the positive integers n(1), n(2), . . . is the sole necessary ingre-
dient required to unfold the building blocks. Indeed, suppose (Mn(k), πk)k≥1 denotes the inductive
sequence of some UHF-algebra A. Since the ∗-homomorphisms πk are unital, the integer n(k) must
divide n(k+ 1) for each k. To realize this, fix some k in N and let ej be the j’th diagonal unit matrix
in Mn(k). Then Trk+1(πk(ej)) must be an integer such that

n(k + 1) = Trn(k+1)(πk(e1)) + . . .+ Trn(k+1)(πk(en(k))) = n(k)Trn(k+1)(πk(e1))

In particular, the morphism πk may be regarded as the ∗-monomorphism a 7→ diag(a, a, . . . , a) with
d(k)-copies occurring and n(k)d(k) = n(k+ 1) being fulfilled. In this regard, using the isomorphism
Mn ⊗Mm

∼= Mnm one may with the convention d(1) := n(1) rewrite A into

A =

∞⊗
n=1

Md(k).

The sequence of positive integers (n(1), n(2), . . .) induces a supernatural number N . For the formal
definition, the reader is urged to consult section 1.3 in [30]. For those who find supernaturals quaint,
we shall consistently regard N as being a formal prime factorization

N =

∞∏
k=1

pαkk ,

where αk is some positive integer or αk = ∞. The UHF-algebra attached to N is called the UHF-
algebra of type N , denoted by MN . Notice that if N ′ is the supernatural number having the integers
β1, β2, . . ., including the possibility of∞, as its exponents and one declares that NN ′ is the super-
natural number having αk + βk as its k’th exponent, then

MN ⊗MN ′
∼= MNN ′ . (1.7)

We primarily adopt the tensorial point of view for UHF-algebras in the thesis.
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1.4 Completely Positive Morphisms and Nuclearity

Hitherto ∗-homomorphisms have been the morphisms in play, however, some weaker ones are pre-
ferred; completely positive maps. Completely positive maps are the heart of approximation prop-
erties for C∗-algebras. The plethora of fundamental facts regarding these morphisms are assumed
familiar. We shall in addition employ the empowered version known as order zero maps, so in order
to convey sensible notation and overview, the core structural aspects have been assembled.

Definition. A bounded linear mapψ : A −→ B between C∗-algebras is completely positive if its n’th
amplification map ψn : Mn(A) −→ Mn(B) is positive for every positive integer n. The amplification
is the induced bounded linear map given by

ψn([aij ]) = [ψ(aij)].

Under the identification Mn(A) ∼= Mn ⊗ A, the amplification ψn transforms into the tensor map
ψ ⊗ idMn . We shall pursue both points of view throughout the thesis.

We liberally abbreviate completely positive c.p, contractive completely positive c.p.c and unital
completely positive as u.c.p. throughout. The crown-jewels of completely positive maps are Arveson’s
extension theorem and the Stinespring dilation theorem. The latter asserts that completely positive
maps are twisted ∗-homomorphisms, whereas the former resolves the extension problem.

Theorem 1.4.1 (Stinespring). Let A be a C∗-algebra and ψ : A −→ B(H) be completely positive.
There exists a triple (σ,w,K) consisting of a representation σ : A −→ B(K) and a linear contractive
operator w : B(H) −→ B(K) such that

ψ(·) = w∗σ(·)w.

The triple is referred to as the Stinespring dilation of ψ. It follows that ‖ψ‖ = ‖ψ(1A)‖.

Theorem 1.4.2 (Arveson’s extension theorem). B(H) is an injective object in the category of C∗-
algebras having contractive completely positive maps as morphisms. The statement remains valid
in the category of unital C∗-algebras with unital completely positive maps as morphisms.

The information contained in Stinespring’s dilation theorem is of greater magnitude than one might
expect. Determining multiplicativity of completely positive maps is completely enclosed as follows.
Suppose ψ : A −→ E is some completely positive map between C∗-algebras. Let (σ,w,K) be its
Stinespring dilation, regarding A as being faithfully represented on some Hilbert space H. For each
a in A one has

ψ(a∗a)− ψ(a)∗ψ(a) = w∗σ(a)∗(1K − ww∗)σ(a)w ≥ 0, (1.8)

because w ≤ 1H. An intriguing consequence hereof concerns the impact stemming from whenever
equality is reached. For this, one defines the multiplicative domain of ψ to be

Mult(ψ) = {a ∈ A : ψ(a∗a) = ψ(a)∗ψ(a), ψ(aa∗) = ψ(a)ψ(a)∗}.

The name of course arises from ψ restricting to a multiplicative map on Mult(ψ). To see this,
maintain the notation prior to deducing (1.8). If ψ(a∗a) = ψ(a)∗ψ(a), then the calculation in (1.8)
in conjunction with the C∗-identity entails that (1K − w∗w)1/2σ(a)w = 0. Thus

ψ(ba)− ψ(b)ψ(a) = w∗σ(b)(1K − ww∗)1/2
[
(1K − ww∗)1/2σ(a)w

]
= 0, (1.9)

ψ(ab)− ψ(a)ψ(b) =
[
w∗σ(a)(1K − ww∗)1/2

]
(1K − ww∗)1/2σ(b)w = 0, (1.10)

whenever a belongs to the multiplicative domain of ψ and b belongs to A.

An additional important and more restrictive kin of completely positive maps are conditional ex-
pectations. These tend to emerge, hence a few remarks are supplied. A relatively deep theorem due
to Tomiyama will be used, whose statement we include without proof. The statement and proof may
be found as theorem 1.5.10 in [9].
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Definition. A linear map E : A −→ B between C∗-algebras, with B ⊆ A being an inclusion of
C∗-algebras, is called a projection provided that E restricts to the identity on B. Moreover, if E
defines a contractive completely positive projection obeying the rule E(bab0) = bE(a)b0 for each a
in A and every b, b0 in B, then E is called a conditional expectation onto B.

Theorem 1.4.3 (Tomiyama). Let B ⊆ A be an inclusion of C∗-algebras and let E : A −→ B be a
projection. Then E is a conditional expectation if and only if E is contractive completely positive.

Completely positive maps realize salient C∗-algebraic features in abstract1 approximation-lingo. The
benefits of such characterizations are aplenty, partly due to approximation properties being notori-
ously easier to deduce. Nuclearity is among the most prominent approximation-natured conditions
to impose. To adequately present the full picture some terminology will be presented.

Definition. Let γ : A −→ B be a completely positive map between C∗-algebras.

· The map γ is said to be finite dimensionally factorable if there are contractive completely positive
maps ϕ : A −→Mn together with ψ : Mn −→ B such that γ = ψ ◦ ϕ.

· The map γ is said to be nuclear if there exists a net (γα)α∈J consisting of finite dimensionally
factorable maps from A into B such that ‖γα(·)− γ(·)‖ → 0.

· The map γ is said to have the local completely positive approximation property if there, for each
finite subset F ⊆ A and tolerance ε > 0, exists a finite dimensionally factorable map ψ such that
γ(a) ≈ε ψ(a) for all a in F .

The reader is assumed to be aware of the equivalence between the latter two properties. The com-
pletely positive approximation property is now non-standard terminology due to the extensive work
of Choi-Effros (Kirchberg gave another proof). Indeed, the property is merely nuclearity translated
into approximation language. For proofs, we refer to theorem 3.8.7 in [9].

Theorem 1.4.4 (Choi-Effros, Kirchberg). For any C∗-algebra A the following are equivalent.

· The identity on A is nuclear.

· The identity on A has the local completely positive approximation property.

· There exists a unique C∗-norm on A� E, for any additional C∗-algebra E.

The exactness counterpart is presented, leaving section 3.9 in [9] as a reference.

Theorem 1.4.5 (Kirchberg). For every C∗-algebra A, the following are equivalent.

· The functor E 7→ A⊗ E is exact.

· There exists a faithful representation of A having the completely positive approximation property.

Having established these notions, we may define nuclearity and exactness. Nuclearity in partic-
ular has dominated the C∗-algebraic scene for decades. Several frequently occurring C∗-algebras
are nuclear including crossed products by amenable actions, reduced group C∗-algebras associated
to amenable groups, AF-algebras, the compact operators, commutative C∗-algebras, the Cuntz-
algebras On and more.

Definition. Suppose A denotes any C∗-algebra. We call A nuclear should it fulfill either of the
equivalent conditions occurring in theorem 1.4.4, and we call A exact if it fulfills either of the
equivalent conditions occurring in theorem 1.4.5.

1“Abstract” here meaning without reference to B(H). Quasidiagonality is an example, to be revealed later.
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Nuclearity entails exactness whereas the converse is far from being true. For instance, the free group
on n-generators gives rise to the exact but non-nuclear C∗-algebra C∗r (Fn). A distinguishing aspect
between exactness and nuclearity concerns subalgebras. Indeed, exactness passes to subalgebras
while the analogue statement for nuclearity fails. The class of nuclear C∗-algebras luckily remains
stable under passing to hereditary subalgebras. In particular, ideals will inherit nuclearity and the
class of nuclear C∗-algebras proves itself to be a well-behaving class. We justify this next.

Proposition 1.4.6. Suppose A denotes some C∗-algebras and let A1 ⊆ A2 ⊆ . . . be an increasing
chain of C∗-algebras.

(i) If An is nuclear for every n, then the inductive limit
⋃∞
n=1An is nuclear.

(ii) If B is a hereditary subalgebra in A with A being nuclear, then B must be nuclear.

(iii) If A is an extension of nuclear C∗-algebras in the category of C∗-algebras having (not nec-
essarily unital) ∗-homomorphisms as morphisms, then A must be nuclear.

Proof. To spare time, the level of rigor has been reduced significantly. The main ideas are therefore
exhibited, leaving the reader to delve into the gory ε-details.

(i): Let E denote the inductive limit of A1 ⊆ A2 . . . with inclusions along the way. Fix some finite
subset F ⊆ E and tolerance ε > 0. Finiteness of F guarantees the existence of some positive integer
k together with an element e inside Ak such that e ≈ε a for all a in F . Since Ak is nuclear, there
exists some factorization

Ak
ψ0 // Mn

ϕ // Ak ⊆ A

of idAk by completely positive maps such that (ϕ ◦ ψ0)(x) ≈ε x whenever x ∈ Ak. According to
Arveson’s extension theorem,ψ0 extends to a completely positive mapψ : A −→Mn. The completely
positive map ϕ ◦ ψ has the sought properties, for given any a ∈ Ak one has (ϕ ◦ ψ)(a) ≈3ε a.

(ii): Let (ej)j∈J0 be an approximate unit of B. Define a completely positive map γj : A −→ B
via the compression a 7→ ejaej . Notice that γj has the prescribed codomain as B is hereditary. Let
(ψj)j∈J1 be the net consisting of finite dimensional factorable maps converging point-norm wise to
idA. Then by collecting J0, J1 into the product directed set J := J0 × J1, the compositions

B
ι // A

ψj // A
γj // B,

where ι denotes the inclusion map, provides a finite dimensional factorable map ϕj for each index j
inside J . Due to ‖γj(b)− b‖ = ‖ejbej − b‖ → 0, it follows that ιγjψj(b)→ b.

(iii): This permanence property requires far more meticulous care. The strategy becomes more
clear if we present the setup. Suppose A is an extension of an ideal I via some C∗-algebra B. Let
π : A −→ B be the corresponding ∗-epimorphism. Since nuclearity entails exactness, the sequence

0 // I ⊗ E ι⊗id // A⊗ E π⊗id // B ⊗ E // 0 (1.11)

becomes short-exact for every C∗-algebra E. We shall verify that A� E admits a unique C∗-norm,
which amounts to verifying that ‖·‖ ≥ ‖·‖max

2. Since one has ‖·‖ ≤ ‖·‖max in conjunction with ‖·‖min-
continuity, the identity map on A�E extends uniquely to a ∗-epimorphism σ : A⊗maxE −→ A⊗E.
Our task is to ensure injectivity of σ. To achieve this we arrange a commutative diagram

0 // I ⊗ E ι⊗id // A⊗ E π⊗id // B ⊗ E //

θ
��

0

0 // I ⊗ E ι′ //

id

OO

A⊗max E

σ

OO
π′

88

% // A⊗maxE
im ι′

// 0

2The claim stems from minimality of the ‖ · ‖min-norm combined with maximality of ‖ · ‖max. The former is a
non trivial result due to Takesaki, theorem 3.4.8 in [9]
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Diagram chasing on the right-hand side entails that any element x in the kernel of σ must belong to
the kernel of the quotient map %, hence satisfies x = ι′(y) for some element y in I ⊗E by exactness.
Commutativity of the left-hand square yields (ι⊗ id)(y) = 0, whereby exactness ensures that y = 0,
granting x = ι′(y) = 0. Altogether, it suffices to produce the ∗-homomorphisms π′, θ and ι′ along
with the alleged commutativity.

The inclusion I � E ⊆ I ⊗ E induces a ∗-monomorphism I � E ↪→ A ⊗ E by composing with
ι⊗ id. Composing with the canonical inclusion A⊗E ↪→ A⊗maxE gives a unique ∗-homomorphism
ι′′ : I � E −→ A⊗max E such that ι′′(a⊗ e) = ι(a)⊗ e for every elementary tensor a⊗ e in I � E.
We wish to extend its domain to I ⊗ E. Consider the function

‖ · ‖1 : I � E −→ R+; x 7→ max{‖ι′′(x)‖max, ‖x‖}.

Upon ι′′ being a ∗-homomorphism one easily verifies that it defines a C∗-norm. Nuclearity of I forces
‖ · ‖1 to coincide with ‖ · ‖min. One hereby infers that ι′′ must be ‖ · ‖min-contractive. Thus it extends
uniquely to some ∗-homomorphism ι′ : I⊗E −→ A⊗maxE fulfilling σι′(a⊗e) = σ(ι(a)⊗e) = ι(a)⊗e
on every elementary tensor a⊗ e in I ⊗ E.

Constructing the morphism π′ is done in an analogues manner, so details have been reduced to
a bare minimum. Let π′′ be the ∗-homomorphism A � E −→ B ⊗ E induced by π ⊗ id and the
inclusion A� E ↪→ A⊗ E. Consider the C∗-norm on A� E defined as

‖ · ‖2 : A� E −→ R+; x 7→ max{‖π′′(x)‖, ‖x‖max}.

Nuclearity of B implies ‖ · ‖max-continuity of π′′ through an argument running parallel to the
establishment of ‖·‖min-continuity of ι′′. As such the morphism π′′ extends to some ∗-homomorphism
π′ : A⊗maxE −→ B⊗E such that π′(a⊗ e) = π(a)⊗ e for a ∈ A and e ∈ E, uniquely. To construct
the morphism θ some additional care must be taken. Define at first a bilinear map

Λ: B × E −→ A⊗max E

im ι′
=: D; (π(a), e) 7→ %(a⊗ e),

with % being the quotient map in the diagram. The map is independent on the choice of lift, for if
π(a−a0) = 0 then a−a0 must belong to im ι ⊆ im ι′ via exactness. The universal property of tensor
products induces a unique ∗-homomorphism θ0 : B�E −→ D for which θ0(π(a)⊗ e) = %(a⊗ e) for
each elementary tensor π(a)⊗ e inside B � E. Employing the previous trick on the C∗-norm

‖ · ‖3 : B � E −→ R+; x 7→ max{‖θ0(x)‖, ‖x‖}

allows one to deduce ‖ · ‖min-continuity of θ0, thus granting a unique ∗-homomorphism extension
θ : B⊗E −→ D of θ0. Finally, for every element a⊗ e in A�E one has θ(π′(a⊗ e)) = %(a⊗ e) upon
which the required commutativity holds by invoking uniqueness of the involved maps.

Separable nuclear C∗-algebra bring solutions to the lifting problem in the category of C∗-algebras
with completely positive maps as morphisms. The theorem was established by Choi-Effros in [10],
although the reader is encouraged to skim section 5.1 in [30] for an alternative proof.

Theorem 1.4.7 (Choi-Effros’ lifting theorem). Suppose A,E denote some C∗-algebras such that E
is separable. Assume in addition that A is unital and let I be an ideal in A. Under these premises,
every nuclear completely positive map ψ : E −→ A/I admits a completely positive lift ϕ : E −→ A,
meaning the diagram

E

ϕ

''

ψ // A/I

A

%

OO

commutes. Here % : A −→ A/I is the quotient map. In the event of E being unital and ψ being
unital, the lift ϕ may be chosen to be unital. In particular, every completely positive (resp. unital
completely positive) map from a nuclear C∗-algebra into a unital quotient admits a completely
positive (resp. unital completely positive) lift.
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Order Zero Maps

One frequently strives to enhance the utility of completely positive maps in the sense that one desires
to have these further resemble ∗-homomorphisms. The resulting morphisms in question are called
order zero maps and were meticulously studied by Winter and Zacharias, based on the work of Wolff.
Order zero maps are thoroughly introduced in [49] and section 5.3 of [30]; the reader is assumed to
be fully acquainted with both. The notion giving birth to order zero maps is orthogonality.

Definition. Suppose A and B are two C∗-algebras.

· Two elements a, b ∈ A are called orthogonal should ab = ba = a∗b = ab∗ = 0 and we write a ⊥ b to
symbolize orthogonality of these elements. We refer to two subsets Ω,Ω0 ⊆ A as being orthogonal
if a ⊥ b for all a ∈ Ω and b ∈ Ω0, symbolically writing Ω ⊥ Ω0 to denote this.

· A completely positive map ϕ : A −→ B is of order zero should it preserve orthogonality, meaning
a ⊥ b in A implies ϕ(a) ⊥ ϕ(b) in B for all a, b ∈ A. The corresponding collection of order zero
maps ϕ : A −→ B is symbolically denoted by O(A,B).

Given an order zero map ϕ : A −→ B, we denote by Bϕ the C∗-algebra generated by its image.
The main structure theorem due to Winter-Zacharias reveals the crux of order zero maps, namely a
characterization resembling Stinespring dilations. Note that given a ∗-homomorphism π : A −→ B
and positive element b in B commuting with the image of π, the ”translated” map a 7→ bπ(a) defines
an order zero map. Essentially, the aforementioned theorem states that all order zero maps arise in
this manner. The entityM(A) attached to any C∗-algebra is the multiplier algebra ofA3. The second
paramount characterization of order zero maps is their correspondence with ∗-homomorphisms from
cones, to be discussed afterwards.

Theorem 1.4.8 (Winter-Zacharias). Suppose ϕ : A −→ B denotes an order zero map between C∗-
algebras. If so, there exists a triple (eϕ, πϕ, Bϕ) consisting of a ∗-homomorphism πϕ : A −→M(Bϕ)
together with an element 0 ≤ eϕ in Bϕ. Additionally, eϕ commutes with the image of ϕ and fulfills
‖eϕ‖ = ‖ϕ‖. The triple witnesses ϕ by the formula

ϕ(·) = eϕπϕ(·) = πϕ(·)eϕ.

Lastly, the positive element may be chosen as eϕ = ϕ(1A) in the event of A being unital.

Terminology. The associated triple (eϕ, πϕ, Bϕ) of an order zero ϕ is referred to as the order zero
triple of ϕ and the corresponding formula witnessing ϕ will be referred to as the order zero relation,
in spite of the chosen terminology being non-canonical. There is a precedence, however, to address
the ∗-homomorphism πϕ as the supporting morphism of ϕ.

Proposition 1.4.9. Let A,B be C∗-algebras. If so, there exists a one-to-one correspondence be-
tween contractive order zero maps ϕ : A −→ B and ∗-homomorphisms π : C0(0, 1] ⊗ A −→ B.
Letting id denote the generating element of C0(0, 1] and γ : A ↪→ C0(0, 1]⊗A be the linear isome-
try a 7→ id⊗ a, the correspondence may be captured in terms of the commutative diagrams

A
γ //

ϕ

((

C0(0, 1]⊗A

%ϕ

��
B

A
γ //

ϕ%

((

C0(0, 1]⊗A

%

��
B

Here %ϕ is the ∗-homomorphism, induced by some contractive order zero map ϕ : A −→ B, defined
by the assignment id ⊗ a 7→ ϕ(a), whereas ϕ% denotes the contractive order zero map, induced by
some ∗-homomorphism % : C0(0, 1]⊗A −→ B, defined by the assignment id⊗ a 7→ %(a).

3The appendix contains additional and detailed information regardingM(A), although its existence is considered
established in the thesis.
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Proof. We briefly record important observations of the proof. The prescribed mappings are obviously
mutual inverses should they exist. To achieve existence, suppose ϕ : A −→ B denotes a contractive
order zero map. Let (eϕ, πϕ, Bϕ) be the order zero triple attached to ϕ. Define a ∗-homomorphism
% : C0(0, 1] −→ B via the assignment id 7→ eϕ. The element eϕ commutes with the image of πϕ,
thereby ensuring that %, πϕ have commuting images. By nuclearity of the abelian C∗-algebraC0(0, 1],
the associated tensor map %× πϕ : C(0, 1]⊗A −→ B exists and yields the designated morphism %ϕ
due to the order zero relation implying

%ϕ(id⊗ a) = %(id)πϕ(a) = eϕπϕ(a) = ϕ(a).

Conversely, every ∗-homomorphism % : C0(0, 1]⊗A −→ B induces an order zero map ϕ% : A −→ B
in terms of the assignment a 7→ (% ◦ γ)(a). Since γ is obviously orthogonality preserving, the map
ϕ% must be contractive and of order zero. This finalizes the proof.

Remark. Let Oc(A,B) be the subspace of O(A,B) comprised of contractive morphisms. The cor-
respondence may be expressed as an isomorphism of sets Oc(A,B) ∼= Hom(C0(0, 1]⊗A,B) for any
pair A,B of C∗-algebras. In contrast to ordinary completely positive maps, in the sense of Stine-
spring dilation, the benefit of the correspondence revolves around ∗-homomorphisms on cones being
relatively easy to tackle and manipulate. Loosely speaking, we may upgrade our order zero maps to
∗-homomorphism without paying too much. Moreover, passing issues to cones does not alter traces
heavily, which becomes pivotal for the main theorem, as well shall witness.

For future purposes, we verify some standard observations for order zero maps before proceeding.
Despite these observations being straightforward consequences of the correspondence theorem along-
side the structure theorem, they develop some intuition behind order zero maps — in the unital case,
they are very close to being multiplicative.

Corollary 1.4.10. Suppose ϕ : A −→ B is some contractive completely positive map between
C∗-algebras with A being unital. Under these premises, the following hold.

(i) ϕ is of order zero if and only if one has ϕ(ab)ϕ(1A) = ϕ(a)ϕ(b) for all a, b in A.

(ii) If ϕ : A −→ B is of order zero, then ϕ defines a ∗-homomorphism if and only if ϕ(1A) is a
projection inside B.

Proof. (i): Let ϕ : A −→ B be a contractive order zero map. Select some a, b in A. The induced
∗-homomorphism %ϕ for which the above diagram becomes commutative satisfies,

ϕ(ab)ϕ(1A) = %ϕ(γ(ab)γ(1A)) = %ϕ((id⊗ a)(id⊗ b)) = ϕ(a)ϕ(b).

The converse of (i) is trivial due to the left-hand side of the assumed relation being zero whenever
a ⊥ b. Notice that an entirely analogue computation reveals that ϕ(1A)ϕ(ab) = ϕ(a)ϕ(b), hence
ϕ(1A) must necessarily commute with the image of ϕ.

(ii): The “only if” part is obvious whereas the “if” part may be verified as follows. According to
the structure theorem of contractive order zero maps, there exists a ∗-homomorphism πϕ : A −→ B
commuting with eϕ = ϕ(1A) and fulfilling πϕ(·)ϕ(1A) = ϕ(·). One then deduces that

ϕ(ab) = πϕ(ab)e2
ϕ = πϕ(a)eϕπϕ(b)eϕ = ϕ(a)ϕ(b)

for all a, b in A, completing the proof.

The relation in (i) is commonly referred to as the “order zero identity”.
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1.5 On Finiteness of Projections, Stability and K-Theory

K-theory in its various disguises is perhaps the leading device to classify C∗-algebras. We shall invoke
several properties attached, including classification results of UHF-algebras. Since K-theory captures
projections on matrix algebras over the C∗-algebra in question, some remarks regarding projections
of different “sizes” and stabilizations are added. Let us at first discuss finiteness of projections, a
notion related to quasidiagonality.

Definition. Let A be some C∗-algebra containing a nonzero projection p.

· The projection p is infinite if p is equivalent to some proper subprojection, meaning there exists
some projection q inA fulfilling p ∼ q < p. The C∗-algebraA is infinite should it contain a nonzero
infinite projection.

· The projection p is called finite provided that it cannot be infinite. A C∗-algebra is finite if every
projection is finite.

· The projection p is properly infinite if there are orthogonal projections p1, p2 satisfying p1 +p2 ≤ p
and p ∼ p1 ∼ p2. The C∗-algebra A is properly infinite should an existing unit be so.

Lemma 1.5.1. Suppose A denotes a unital C∗-algebra. Then A is finite if and only if 1A is finite.
Furthermore, these conditions are equivalent to every isometry being a unitary.

Proof. Omitted and may found in [29] as lemma 5.1.2.

Some remarks are in order. In the literature, the definition of finiteness varies. Some demand finiteness
of a C∗-algebra to be finiteness of the unit, passing to the unitization in the non-unital case. The one
selected here is more potent. Therefore we shall refer to finiteness of the unit in the presence of one
as unitally finiteness. The prime notion stemming from finiteness, for the purposes of the thesis, is
stable finiteness.

Definition. A C∗-algebra E is stably finite if Mn(E) is unitally finite for each n in N.

The choice of word “stable” may be understood in the following context. A commonly occurring
entity in the C∗-algebraic setting is the stabilization.To forego future notational inconveniences, fix
some positive integer n and C∗-algebra A. The assignment µ : An −→ Mn(A) defined by declaring

a1 ⊕ . . .⊕ an 7→ diag(a1, . . . , an)

is a ∗-monomorphism, unital in the presence of one on A. Ergo the diagonal matrices in Mn(A) may
be identified with An, which we liberally exploit throughout. Under this identification, every finite
collection ψ1, . . . , ψn of morphisms ψk : A −→ B induce a morphism ψ1⊕ . . .⊕ψn : A −→ Mn(B) of
the same type by a 7→ ψ1(a)⊕ . . .⊕ψn(a). We abbreviate ψn = ψ1⊕ . . .⊕ψn if ψ1 = ψ2 = . . . = ψn.
Consider now the sequence

A
d1 // M2(A)

d2 // M3(A)
d3 // . . .

wherein dn : Mn(A) −→ Mn+1(A) is the non-unital ∗-monomorphism sending an element to the
upper-left corner of the zero matrix in Mn+1(A). If one regards Mn(A) as being contained within
Mn+1(A) via the embedding dn, then we refer to

M∞(A) := lim−→(Mn(A), dn)

as the stable matrix algebra of A. The norm-closure, meaning the inductive limit associated to the
aforementioned inductive sequence, is called the stabilization of A. It may be proven that A ⊗ K
provides a model of the stabilization. We avoid distinguishing between these two pictures and will
exploit both viewpoints on several occasions. Here is the point:
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Lemma 1.5.2. Let A be some C∗-algebra. If so, A is stably finite if and only if A⊗K is finite.

Only the “only if “ part demands justification. The proof relies on projections in inductive limits
being norm-approximated via projections in the finite stages, i.e., on Mn(A) which is assumed to be
finite. We deter from dwelling further into the details.

Examples of stably finite C∗-algebras are not uncommon. For instance, every unital C∗-algebra
A admitting a faithful trace τA must be stably finite: The induced trace τA,n := τA ⊗ τn on Mn(A)
remains faithful due to corollary 1.3.2, so every isometry s in Mn(A) satisfies ss∗ = 1An ; otherwise

0 < τA,n(1An − ss∗) = τA,n(s∗s)− τA,n(ss∗) = 0.

The stabilization often emerges to “weaken” certain invariants into more frequent ones. An instance
would be stable isomorphism; A is stably isomorphic to B whenever A ⊗ K ∼= B ⊗ K. Stable
isomorphism may seem misplaced, however, patience combined with the theorem of L. Brown found
beneath reveals the mileage gathered. The proof of L. Brown’s theorem resides in [6].

Theorem 1.5.3 (L.Brown). Suppose A denotes some separable C∗-algebra. If E is any hereditary
subalgebra in A whose elements are full, then A must be stably isomorphic to E.

Having addressed the stabilization, we proceed to K-theory in brevity. For the K1-group we are
inclined to address homotopy of unitaries, which bears independent significance.

Definition. Suppose A denotes a unital C∗-algebra. Two unitaries u, v in A are homotopic if one
may find a continuous path (ut)t∈[0,1] comprised of unitaries from A, i.e the assignment t 7→ ut is
norm-continuous and each ut is a unitary in A, such that u0 = u and u1 = v. We symbolically write
u ∼h v to represent this instance.

Let G(·) be the Gröthendieck construction, meaning the functor from the category of abelian semi-
groups to abelian groups. The stable matrix algebra contains two subsets, namely the ones comprised
of projections and unitaries;

P∞(A) :=

∞⋃
n=1

Projn(A), respectively, U∞(A) :=

∞⋃
n=1

Un(A).

One endows both these constructions with the following composition. Suppose p belongs to Mn(A) for
some integer n while q belongs to Mk(A) for some integer k. One defines an associative composition
⊕ onM∞(A) via the assignment (p, q) 7→ p ⊕ q with Mn+k(A) being the target. The composition
clearly restricts to compositions on P∞(A), U∞(A). Consider the equivalence relations ∼0, ∼1 on
P∞(A), U∞(A), respectively, defined by stipulating that

p ∼0 q
def⇐⇒ ∃v ∈ Mk,n(A) : p = v∗v, q = vv∗;

u ∼1 v
def⇐⇒ ∃m ∈ N : u⊕ 1m−n ∼h v ⊕ 1m−k relative to Um(A) .

Herein p ∈ Mn(A) and q ∈ Mk(A), whereas u ∈ Un(A) and v ∈ Uk(A). One then defines abelian
groups, whenever A is unital, by

K0(A) := G(P∞(A)/ ∼0) together with K1(A) := U∞(A)/ ∼1 .

There are two canonical maps [·]0 : P∞(A) −→ K0(A) and [·]1 : U∞(A) −→ K1(A), namely p 7→ [p]0
and u 7→ [u]1, respectively. The canonical maps obviously restrict to additive maps on Proj(A) and
U(A). Functoriality arises as a consequences hereby, i.e., any ∗-homomorphism π : A −→ B induces
an abelian group homomorphism [π]n : Kn(A) −→ Kn(B), with n = 0, 1. The definitions in the
non-unital case are within reasonable proximity of the unital ones:

K0(A) := ker
(
K0(A+)

K0(qA)−→ K0(C)
)

and K1(A) := U∞(A+)/ ∼1 .

Due to projections of inductive limits being norm-approximated by projections, one may define
K0(A) in terms of the stablization instead, replacing A⊗K with P∞(A) throughout.
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Definition. Let A and B be C∗-algebras.

· Let π, % : A −→ B be ∗-homomorphisms of C∗-algebras. We refer to these as being homotopic to
one another, symbolically written π ∼h %, if there exists a continuous path (πt)t∈[0,1], in the sense
that t 7→ πt is point-norm continuous, consisting of ∗-homomorphisms from A into B such that
π0 = π and π1 = % hold.

· A is said to be homotopically equivalent to B if there exist ∗-homomorphisms π : A −→ B and
% : B −→ A such that π ◦ % ∼h idB together with % ◦ π ∼h idA are valid.

The K-theory groups are subjects to a myriad of functorial properties and stability properties. We
exhibit the most fundamental ones, albeit one ought to have mentioned Bott-periodicity and the
existence of a six-term exact sequence.

Proposition 1.5.4. The assignments A 7→ Kn(A) define functors from the category C∗-algebras
into the category of abelian groups for n = 0, 1. Furthermore, the following properties are fulfilled.

· Kn(·) is a stable functor, meaning Kn(A⊗K) ∼= Kn(A).

· Kn(·) is finitely additive, meaning Kn(A⊕B) ∼= Kn(A)⊕Kn(B).

· Kn(·) is a continuous functor, meaning Kn(lim−→Ak) = lim−→Kn(Ak).

· Kn(·) is homotopy invariant, meaning π ∼h % entails [π]n = [%]n for two ∗-homomorphisms π, %.

The final, and perhaps most peculiar, functorial property attached to K-theory revolves around
preservation of exact sequences. Suppose

0 // A
ι // B

π // C // 0 (1.12)

represents a short-exact sequence of C∗-algebras. Applying Kn(·) yields an exact sequence

Kn(A)
[ι]n // Kn(B)

[π]n // Kn(C).

However, if the sequence (1.12) splits, then the induced sequence below becomes split short-exact.

0 // Kn(A)
[ι]n // Kn(B)

[π]n // Kn(C) // 0.

One of the profound results based on K-theory is the complete classification of UHF-algebras.

Theorem 1.5.5 (Elliott). Let A,B be two UHF-algebras. Then A becomes isomorphic to B if and
only if there exists an isomorphism ϕ : K0(A) −→ K0(B) such that ϕ([1A]0) = [1B ]0.

K-theory might fail to sustain sufficient data to capture the structure of the underlying C∗-algebra4.
One approach to remedy the hindrance would be to consider ordered K-theory. Recall that an ordered
abelian group is some pair (G,G+) consisting of an abelian groupG together with an additively closed
subset G+ containing 0 such that G+ −G+ = G and G+ ∩ −G+ = {0}. For K0 one declares that

K0(A)+ = {[p]0 : p ∈ P∞(A)}

and refers5 to the pair (K0(A),K0(A)+) as the ordered K-theory. One then defines an ordered mor-
phism of K-groups to be an abelian group homomorphism ϕ : K0(A) −→ K0(B) subject to the
additional condition that ϕ(K0(A)+) ⊆ K0(B+).

4K0 and K1 without order are for instance unable to retain the structure of AF-algebras. In fact, for AF-algebras
one leans on the ordered K0-group. See [29] or [35] for an in depth survey.

5Caution! It need not always constitute and ordered abelian group. A sufficient condition would be stably
finiteness and unitality, see proposition 5.1.5 in [29].



Chapter 2

Setting the Stage

Tikuisis, White and Winter construct morphisms that team-up to witness the designated quasidi-
agonality of traces. Conjuring these maps is no easy task. The deus ex machina in building these is
Connes’ celebrated uniqueness theorem of injective separable hyperfinite II1 factors. An additional
powerful tool we must have at our disposal is ultraproducts. These permit one to characterize qua-
sidiagonality in terms of a single algebra in the nuclear separable setting. Furthermore, ultraproducts
are pivotal in acquiring the morphisms. The chapter pursues various indispensable results to provide
these maps. Alas, some deep theorems are left without proof.

2.1 Induced von Neumann Algebras

von Neumann algebras have a crucial presence in the thesis. In fact, we appeal to very deep results
concerning these and occasionally lean on von Neumann algebraic analogues to motivate certain
notions in the purely C∗-algebraic framework. The section develops the von Neumann algebraic
theory that tends to be used. Afterwards, the setup permitting us to invoke Connes’ uniqueness
theorem will be established thoroughly.

Definition. Let H be any Hilbert space.

· The locally convex Hausdorff topology on B(H) induced via the seminorms a 7→ ‖aξ‖ for each ξ
in H is called the strong operator topology, abbreviated sot.

· The locally convex Hausdorff topology on B(H) induced via the seminorms a 7→ |〈aξ, η〉| for each
ξ, η in H is called the weak operator topology, abbreviated wot.

· The locally convex Hausdorff topology on B(H) induced via the seminorms a 7→
(∑n

k=1 ‖aξn‖2
)1/2

for each (ξn)n≥1 in `2(H) is called the σ-strong operator topology, abbreviated σ-sot.

· The locally convex Hausdorff topology on B(H) induced via the seminorms a 7→
∑n
k=1 |〈aξn, ηn〉|

for each pair of elements (ξn)n≥1, (ηn)n≥1 in `2(H) such that
∑n
k=1 ‖ξn‖ · ‖ηn‖ becomes finite is

called the σ-weak operator topology, abbreviated σ-wot.

A σ-wot continuous linear functional acting on a σ-wot closed involutive subalgebra M ⊆ B(H) is
referred to as being normal. The vector space consisting of all normal functional on M , symbolically
represented by M∗, is called the predual of M .

The four topologies add powerful structure on subalgebras in B(H). The study of algebras closed
in these are von Neumann algebras. Prior to addressing their formal definition in detail, we address
Kaplansky’s density theorem; a remarkably useful density result.

Theorem 2.1.1 (Kaplansky’s density theorem). The closed unit ball A1 of any non-degenerate
involutive subalgebra A ⊆ B(H) is τ -dense in (A

τ
)1, where τ denotes either of the above topologies.

22
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The core of von Neumann algebras is arguably von Neumann’s bicommutant theorem, relating an
algebraic characterization to involutive algebras closed under either of the previous four locally
convex topologies on B(H). For the record, for an involutive algbera A ⊆ B(H) we denote by A′ its
commutant, meaning

A′ := {e ∈ B(H) : ae = ea for all a ∈ A}.

Theorem 2.1.2 (von Neumann’s bicommutant theorem). For a non-degenerate involutive subal-
gebra M ⊆ B(H) containing 1H as the identity the following are equivalent.

· M ′′ = M with M ′′ = (M ′)′.

· M is closed in either the sot, wot, σ-sot or σ-wot topology.

Definition. An involutive non-degenerate subalgebra M ⊆ B(H) is called a von Neumann algebra
should it fulfill one, hence all, of the equivalent conditions in theorem 2.1.2. Furthermore,

· M is finite if it admits a faithful normal trace;

· M is of type II1 if M is infinite dimensional and finite;

· M is called a factor if Z(M ) := {a ∈M : ab = ba for all b ∈M } is ∗-isomorphic to C;

· M is called hyperfinite if there exists an increasing chain F1 ⊆ F2 ⊆ . . . consisting of finite
dimensional C∗-algebras such that

⋃∞
n=1 Fn is strong-operator dense in M .

The notion of a type II1 here is non-standard, although equivalent to the original one. Since we
avoid discussing the type-decomposition theorem of Murray and von Neumann, the current one has
been adopted. We will construct (the) hyperfinite II1 factors rigorously and discuss uniqueness of
such. The framework one appeals to revolves around investigating the induced von Neumann algebra
πτ (A)′′ attached to any pairing (A, τ) consisting of a unital C∗-algera and trace τ thereon, which
paves the path from C∗-algebras to von Neumann algebras. As such general considerations are taken
into account, starting with realizing the inherited type of πτ (A)′′.

Lemma 2.1.3. Let M be an involutive subalgebra of B(H) and call a vector ξ in H ,,tracial for
M” if the vector state a 7→ 〈aξ, ξ〉 restricts to a trace on M . Then aξ = 0 implies a = 0 for every
a in A, whenever ξ is a cyclic tracial vector for M .

Proof. Suppose aξ = 0 for some element a in M . For an additional pair of elements b, c in M one has
〈abξ, cξ〉 = 〈bc∗aξ, ξ〉 = 0 due to ξ being tracial. Since ξ is cyclic, the norm-closure of Mξ coincides
with H, so the observation remains valid when replacing bξ and cξ with general vectors in H, i.e.,
〈aη, η0〉 = 0 must be true for all η, η0 in H. It follows that a = 0 as claimed.

Proposition 2.1.4. Suppose A denotes an infinite dimensional C∗-algebra admitting a trace τ and
let (πτ ,Hτ , ξτ ) be the attached GNS-triple. If so, N := πτ (A)′′ becomes a type II1 von Neumann
algebra having the weak-operator continuous extension τN of the trace defined on ττ (A) by

πτ (a) 7→ 〈πτ (a)ξτ , ξτ 〉, a ∈ A,

as normal faithful trace.

Proof. According to von Neumann’s double commutant theorem, πτ (A) is weak-operator dense in
N . Keeping this in mind, we define a trace τ0 : πτ (A) −→ C by πτ (a) 7→ 〈πτ (a)ξτ , ξτ 〉. The tracial
property of τ0 follows immediately from the trace property on τ in conjunction with (1.4). Since τ0
is clearly weak-operator continuous, it extends to a normal trace τN on N . It remains to be proven
that τN is faithful to ensure that N must be of type II1. The above lemma comes to our aid. Observe
that ξτ must be tracial for πτ (A) based on (1.4), and therefore relative to N by normality. If πτ (a)
belongs to N and fulfills τN (πτ (a)∗πτ (a)) = 0, then ‖πτ (a)ξτ‖ = 0. It follows that πτ (a) = 0 by
lemma 2.1.3, hence τN if faithful by normality. Ergo, τN must be a normal faithful trace acting on
N , completing the proof.
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The von Neumann algebra N = πτ (A)′′ contains valuable informations in regards to A; A lies
within a von Neumann algebra in this manner, in the faithful case at least. A peculiar subtlety is
that the induced normal trace on N automatically becomes faithful despite τ not being faithful.
Having established the type of N , one ought to proceed further into answering whether N may
become a factor. To accomplish this, we lean on a theorem due to Sakai, see theorem 7.3.6 in [24].

Theorem 2.1.5 (Sakai). Suppose ϕ,ψ are positive linear functionals acting on a von Neumann
algebra M such that ϕ ≤ ψ. Then there exists a positive contraction e in M such that ϕ(·) = ψ(e·e).

Proposition 2.1.6. Suppose A denotes a C∗-algebra admitting a trace τ . Abbreviate N = πτ (A)′′.
There exists an order-preserving isomorphism of sets:

∆:
{
a ∈ Z(N ) : 0 ≤ a ≤ 1N

}
−→

{
ϕ ∈ A∗ : ϕ is tracial and 0 ≤ ϕ ≤ τ

}
.

The correspondence is explicitly given via the assignment a 7→ τa, where τa(·) = 〈πτ (·)aξτ , ξτ 〉.

Proof. We start with bringing meaning to ∆. Given an arbitrary element a inside Z(N ) one obtains
σ(aπτ (b)) ⊆ σ(a)σ(πτ (b)) ⊆ R+ for every b in A, whereupon τa becomes a positive functional. The
trace property of τa may be verified thus: Let τN denote the faithful normal trace on N , so that
τa(·) = τN (πτ (·)a). Due to a commuting with the image of πτ and τN being tracial, τa clearly
becomes a trace on A. The mapping ∆ therefore has the designated codomain. Injectivity may be
shown as follows. The involutive algebra πτ (A) is weak-operator dense inside N . Hence, under the
assumption τa = τb for positive contractions a, b in Z(N ), the weak-operator extensions of τa, τb to
N agree as well. As such,

τN ((a− b)∗(a− b)) = τN (a∗a− b∗a− a∗b+ b∗b)

= τa(a∗)− τa(b∗)− τb(a∗) + τb(b
∗) = 0.

Since τN is faithful, one has a = b, proving ∆ to be an injection.
For surjectivity, supposeϕ denotes a positive tracial functional dominated by τ . To employ Sakai’s

theorem, we must translate ϕ in terms of πτ , ξτ . Define a ∗-linear map ψ0 : πτ (A)ξτ −→ C by the
assignment πτ (a)ξτ 7→ ϕ(a). The map ψ0 becomes meaningful on the merits of lemma 2.1.3. Plainly,
ψ0 is a bounded positive functional, hence ψ0 extends by density to a bounded positive functional
ψ on Hτ . Invoking Riez’s representation theorem, there exists some vector η in Hτ fulfilling

ϕ(a) = ψ(πτ (a)ξτ ) = 〈πτ (a)ξτ , η〉 (2.1)

Sakai’s theorem now enters the scene. Let ωϕ : N −→ C be the positive functional given by the
assignment a 7→ 〈aξτ , η〉. Based on ϕ being tracial, the relation (2.1) alongside wot-density provides
the trace property for ωϕ. Moreover, ωϕ ≤ τN on the weak-operator dense subalgebra πτ (A) because
ϕ ≤ τ by hypothesis, hence over the entirety of N . Sakai’s theorem applies to produce a positive
contraction e in N obeying the rule

ωϕ(·) = τN (e1/2 · e1/2) = τN (e·). (2.2)

The element e must be central, for given any b in N one must have

0 ≤ τN ((eb− be)∗(eb− be)) (2.2)
= ωϕ(bb∗e)− ωϕ(beb∗)− ωϕ(b∗eb) + ωϕ(b∗be) = 0.

Faithfulness of τN in turn implies that eb− be = 0. Furthermore, (2.1)-(2.2) combined with e being
central yields surjectivity due to

ϕ(a)
(2.1)
= ωϕ(πτ (a))

(2.2)
=
〈
πτ (a)eξτ , ξτ

〉
= τe(a).

This finalizes the proof.
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Using the preceding proposition, the condition of N being a factor appears: τ has to be extremal.
There are several benefits to such considerations. Situations frequently reduce to this case via a
Krein-Milman theorem argument, a technique we shall employ in the future.

Corollary 2.1.7. Let A be an infinite-dimensional unital C∗-algebra admitting a trace τ . If so,
the type II1 von Neumann algebra N = πτ (A)′′ is a factor if and only if τ is extremal.

Proof. Let us rephrase the assertion into a more convenient language. On the merits of (1.4), the
image τa = ∆(a) of an element a inside Z(N ) satisfies τa(·) = aτ(·) whenever N is a factor.
Invoking proposition 2.1.6, one may reformulate the statement thus: τ is extremal if and only if
for each positive tracial bounded functional ψ on A fulfilling ψ ≤ τ , there exists some real number
0 ≤ x ≤ 1 such that ψ = xτ holds.

Suppose at first τ is extremal. Let ψ be any positive tracial functional on A dominated by τ .
Without loss of generality, assume in addition that ψ is non-zero and differs from τ (there is nothing
to prove otherwise). Define strictly positive real numbers t1 = ψ(1A) and t2 = τ(1A)−ψ(1A). These
numbers evidently satisfy t1 + t2 = 1 and

τ = t1(t−1
1 ψ) + t2(t−1

2 (τ − ψ)).

By our hypothesis imposed on τ , t−1
1 ψ = t−1

2 (τ − ψ) must hold, which rearranges into t1τ = ψ.

To prove the converse, suppose every positive tracial functional ψ on A dominated by τ gives
rise to some real number 0 ≤ x ≤ 1 such that ψ = xτ . Suppose one has some convex combination
τ = (1 − t)τ0 + tτ1 of τ . Then (1 − t)τ0 and tτ1 are positive tracial functionals dominated by τ ,
implying the sought conclusion. This proves the claim.

Our long endeavor of von Neumann algebras induced from GNS representations of traces culminates
into the prototype von Neumann algebra: The hyperfinite II1 factor R. We afterwards proceed to
discussing injectivity and the uniqueness theorem of Connes.

Proposition 2.1.8. There exists a hyperfinite II1 factor R acting on a separable Hilbert space.

Proof. All UHF-algebras are simple and monotracial; see for instance proposition 1.4.3 in [30]. In
particular, the CAR-algebra M2∞ admits a unique faithful trace τ0. Faithfulness stems from the
left-ideal Lτ being a bona-fide ideal via the trace property, hence simplicity forces this to be the
zero-ideal. Upon τ0 being faithful and M2∞ separable, the GNS-triple associated to τ0 consists of a
separable Hilbert space Hτ0 and faithful representation πτ0 . The prime candidate will be

R := πτ0(M2∞)′′.

This determines a hyperfinite von Neumann algebra, which must be of type II1 according to propo-
sition 2.1.4. Certainly, regarding the CAR-algebra as a UHF-algebra, it may be identified with the
norm-closure of

⋃∞
n=1 M2n . From uniqueness of τ0, it must be extremal (the extreme points of traces

are weak∗-dense in the trace simplex), whereby R must be a factor based on corollary 2.1.7

2.2 Injectivity of von Neumann Algebras

The device lacking from obtaining a uniqueness result of R is injectivity of von Neumann algebras.
The subsection seeks to examine the notion and explore how nuclearity of a C∗-algebras translates
into injectivity of the ambient von Neumann algebra πτ (A)′′ attached to a trace τ . Deep and beautiful
results of Connes are exploited here, to our dismay without proofs.



26 CHAPTER 2. SETTING THE STAGE

Definition. A von Neumann algebra N ⊆ B(H) is injective if, for every unital completely positive
map ψ0 : M0 −→ N and unital inclusion ι : M0 ↪→ M of von Neumann algebras, there exists a
unital completely positive map ψ : M −→ N making the diagram below commute.

M
ψ

!!
M0

ι

OO

ψ0

// N

In other words, N as an injective object in the category of von Neumann algebras having unital
completely positive maps as morphisms.

The von Neumann-algebraic notion of injectivity may be described completely in terms of conditional
expectations, a characterization distinguishing von Neumann algebras from C∗-algebras.

Proposition 2.2.1. A von Neumann algebra N acting on a Hilbert space H is injective if and
only if there exists a conditional expectation E : B(H) −→ N .

Proof. Suppose at first E : B(H) −→ N is some conditional expectation. Let ι : M0 ↪→ M be a
unital inclusion of von Neumann algebras and let ψ0 : M0 −→ N be unital completely positive.
Regarding ψ0 as a map attaining values in B(H), one may invoke Arveson’s extension theorem to
produce a unital completely positive extension ψ : M −→ B(H) of ψ0. The sole thing that has
transpired is obtaining the diagram

M
ψ

''
M0

ι

OO

ψ0

// B(H)
E

// N

Gazing at the diagram, it is evident that composing ψ with the conditional expectation E yields a
unital completely positive map extending ψ0 as a map into N .

Conversely, if N is injective, then the identity map thereon extends to a unital completely
positive map E : B(H) −→ N . The map E clearly defines a projection, so according to Tomiyama’s
theorem, see theorem 1.4.3, it must a conditional expectation.

The grand scheme behind bringing injective von Neumann algebras in the thesis is based on Connes’
staggering work; his celebrated uniqueness theorem. The proof of the statement is beyond the scope
of the thesis, so we settle with referring to [12].

Theorem 2.2.2 (Connes). Every injective type II1 factor M acting on a separable Hilbert space
admits a normal ∗-isomorphism M ∼= R.

We will, however, apply the theorem in the C∗-algebraic scene. Doing so requires additional work
and vast machinery that translates nuclearity into von Neumann lingo.

Lemma 2.2.3. Let M be a von Neumann algebra acting on H. Suppose I denotes some σ-wot
closed ideal in M . Under these premises, one may find a projection e in Z(M ) such that I = eM .

Proof. Evidently, I must be norm-closed as well. It therefore determines an ideal in the C∗-algebraic
sense and thereby admits an approximate unit (eα)α∈J . Extract a quasicentral approximate unit
from the existing approximate unit. Denote this by (eα)α∈J again. Due to the net being an increasing
net consisting of positive contractions, it admits a strong operator limit1 e. The limit belongs to I

1This is a basic fact regarding von Neumann algebras, for instance theorem 17.1 in [51].
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since I is σ-wot closed2. On the merits of multiplication to the left (resp. right) by a fixed bounded
operator being sot-continuous and the norm topology being stronger than the sot-topology, one
acquires

ae = sot-limα∈J(aeα) = sot-limα∈J(eαa) = ea

for all a ∈M and similarly ae = a together with e2 = e hold for each a ∈ I. Altogether, e constitutes
a central projection such that eM = I, proving the claim.

The machinery required is the enveloping von Neumann algebra, which happens to pop up through-
out the thesis implicitly. Its existence along with universal property are assumed to be known.
For a thorough proof, the reader is urged to consult section 2 of the third chapter in [41] with an
emphasis on theorem 2.4 therein. Recall that every C∗-algebra A admits a universal faithful non-
degenerate representation πu : A −→ B(Hu). The associated von Neumann algebra πu(A)′′ is called
the enveloping von Neumann algebra.

Theorem 2.2.4. For every C∗-algebra A, the universal representation πu : A −→ B(Hu) extends
to an isometric surjective linear weak∗-to-σ-wot continuous homeomorphism, still denoted by πu
for simplicity, from A∗∗ onto πu(A)′′.

The universal representation enjoys the following universal property: For every non-degenerate rep-
resentation π : A −→ B(H) there exists a unique normal ∗-epimorphism % : πu(A)′′ −→ π(A)′′

making the diagram

A

π
''

πu // πu(A)′′

%

��
π(A)′′

commutative. The point behind invoking these powerful tools is the following consequence. We
intentionally delay the proof of A being nuclear forcing semidiscreteness of its double dual, instead
apply it at first to spur some motivation behind the implementation, starting with a minor lemma.

Lemma 2.2.5. Suppose M ,N denote two von Neumann algebras and let a normal ∗-epimorphism
π : M −→ N be given. Then M is injective if and only if both N and kerπ are injective.

Proof. Notice first that kerπ is indeed σ-weakly closed ideal in M by normality of π. Invoking
lemma 2.2.3 one may produce a central projection e in kerπ such that kerπ = eM . Due to e ⊥ e⊥,
one can form the decomposition M = kerπ⊕ e⊥M . The restriction of π onto the second summand
becomes a normal ∗-isomorphism onto N , whereupon M ∼= kerπ ⊕N becomes valid. Now, finite
direct sums of injective von Neumann algebras are injective. Indeed, if kerπ and N are injective, then
they admit unital conditional expectations E0 : B(H) −→ kerπ together with E1 : B(H) −→ N ,
and the map E : B(H) −→ kerπ ⊕N defined by the assignment a 7→ (E0(a), E1(a)) is clearly a
unital conditional expectation as required in proposition 2.2.1.

Corollary 2.2.6. Let A be a nuclear C∗-algebra admitting a non-degenerate separable represen-
tation π : A −→ B(H). Then the von Neumann algebra π(A)′′ is injective. In particular, the von
Neumann algebra πτ (A)′′ associated to a nuclear unital separable C∗-algebra admitting an extremal
trace τ must be isomorphic to R.

Proof. According to corollary 2.2.11, the von Neumann algebra πu(A)′′must injective. By the univer-
sal property of πu, there exists a unique normal ∗-epimorphism % : πu(A)′′ −→ π(A)′′. The preceding
proposition provides injectivity π(A)′′. The remaining statement follows from Connes’ uniqueness
theorem in conjunction with corollary 2.1.7.

2The σ and ordinary topologies agree on bounded sets, hence on the projection lattice. Moreover, the weak and
strong topologies agree on convex sets such as I.
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In the previous proof it was implicitly exploited that semidiscreteness of the enveloping von Neumann
algebra may be deduced via nuclearity of the underlying C∗-algebra. For quasi-completeness we
derive this modulo certain technical results alongside equivalence of injectivity and semidiscreteness.
In essence, we restrict ourselves to the main perspectives of the proof, commencing by reacquainting
ourselves with semidiscreteness.

Definition. Suppose M denotes a von Neumann algebra and let A be some C∗-algebra.

· A bounded linear map ψ : A −→ M is weakly-nuclear if there is a net (ψα)α∈J consisting of
completely positive finite-dimensionally factorable maps such that ψα(·)→ ψ(·) in σ-wot wise.

· The von Neumann algebra M is called semidiscrete if idM is weakly-nuclear.

Remark I. The convergence ψα(·) → ψ(·) in the σ-wot topological sense may be rephrased via
normal functionals. For each element a in A one has ψα(a)→ ψ(a) σ-wot wise if and only if for each
normal functional ω on M one has (ω ◦ ψα)(a)→ (ω ◦ ψ)(a). Furthermore, in the presence of units,
unital completely positive maps may be arranged; see proposition 2.2.7 in [9].

Remark II. Another essential observation resembling nuclearity of C∗-algebras concerns the col-
lection of weakly nuclear maps: It is point σ-wot closed in the unital case. As such one merely has to
approximate a given unital completely positive map ψ : A −→ M up to any prescribed tolerance,
finite subset in M and finite subset N ⊆M∗; see proposition 3.8.2 in [9].

Deriving semidiscreteness of the double dual associated to some nuclear C∗-algebra requires an
involved theorem by Kirchberg. He succeeded in verifying that semidiscreteness may be checked
solely in terms of the commutant and vice versa. Having established this, one merely needs to
deduce injectivity of πu(A)′ with πu being the universal representation associated to some nuclear
C∗-algebra, for then πu(A)′ becomes semidiscrete if and only if πu(A)′′ ∼= A∗∗ is semidiscrete. We
start by ensuring injectivity of πu(A)′.

Proposition 2.2.7. Suppose A is some nuclear C∗-algebra admitting a non-degenerate represen-
tation π : A −→ B(H). It follows that π(A)′ must be injective.

Proof. Let M0 ⊆M be a unital inclusion of von Neumann algebras and let ϕ : M0 −→ π(A)′ be a
unital completely positive map. Our task is to extend ϕ to a unital completely positive map defined
on M . Since ϕ and π have commuting ranges by hypothesis, there exists a unique unital completely
positive map

π × ϕ : A⊗M0 = A⊗max M0 −→ B(H); a⊗ e 7→ π(a)ϕ(e).

The inclusion M0 ⊆M induces, by functoriality of the minimal tensor product, a ∗-monomorphism
A ⊗ M0 ↪→ A ⊗ M , whereby Arveson’s extension theorem yields a unital completely positive
extension ψ0 of π × ϕ defined on A⊗M . Setting ψ : M −→ B(H) to be ψ(e) = ψ0(1A ⊗ e) gives a
unital completely positive map. We claim thatψ does the job. Sinceψ(e0) = (π×ϕ)(1A⊗e0) = ϕ(e0)
whenever e0 belongs to M0, the morphism ψ extends ϕ. It remains to be shown that it attains values
in π(A)′. Therefore, fix an a in A and an e in M . As ψ0 maps a ⊗ 1M into π(a) one may deduce
that A ⊗ C1M ⊆ Mult(ψ0). Thus (1.9), the fact that ψ0 extends π × ϕ in conjunction with π(A)
commuting with ϕ guarantee that

π(a)ψ(e) = π(a)ψ0(1A ⊗ e)
= ψ0(a⊗ 1M )ψ0(1A ⊗ e)
= ψ0(1A ⊗ e)ψ0(a⊗ 1M )

= ψ(e)π(a).

Continuity combined with linearity of ψ yields the containment ψ(M ) ⊆ π(A)′ as claimed.
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In light of the preceding discussion, we only lack Kirchberg’s theorem to reach our goal. It becomes
immensely more pleasant to prove the theorem with some preliminary work. There are two main
steps involved in the difficult implication of Kirchberg’s theorem. Firstly, one attempts to rewrite
a plausible candidate factoring the given unital completely positive map in terms of vector states,
which is achieved through a Radon-Nikodym type statement. It shall be addressed now.

Proposition 2.2.8. Let ω be some state acting on a unital C∗-algebra A. Let further (πω,Hω, ξω)
be its GNS-triple. If σ is some positive functional on A dominated by ω on A+, then there exists
a unique positive contractive operator eσ in πω(A)′ fulfilling

σ(a) = 〈πω(a)eσξω, ξω〉

for each element a inside A.

Proof. Let qω : A −→ Hω be the quotient map. Define a sesquilinear form 〈·, ·〉σ on qω(A) by the
assignment (qω(a), qω(b)) 7→ σ(b∗a) for all a, b in A. Applying (1.3) together with σ ≤ ω easily
entails that the sesquilinear form must be bounded by ω on the norm-dense subspace qω(A) ⊆ Hω.
Denoting the extension to Hω by 〈·, ·〉σ as well permits one to invoke Riez’ representation theorem
to find a unique positive contractive operator eσ : Hω −→ Hω subject to

〈eσξ, η〉 = 〈ξ, η〉σ (2.3)

for all vectors ξ, η in Hω. Recall that πω(a)qω(b) = qω(ab) for any pair of elements a, b contained in
A. Computing grants

〈πω(a)eσξω, ξω〉 = 〈eσqω(1A), qω(a∗1A)〉 (2.3)
= σ(a).

Moreover,

〈(eσπω(a)− πω(a)eσ)ξω, ξω〉
(2.3)
= 〈πω(a)ξω, ξω〉σ − 〈πω(a)eσξω, ξω〉 = σ(1∗Aa)− σ(a) = 0

for every a in A. Thus πω(A) commutes with eσ due to ξω being cyclic, proving the claim.

In order to approximate the given unital completely positive map in Kirchberg’s theorem in terms
of vector states, one appeals to a lemma by Glimm. Glimm’s lemma allows such approximations of
states under suitable, and modest, assumptions. For the record, given vector ξ in some Hilbert space
one defines the vector functional of ξ, denoted by ωξ, as ωξ(·) = 〈·ξ, ξ〉.

Lemma 2.2.9 (Glimm). Suppose A denotes some separable C∗-algebra represented faithfully on the
separable Hilbert space H such that A trivially intersects the compact operators thereon. Under these
premises, any state ω admits an orthonormal set of vectors (ξn)n≥1 in H satisfying ωξn(a)→ ω(a)
for every a belonging to A.

Proof. Fix some finite subset F ⊆ A together with some tolerance ε > 0. Upon rescaling throughout
we may assume that F consists solely of contractions. Select a finite dimensional subspace H0 ⊆ H.
To arrive at the desired conclusion, we produce a unit vector ξ insideH⊥0 satisfying ωξ(a) ≈h(ε) ω(a)
for all a in F , where h is some function for which h(ε)→ 0 whenever ε→ 0.

According to the Krein-Milman theorem, there is some convex combination ψ =
∑n
k=1 ckψk

consisting of pure states such that ω(a) ≈ε ψ(a) for every a in F . Excising each of the pure states
ψk supplies positive contractions ek in A for which

ekaek ≈ε ψk(a)e2
k, a ∈ F. (2.4)

Let p0 be the orthogonal projection onto H0. Since the compact operators form a two-sided ideal,
expanding r := p⊥0 e1p

⊥
0 − e1 reveals that r must be compact. The restriction q to A of the canonical
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map onto B(H)/K(H) must be a ∗-monomorphism, since A ∩K(H) = {0} by hypothesis. Ergo, we
are allowed conclude that

‖q(p⊥0 e1p
⊥
0 )‖ = ‖q(e1)‖ = ‖e1‖ = 1.

It follows that ‖p⊥0 e1p
⊥
0 ‖ ≥ 1, (otherwise ‖q(p⊥0 e1p

⊥
0 )‖ < 1, which opposes the above). Hence p⊥0 e1p

⊥
0

must have unit length. We claim one may extract some unit vector ξ1 in H0 satisfying e1ξ1 ≈ε ξ1.
This is based on the upcoming estimates. Fix some unspecified tolerance 0 < δ < 1. It will suffice to
provide bounded functions g, g′ : R+ −→ R+ such that both converge uniformly to zero whenever
their input does, ‖p⊥0 η‖ < g′(δ), g′(δ)2 < 1 and such that the latter estimate in

‖e1p
⊥
0 η − η‖ ≤ ‖p0e1p

⊥
0 η‖+ ‖p⊥0 e1p

⊥
0 η − η‖

≤ ‖p⊥0 η‖+ ‖p⊥0 e1p
⊥
0 η − η‖

< g(δ) + g′(δ)

holds for some unit vector η. Indeed having found such maps, the identity ‖p⊥0 η‖2 + ‖p0η‖2 = 1
combined with declaring that ξ1 = p⊥0 η/‖p⊥0 η‖ yields

‖e1ξ1 − ξ1‖ = ‖p⊥0 η‖−1‖e1p
⊥
0 η − p⊥0 η‖ <

g(δ) + g′(δ)

(1− g′(δ)2)1/2
→ 0.

Due to p⊥0 e1p
⊥
0 being a positive contraction, its spectrum contains 1. Being a self-adjoint operator

acting on H, either 1 must be an eigenvalue of p⊥0 e1p
⊥
0 or we may determine some sequence (ηn)n≥1

of vectors such that p⊥0 e1p
⊥
0 ηn → ηn in norm3. Regardless of the outcome, there exists some unit

vector η such that p⊥0 e1p
⊥
0 η is within g′(δ) := 1− (1− δ)1/2 distance of η. Now,

1− ‖p⊥0 e1p
⊥
0 η‖ = ‖η‖ − ‖p⊥0 e1p

⊥
0 η‖ ≤ ‖p⊥0 e1p

⊥
0 η − η‖ < 1− (1− δ)1/2.

Rearranging this leaves us with

(1− δ)1/2 < ‖p⊥0 e1p
⊥
0 η‖ ≤ ‖e1p

⊥
0 η‖ ≤ 1. (2.5)

According to the Pythagorean identity, one may infer that ‖p⊥0 e1p
⊥
0 η‖2 + ‖p0e1p

⊥
0 η‖2 = ‖e1p

⊥
0 η‖2.

Combining this with (2.5) will supply the required relations, namely

‖p0e1p
⊥
0 η‖ < δ1/2 =: g(δ),

‖p0η‖ = ‖p0(η − p⊥0 e1p
⊥
0 )‖ < 1− (1− δ)1/2 = g′(δ).

Mimicking the argument with respect to the finite-dimensional subspace

H1 = span{H0, aξ1, a
∗ξ1 : a ∈ F},

will supply some unit vector ξ2 inH⊥1 such that e2ξ2 ≈ε ξ2. Reiterating the process yields pairwise or-

thogonal unit vectors ξ1, . . . , ξn subject to such estimates. We claim that the vector ξ =
∑n
k=1 c

1/2
k ξk

works, so fix some a in F . Due to ξk ≈ε ekξk, one has

|ωξk(a)− ωekξk(a)|2 ≤ ‖ekaekξk − aξk‖ ≤ ‖ekξk − ξk‖ · ‖a‖+ ‖ekaekξk − aekξk‖ < 2ε. (2.6)

Moreover,

|ωekξk(a)− ψk(a)‖ekξk‖2| ≤ (‖ekaek − ψ(a)e2
k‖ · ‖ξk‖)1/2

(2.4)
< ε1/2, (2.7)

while the estimate ‖ekξk‖2 ≤ (ε+ 1)2 ensures that (as F ⊆ A1 was arranged)∣∣∣∣ n∑
k=1

ckψk(a)‖ekξk‖2 − ψ(a)

∣∣∣∣ ≤ n∑
k=1

ck|ψk(a)(‖ekξk‖2 − 1)| < ε2 + 2ε. (2.8)

3For normal operators, the residual part of the spectrum is empty.
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Altogether, one has

ωξ(a) =

n∑
k=1

ckωξk(a)
(2.6)
≈(2ε)1/2

n∑
k=1

ckωekξk(a)
(2.7)
≈ε1/2

n∑
k=1

ckψk(a)‖ekξk‖2
(2.8)
≈ε2+2ε ψ(a).

Since ψ(a) ≈ε ω(a), the assertion follows.

Theorem 2.2.10 (Kirchberg). Let γ : A −→M ⊆ B(H) be a unital completely positive map be-
tween some unital separable C∗-algebras and some von Neumann algebra M . Under these premises,
the map γ is weakly nuclear if and only if the product map γ× idM ′ : A�M ′ −→ B(H) is ‖ · ‖min-
continuous. In particular, a von Neumann algebra M is semidiscrete if and only if M ′ is.

Proof. Suppose at first γ is weakly nuclear. Let weak-nuclearity be witnessed via the factorizations

γn : A
ϕn // Mk(n)

ψn //M .

Define hereby maps µn : A⊗M ′ −→ B(H) as the compositions

µn : A⊗M ′ ϕn⊗id // Mk(n) ⊗M ′ = Mk(n) ⊗max M ′ ψn×maxidM′ // B(H).

The obtained sequence (µn)n≥1 must be contained in the closed unit ball of bounded linear maps
fromA⊗M ′ into B(H). This space of morphisms inherits a weak∗-topology, interpreted as the point
σ-weak topology, by page 5 in [9]. Alaoglu’s theorem thus guarantees the existence of some point
σ-weak cluster point µ. Upon replacing the sequence with a suitable subsequence, we may assume
that µn → µ point σ-wot wise. Since the space of unital completely positive maps is point σ-wot
closed (see remark II) the map µ remains unital completely positive. Moreover,

µ(a⊗ e) = σ-wot lim
n→∞

(ψnϕn(a)e) =
(
σ-wot lim

n→∞
γn(a)

)
e = γ(a)e

shows that µ must be a continuous extension of γ × idM ′ as desired. The second equality is based
on σ-wot continuity of multiplication to the left (resp. right) by bounded operators. This shows that
the implication “⇒” is valid.

The converse will be deduced in two steps. The underlying idea will be easier to visualize once
we settle a general observation. Suppose K denotes some Hilbert space, upon which A is faithfully
represented, admitting an orthonormal set {δ1, . . . , δn}. Let p be the orthogonal projection onto the
linear span of the orthonormal set. The unital completely positive map ϕ : A −→ pB(K)p defined
via compression by p attains values in pB(K)p ∼= Mn, hence its image points ϕ(a) may be identified
with matrices expressed in terms of the orthonormal set, i.e.,

[ϕ(a)ij ]ij = [〈aδi, δj〉]ij .

Here we naturally regard A as being contained in B(K). Suppose hereafter that {b1, . . . , bn} ⊆M is
some fixed finite set. Let {eij}ni,j=1 be the set of matrix units in Mn arising from the aforementioned
orthonormal set. The bounded linear map ψ : pB(K)p −→M defined by declaring that

ψ(eij) = b∗i bj ,

then extended accordingly, is another unital completely positive map by example 1.5.13 in [9]. The
point is that the unital completely positive map ψ ◦ ϕ : A −→M satisfies

(ψ ◦ ϕ)(a) = ψ

( n∑
i,j=1

〈aδi, δj〉eij
)

=

n∑
i,j=1

〈aδi, δj〉b∗i bj . (2.9)
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According to remark I-II it suffices to verify that γ belongs to the σ-wot closure of factorable maps.
Select two finite subsets F ⊆ A, N ⊆M∗ and a tolerance ε > 0. For each normal functional ω in N
we construct a pair (ϕ,ψ) of unital completely positive maps such that (ω ◦ γ)(a) ≈ε (ω ◦ ψ ◦ ϕ)(a)
for every a in F may be arranged .

The first step towards achieving this will be to access the Radon-Nikodym type statement.
Finiteness of N permits us to define an additional normal functional ωa on M by summing each
element in N and taking the average afterwards. As such ωa majorizes N , so that proposition 2.2.8
yields positive contractions eω in πωa(M )′ subject to

ω(m) = 〈πωa(m)eωξωa , ξωa〉 (2.10)

for every m in M and ω in N . By our hypothesis imposed on γ × idM ′ , lemma 3.8.4 of [9] entails
‖ · ‖min-continuity of θ := (πωa ◦ γ)× idπωa (M )′ , whereby σ : A⊗ πωa(M )′ −→ C given by

σ(a⊗ e) = 〈θ(a⊗ e)ξωa , ξωa〉 = 〈(πωa ◦ γ)(a)eωξωa , ξωa〉

defines a state on A⊗ πωa(M )′. The second step revolves around applying Glimm’s lemma. Repre-
sent A faithfully onto some separable Hilbert space H via %. By separability, we may add countably
infinitely many copies of %, meaning construct the assignment a 7→ (%(a), %(a), . . .), to obtain a new
faithful representation with separable target, which we tacitly identify with B(H) using separability.
However, the new representation cannot contain finite rank operators, hence A ⊆ B(H) cannot
intersect K non-trivially. Invoking Glimm’s lemma with respect to the induced faithful representa-
tion A ⊗ πωa(M )′ ⊆ B(H ⊗ Hωa) thus becomes permissible. Choose thereby an orthonormal set
{δ1, . . . δn} ⊆ H together with elements {m1, . . .mn} ⊆M such that

σ(a⊗ e) ≈ε
〈

(a⊗ eω)

( n∑
k=1

δk ⊗ qωa(mk)

)
,

n∑
k=1

δk ⊗ qωa(mk)

〉
. (2.11)

whenever a belongs to F and ω lies in N . Define ψ and ϕ as the unital completely positive maps
obeying (2.9) from before with respect to these finite collection of elements. Due to〈

(a⊗ eω)

( n∑
k=1

δk ⊗ qωa(mk)

)
,

n∑
k=1

δk ⊗ qωa(mk)

〉
=

n∑
k,`=1

〈aδk, δ`〉〈πωa(m∗km`)eωξωa , ξωa)〉

(2.10)
=

n∑
k,`=1

〈aδk, δ`〉ω(m∗km`)

being valid for every ω in N and a inside A, one acquires

(ω ◦ γ)(a) = σ(a⊗ eω)
(2.11)
≈ε

n∑
k,`=1

〈aδk, δ`〉ω(m∗km`)
(2.9)
= (ω ◦ ψ ◦ ϕ)(a)

for every element a in F and ω in N . This completes the proof of the initial statement. For the
remaining assertion, one merely applies the first in conjunction with von Neumann’s bicommutant
theorem: idM is semidiscrete if and only if idM × idM ′ = idM ′′ × idM ′ is ‖ · ‖min-continuous, the
latter occurring if and only if idM ′ is weakly nuclear.

Corollary 2.2.11. The enveloping von Neumann algebra associated to any nuclear separable C∗-
algebra A is injective. In particular, A∗∗ must be injective.

Proof. Suppose A denotes a separable nuclear C∗-algebra and let πu be its universal representation.
Then πu(A)′ must be injective according to proposition 2.2.7, hence semidiscrete by the equivalence
of these notions; see theorem 9.3.3 in [9]. However, Kirchberg’s theorem entails that πu(A)′′ must be
injective thereby as well. The final claim stems from A∗∗ ∼= πu(A)′′ as von Neumann algebras.
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2.3 Limit Algebras

Limits algebras have a tantalizing ability to transform approximation properties into exact ones. For
our specific purposes, we appeal to more refined versions relying on metric ultraproducts in the C∗-
algebraic framework as opposed to traditional ones. The rationale behind invoking ultraproducts
will be revealed momentarily. Familiarity with limit algebras is assumed, however, establishing
notational aspects has been deemed advantageous. Ultraproduct C∗-algebras will be presented in
detail, although with references4 replacing some proofs .

Let (Ai)i∈I be a family of C∗-algebras indexed over some directed set I. The formal product
∏
i∈I Ai

consisting of tuples (ai)i∈I , in which ai belongs to Ai for each index i in I, may be endowed with
the unbounded supremum norm. We will often use the shorthand (ai) for an element in the product
algebra, whenever the underlying indexing set is understood. We define `∞(Ai, I) as the set consisting
of bounded elements inside

∏
i∈I Ai. The space `∞(Ai, I) equipped with componentwise operations

turns into a C∗-algebra with the supremum norm. Furthermore, the subspace c0(Ai, I) ⊆ `∞(Ai, I)
comprised of elements (ai) satisfying lim ‖(ai)‖ = 0 becomes an ideal inside `∞(Ai, I). Hence

`(Ai, I) :=
`∞(Ai, I)

c0(Ai, I)

defines a C∗-algebra. Being the quotient of C∗-algebras, `(Ai, I) inherits a canonical ∗-epimorphism
% : `∞(Ai, I) −→ `(Ai, I). Let now pi : `

∞(Ai, I) −→ Ai be the i’th projection mapping and let
ιi : Ai ↪→ `∞(Ai, I) be the i’th inclusion map. Using these maps, elements in the C∗-algebra `∞(Ai, I)
may be characterized via the commutative diagrams

`∞(Ai, I)

pi

$$
Ai

ιi

::

id
// Ai

In this regard, an element a in `∞(Ai, I) is completely characterized in terms of the point-images
pi(a). An additional feature concerns morphisms. Suppose πi : E −→ Ai denotes a c.p.c., u.c.p or ∗-
homomorphisms for each i ∈ I or C∗-algebras and define the induced map of (πi)i∈I as the uniquely
determined morphism π : E −→ `∞(Ai, I) of same type given by e 7→ (πi(e))i∈I .

Consider the specific case in which Ai = A for each index i in I. We simplify, with an unpleasant
abuse of notation5, in the countable case by abbreviating `∞(A) = `∞(A,N) and c0(A) = c0(A,N).
The specialized case, often referred to as the sequence or the limit algebra, of `(A,N) is typically
represented as

A∞ =
`∞(A)

c0(A)
.

It is well-known that in A∞ the unique C∗-norm defined through the canonical quotient map
%A : `∞(Ai, I) −→ `(Ai, I), may be expressed via the formula

‖(a1, a2, . . .)‖ = lim sup
n→∞

‖an‖. (2.12)

To A∞ one may associate the diagonal map δA : A −→ `∞(A) given by a 7→ (a, a, . . .). The limit
algebraA∞, in spite of being a powerful tool for separable C∗-algebras, lacks a degree of flexibility due
to traces on A∞ often being a nuisance to tackle. Fortunately, there is room for vast improvements
using ultrafilters.

4In general, one ought to read the section 1.2 in [30], wherein consistent notation and conventions with the
present ones are exhibited. If the reader has no quarrel reading another project of the author, please consult this.

5Unfortunately, this cannot always be compared to the ordinary `∞ and c0 spaces despite the notational overlap!
Rest assured, the original Banach spaces will not occur.
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Definition. Suppose S denotes a nonempty set. A family F of subsets in S is said to

· be nontrivial if ∅ /∈ F ;

· be upward directed if A ⊆ B and A ∈ F imply B ∈ F ;

· have the finite intersection property if A,B ∈ F implies A ∩B ∈ F ;

· be maximal if any subset A in S must satisfy either A ∈ F or S \A ∈ F .

A nontrivial upward directed family F of subsets in S having the finite intersection property is called
a filter. An ultrafilter is a maximal filter on S. A filter F is free should

⋂
M∈FM = ∅.

Let S ⊆ X be an inclusion of nonempty sets. The family F(S) whose elements are subsets A ⊆ X
containing S forms an ultrafilter. For any ultrafilter ω on N, ω is free if and only if ω 6= F({n})
for every positive integer n. To verify this, proving the contrapositive statement is easier. Indeed,
if ω = F({n}) for some integer n, then n ∈

⋂
M∈ωM which opposes freeness. For the converse,

suppose each member in ω contains the singleton {n}, meaning ω ⊆ F({n}) holds. For the reverse
inclusion, let M ⊆ N contain n. By maximality of ω either M or N \M belongs to ω. The latter
cannot occur, for otherwise {n} 6⊆ N \M ∈ ω. Altogether ω = F({n}) as claimed.

The sought intriguing properties of ultrafilters are, amongst several; guaranteed existence and
their ability to ensure convergence of sequences in C. We collect these two facts into a single propo-
sition and refer to section 1.2 in [30] and the appendix in [9] for those demanding a proof. In order
to understand the statements properly, we must address convergence along filters.

Definition. Let X be a topological space and let F be some filter on a directed set I. A net (xi)i∈I
converges to x along F if, for each open neighbourhood U around x, the set SU := {i ∈ I : xi ∈ U}
belongs to F . Equivalently, the net (xi)i∈I converges to x along F if, for every open U neighborhood
of x, there exists some member S in F such that NS(xi) := {xi ∈ X : i ∈ S} lies in U . We write
x = limi→F xi to denote a limit point along F .

Proposition 2.3.1. Let X,Y be topological spaces and S 6= ∅ be a set admitting a filter F .

(i) There exists an ultrafilter containing F .

(ii) The limit of any net (xi)i∈I in X along F is unique should X be Hausdorff.

(iii) Continuity preserves convergence along F , meaning one has f(x) = limi→F f(xi) whenever
f : X −→ Y is a continuous map and (xi)i∈I converges to x along F .

Furthermore, under the additional hypothesis of F being an ultrafilter, one has:

(i) If X is compact, then any net in X converges along F . In particular, bounded sequences in
C converge along any ultrafilter on N.

Proof. We shall prove the third property regarding continuity and refer to [30] for the remainder.
Suppose (xi)i∈I is some net inX converging alongF to some point x. Choose an open neighbourhood
V around f(x). Continuity of f forces U = f−1(V ) to be an open neighborhood around x. By
definition, there exists some member S in F such that NS(xi) ⊆ U . Due to f(NS(xi)) ⊆ V and
f(NS(xi)) = NS(f(xi)) by definition, the assertion follows at once.

Our objective will be to improve the limit algebraA∞ associated to any C∗-algebraA by including ul-
trafilters, especially due to the fourth statement in the above proposition. We need some preparation
to achieve this. Let ω be any filter on N. For any sequence (xn)n≥1 in R, we define the filter-analogues
of limes supremum, respectively limes inferior, for ω as

lim sup
ω

xn = inf
X∈ω

sup
n∈X

xn, respectively, lim inf
ω

xn = sup
X∈ω

inf
n∈X

xn.
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Consider the scenario wherein ω is free. By hypothesis, freeness of ω ensures that for any fixed
positive integer n and every k ≤ n there must exist some Xk ∈ ω subject to k /∈ Xk. The finite
intersection Xn =

⋂n
k=1Xk therefore belongs to {n+ 1, n+ 2 . . .} and defines a member of ω due to

the finite intersection property. The real number supn≤k xk will thus exceed supk∈Xn xk. Applying
the infimum we deduce that

lim sup
ω

xn ≤ lim sup
n→∞

xn. (2.13)

Another remark concerns the Frechét filter. The Frechét filter FN is the family consisting of cofinite
subsets in N. If (xn)n≥1 is a sequence in C converging in the ordinary topological sense to some x,
then each neighbourhood U around x admits some N in N such that xn belongs to U for all integers
n exceeding N , so there are infinitely many such integers n, whereupon SU ∈ FN.

On the other hand, the convergence xn → x along the Frechét filter entails, for each open neigh-
bourhood U around x, the existence of some infinite set M ⊆ N fulfilling NM (xn) ⊆ U . Altogether,
sequential convergence along the Frechét filter is equivalent ordinary sequential convergence. We
may now venture into the world of ultrapowers.

Definition. Suppose (An)n≥1 denotes a sequence of C∗-algebras and let ω be a filter on N. To each
such a sequence, we define cω(An,N) as the ideal in `∞(An,N) consisting of elements (a1, a2, . . .)
subject to the relation limn→ω ‖an‖ = 0. The ultraproduct associated to the sequence (An)n≥1 with
respect to ω is defined as the quotient ∏

ω

An =
`∞(An,N)

cω(An,N)
.

In the case where An = A for all n in N, the ideal cω(A,N) is abbreviated cω(A) and the resulting
ultraproduct algebra

Aω =
`∞(A)

cω(A)

is referred to as the ultrapower of A with respect to the filter ω. The canonical quotient mapping
from `∞(A) onto Aω, which determines the norm on Aω, is denoted by %ω and we define the diagonal
embedding δω : A −→ Aω given by the composition %ω ◦ δA : A ↪→ `∞(A) −→ Aω.

If skeptical eyes arise from the reader, you are completely on track. Let us maintain the notation
exhibited in the definition. First of all, one ought to justify that cω(An,N) in fact defines an ideal. We
give an argument in brevity. One easily deduces subadditivity of lim supω in a manner resembling
the case for ordinary sequential convergence. Moreover, if a sequence (xn)n≥1 converges to x along
ω or if (xn)n≥1 is an element of `∞(A), then one may verify that lim supω xn = limω xn. The ideal
structure of cω(A) follows here, since one for instance has

0 ≤ lim sup
ω
‖an + bn‖ ≤ lim

ω
‖an‖+ lim

ω
‖bn‖ = 0

for elements (a1, a2, . . .) and (b1, b2, . . .) in cω(A). Here we implicitly exploited that lim supω xn ≥ 0
for a sequence (xn)n≥1 of positive reals, which clearly holds. Therefore, cω(A) is additively closed,
whereas the remaining algebraic properties are verified in similar fashions. To prove that cω(A) is
norm-closed let (akn)k≥1 be a sequence of elements in cω(A) converging to some point an. Suppose
some ε < 0 is given and letK ∈ N be large enough to force supn∈N ‖akn−an‖ < ε for any k exceeding
K. Subadditivity of lim supω yields

lim sup
n→ω

|‖akn‖ − lim
ω
‖an‖| ≤ lim sup

n→ω
‖an − akn‖ ≤ sup

n∈N
‖an − akn‖ < ε.

By hypothesis, (akn) belongs to cω(A) for each positive integer k, so the first term on the left-hand
side vanishes as k → ∞. Thus limω ‖an‖ = 0 from which cω(A) becomes closed. Before proceeding
further, we derive an analogue of (2.12) for ultrafilters.
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Proposition 2.3.2. Let ω be any filter on N and let A be any C∗-algebra. Suppose further that the
tuple a = (a1, a2, . . .) is in `∞(A). Then ‖%ω(a)‖Aω = lim supω ‖an‖ holds. Under the additional
hypothesis that ω defines an ultrafilter on N, one has ‖%ω(a)‖Aω = limn→ω ‖an‖.

Proof. Uniqueness of C∗-norms reduces the task into verifying that πω(a) 7→ lim supω ‖an‖, where
a = (a1, a2, . . .) lies in `∞(A), defines a C∗-norm on Aω. Denote the map by σ to ease the notation.
The axioms of being a C∗-norm are clearly satisfied, perhaps save σ(πω(a)) = 0 implying a = 0,
provided that σ is well-defined. To prove well-definedness, suppose πω(a) = πω(b) for a = (an) and
b = (bn) in `∞(A). Subadditivity yields the inequality

lim sup
ω
|‖an‖ − ‖bn‖| ≤ lim sup

ω
‖an − bn‖ = 0,

whereupon σ(πω(a)) = σ(πω(b)) follows immediately,. Hence σ must be a C∗-seminorm on Aω. To
verify that it in fact determines an actual C∗-norm, assume σ(πω(a)) = 0 for some a = (a1, a2, . . .)
inside `∞(A). By definition of σ, for each prescribed tolerance ε > 0 we may find some X in ω
subject to supn∈X ‖an‖ < ε. This in turn implies that ‖an‖ < ε for any n in X. As our choice of
ε > 0 was arbitrary, we deduce that lim supn→ω ‖an‖ = 0 and ergo an = 0 for every positive integer
n, so σ = ‖ · ‖Aω by uniqueness of C∗-norms.

For the second assertion, suppose ω is an ultrafilter on N. Given an element (a1, a2, . . .) in `∞(A),
the associated sequence (‖an‖)n≥1 of positive real number becomes bounded, so it must belong to
some compact subset in R. According to proposition 2.3.1, it therefore converges along ω. Since the
limes superior and ordinary limes along ω agree whenever the limit along ω exists, one may infer
that σ(πω(a)) = limw ‖an‖ for any such element a, completing the proof.

As a final preparation prior to discussing testing-results and tracial ultrapowers, we discuss some
relations between Aω and A∞ for any C∗-algebra A. Appealing to (2.13), one may conclude that
ordinary convergence of real numbers entails convergence along any free ultrafilter ω on N. The
comparison provides us with an inclusion c0(A) ⊆ cω(A), whereby we acquire a ∗-homomorphism
% : A∞ −→ Aω such that the associated diagram

`∞(A)

%ω

''

%A

��
A∞ %

// Aω

commutates, namely %A(a1, a2, . . .) 7→ %ω(a1, a2, . . .).

Remark. Suppose A,B are C∗-algebras. Let ω be a free ultrafilter on N. If for each positive integer
n there exists a contractive linear map πn : A −→ B, the map π : Aω −→ Bω given by

π(%Aω (a)) = %Bω (π1(a1), π2(a2), . . .),

for every a = (a1, a2, . . .) in `∞(A), becomes a bounded linear map. Well-definedness, meaning
independence on the choice of lift for an element inAω, may effortlessly be derived from the preceding
proposition. Evidently, the induced morphism π becomes a ∗-homomorphism, commonly referred to
the induced morphism of (πn)n≥1, if πn defines a ∗-homomorphism for all n in N. Now, suppose each
πn : A −→ B denotes a ∗-monomorphism. Since ∗-homomorphisms are monic precisely whenever
they are isometric, one may apply proposition 2.3.2 once more to infer that

‖π(%Aω (a))‖ = lim
ω
‖πn(an)‖B = lim

ω
‖an‖A = ‖%Aω (a)‖.

The induced map π associated to a sequence of ∗-monomorphisms therefore becomes isometric. The
analogue statement for epimorphisms remains valid, although easier to verify.



2.3. LIMIT ALGEBRAS 37

Proposition 2.3.3. Let A be a (unital) C∗-algebra and let ω be a filter on N.

(i) Every projection p in Aω lifts to a projection in `∞(A).

(ii) Every unitary u in Aω lifts to a unitary in `∞(A).

Proof. (i): Write πω(a) = p for some projection p inAω and self-adjoint element a = (an) in `∞(A)+.
Applying proposition 2.3.2 we have lim supω ‖a2

n − an‖ = 0. For every positive integer n, define a
member En of ω by letting

En =

{
k ∈ N : ‖a2

k − ak‖ <
1

n2

}
.

A fundamental functional calculus result states that σ(ak) ⊆ [− 1
n ,

1
n ]∪ [1− 1

n , 1+ 1
n ] for each positive

integer n provided that k ∈ En, see for instance lemma 2.2.3 in [29] for a proof of the matter. The
obtained family {En}∞n=1 forms a descending chain of members in ω. We thus decompose

N = (N \ E1) ∪
( ⋃
n∈N

En \ En+1

)
∪
( ⋂
n∈N

En

)
.

To ease the notational burden, we introduce the shorthand In = [1 − 1
n , 1 + 1

n ] for each n in N.
The associated indicator map χIn : N −→ {0, 1} becomes continuous on σ(ak) for each k in En
due the previously established inclusion of σ(ak). The whole idea is of course that for indices in
the intersection

⋂
nEn, the elements ak turn into idempotents. Define accordingly for each positive

integer k, elements

bk =

{
ak, if k ∈

⋂
n∈NEn,

χIn(ak), if k ∈ En \ En+1.

On the merits of the functional calculus being a homomorphism, χIn(ak) becomes a projection for
each n ∈ N and k ∈ En, whereas for k belonging to the intersection

⋂
n∈NEn the size of ‖a2

k − ak‖
can be made arbitrarily small. Hence ‖a2

k − ak‖ = 0 holds whenever one has k ∈
⋂
n∈NEn. As such

the sequence b = (bn)n≥1 is a projection in `∞(A) with %ω(a) = %ω(b) = p. The latter relation stems
from lim supω ‖an − bn‖ being zero by construction of b.

(ii): Assume that A admits a unit 1A. The ultrapowers Aω admits πω(1A, 1A, . . .) as a unit.
Suppose a = (a1, a2, . . .) denotes a lift of some unitary u in Aω. Now, proposition 2.3.2 ensures that

lim sup
ω
‖a∗nan − 1A‖ = lim sup

ω
‖ana∗n − 1A‖ = 0. (2.14)

Using (2.14), choose some X in ω such that both ‖a∗nan − 1A‖ < 1 and ‖ana∗n − 1A‖ < 1 become
valid. Being within unit distance of the unit, a∗nan together with ana

∗
n are invertible for each n in

X. The unitary polar decomposition for C∗-algebras thus supplies some unitary vn in A such that
an = vn|an| for all n in X. Keeping this in mind, set

bn =

{
1A, if n /∈ X,
vn, if n ∈ X.

Plainly, b = (b1, b2, . . .) is a unitary in `∞(A), so it remains to be proven that it lifts u. For each
given ε > 0, choose some member X in ω subject to ‖a∗nan − 1A‖ < ε‖a‖−1 for any n ∈ X. Here we
invoke (2.14). From the polar decomposition we infer6 that for bn = vn one has

‖bn − an‖ = ‖an(|an|−1 − 1A)‖ ≤ ‖a‖ · ‖(a∗nan)−1/2 − 1A‖ < ε.

As a consequence, one acquires lim supω ‖an − bn‖ = 0, whence %ω(b) = u, proving the claim.

6Mischief occurs here. However, a standard continuous functional calculus trick reveals that ‖a∗nan − 1A‖ < ε
implies ‖(a∗nan)−1/2 − 1A‖ < ε.
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Testing Results

During the previous section, several prestigious properties of ultraproducts were unveiled. The
present section seeks to exhibit another crucial tool in the ultraproduct arsenal: Kirchberg’s ε-test.
It provides conditions from which one may produce elements of ultraproduct C∗-algebras having
unique properties attached to them. The conditions are captured in “testing functions”. Statements
of such types have substantial impacts and are frequently applied. We initially derive Kirchberg’s
test and afterwards discuss a selected portion of additional testing results. Throughout the entire
section, we regard ω as being some fixed free ultrafilter on N for simplicitiy.

Lemma 2.3.4 (Kirchberg’s ε-test). Let X1, X2, . . . be any sequence of sets. Suppose there exists
a sequence (fkn)n≥1 of functions fkn : Xn −→ R+ for each positive integer k. Define accordingly a
new sequence of, possibly unbounded, functions fkω :

∏
nXn −→ [0,∞] by

fkω(x1, x2, . . .) = lim
n→ω

fkn(xn).

If, for every positive integer m and every prescribed tolerance ε > 0, there exists a tuple (x1, x2, . . .)
in
∏
nXn fulfilling fkω(x1, x2, . . .) < ε for each positive integer k ≤ m, then there exists some

element (y1, y2, . . .) belonging to
∏
nXn such that fkω(y1, y2, . . .) = 0 for all k in N

Proof. Fix a positive integer m. For each n in N let (Xn,`)`≥0 be the sequence of nonempty sets
constructed inductively by setting Xn,0 = Xn and

Xn,` =
{
x ∈ Xn : max

k≤`
fkn(x) <

1

`

}
.

Set µ : N −→ N ∪ {0} to be the assignment n 7→ max{` : Xn,` 6= ∅, ` ≤ n}. By hypothesis, one may
find some element x in

∏
nXn such that limn→ω f

k
n(xn) = fkω(x) < 1

` whenever one has 1 ≤ k ≤ m.
Thus the set

Ym :=
{
n ∈ N : max

i≤m
f in(xn) <

1

m

}
belongs to the filter ω, for every m in N. None of the sets Ym can therefore be empty. It follows that
Xn,m cannot be empty whenever n lies inside Ym. Hence min{n,m} ≤ µ(n) ≤ n for all integers n
in Ym. Set now Zm = {n ∈ N : m ≤ µ(n)} and Y ′m = Ym \ {1, 2, . . . ,m − 1}. One certainly has
m ≤ µ(n) ≤ n if n belongs to Y ′m because of our previous estimate. As such the inclusion Y ′m ⊆ Zm
must be valid. The ultrafilter ω is free, so it must contain any cofinite set7, including Y ′m. Since ω is
upward directed, the inclusion Y ′m ⊆ Zm hereby entails Zm ∈ ω. These observations yield

lim
n→ω

1

µ(n)
≤ lim inf

n→ω

1

µ(n)
= sup
X∈ω

(
inf
n∈X

1

µ(n)

)
≤ inf
k∈N

(
sup
n∈Zk

1

µ(n)

)
≤ inf
k∈N

1

k
= 0.

One may extract some yn inside the nonempty set Xn,µ(n) for each positive integer n to produce a
tuple y = (y1, y2, . . .) in

∏
nXn satisfying

0 ≤ fkω(y) ≤ lim
n→ω

1

µ(n)
≤ 0.

The element y satisfies the sought property, completing the proof.

We adopt the convention of calling the associated maps fkω testing functions. Testing functions and
results hereof will be useful when having to construct an order zero map on the ultraproduct of
the universal UHF-algebra. We will dwell further into these assertions. However, for the sake of
generality some considerations concerning induced maps on ultraproducts ought to be addressed.

7ω if free if and only if it contains the Frechét filter.



2.3. LIMIT ALGEBRAS 39

Observation. LetA,B1, B2, . . . be some C∗-algebras. Suppose (ϕn)n≥1 denotes a uniformly bounded
sequence of ∗-linear maps ϕn : A0 −→ Bω, where A0 is some norm-dense involutive Q[i]-subalgebra
of A. The sequence (ϕn)n≥1 induces a bounded ∗-linear map ϕ0 : A0 −→

∏
ω Bn via

ϕ(·) = %ω(ϕ1(·), ϕ2(·), . . .). (2.15)

Linearity combined with preservation of the involution follows from an easy application of proposi-
tion 2.3.1. Thus, it extends by continuity together with density to a bounded ∗-linear map from A
into

∏
ω Bn. Our objective will be to encapsulate criteria upon which properties, including complete

positivity and order zero, are guaranteed for ϕ. During the proof, we implicitly exploit the following
commutativity rule based on exactness of Mn:(∏

ω

Bn

)
⊗Mn

∼=
`∞(Bn,N)⊗Mn

cω(Bn,N)⊗Mn

∼=
`∞(Mn ⊗Bn,N)

cω(Mn ⊗Bn,N)
=
∏
ω

Mn(Bn).

The middle isomorphism arises from the map sending an element
∑n
i,j=1(bij1 , b

ij
2 , . . .)⊗ eij into the

element (b1, b2, . . .), where bk =
∑n
i,j=1 b

ij
k ⊗ eij .

Lemma 2.3.5. Let A be some separable C∗-algebra, B1, B2, . . . be some sequence of C∗-algebras
and A0 be a countable norm-dense involutive Q[i]-subalgebra of A. For each n, let Ln be the set of
∗-linear maps from A0 into Bn. Let L ⊆

∏
n Ln consist of uniformly bounded tuples.

Under these premises, there exists a sequence (fkn)k≥1 consisting of functions fkn : Ln −→ R+

such that every tuple (ϕn)n≥1 in L induces a contractive completely positive map ϕ : A −→
∏
ω Bn

if and only if limn→ω f
k
n(ϕn) = 0 for each k ∈ N.

Proof. The proof has been split into two parts. First of all, we construct testing functions that detect
whether ϕ becomes contractive or not. To achieve this, fix throughout an enumeration a1, a2, . . . of
A0. Define accordingly testing functions fkn : Ln −→ [0,∞] by declaring

fkn(ϕn) = max{‖ϕn(ak)‖ − ‖ak‖, 0}.

Based on the characterization of norms on ultraproducts8 one may deduce that ‖ϕ(ak)‖ = limω ‖ϕn(ak)‖
for each positive integer k. Then ϕ0 must be contractive if and only if one has limω f

k
n(ϕn) = 0 for

every such k. By continuity combined with density, the continuous extension ϕ of ϕ0 ontoA becomes
contractive if and only if one has limω f

k
n(ϕn) = 0 for all k in N

This tackles the contractive property. Fix momentarily some positive integer n. SinceA0 is norm-
dense in A, one effortlessly realizes that Mn(A0) becomes an involutive norm-dense Q[i]-subalgebra
of Mn(A). Furthermore, the norm-closure of Mn(A0)+ must coincide with Mn(A)+. Enumerating
M`(A0)+ = (b`,k)k≥1 for each positive integer `, one may define testing functions gk`,n : Ln −→ R+,

indexed in accordance with the functions fkn above, by

ϕn 7→ dist(ϕn,`(b`,k),M`(Bn)+).

Here ϕn,` denotes the `’th amplification of ϕn. Let ϕ` : M`(A) −→ M`

(∏
ω Bn

)
be the `’th amplifi-

cation of the map ϕ induced by (ϕn)n≥1 as in (2.15). Using this particular notation, ϕ` is positive
for all integers ` if and only if ϕ is completely positive. Due to M`(A0)+ being norm-dense in M`(A),

ϕ is completely positive, if and only if, ψ` := ϕ` |M`(A0) is positive for all ` ∈ N. (2.16)

The target of ϕ` is an isomorphic copy of
∏
ω M`(Bn). In terms of this identification, ϕ` becomes

the bounded linear map induced from the sequence (ϕ1,`, ϕ2,`, . . .). That is, if γ` denotes the map
induced from (ϕ1,`, ϕ2,`, . . .), then

γ` : M`(A)
ϕ` // M`(

∏
ω Bn) ∼=

∏
ω M`(Bn).

Altogether, limn→ω g
k
`,n(ϕ1, ϕ2, . . .) = 0 for all indices k, ` if and only if γ` is positive on M`(A0) for

all `, which occurs if and only if ψ`. The assertion therefore follows from (2.16).

8Although proposition 2.3.2 does not cover
∏

ω Bn, the proof may be adjusted to include this generality.
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Lemma 2.3.6. Let A be some separable unital C∗-algebra, B1, B2, . . . be a sequence of C∗-algebras
and A0 be a countable norm-dense involutive Q[i]-subalgebra of A. For each n, let Ln be the set of
∗-linear maps from A0 into Bn. Let L ⊆

∏
n Ln consist of uniformly bounded tuples.

Under these premises, there exists a sequence (fkn)k≥1 consisting of functions fkn : Ln −→ R+

such that every tuple (ϕn)n≥1 in L induces a contractive order zero map ϕ : A −→
∏
ω Bn if and

only if limn→ω f
k
n(ϕn) = 0 for each k ∈ N.

Proof. As lemma 2.3.5 provides testing functions for ϕ to be contractive completely positive, we are
only required to test for orthogonality preservation. To this end, enumerate the closed unit ball of
A0 by the elements a1, a2, . . . in A0. By density, one may infer that (A0)1 becomes norm-dense in
the unit ball of A. For each pair of integers k, ` ∈ N, define functions h`k,n : Ln −→ R+ via

ϕn 7→ ‖ϕn(aka`)ϕ(1A)− ϕn(ak)ϕn(a`)‖.

Due to ϕ being order zero if and only if it satisfies the order zero identity, see corollary 1.4.10(i), the
∗-linear map ϕ0 : A0 −→

∏
ω Bn induced by the sequence (ϕn)n≥1 becomes an order zero map if and

only if limn→ω h
`
k,n(ϕn) = 0. According to the density of (A0)1 in (A)1, the continuous extension

ϕ : A −→
∏
ω Bn must be of order zero if and only if limn→ω h

`
k,n(ϕn) = 0. Voila.

2.4 Tracial Ultrapowers

Having defined ultrapowers of C∗-algebras, we embark on a journey into the wonders of tracial
ultrapowers. The current exposition might seem unrelated to the overall theme of ultrapowers.
However, the reader is assured of a greater epiphany to surface in due time. The admirable aspect
of trace-ideals revolves around the obtained quotients together with their close relationship to von
Neumann algebraic features. Naturally, some basics are in order.

Definition. Suppose A denotes a C∗-algebra admitting a trace τ . Let ω be a free ultrafilter on N.
We define seminorms on A, and the corresponding ultrapower Aω, by

‖ · ‖2,τ : A −→ R+; ‖a‖2,τ = τ(a∗a),

‖ · ‖τ,ω : Aω −→ R+; ‖(an)‖τ,ω = lim
ω
‖an‖2,τ .

Notice that no mischief occurs for the latter seminorm; an element a = (a1, a2, . . .) in `∞(A) must be
norm-bounded by hypothesis, hence the sequence (‖an‖)n≥1 belongs to some compact subset of R
and attains a limit along ω according to proposition 2.3.1. The fact that ‖ · ‖2,τ becomes a seminorm
stems from the GNS-identity (1.4). Furthermore, in the event of τ being faithful, (1.4) entails that
‖ · ‖2,τ on A turns into a norm.

Definition. Suppose ω denotes a free ultrafilter on N. Given a C∗-algebra A, we define

Jτ,ω :=
{
%ω(a1, a2, . . .) ∈ Aω : lim

ω
‖an‖2,τ = 0

}
.

We refer to the quotient Aωτ = Aω/Jτ,ω as the tracial ultrapower of A with respect to τ .

Remark. When dealing with tracial ultrapowers, it is customary to omit referring to the quotient
map %ω : `∞(A) −→ Aω. Ergo we shall not distinguish between elements in either and simply
write a generic in Aωτ as %ωτ (a1, a2, . . .) for brevity, unless confusion may occur, where %ωτ is the
quotient map onto Aωτ . Secondly, the diagonal embedding δω : A ↪→ Aω induces an embedding
%ωτ %ωδA : Aω −→ Aωτ , once again identifying A with images of constant sequences.

For the sake of comforting ourselves with these entities, we shall verify that Jτ,ω in fact determines an
ideal within Aω, whereupon the tracial ultrapowers become meaningful (and hence are C∗-algebras
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themselves). Suppose a belongs to A and b belongs to Jτ,ω. The Cauchy-Schwarz inequality for
positive functionals, i.e. (1.3), yields

‖ab‖2,ω = lim
ω
‖anbn‖2,τ

= lim
ω
τ
(
b∗n(a∗nanbn)

)
≤ lim

ω

(
τ(b∗nbn)τ((a∗nanbn)∗(a∗nanbn))

)1/2
= lim

ω
τ((a∗nanbn)∗(a∗nanbn))1/2 · ‖b‖1/22,ω .

Due to the right-hand factor being zero, ab must belong to Jτ,ω. We implicitly exploited continuity
of multiplication in C during the final equality in conjunction with continuity preserving ω-limits.
The remaining properties an ideal are verified in resembling manners.

A remarkable aspect to be revealed is that Aωτ ,N
ω
τ become identical von Neumann algebras,

whose type we may track solely in terms of the underlying C∗-algebra A. Further, in order to appeal
to von Neumann algebraic trickery, we are poised to address the types tracial ultrapowers of von
Neumann algebras attain, including finiteness. We will not establish the von Neumann algebraic
structure of tracial ultrapowers and instead confine ourselves solely to taking types, finiteness and
factors into account.

Observation. Let A be a C∗-algebra and let ω be a free ultrafilter on N. Suppose (ϕn)n≥1 denotes
a uniformly bounded sequence of linear functionals ϕ : A −→ C. Define a map ϕω : Aω −→ C by the
following formula:

ϕω(%ω(a1, a2, . . .)) = lim
ω
ϕn(an). (2.17)

Well-definedness of ϕω stems from a computation resembling the ones already encountered alongside
the limit limω ϕ(an) being meaningful thanks to proposition 2.3.1. The induced map ϕω obviously
must be positive, bounded, contractive and tracial provided each ϕn satisfies the respective proper-
ties. One may further induce a faithful trace τ : Aω −→ C from A by

[%ω(a1, a2, . . .)] 7→ lim
ω
τ(an). (2.18)

Here the choice of lift (a1, a2, . . .) for both quotient maps becomes irrelevant, similar to previous
cases. Notice that τω automatically becomes faithful by the definition of Jτ,ω. In this sense, the same
ideal measures the failure of the induced trace τω onAω from being faithful. Mimicking the argument
presented in the proof of proposition 2.3.2, one acquires the characterization

‖%ωτ %ω(a1, a2, . . .)‖Aωτ = lim
ω
‖an‖2,τ . (2.19)

of the norm on Aωτ , for any such pairing (A, τ).

Proposition 2.4.1. The tracial ultrapower M ω
τ associated to a von Neumann algebra M admitting

a normal trace defines a finite von Neumann algebra

Proof. The reader may consult the appendix in [9] on the matter. Finiteness, however, is immediate
from the existence of a faithful trace, namely the one depicted in (2.18).

Lemma 2.4.2. Let M be a von Neumann algebra admitting a faithful trace τ . Then M is a factor
if and only if for each nonzero projection p in M with τ(p) ≤ 1/2 one has p � 1M − p.

Proof. Suppose at first M is a factor. For any non-zero projection p ∈M , one has either p � 1M −p
or 1M −p � p according to the comparability theorem, see corollary 25.5 in [51]. We have to discard
the latter from being a possibility. Since τ(1M − p) ≥ 1/2 we may deduce that τ(p) ≤ τ(1M − p). If
τ(p) < 1/2, then 1M − p � p cannot be valid. In the event of τ(p) = 1/2 we have τ(p) = τ(1M − p).
We therefore must have p � 1M − p.
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For the converse suppose M is not a factor and choose a non-trivial central projection p in M
hereby. Upon interchanging p with 1M − p, we may assume that τ(p) ≤ 1/2. Suppose q denotes any
projection such that p ∼ q, say p = v∗v together with q = vv∗ hold for some partial isometry v. Since
p is central, the inequality (1.2) implies that q = vv∗vv∗ = vp2v∗ = pvv∗p ≤ p. Hence q 6≤ 1M − p
and thus p � 1M − p fails. This proves the claim.

Proposition 2.4.3. Suppose M denotes a von Neumann algebra admitting a faithful trace τ and
let ω be a free ultrafilter on N.

(i) M ω
τ is a factor provided that M is a factor.

(ii) M ω
τ is of type II1 provided that M is a type II1 factor.

In addition, M ω
τ is always finite.

Proof. (i): Let p be any nonzero projection in M ω
τ and lift it to a projection (p1, p2, . . .) in `∞(M )

using proposition 2.3.3. Substituting the projections p and pn with their corresponding orthogonal
complements if necessary we may safely assume that

F := {n ∈ N : τ(pn) ≤ 1/2} ∈ ω.

According to lemma 2.4.2, one has pn � 1M − pn for each positive integer n, say v∗nvn = pn and
vnv
∗
n ≤ 1M − pn for partial isometries (vn)n≥1 within M . Letting un = vn for each integer n in F

and un = 0 otherwise yields a partial isometry u = %ωτ (v1, v2, . . .) in M ω
τ . Since u satisfies

‖v∗v − p‖ (2.19)
= lim

ω
‖v∗nvn − pn‖2,τ = lim

ω
τ(v∗nvn − v∗nvnpn − pnv∗nvn + pn) = 0

one obtains v∗v = p while vv∗ � 1Mω
τ
− p stems from ∗-homomorphisms preserving the order �

(hence so do %ω, %
ω
τ ). The claim now immediately follows from lemma 2.4.2.

(ii): Based on (i) in conjunction with (2.18), the von Neumann algebra M ω
τ becomes a finite

factor, hence must be of type In (i.e. isomorphic to Mn) for some positive integer n or type II1. We
assert the former must be false. Fix any positive integer k. According the halving lemma9, there
exists mutually orthogonal projections p1, p2, . . . , pk in M . By embedding these into M ω

τ via the
diagonal map δω composed with the usual quotient map %ωτ , they form a k-dimensional C-linear
space therein. Due to this being valid for each k < n, M ω

τ cannot be of type In for any n in N, so
that (ii) follows whereas the latter assertion was established previously.

As promised, the great epiphany achieved and point in considering the strong-operator closure N
of the GNS triple associated to a pair (A, τ) consisting of a unital C∗-algebra and trace hereon: Its
tracial ultrapower Aωτ becomes isomorphic to N ω

τ .

Proposition 2.4.4. Suppose A denotes a unital C∗-algebra admitting some trace τ and let further
N = πτ (A)′′. Under these premises, there exists a ∗-epimorphism Λ: Aωτ −→ N ω

τ making

`∞(A)
π∞τ //

%Aω

yy
σ

��

`∞(N )

%N
ω

&&
γ

��

Jτ,ω EAω

%Aτ %%

Nω D JτN ,ω

%N
τxx

Aωτ
Λ // N ω

τ

commute. In particular, Aτω
∼= N ω

τ and Aωτ becomes a finite II1 factor.

9Consult for instance lemma 4.9.2 in [13], noting that type II do not contain abelian projections.
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Proof. Let τN be the normal faithful trace on N induced by the trace τ . To ensure existence of the
∗-homomorphism Λ, consider the ideal Jτ,ωEAω. Fix some a = (a1, a2, . . .) in `∞(A). If the element
a belongs to I := ker γπ∞, then (2.19) implies that limω ‖πτ (an)‖2,τN = 0. Upon τN extending τ ,
the point-image %Aω (a) satisfies

‖%Aω (a)‖τ,ω
(2.19)

= lim
ω
‖an‖2,τ

(1.4)
= lim

ω
τN (πτ (a∗nan)) = lim

ω
‖πτ (an)‖2,τN

(2.19)
= ‖γπ∞(a)‖N ω

τN

We thus infer that %Aω (I) = Jτ,ω must be valid. Define accordingly the map Λ: Aωτ −→ N ω
τ through

the, now meaningful, assignment σ(a) 7→ γπ∞τ (a). Commutativity of the daunting diagram is auto-
matic. We claim that Λ is a ∗-epimorphism. Let γ(z) be any positive element inside N ω

τ lifting to
some positive element z = (z1, z2, . . .) in `∞(N ). According to Kaplansky’s density theorem, any
closed bounded ball in πτ (A) must be strong-operator dense in N . This permits one to select, for
each positive integer n, some element an in A fulfilling ‖an‖ ≤ ‖zn‖ and

‖πτ (an)− zn‖2,τN = ‖(πτ (an)− zn)ξτ‖ ≤
1

n
. (2.20)

The first equality is based on a straightforward computation leaning solely on (1.4) in conjunction
with the definition of τN . It follows that

‖γπ∞τ (a1, a2, . . .)− γ(z1, z2, . . .)‖
(2.19)

= lim
ω
‖πτ (an)− zn‖2,τN

(2.20)

≤ 0,

Surjetivity of σ follows at once. Since one has ker Λ = σ(I), then

Aωτ = σ(Aω)/σ(I) = Aωτ / ker Λ ∼= N ω
τ ,

This completes the proof.

We close the section with an application of Kirchberg’s ε-test due to Rørdam and Kirchberg in
[26], proposition 4.6. The assertion concerns additional structure that Jτ,ω contains. For those un-
acquainted with the notion: An ideal I inside a C∗-algebra is referred to as a σ-ideal should there
exist some positive contraction s in I fulfilling s ∈ B′ ∩ I and sb = b for each b ∈ B ∩ I, where B is
any separable C∗-subalgebra in A.

Proposition 2.4.5 (Kirchberg-Rørdam). Let A be a unital C∗-algebra admitting a trace τ . If so,
Jτ,ω determines a σ-ideal within Aω.

Proof. The crux of the proof revolves around Kirchberg’s ε test. Suppose B denotes any separable
C∗-subalgebra in A. Let (ak1 , a

k
2 , . . .) be any contraction in `∞(A) such that the sequence of elements

ak = %ω(ak1 , a
k
2 , . . .) becomes norm-dense in B1. Due to B being separable, we only have to produce

a positive contraction s in Jτ,ω ∩B′ subject to sb = b for some strictly positive element b of B∩Jτ,ω.
Choose through separability a strictly positive element b inB∩Jτ,ω, then lift it to a positive element
(b1, b2, . . .). Now, Jτ,ω ∩ B admits an approximate unit (e(1), e(2), . . .) in Jτ,ω, quasicentral in B.
Let (e1(k), e2(k), . . .) be a lift of e(k) and set Xn to be the set of all positive contractions in A, for
all n ∈ N. Define fkn : Xn −→ R+ by

f1
n(x) = ‖(1− x)bn‖, f2

n(x) = ‖x‖2,τ and fk+2
n (x) = ‖aknx− xakn‖.

Due to (e(1), e(2), . . .) being an approximate unit and quasicentral in B, one has f1
ω(ek1 , e

k
2 , . . .) = 0

together with fk+2
ω (ek1 , e

k
2 , . . .) = 0. By hypothesis, limn→ω τ((en(k)2)n≥1) = 0, whereby

f2
ω(ek1 , e

k
2 , . . .) = lim

n→ω
‖(ek)‖2,τ = lim

n→ω
τ((ekn))2) = 0.

Invoking Kirchberg’s ε-test, we find some sequence consisting of positive contractions (sn)n≥1 in A
such that fkω(s1, s2, . . .) = 0 for every k ∈ N. The first two testing functions (f1

ω and f2
ω) ensure that

s := %ω(s1, s2, . . .) defines a positive contraction belonging to Jτ,ω with sb = b. The final testing
functions fkω for k ≥ 3 guarantee that s commutes with C∗(ak) ⊆ (B)1, hence with all of B1 by
norm-density, and thereof all of B. This concludes the proof.



Chapter 3

Quasidiagonality in the Nuclear
Separable Framework

We delve into the realm of quasidiagonal C∗-algebras and their connections to Nuclear separable
C∗-algebras. The theorem of Tikuisis-White-Winter requires a tremendous amount of setup. The
chapter is devoted solely to investigating the concept of quasidiagonality alongside alternative char-
acterizations. Statements occurring in the first section are mainly classical, hence assumed familiar.
For a rigorous treatment of the matter, please skim the second chapter in [30].

3.1 Quasidiagonal C∗-algebras

Quasidiagonality is a rigid structure to impose, however , we do gain several strong properties includ-
ing existence of a quasidiagonal trace in the unital case. The notion originates back to Paul Halmos
in the seventies, who introduced the notion of “block-diagonality”, the notion whereby quasidiag-
onality was spawned as an approximation version. One frequently desires approximation-shaped
properties to be detected via completely positive maps. Quasidiagonality has such a characteri-
zation, an observation by Voiculescu’s pioneering work on the subject. In the thesis, Voiculescu’s
abstract formulation is our primary focus. For completion the full package is brought forth.

Theorem 3.1.1 (Voiculescu). Let A be some C∗-algebra. The following are equivalent.

· There exists a faithful representation π : A −→ B(H) and a net (pα)α∈J comprised of finite rank
projections in B(H), quasicentral in π(A), such that pα → 1H strong-operator wise.

· There exists a net (ψα)α∈J comprised of contractive completely positive maps ψα : A −→Mn(α)

which is asymptotically multiplicative - and isometric, meaning for each a, b in A one has

‖ψα(ab)− ψα(a)ψα(b)‖ → 0, respectively, ‖ψα(a)‖ → ‖a‖.

· For each prescribed finite subset F ⊆ A and tolerance ε > 0, there exists a contractive completely
positive map ψ : A −→Mn fulfilling the estimates below for all a, b belonging to F :

ψ(ab) ≈ε ψ(a)ψ(b) together with ‖ψ(a)‖ > ‖a‖ − ε.

Moreover, in the presence of a unit on A the completely positive maps may chosen to be unital and
sequences replace nets whenever A is separable.

Definition. A C∗-algebra satisfying either of the conditions in theorem 3.1.1 is quasidiagonal.

It is apparent that quasidiagonality must be an invariant of C∗-algebras. More may be deduced in
fact; Voiculescu observed in [46] that quasidiagonality is a homotopy-invariant (see section 2.3, in
[30] for a detailed proof). Furthermore, the standard permanence properties are listed.

44
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Proposition 3.1.2. Suppose (An)n≥1 denotes some sequence of C∗-algebras and let I ⊆ N be
arbitrary. Under these premises, the following properties are fulfilled.

(i) Quasidiagonality passes to subalgebras.

(ii) If An and Am are quasidiagonal, then An ⊗Am is quasidiagonal.

(iii) The C∗-algebra A is quasidiagonal if and only if A+ is quasidiagonal.

(iv) If there exists a ∗-monomorphism πn : An −→ An+1 for each positive integer n, then the
inductive limit lim−→(An, πn) remains quasidiagonal.

Some examples arising are finite-dimensional C∗-algebras along with certain AF-algebras. Other
lists of examples include algebras such as the compact operators, residually finite dimensional ones,
irrational rotation algebras and commutative C∗-algebras. Notice that property (iv) cannot be
generalized to general inductive limits. More exotic examples include the Bernoulli crossed product
associated to a countable elementary amenable group (theorem 4.3.6, [30]). The property (iii) often
comes in handy due to unital C∗-algebras being notoriously more pleasant to tackle. The property (i)
should not be underestimated either; it differs from nuclearity since heredity is required there. One
should also be warned about quasidiagonality not passing to quotients. To provide the full picture,
we exhibit the two known obstructions towards quasidiagonality.

Proposition 3.1.3. Every quasidiagonal C∗-algebras is unitally stably finite. The converse if false.

Proof. Let A be any quasidiagonal C∗-algebra. Passing to the unitization, we may assume A to be
unital and we verify the claim in the separable setting, the general being proven similarly. Stable
finiteness of A amounts to Mn(A) being finite for each positive integer n in the unital sense. Since
Mn⊗A ∼= Mn(A) is a ‖·‖min-tensor product of quasidiagonal C∗-algebras, it must be quasidiagonal.
As such it suffices to establish finiteness of A. To accomplish this, we show that every isometry must
be a unitary. Let (ψn)n≥1 be the sequence of asymptotically multiplicative - and isometric unital
completely positive maps attaining values in Mk(n). Let u be any isometry in A, so that

‖ψn(u)∗ψn(u)− 1k(n)‖ = ‖ψn(u)∗ψn(u)− ψn(u∗u)‖ → 0.

Choose some sufficiently large integer N such that ψn(u)∗ψn(u) ≈1 1k(n) whenever n exceeds N .
It follows that ψn(u)∗ψn(u) must be invertible in Mk(n), hence ψn(u) must be invertible therein as
well, having a nonzero determinant. Ergo the above convergence yields

lim
n→∞

‖ψn(u)ψn(u)∗ − 1k(n)‖ = lim
n→∞

‖ψn(u)(1k(n) − ψn(u)−1ψn(u∗)−1)ψn(u∗)‖

≤ lim
n→∞

‖1k(n) − (ψn(u)∗ψn(u))−1‖ · ‖ψn(u)‖2

≤ ‖(ψn(u)∗ψn(u))−1‖ · ‖ψn(u)∗ψn(u)− 1k(n)‖
→ 0.

whenever n exceeds N . As the unital completely positive maps are asymptotically isometric - and
multiplicative, one may infer that

‖uu∗ − 1A‖ ≤ lim
n→∞

‖ψn(uu∗)− ψn(u)ψn(u)∗‖+ lim
n→∞

‖ψn(u)ψn(u)∗ − 1k(n)‖ = 0,

proving the first claim. However, C∗r (F2) is a counter example to the converse.

Proposition 3.1.4. Every unital quasidiagonal C∗-algebras admits a trace.

Proof. We sketch the proof; computations may be found in proposition 2.2.7 of [30]. Let (ψα)α∈J
be the net implementing quasidiagonality on some C∗-algebra A. Composing each map ψα with the
corresponding unique normalized trace on its target algebra, one obtains a weak∗-cluster point of
traces by Alaoglu’s theorem, which becomes a trace on A itself.
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The preceding propositions, albeit relatively easy to prove, make quasidiagonality rather restrictive.
Moreover, the latter result should indicate that traces serve a pivotal role for quasidiagonal C∗-
algebras. Non-examples emerge hereby, to wit:

Corollary 3.1.5. C∗-algebras having infinite projections cannot be quasidiagonal. In particular,
unital properly infinite C∗-algebras cannot be quasidiagonal

Proof. An immediate consequence of quasidiagonality implying stable finiteness. An alternative
proof of the latter is given as follows. Let A be a unital quasidiagonal properly infinite C∗-algebra.
Let τ be its trace inherited from quasidiagonality and suppose p ∼ q < p occurs for some nonzero
projections p, q in A. Then τ(p) = τ(q) < τ(p), since traces cannot distinguish between Murray -
von Neumann equivalent projections, a contradiction.

A concrete non-quasidiagonal example would then be the Cuntz algebrasOn. Regarding C∗-algebras
admitting traces, the notion of quasidiagonality may be modified to quasidiagonal traces. Quasidi-
agonal traces form the core property we pursue throughout the thesis. These were introduced in
[8], arguably based on a mix between Voiculescu’s abstract characterization of quasidiagonality and
proposition 3.1.4 (the proof in fact supplies a quasidiagonal trace).

Definition. Let A be a C∗-algebra admitting a trace. A trace τ acting on A is called quasidiagonal
provided there, for each finiteF ⊆ A and tolerance ε > 0, exists some contractive completely positive
map ψ : A −→Mk such that

ψ(ab) ≈ε ψ(a)ψ(b) and (τk ◦ ψ)(a) ≈ε τ(a) (3.1)

for all a, b in F . Equivalently, τ is quasidiagonal if it admits a net (ψα)α∈J consisting of c.p.c maps
ψα : A −→ Mn(α) fulfilling ‖ψα(ab) − ψα(a)ψα(b)‖ → 0 and τn(α) ◦ ψα → τ in the weak∗-sense for
all a, b in A. Furthermore, sequences replace nets whenever A is separable.

Remarks.

· The notion of quasidiagonal traces stated in its current shape above differs from the one exhibited
in [42]. Therein, the definition has been restricted to unital C∗-algebras while demanding the
existing completely positive maps to be unital in addition. The versions agree in the unital case.

· Another notable non-unital consideration revolves around the unitization A+. Suppose A denotes
a non-unital C∗-algebra admitting a trace τ . The induced positive functional τ+ : A+ −→ C, i.e.,

τ+(a+ λ1A+) = λ+ τ(a) (3.2)

is effortlessly seen to constitute a trace on A+. It is easy to deduce that τ+ becomes quasidiagonal
(in the unital sense) if τ is; the induced linear maps implementing quasidiagonality of τ induce
unital completely positive maps on A+ detecting quasidiagonality of τ+. Moreover, the induced
trace τ+ is faithful whenever τ is so. To verify this, let some positive element x = a + λ1A+ in
A+ \A be given. Then x must be of the form

b∗b+ bµ+ b∗µ+ |µ|21A+

for some complex value µ and element b in A. The first three summands may collected into a
self-adjoint element, whereof rescaling appropriately allows to assume that x attains the form
1A+ − b for some self-adjoint element b inside A. Write b = b+ − b− for positive elements b+, b−.
Due to b+ differing from the unit in A+ (otherwise b = 1A+ − b−, whereby x = b− ∈ A), one may
choose some element z inside A such that z(1A+− b+)z∗ 6= 0. Hence τ(z(1A+ − b+)z∗) > 0. Upon
b+ being a contraction, the relation τ(b+) = 1 cannot occur, for else

0 < τ(z(1A+ − b+)z∗) = τ
(
(1A+ − b+)1/2z∗z(1A+ − b+)1/2

) (1.2)

≤ ‖z∗z‖1A+ · τ(1A+ − b+) = 0.

One thus obtains τ(b+) < 1 and ergo τ+(x) ≥ 1− τ(b+) > 0.
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3.2 A Lifting Theorem and Tracially Large Order Zero Maps

In order to aptly present the general ideas, the author chose to convey some perspective in the
matter. The motivation behind proceeding in this manner is simply to keep track of the underlying
strategy. The proof of Tikuisis-White-Winter’s theorem invokes a plethora of apparatus and tricks,
the largest player entering being an algebra one must be awed by: The universal UHF-algebra Q.

We commence the current section by examiningQ in the quasidiagonal context. The ,,universal-
ity” mentioned is synonymous to ,,maximal” in the sense that it unitally contains isomorphic copies
of every UHF-algebra MN , whence every matrix algebra Mn. We primarily adopt the infinite tensor
product picture of Q, meaning

Q =

∞⊗
k=1

Mp∞k
.

Here {p1, p2, . . .} is the set of all primes. For each positive integer n, the matrix algebra Mn unitally
embeds into Q in a trace preserving manner. Indeed writing Q = Mn ⊗ U for some UHF-algebra U
ensures this and the assignment En : Q −→Mn given by

En(a⊗ e) = a⊗ τU (e), (3.3)

where τU denotes the unique trace onU , is a unital conditional expectation onto Mn. The conditional
expectation En recovers the trace in the sense that τn ◦En = τQ. Throughout the entire chapter, let
some free ultrafilter ω on N be chosen. One, amongst several, motivation behind bringingQ forward
is its ability to witness quasidiagonality of traces. We further lean on some absorption principles of
Q and K-theoretic consequences. Henceforth the induced trace on Qω will be denoted by τω.

Proposition 3.2.1. Suppose p, q are projections in Q.

(i) τQ(p) = τQ(q) if and only if p ∼ q, while τQ(p) ≤ τQ(q) if and only if p � q.

(ii) For each positive real number 0 ≤ s ≤ 1 there exists a projection p in Qω such that τω(p) = s.

Proof. (i): Recall that the isomorphism K0(Q) ∼= Q stems from the map τ∗ : K0(Q) −→ Q induced
by the unique trace τQ, i.e., for each generic element [p]0 − [q]0 in K0(Q),

τ∗([p]0 − [q]0) = τQ(p)− τQ(q).

Consequently, if τQ(p) = τQ(q) for two projections p, q in Q, then [p]0 = [q]0. Since equality in K0

translates into stable equivalence, there exists some projection r in P∞(Q) such that p⊕ r ∼0 q⊕ r.
The cancellation property of Q yields p ∼ q relative to Q. For the second statement, we similarly
acquire τQ(q)− τQ(e) = τQ(p) for a projection e in Q. Thus p ∼ q − e ≤ q, so that p � q.

(ii): Fix some s in [0, 1] and select a sequence (q1, q2, . . .) of rational numbers in [0, 1] converging
to s. Using the isomorphism τ∗ one may find nonzero projections p1, p2, . . . inQ fulfilling τQ(pk) = qk
for each k ≤ n. The element p := (p1, p2, . . .) belongs to `∞(Q) and τω(p) = s.

Remark. UHF-algebras are Z-stable in the sense that Z ⊗U ∼= U for any UHF-algebra U , with Z
being the Jiang-Su algebra, see theorem 5 in [22]. According to Ozawa’s theorem, found in [32], the
trace τω must be unique due to uniqueness of τQ. In other words, Qω must be monotracial.

Proposition 3.2.2. Let n be any positive integer. The following hold.

(i) For every nonzero projection p in Mn(Q), there exists a ∗-isomorphism pMn(Q)p ∼= Q.

(ii) For every nonzero projection p in Mn(Qω), there exists a ∗-isomorphism pMn(Qω)p ∼= Qω.

(iii) For every nonzero projection p in Qω satisfying τω(p) > 0, there exists some k in N and
∗-monomorphism Qω ↪→ pQωp⊗Mk subject to pap 7→ pap⊗ e11 for all a in Q.
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Proof. (i): According to the classification theorem of UHF-algebras, it suffices to show that Mn(Q)
and pMn(Q)p admit isomorphic invariants, since hereditary subalgebras of UHF-algebras are auto-
matically UHF-algebras themselves. In symbols, we must establish the existence of a unit-preserving
group isomorphism

µ : (K0(Q), [1Q]0)
'−→ (K0(pMn(Q)p), [p]0). (3.4)

The K0-group of Q is precisely Q. Invoking theorem 1.5.3, one obtains some ∗-isomorphism of
stabilizations pMn(Q)p⊗K ∼= Mn(Q)⊗K, applicable upon UHF-algebras being simple (projections
are then automatically full). Thus

K0(pMn(Q)p) ∼= K0(pMn(Q)p⊗K) ∼= K0(Mn(Q)⊗K) ∼= K0(Q) ∼= Q

Note that stability of K0 was employed during the first and third identification. Since the zeroth
K-group of both the corner pMn(Q)p and Mn(Q) are copies of Q, the unit [q]0 may identified with
some nonzero rational number x. Define µ : Q −→ Q by mapping 1 7→ x to acquire (3.4).

(ii): Let p be some nonzero projection in Mk(Qω). Using proposition 2.3.3 lift p to some projection
(p1, p2, . . .) inside `∞(Q). According to (i), there exists an isomorphism πn : Mk(Q) −→ pnMk(Q)pn
for each n in N. The induced map

π : Mk(Qω) ∼=
∏
ω

Mk(Q) −→
∏
ω

(pnQpn ⊗Mk) ∼= Mk(pQωp)

does the job. The identifications stem from matrix algebras commuting with ultraproducts.
(iii): We will initially deduce a claim that solves the embedding issue in Q, whereafter we pass

the embedding to the corresponding ultrapowers.

Claim. For each nonzero projection p in Q for which τQ(p)m ≤ 1 holds for some positive integer m,
there exists a ∗-monomorphism πn : Q −→ pQp⊗Mm such that pap 7→ pap⊗ e11 for each element
a in Q, where e11 denotes the (1, 1)’th unit matrix in Mm.

Proof of claim. The projection 1 − p is orthogonal to p11 := p and τQ(1 − p) ≥ τQ(p). According
to proposition 3.2.1(i) we may infer that p11 ∼ p22 ≤ 1 − p11 for a projection p22. Iterating the
argument, we may choose a finite collection {pii}mi=1 of pairwise orthogonal projection such that∑m
i=1 pii = 1Q, p11 = p and pii ∼ pjj for all indices. Let vij be any partial isometry for each pair of

indices i, j ≤ m witnessing the equivalence pii ∼ pjj . Extend {pii}mi=1 to matrix units {uij}mi,j=1 via
the formulas

v∗j vj = p11, vjv
∗
j = pjj , u1j := v∗j and uij = (u1i)

∗u1j = viv
∗
j .

The verifications of this turning into a collection of matrix units are straightforward, although
cumbersome. Defining π : Q −→ pQp⊗Mm by

π(a) =

m∑
i,j=1

u1iauj1 ⊗ eij

yields a ∗-monomorphism fulfilling π(pap) = pap⊗ e11, because

π(pap) =

m∑
i,j=1

u1i(u11au11)uj1 ⊗ eij

=

m∑
i=1

u1iu11au11 ⊗ ejj

= pap⊗ e11

Injectivity of π may be verified through similar, albeit tedious, calculations. We omit these to stay
on track and consider the claim proven.
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Suppose now p denotes a projection in Qω with 0 < z < τω(p). Lift p some projection (p1, p2, . . .) in
`∞(Q) via proposition 2.3.3 such that τQ(pn) ≤ 1/k for some positive integer k and every positive
integern. Apply the claim to each projection pn to produce ∗-monomorphismsπn : Q ↪→ pnQpn⊗Mm

such that pnapn 7→ pnapn ⊗ e11. The induced ∗-monomorphism

π : Qω −→
∏
ω

(pnQpn ⊗Mk) ∼= pQωp⊗Mm

satisfies π(pap) = %ω((pnanpn ⊗ e11)n≥1) = pap ⊗ e11 for any a in Qω having (a1, a2, . . .) as lift.
This verifies (ii) and completes the proof.

Using proposition 3.2.2(ii) together with the Choi-Effros lifting theorem, we may deduce the sought
characterization of quasidiagonality of traces, encapsulated purely in terms of Qω. The statements
somewhat please ones intuition behind ultrapowers and their utility — they conceptually translate
approximation properties into exact ones. Indeed, since quasidiagonality may be phrased in terms
of morphisms that “asymptotically” approaches a ∗-monomorphism, one should expect quasidiag-
onality to induce embeddings into Qω.

Proposition 3.2.3. Suppose A denotes a unital separable nuclear C∗-algebra admitting a trace τ .
Then the following are equivalent.

(i) τ is quasidiagonal.

(ii) There exists a unital ∗-homomorphism π : A −→ Qω such that τω ◦ π = τ .

(iii) There exists some t ∈ (0, 1] such that for every finite subset F ⊆ A and tolerance ε > 0, one
may find a completely positive map ψ : A −→ Qω satisfying

ψ(ab) ≈ε ψ(a)ψ(b) and (τω ◦ ψ)(a) ≈ε tτ(a) (3.5)

whenever a, b ∈ F . In particular, A is quasidiagonal whenever τ is an existing faithful quasidiagonal
trace acting on A.

Proof. (i)⇒ (ii): Suppose (ψn)n≥1 is the sequence of unital completely positive ψn : A −→ Mk(n)

detecting quasidiagonality of τ . Regard these maps as attaining values inQ. Let now ψω : A −→ Qω
be the map induced via the sequence (ψn)n≥1. Due to ordinary sequential convergence entailing
convergence along any free ultrafilter, one may infer that ϕω becomes a unital ∗-homomorphism via
asymptotic multiplicativity. The final condition stems from

(τω ◦ ψω)(a) = lim
ω

(τk(n) ◦ ψn)(a) = τ(a)

being true. This verifies the implication.

(iii)⇒ (ii): The proof relies on an application of Kirchberg’s ε test. Assume that such a constant
t satisfying (iii) exists. By separability of A, choose some countable dense subset {a1, a2, . . .} in A
and write Fk = {a1, . . . ak} for each positive integer k. In the language of Kirchberg’s ε-test, let Xn

denote the set of contractive completely maps ψ : A −→ Q for each n in N. Define, for every k in N,
maps fkn : Xn −→ R+ by the expressions

f1
n(ψ) = ‖τω ◦ ψ − tτ‖ and fkn(ψ) = max

i,j≤k
‖ψ(aiaj)− ψ(ai)ψ(aj)‖, k ≥ 2.

Let a positive integer m together with some tolerance ε > 0 be chosen. By hypothesis, we may find
a completely positive map ψ : A −→ Qω such that (3.5) holds on Fk for all k ≤ m. The Choi-Effros
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lifting theorem provides a completely positive lift ψ∞ = (ψ1, ψ2, . . .) of ψ for each n, meaning each
map ψn constitutes a completely positive map from A into Q. Furthermore,

fkω(ψ1, ψ2, . . .) = lim
n→ω

(
max
i,j≤k

‖ψn(aiaj)− ψn(ai)ψn(aj)‖
)

= max
i,j≤k

‖%ω[(ψn(aiaj)− ψn(ai)ψn(aj))n≥1]‖

= max
i,j≤k

‖ψ(aiaj)− ψ(ai)ψ(aj)‖
(3.5)
< ε

and f1
ω(ψ1, ψ2, . . .) = 0 are valid whenever 2 ≤ k ≤ m . According to Kirchberg’s ε-test, there exists

some sequence (π1, π2, . . .) consisting of contractive completely positive maps πn : A −→ Q fulfilling
fkω(π1, π2, . . .) = 0 for each k in N. The map π : A −→ Qω induced by the sequence (π1, π2, . . .) is a
∗-homomorphism such that τω ◦ π = tτ on the dense subspace (a1, a2, . . .), thereof on A.

The map π almost serves the purpose of the designated morphism in (ii). We argue that tmay be
neglected by passing to the corner arising from π(1A). The projection p = π(1A) must be nonzero
as τω(p) = t > 0. Upon proposition 3.2.2 granting pQωp ∼= Qω, we may regard π as being a unital
∗-homomorphism into B := pQωp. Uniqueness of trace ensures that τB ◦ π = λ(τω ◦ π) for some
positive real value λ, where τB denotes the trace on B. We therefore have 1 = τB(p) = λτω(p) = tλ.
Rearranging this implies λ = 1/t, whereupon τB ◦ π = (τω ◦ π)t−1 = τ holds, proving (ii).

(ii)⇒ (i): By hypothesis, there exists some unital ∗-homomorphism π : A −→ Qω subject to
τω ◦ π = τ . Due to nuclearity, π admits a completely positive lift ψ = (ψ1, ψ2, . . .) : A −→ `∞(Q).
Suppose En : Q −→ Mn denotes the canonical conditional expectation on Q for each n. The com-
posed map En ◦ ψn : A −→ Mn remains completely positive. Letting (ϕn)n≥1 be the sequence of
completely positive maps arising hereby grants a sequence implementing quasidiagonality of τ by
the following reasoning. Let ιn : Mn ↪→ Q be the ∗-monomorphism attached to (3.3). Then

lim
ω
‖ϕn(ab)− ϕn(a)ϕn(b)‖ = lim

ω
‖ι[Enψn(ab)− Enψn(a)Enψ(b)]‖

= lim
ω
‖ψn(ab)− ψn(a)ψn(b)‖

= ‖π(ab)− π(a)π(b)‖ = 0.

Here the third equality is based on ψ lifting π. The verification of τn ◦ ψn = τ is accomplished in an
analogues manner, exploiting that En in (3.3) recovers the trace, and has been omitted for brevity.

Concerning the remaining claim, notice that the unital ∗-homomorphism π : A −→ Qω arising
from quasidiagonality of τ must be faithful whenever τ is, for indeed τω ◦ π = τ demands this. Since
any unital nuclear separable C∗-algebra is quasidiagonal if and only if the existence of a unital ∗-
monomorphism A ↪→ Qω is assured, see for instance theorem 5.1.6 in [30] for a proof, the assertion
follows immediately. This finalizes the proof.

For the proof of the main theorem, we conjure two ∗-homomorphisms (π0, π1) on cones of A which
recover the trace τ onA to some extend. In an effort to spur some overview, we take a step backwards.
During chapter 2, the connections illustrated via the figure beneath have been accessed. Let some
separable C∗-algebra A admitting a trace τ be given.

A Nuclear

��

τ ExtremalKS

��
πτ (A)′′ Injective, type II1

��

πτ (A)′′ Factor

vv
πτ (A)′′ ∼= R ⊆ Rω

τR
∼= Aωτ

τ QD, Faithful

�� #+
A QDKS

��

τ QDKS

(1)

��
A ⊆ Qω τ ⊆ τω

Here τ ⊆ τω symbolically represents the existence of a ∗-homomorphism π : A ↪→ Qω such that
τω ◦ π = τ , while dashed arrows indicate that both combine into an implication. Up to technical
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adjustments, we will provide quasidiagonality of our trace via (1). To achieve this, one constructs an
order zero map ψ : A −→ Qω that, in the language of [39], has “tracial large order”, meaning τω ◦ ψ
recovers τ even when adding ψ(1A)n to the input. Thus one remembers the trace τ .

The left-hand side of the display permits one to acquire ψ; using Krein-Milman’s theorem one
may pass to the extremal case, in which case the von Neumann algebra associated to the traces
on A,Q both become copies of R. Passing to the ultrapowers, we may employ Choi-Effros’ lifting
theorem to produce a unital completely positive map from A into Qω, which essentially speaking
works once we twist it using the σ-ideal property of Jτ,ω, partly due to R being monotracial. This
is the overall plan, so without further ado, let us dive into the gory details.

Proposition 3.2.4. Let A be any separable unital nuclear C∗-algebra admitting a trace τ . Under
these premises, there exists an order zero map ψ : A −→ Qω fulfilling

τω(ψ(a)ψ(1A)n−1) = τ(a) (3.6)

for every a in A and each positive integer n.

Proof. We initially consider the case in which τ is extremal. Afterwards, we extend to the general
case using the Krein-Milman theorem to the weak∗-compact convex space T (A). Establishing the
claim in the extremal case amounts to deriving proposition 3.2 in [39].

Claim. Suppose A,B denote separable infinite-dimensional nuclear C∗-algebras admitting extremal
traces τA, τB , respectively. Then there exists a contractive order zero map ψ0 : A −→ Bω for which
1Bω − ψ0(1A) belongs to the ideal JτB ,ω and τBω ◦ ψ0 = τA.

Proof of claim. Due to both traces being extremal, the von Neumann algebras NA := πτA(A)′′ and
NB := πτB (B)′′ must be finite factors according to corollary 2.1.7, hence type II1 factors by infinite-
dimensionality. These von Neumann algebras are furthermore injective by corollary 2.2.6. Here
πτA : A −→ B(HτA) naturally denotes the GNS-representation associated to τA and πτB denotes
the corresponding one for τB . As such they both become isomorphic copies of the injective type II1

factor R according to Connes’ uniqueness theorem. Let τ be the unique faithful trace on R. Based
on proposition 2.4.4, these identifications provide commutative diagrams

A
%τA //

πωA

��

R

%ωR

��
AωτA '

// Rω
τ

B
πτB //

%ωB

��

R

%ωR

��
BωτB '

// Rω
τ

such that AωτA
∼= Rω

τ
∼= BωτB . We may embed A into BωτB as follows. Let Λ: AωτA −→ BωτB denote the

acquired ∗-isomorphism. Due toA lying faithfully insideAωτA via the ∗-monomorphism δω, composing
with Λ yields another ∗-monomorphism Λ0 : A ↪→ BωτB . The Choi-Effros lifting theorem guarantees
the existence of a unital completely positive lift ψ0 : A −→ Bω, meaning %Bω ◦ ψ0 = Λ0. The scenario
is displayed in the commutative diagram

A
%ωτA

δω
//

ψ0

++

AωτA
Λ // BωτB

Bω

%Bω

OO

It was previously deduced that JτB ,ω defines a σ-ideal inside Bω, see proposition 2.4.5. Invoking
this property, we may relatively easily produce the required morphism via ψ0. Choose some positive
contraction e in JτB ,ω ∩ C ′ subject to ec = c whenever c belongs to C ∩ JτB ,ω with C being the
separable C∗-subalgebra generated by ψ0(A). Define accordingly a bounded linear map ψ : A −→ Bω
by declaring that

ψ(·) := (1Bω − e)ψ0(·)(1Bω − e).
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The map ψ becomes a contractive completely positive map being the conjugation of such a map
by positive contractions. The point of using e revolves around it commuting with the image of ψ0;
ψ0 must be of order zero because if ab = 0 in A, then ψ0(a)ψ0(b) belongs to ker %Bω = JτB ,ω by
commutativity of the second diagram. Since e subsumes the role of a unit on JτB ,ω ∩C, the element
(1Bω − e)ψ0(a)ψ0(b) must be zero. Due to e commuting with the image of ψ0, it follows that

ψ(a)ψ(b) = (1Bω − e)ψ0(a)(1Bω − e)2ψ0(b)(1Bω − e)
= (1Bω − e)2ψ0(a)ψ0(b)(1Bω − e)2 = 0

Moreover, one may infer that

1Bω − ψ0(1A) = 1Bω − (1Bω − e)21Bω = 2e− e2 ∈ JτB ,ω.

As R admits a unique faithful trace, one obtains τBω ◦ Λ = τAω , where τAω denotes the canonical
trace on AωτA induced by τA. Thus, for each a belonging to A one has

τBω (ψ(a)) = τBω (ψ0(a)) = τBω (Λδω(a)) = τAω (δω(a)) = τ(a).

This proves the claim.

Returning to our proof. Let (πτ ,Hτ , ξτ ) denote the GNS-triple associated to τ . If the trace τ is
extremal and the corresponding von Neumann algebra N = πτ (A)′′ determines a II1 factor, then
the claim establishes an order zero map ψ : A −→ Qω satisfying the conditions τω ◦ ψ = τ and
1Qω − ψ0(1A) ∈ JτQ,ω. The first condition immediately entails the relation (3.6) for n = 1. When
n exceeds 1, one applies the ordinary Cauchy-Schwarz inequality to the inner-product induced via
the faithful trace τQω to acquire the estimate

|τQω [x(1Qω − ψ(1A))]| ≤ τQω (x∗x)1/2τQω ([1Qω − ψ(1A)]2)1/2 = 0,

for every x belonging to Qω. Substituting x = ψ(a)ψ(1A)n−2 and exploiting that τω ◦ ψ = τ in the
above provides (3.6) via a straightforward induction argument, which we omit for brevity.

On the other hand, if N is of type In for some n in N, then In admits a unique faithful trace
τn. Moreover, it embeds unitally into Qω while preserving the trace1, say via the ∗-monomorphism
σ : N ↪→ Qω. Since τ is faithful, the representation πτ unitally embeds A into N while making

τN (πτ (·)) = τ(·)

hold. Composing these ∗-monomorphisms yields a unital ∗-monomorphism (hence an order zero
map) ψ : A ↪→ Qω such that

τQωψ = (τQωσ)πτ = τN πτ = τ.

In conclusion, ψ satisfies (3.6) in the event of N being of type In. Due to N being a finite factor, it
must be either of type In for some positive integer n or of type II1. Regardless of the outcome, the
asserted order zero map exists when τ is extremal.

For a general faithful trace τ , we combine a Krein-Milman convexity argument with Kirchberg’s
ε-test. To apply the ε-test, some setup needs to be settled. For every positive integer n, letXn denote
the collection of ∗-linear maps from A into Q. According to lemma 2.3.6, there exists a countable
collection of maps fkn : Xn −→ R+ such that a tuple (ψ1, ψ2, . . .) in

∏
n∈NXn induces a contractive

order zero mapψω : A −→ Qω if and only if the associated testing functions fkω :
∏
n∈NXn −→ [0,∞]

fulfill fkω(ψ1, ψ2, . . .) = 0 for all positive integers k.
The principle behind invoking Kirchberg’s test is merely to add testing functions that encode

the property (3.6) as follows. By separability, choose some countable norm-dense subset {a1, a2, . . .}
of A and define functions gk,`n : Xn −→ [0,∞], indexed over the natural numbers again, by

gk,`n (ψn) =
∣∣τQ(ψn(ak)ψn(1A)(`−1))− τ(ak)

∣∣.
1Elaboration upon, one appeals to the embedding that induces the conditional expectations En of (3.3).
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By density, an element (ψ1, ψ2, . . .) in
∏
n∈NXn induces a contractive order zero map ψ : A −→ Qω,

extended from the dense subset, such that (3.6) holds for ψ if and only if

fkω(ψ1, ψ2, . . .) = gk,`ω (ψ1, ψ2, . . .) = 0 for all k, ` ∈ N. (3.7)

Now the Krein-Milman theorem arrives to our aid. Fix somem in N. Suppose some tolerance ε > 0 is
given. By convexity and compactness of T (A), we may find positive real numbers λ1, λ2, . . . , λm with∑m
k=1 λk = 1 in conjunction with extremal traces τ1, τ2, . . . , τm acting on A that together satisfy∣∣∣∣ m∑

k=1

λkτk(ai)− τ(ai)

∣∣∣∣ < ε (3.8)

for every positive integer i ≤ k. Choose a finite collection p1, . . . , pm consisting of pairwise orthogonal
projections with τω(pk) = λk for each k ≤ m. Due to proposition 3.2.2, the corners Bk = pkQωpk
are isomorphic toQω. Orthogonality is of course arranged to provide the order zero condition. From
the extremal cases, there are contractive order zero maps ψk : A −→ pkQωpk satisfying

τBk(ψk(a)ψk(1A)`−1) = τk(a) (3.9)

for all positive integers ` and any element a in A. Since the projections are orthogonal, we merely
define ψ : A −→ Qω by the assignment a 7→

∑m
k=1 ψk(a) to obtain a contractive completely positive

map; it is the pointwise sum of contractive completely positive maps. Suppose a ⊥ b inside A. Due
to orthogonality of the projections, one may deduce that

ψ(a)ψ(b) =

m∑
i,j=1

ψi(a)ψj(b) =

m∑
i=1

ψi(a)ψi(b) = 0.

The remaining conditions for orthogonality preservation are verified in resembling manners. The
latter equality stems from ψi being of order zero itself. It follows that ψ must be a contractive order
zero map. Furthermore, for each positive integer ` one has

τQω (ψ(a)ψ(1A)`−1) =

m∑
k=1

λkτBk(ψk(a)ψk(1A)`−1)
(3.9)
=

m∑
k=1

λkτk(a)

for every a in A. Combining this particular identity with (3.8) yields gk,`ω (ψ1, ψ2, . . .) < ε for every
pair of integers k, ` ∈ N not exceeding m. As ε > 0 was arbitrarily chosen, Kirchberg’s ε-test ensures
the existence of an element (ψ1, ψ2, . . .) in the product

∏
n∈NXn fulfilling (3.7). On the merits of

the remarks attached to (3.7), the induced map ψ : A −→ Qω determines a contractive order zero
map satisfying the property (3.6), completing the proof.

3.3 Comparison Theory

Having established an order zero map recovering the trace τ through τω, our next step will be pass
the property of the corresponding ∗-homomorphism on C0(0, 1]⊗A in an attempt to include multi-
plicativity. To fully encode multiplicativity one forms another morphism on C0[0, 1)⊗A. Achieving
this will be done by assembling unitaries witnessing the second ∗-homomorphism through the other.
Allowing such unitaries to exist relies on strict comparison. The purpose of the section will be to
establish the necessary theory to introduce strict comparison and verify the property for Q.
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The Cuntz Semigroup

Strict comparison relies on the Cuntz semigroup and dimension functions, concepts which are imper-
ative to introduce with some preliminary setting established beforehand; ordered abelian semigroups.

Definition. Let S be an abelian semigroup. We call S partially ordered if it admits a partial
order ≤ compatible with the additive structure on S. The aforementioned compatibility amounts to
s+ t ≤ s0 + t0 whenever s ≤ s0 together with t ≤ t0 hold inside S.

An alternative point of view is regarding partially ordered semigroups as pairs (S, S+) with
S+ ⊆ S being some additively closed subset containing 0, whereon one stipulates that s ≥ 0 if and
only if s ∈ S+. Thus one declares that s ≤ t if and only if t − s ≥ 0 to define a partial order on S
granting the structure of a partially ordered semigroup. Furthermore:

· An element u in S is called an order unit provided there for each s in S exists some positive integer
n fulfilling s ≤ n · u.

· A partially ordered abelian semigroupS is said to be almost unperforated if, for each pairs k, k0 ∈ N
and s, t ∈ S, the conditions k0 < k and k · s ≤ k0 · t imply s ≤ t.

· An additive map ϕ : S −→ T between partially ordered abelian semigroups preserving the order,
meaning s ≤ s0 within S entails ϕ(s) ≤ ϕ(s0) in T , is called an ordered morphism. An ordered
morphism ϕ : S −→ (R,+) is commonly referred to as a state. We denote the collection of states
on a partially ordered abelian semigroup S by S∗.

The theory of partially ordered abelian semigroups is wealthy and particularly rewarding in K-
theory. For the thesis, we shall study another intriguing example, called the Cuntz semigroup. The
Cuntz semigroup partly attempts to generalize the comparison theory of Murray - von Neumann.
Since projections may be in few numbers for general C∗-algebras, one considers positive elements
instead.

Definition. Let A be any C∗-algebra. For two elements a, b in A, we call a Cuntz subequivalent to b
should the existence of a sequence (vn)n≥1 in A fulfilling vnbv

∗
n → a be guaranteed. We symbolically

write a . b to denote this and write a ∼c b whenever both a . b and b . a are valid, in which case
the elements are said to be Cuntz equivalent to one another.

Through some effort, it can shown that ∼c must be an equivalence relation, so that the following
notion becomes meaningful.

Definition. The Cuntz semigroup associated to a C∗-algebra A is the monoid

W (A) = M∞(A)+/ ∼c

equipped with the composition induced from ⊕. We denote an equivalence class with respect to ∼c
by 〈a〉, so that 〈a〉+ 〈b〉 := 〈a⊕ b〉 becomes the composition. We endow W (A) with the ordering

〈a〉 ≤ 〈b〉 def⇐⇒ a . b.

A few remarks linking the notions are in order. First of all, for a C∗-algebra A, the Cuntz semigroup
W (A) evidently becomes a semigroup. Due to the enlarged matrix a ⊕ b associated to elements
in a, b ∈ M∞(A)+ conjugating to b ⊕ a via the permutation matrix having the value 1 in the off-
blockdiagonal parts and zeroes elsewhere (and vice versa), one has a⊕b ∼c b⊕a. Thus, 〈a⊕b〉 = 〈b⊕a〉
upon which W (A) becomes a partially ordered abelian semigroup.

Furthermore, if A admits a unit, the corresponding class 〈1A〉 defines an order unit in W (A). We
present an outline of the proof. In the event of a denoting an element in Mn(A)+, one certainly has
a1/21Mn(A)a

1/2 = a, hence a . 1Mn(A). The unit of A embeds into the algebra Mn(A) via the corner
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map dn−1 ◦ dn−2 ◦ . . . ◦ d1. Conjugating 1A by suitable permutation matrices afterwards ensures
that 1A ⊗ ekk . 1A with ekk denoting the (k, k)’th unit matrix in Mn as usual. Ergo,

a . 1Mn(A) =

n∑
k=1

1A ⊗ ekk . n · 1A.

We conclude that 〈1A〉 becomes an order unit for W (A). For future purposes, it is convenient to
convey some calculus for W (A) and the ordering ≤ thereon. For each ε > 0 and positive element a
in M∞(A) we define a function fε : σ(a) −→ C by

fε(t) =


0, if t ≤ ε,
t−ε
ε , if ε ≤ t ≤ 2ε,

1, if 2ε ≤ t.

Moreover, we let (a− ε)+ to be the functional calculus of a applied to the map t 7→ max{0, t− ε}.
Adopting this notation, one may deduce the following rules:

· Given ε, δ > 0 and positive element a one has ((a− ε)+ − δ)+ = (a− (ε+ δ))+.

· For every ε > 0 and positive elements a one has fε(a) ∼c (a− ε)+.

· fε(a)→ a as ε→ 0 for any positive element a.

· If supp f ⊆ supp g occurs in C0(R+)+, then f . g in C0(R+). Here supp f is a placeholder for
the open support of the function f .

Prior to truly diving into the theory, some characterizations and intuition is supplied. We avoid
proving every implication in the following fundamental proposition, the full proof of which may be
recovered in [36]. However, we establish a frequently applied lemma.

Lemma 3.3.1. Let a, b be positive elements in some unital C∗-algebra A and set δ = ‖a − b‖.
Then fε(a) ≤ r∗br and (a− ε)+ ≤ ebe∗ for some r, e in A whenever δ < ε, for any ε > 0.

Proof. Due to a − b being positive, one has a − b ≤ ‖a − b‖1A. Rearranging this grants a − δ ≤ b,
whereby some straightforward functional calculus grants

(ε− δ)fε(a) ≤ fε(a)1/2(a− δ)fε(a)1/2 ≤ fε(a)1/2bfε(a)1/2.

Letting r = (ε− δ)−1/2fε(a)1/2 provides fε(a) ≤ r∗br. The proof of (a− ε)+ ≤ ebe∗ is proven in a
manner entirely identical to the previous part.

The following establishes the most frequently exploited characterizations of the relation ..

Proposition 3.3.2. Suppose A denotes a unital C∗-algebra containing two positive elements a, b.
Under these premises, the following conditions are equivalent.

(i) a . b.

(ii) For every ε > 0, there exists some x in A such that fε(a) ≤ xbx∗.

(iii) For every ε > 0, there exists some x in A such that (a− ε)+ ≤ xbx∗.

(iv) For every ε > 0, there exists some δ > 0 and x in A such that fε(a) = xfδ(b)x
∗.

(v) For every ε > 0, there exists some δ > 0 and x in A such that (a− ε)+ = x(b− δ)+x
∗.
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Proof. We only concern ourselves with (i)⇒(ii) and (iv)⇒(ii), leaving the remaining implications to
proposition 2.4 found in [36].

(i)⇒ (ii): Let a . b be implemented by the sequence (vn)n≥1. Choose an integer n large enough
to force vnbv

∗
n ≈ε/2 a, so that by letting xn := vnb

1/2 and yn := b1/2v∗n one has

‖xnyny∗nx∗n − a2‖ = ‖vnbv∗nvnbv∗n − a2‖ ≤ ‖vnbv∗na− a2‖+ ‖vnbv∗na− vnbv∗nvnbv∗n‖ < ε.

According to lemma 3.3.1 it follows that

fε(a
2) ≤ rxnyny∗nx∗nr∗

(1.2)

≤ ‖yn‖2rxnx∗nr∗

for some element r insideA. Rearranging the above yields fε(a
2) ≤ zbz∗, where one lets z = ‖yn‖rxn.

Due to the support of the function t 7→ f(t) equaling the support of t 7→ f(t)2 for any positive element
f in C0(R+), one may deduce that fε(a) ≤ z0bz

∗
0 for some z0 in A.

(iv)⇒(ii): Suppose fε(a) = xfδ(b)x
∗ holds for some element x and ε, δ > 0. Let y = g(b) with g

being the function t 7→ 1. Since fδ(b) ≤ b = g(b)bg(b)∗, one may infer that fε(a) ≤ xyb(xy)∗.

The Cuntz equivalence may be regarded as a replacement for the ordinary comparison theory of von
Neumann algebras in the C∗-algebraic realm in the sense that p . q for projections occurs if and
only if p = vv∗ and v∗v ≤ q for some partial isometry v (see proposition 2.1 in [36]).

Dimension Functions and Strict Comparison

Understanding strict comparison calls for an understanding of dimension functions. We investigate
these from a strict comparison point of view, although not in the greatest generality. After addressing
the notion, we immediately derive some minor properties.

Definition. SupposeA denotes a unital C∗-algebra. A state ϕ acting onW (A) is called a dimension
function provided that ϕ(〈1A〉) = 1. A dimension function ϕ is lower-semicontinuous if

ϕ(〈a〉) ≤ lim inf
n→∞

ϕ(〈an〉)

whenever an → a occurs in norm on A. The set of dimension functions on A is denoted by D(A),
while the subset consisting of lower-semicontinuous ones is written asLD(A). Additionally, we define
a state dϕ via the formula

dϕ(〈a〉) = lim
ε→0

ϕ(〈fε(a)〉). (3.10)

We shall frequently refer to d̄ϕ as the dimension function induced by ϕ.

Lemma 3.3.3. Let A denote a unital C∗-algebra A admitting a dimension function ϕ. Then dϕ
exists, determines a member of LD(A) and obeys the rules found beneath.

(i) One has dϕ(·) ≤ ϕ(·).

(ii) One has dϕ(〈fε(a)〉) ≤ ϕ(〈a〉) for every class 〈a〉 in W (A).

Proof. For existence of dϕ, it suffices to ensure that dϕ(〈a〉) ≤ dϕ(〈b〉) whenever a . b. To achieve
this let some tolerance ε > 0 be given and suppose a . b relative to A. Invoking proposition 3.3.2
twice, there exists some δ > 0 for which fε(a) . fδ(b). Order preservation of states implies

ϕ(〈fε(a)〉) ≤ ϕ(〈fδ(b)〉) ≤ dϕ(〈b〉).

The net (fε(a))ε>0 tends to a as ε→ 0. Therefore, upon taking the supremum on both sides above,
we deduce that dϕ(〈a〉) ≤ dϕ(〈b〉) as was needed.



3.3. COMPARISON THEORY 57

If an → a occurs inA and some ε > 0 is given, then lemma 3.3.1 yields the relation fε/2(an) . an
for some sufficiently large positive integer n. We may thereof find a δn > 0 such that fε(a) . fδn(an).
Combining these observations guarantees that

ϕ(〈fε(a)〉) ≤ ϕ(〈fδn(an)〉) ≤ dϕ(〈an〉).

The dimension function dϕ is thus lower-semicontinuous, i.e, a member of LD(A).
(i)-(ii): For any tolerance ε > 0 one has fε(a) . a, hence ϕ(〈fε(a)〉) ≤ ϕ(〈a〉) holds for any

element a belonging to A. Letting ε → 0 reveals that ϕ dominates the induced dimension function
dϕ. The property (ii) trivially holds, completing the proof.

The interesting point of view, for the thesis at least, concerns the tracial case. Let A be a unital
exact C∗-algebra admitting a trace τ . The general theory generalizes to quasi-traces. However, due
to the incredibly work of Haagerup in [21], quasitraces on exact C∗-algebras are traces, hence the
additional exactness assumption. Define dτ : W (A) −→ R+ by

dτ (〈a〉) = lim
n→∞

(τ ⊗ Trk)
(
a1/n

)
.

Here a denotes a representative of 〈a〉 in Mk(A)+. The map dτ exists due to the following observation.
For a positive contraction a in Mk(A), the sequence {(τ ⊗ Trk)(a1/n)}n≥1 becomes increasing and
the limit exists, being bounded by k. Hence the sequence converges in norm. For a general element
a in Mk(A), one exploits the contractive case on

lim
n→∞

(τ ⊗ Trk)
(
a1/n

)
= lim
n→∞

(τ ⊗ Trk)
(
(a‖a‖−1)1/n‖a‖1/n

)
= lim
n→∞

(τ ⊗ Trk)
(
(a‖a‖−1)1/n

)
Altogether, the map dτ exists. The map dτ a priori appears unrelated to the topic at hand, so we
characterize it in familiar terms. Consider the corresponding map dτ,ε : W (A) −→ R+ given by

〈a〉 7→ lim
ε→0

(τ ⊗ Trk)(fε(a))

with a being some representative of 〈a〉 in Mk(A)+. We assert that it equals dτ . For this let a belong
to Mk(A)+. The C∗-algebra B generated by a and 1A becomes abelian, so B ∼= C(Ω) for some
compact Hausdorff topological space Ω. It therefore suffices to verify that dτ and dτ,ε agree hereon.
However, the trace τ ⊗ Trk restricted to B corresponds to the functional γ : B −→ R+ defined as

γ(f) =

∫
[0,‖a‖]

f dµ,

with µ being some regular Borel measure. The aforementioned correspondence stems from the Riesz-
Markov-Kakutani representation theorem. In the respective scenarios, when applying the restricted
functional on a1/n and fε(a), one merely has to verify that the integrals

lim
n→∞

∫
[0,‖a‖]

t1/n dµ(t) respectively, lim
ε→0

∫
[0,‖a‖]

fε(t) dµ(t)

agree. Dominated convergence entails that both integrals equal µ((0, ‖a‖]), since fε(t)→ 1 as ε→ 0
whereas t1/n → 1 whenever n→∞, for t 6= 0. As such no distinction between dτ,ε and dε occurs on
B, so dτ indeed attains the form in (3.10). Here is the point:

Theorem 3.3.4 (Handelman-Goodearl, Haagerup). The assignment τ 7→ dτ on an exact unital
C∗-algebra defines a bijection from T (A) onto LD(A). In particular, the dimension function dτ is
the unique lower-semicontinuous dimension function on an exact unital monotracial C∗-algebra.

Proof. The correspondence was proven in theorem II.2.2 in [5].
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Lower-semicontinuous dimension functions are the core of strict comparison. We exhibit the notion
and proceed afterwards towards a theorem due to Rørdam in [36], regarding strict comparison for
tensor products with UHF-algebras.

Definition. Let A be a C∗-algebra admitting a trace.

· A is said to have strict comparison of positive elements, provided that given any pair a, b ∈W (A)
fulfilling ϕ(a) < ϕ(b) for all lower-semicontinuous dimension functions ϕ one has a . b.

· A is said to have strict comparison of positive elements with respect to bounded traces if given
any k ∈ N and a, b ∈ Mk(A)+ fulfilling dτ (a) < dτ (b) for any trace τ on A one has a . b.

We lean on Q having strict comparison with respect to its unique bounded trace. This may be
recaptured via Rørdam’s theorem of [36] whose proof we avoid to remain on track. Rørdam’s theorem
reaches UHF-algebras, which we account for after stating it.

Theorem 3.3.5 (Rørdam). Suppose E denotes a simple unital C∗-algebra, let B be a UHF-algebra
and set A = E ⊗B. Under these premises, A has strict comparison of positive elements.

Proof. See theorem 5.2 in [36] for a proof.

Corollary 3.3.6. UHF-algebras have strict comparison with respect to their unique trace.

Proof. Let A be any UHF-algebra. Upon UHF-algebras being simple, unital and monotracial,
Rørdam’s theorem applies to A ∼= C ⊗ A. Therefore A has strict comparison of positive elements
with respect to their unique trace. According to the Handlemann-Goodearl-Haagerup theorem, the
sole lower-semicontinuous dimension function ofW (A) is precisely dτ , meaningA in this case attains
strict comparison of positive elements with respect to its unique bounded trace as claimed.

We close the section by passing strict comparison to ultrapowers and deriving a lemma for future
use, thereby establishing strict comparison forQω, leaving us with the tools to adequately construct
our tracially larges ∗-homomorphisms from suitable order zero maps. To bypass confusion, for any
ultraproduct A =

∏
ω An let

Tω(A) := {%ω(a1, a2, . . .) 7→ lim
ω
τ(an) : τ ∈ T (A)} ⊆ T

(∏
ω

An

)
and denote the weak∗-closure of Tω(A) by LTω(A).

Proposition 3.3.7. The following hold.

(i) Let (An)n≥1 be a sequence of unital C∗-algebras having strict comparison of positive elements
with respect to bounded traces. Then A =

∏
ω An has strict comparison of positive elements

with respect to traces in LTω(A).

(ii) Ultrapowers of Q have strict comparison of positive elements with respects to its unique trace.

Proof. (i): Suppose a, b ∈ Mk ⊗ A are positive contractions subject to dτ (a) < dτ (b) for any trace
τ in LTω(A). Fix some tolerance ε > 0 and fix a monotonically decreasing sequence (δn)n≥1 of
strictly positive real numbers such that δn → 0 in R+. Define a family of point-evaluation maps
ψδn , ψε : LTω(A) −→ C by declaring that

ψδn(ρ) = ρ(fδn(b)) and ψε(ρ) = ρ(fε(a)).

The corresponding sequence (ψδn−ψε)n≥1 belongs to the weak∗-compact space LTω(A) ⊆ (A∗)1 ac-
cording to Alaoglu’s theorem. Due to (δn)n≥1 being monotonically decreasing, the acquired sequence
(ψδn−ψε)n≥1 must be a monotonically increasing sequence on a compact Hausdorff space converging
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pointwise to d(·)(b)−ψε(·), and Dini’s theorem thereby ensures uniform convergence. Upon the limit
being strictly positive there exists some positive integer m such that τ(fδm(b)) > τ(fε(a)) for every
limit trace τ on A. Choose positive contractive lifts (an)n≥1 and (bn)n≥1 of a and b, respectively.
One checks that

lim
n→ω

(
inf

τ∈T (An)
τ(fδm(bn)− fε(an))

)
= inf
τ∈LTω(A)

τ(fδm(bn)− fε(an)) > 0.

The above forces the set

I = {n ∈ N : τ(fδm(bn)) < τ(fε(an)) for all τ ∈ T (An)}

to be a member of ω. As (an− ε)+ . fε(an) for each n in N, one has dτ ((an− ε)+) ≤ dτ (fε(an)) for
all integers n in I. Using proposition 3.3.2, strict comparison with respect to bounded traces in An
for each n supplies us with positive elements (vn)n≥1 in Mk ⊗An such that

v∗nfδmvn ≈1/n (an − ε)+, n ∈ I.

Letting wn = fδm(bn)1/2vn whenever n belongs to I and otherwise wn = 1An defines a bounded
sequence (w1, w2, . . .), whose image w under the quotient map attached to A satisfies

‖w∗w − (a− ε)+‖ = lim sup
ω
‖w∗nwn − (an − ε)+‖ = 0.

Formulated differently, w∗w = (a− ε)+ and one then verifies that fδm/2(b)w = w. Combining these
two observations yields (a− ε)+ . b for each tolerance ε > 0, ensuring a . b as desired.

(ii): Immediate from uniqueness of trace on Qω as was argued for in the mark on page 49. This
relies heavily on the use of the Jiang-Su algebra and UHF-algebras absorbing it.

3.4 Conjuring Tracial Lebesgue Cones

The central purpose of the section seeks to employ the theory presented prior to current moment. The
underlying strategy is essentially to build two ∗-homomorphisms (π0, π1) over cones with values in
Qω, whose scalar parts are recovered in a third one θ on C([0, 1]) while recovering τω. The tracially
large order zero map constructed during the first section of the chapter enables us to conjure ∗-
homomorphisms on the cones, having the ability to detect the trace remain intact. Here strict
comparison provides the second map as a unitary flip of the first.

First of foremost, the versatile tool arising from strict comparison in the stable rank one sce-
nario. Recall that two ∗-homomorphisms π, % : A −→ B with B unital are approximately unitarily
equivalent if there are unitaries (un)n≥1 in B such that unπ(·)u∗n → %(·) in norm. Approximate
unitary equivalence forms an equivalence relation ∼u. To aptly state the theorem, we must take the
complete Cuntz semigroup into account, albeit we shall not dwell in the theory thereof the slightest.
The complete Cuntz semigroup attached to some C∗-algebra A is the partially ordered semigroup
Cu(A) := (A⊗K)/ ∼c endowed with a structure resembling the one for W (A).

Theorem 3.4.1 (Ciuperca-Elliott). Suppose A denotes some C∗-algebra of stable rank one. Un-
der this hypothesis, two ∗-homomorphisms π, % : C0(0, 1] −→ A become approximately unitarily
equivalent if their induced morphisms

πcu, %cu : Cu(C0(0, 1]⊗K) −→ Cu(A⊗K); πcu(〈a〉) = 〈π(a)〉,

and likewise for %, agree. As a special case, two elements a, b in A become approximately unitarily
equivalent provided that f(a) ∼c f(b) for every positive nonzero element f in C0(0, 1].

Proof. The validity of the initial statement was achieved in [11] in the disguise of theorem 4.1. For the
second assertion, apply the first part to the pair of ∗-homomorphisms π, % : C0(0, 1] −→ A defined
on the generating element id(0,1] in C0(0, 1] by π(id(0,1]) = a together with %(id(0,1]) = b.
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Lemma 3.4.2. Suppose A denotes a unital C∗-algebra of stable rank one and with strict compar-
ison of positive elements with respect to bounded traces.

(i) Let a, b be two positive contractions in A such that τ(f(a)) = τ(f(b)) > 0 for every trace τ on
A and every nonzero positive element f in C0(0, 1]. It follows that a and b are approximately
unitarily equivalent.

(ii) Any pair of contractions a, b in Qω satisfying τω(f(a)) = τω(f(b)) > 0 for each nonzero
positive element f in C(0, 1] are unitarily equivalent.

Proof. (ii): The second assertion regarding Qω basically stems from the first due to Q having strict
comparison of positive elements with respect to its unique trace and having stable rank one; see
corollary 3.3.6 along with appendixB. These observations imply approximate unitary equivalence of
positive contractions a, b belonging toQω, which we may upgrade into a bona fide unitary equivalence
in the following manner.

Suppose a, b are approximately unitarily equivalent elements inQω. Choose lifts (a1, a2, . . .) and
(b1, b2, . . .) in `∞(Q) of a and b, respectively. In the language of Kirchberg’s ε-test, set Xn = U(Q)
for every positive integer n. For each additional positive integer k, define functions fkn : Xn −→ R+

via the formula
fkn(w) = ‖wanw∗ − bn‖.

Suppose an integer m ≥ 1 together with tolerance ε > 0 is given. By hypothesis, there exists some
unitary u in Qω such that uau∗ ≈ε b. Lift the unitary u to some unitary (u1, u2, . . .) inside `∞(Q)
using proposition 2.3.3. Then we have

fkw(u) = lim sup
n→ω

‖unanu∗n − bn‖ = ‖uau∗ − b‖ < ε.

Kirchberg’s ε-test thus provides an element w = (w1, w2, . . .) in
∏∞
n=1Xn such that fkω(w) = 0 for

all k in N. Since each wn defines a unitary, %ω(w) becomes a unitary in Qω witnessing the unitary
equivalence of a, b by construction. This proves (ii) modulo (i).

(i): Let a, b ≥ 0 be contractions in A such that τ(f(a)) = τ(f(b)) > 0 for an arbitrary trace τ
on A and nonzero positive f in C0(0, 1]. According to theorem 3.4.1, verifying that f(a) ∼c f(b)
suffices. Let therefore ε > 0 be given. Consider the nonempty set

U = {0 < t ≤ 1 : 0 < f(t) < ε}.

Continuity of f makes U open, whereupon one may determine some unit vector g in C0(U)+. For
general orthogonal positive elements x, y in A one clearly has C∗(x + y) = C∗(x) + C∗(y). The
identification in turn justifies the computation

dτ (x+ y) = lim
ε→0

τ(fε(x+ y))

= lim
ε→0

τ(fε(x)) + lim
ε→0

τ(fε(y))

= dτ (x) + dτ (y) (3.11)

Due to a being a contraction, one has 0 < τ(g(a)) ≤ dτ (g(a)). Since (f(a) − ε)+ is orthogonal to
g(a) (g belongs to C0(U)) and (f(a)−ε)+ +g(a) . f(a) by construction, the ordinary calculus rules
of the dimension function dτ , including (3.11), ensure that

dτ ((f(a)− ε)+) < dτ [(f(a)− ε)+ + g(a)]

= dτ ((f(a)− ε)+) + dτ (g(a))

≤ dτ (f(a))

= dτ (f(b)).

Upon τ being arbitrary, strict comparison of A forces (f(a) − ε)+ . f(b) for all ε > 0. We then
deduce that f(a) . f(b) via proposition 3.3.2 and the general rule ((a− ε)+− δ)+ = (a− (ε+ δ))+,
completing the proof in view of our initial remark.
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With the unitary equivalence condition arranged, we may assemble the whole machinery upon which
the theorem of Tikuisis-White-Winter is founded. Due to certain properties emerging repeatedly
throughout, it seems prudent to introduce general terminology.

Definition. Let A and B be unital C∗-algebras. Let I ⊆ [0, 1] be an interval and θ : C([0, 1]) −→ B
be a unital ∗-homomorphism. A ∗-homomorphism π : C0(I)⊗A −→ B is compatible with θ if

π|C0(I)⊗C1A = θ|C0(I)⊗C1A .

An element f inC0(I) may naturally be regarded as an element inC0(I)⊗A via the ∗-monomorphism
f 7→ f ⊗ 1A. Without distinguishing between f and its copy in the cone, the restriction of θ onto
C0(I)⊗ C1A thus becomes meaningful. Notice that compatibility permits us to conclude that

θ(t)π(s) = π(ts) = π(st) = π(s)θ(t) (3.12)

for all t in C([0, 1]) and s in C0(I)⊗A.

The sought duo (π0, π1) of maps will remember the original trace with some modifications. The
“error” occurring arises from traces on the commutative C∗-algebraic parts attached to the cones.
We examine such traces now prior to constructing the maps.

Definition. The Lebesgue trace is the trace τL : C([0, 1]) −→ C defined by

τL =

∫
[0,1]

f dm,

with m denoting the Lebesgue measure on R. For any unital C∗-algebra A, a positive contraction
z therein with spectrum [0, 1] is said to have Lebesgue spectral measure with respect to a trace τ
acting on A, provided that τ(f(z)) = τL(f) holds for every f in C([0, 1]).

Notice that in the presence of a unit, a positive contraction a has Lebesgue spectral measure if and
only if 1A − a does. We are finally in position to build our ∗-homomorphisms — remembering that
we ought to exploit the correspondence betweenOc(A,Qω) and Hom(C0(0, 1]⊗A,Qω), then recover
the trace via proposition 3.2.4. To lower the proof length, we isolate some preliminary tricks of Q.
We need an old theorem due to Tomiyama in the nuclear case and which was improved to the exact
scenario by Kirchberg.

Theorem 3.4.3 (Kirchberg, Tomiyama). Let A be an exact C∗-algebra. For any additional C∗-
algebra B, every ideal I in A⊗B satisfies

I = span{IA � IB : IA EA, IB EB such that IA � IB ⊆ I}
= span{x⊗ y : x⊗ y ∈ I}.

Proof. Omitted. See corollary 9.4.6 in [9] for a proof.

The preceding theorem permit us let to Qω become the target algebra in contrast to the initial
codomain Q⊗Qω that our maps (π0, π1) will have. We prove the precise property required in larger
generality (type p∞-UHF algebra will then work; we throw an additional observation required into
the mix. Recall that A is self-absorbing if A⊗A ∼= A.

Lemma 3.4.4. Suppose A denotes a unital selfabsorbing simple nuclear C∗-algebra.

(i) There exists a unital ∗-monomorphism A⊗Aω ↪→ Aω.

(ii) There exists a positive contraction in Q having spectrum [0, 1] and having Lebesgue spectral
measure with respect to the unique trace on Q.
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Proof. (i): Consider the map Λ: A −→ `∞(A⊗A) given by the assignment a 7→ (a⊗1A, a⊗1A, . . .).
It defines a unital ∗-monomorphism, inducing a unital ∗-monomorphism Λω : A −→ (A⊗A)ω ∼= Aω
by composing with the canonical quotient map %⊗ω : `∞(A⊗A) −→ (A⊗A)ω, because

‖%⊗ω (a⊗ 1A, a⊗ 1A, . . .)‖ = lim sup
n→ω

‖a⊗ 1A‖ = ‖a‖.

Keeping this in mind, consider hereafter the ∗-monomorphism Λ0 : A −→ A⊗A given by a 7→ 1A⊗a.
The new ∗-homomorphism Λ0

ω : Aω −→ (A ⊗ A)ω ∼= Aω is a unital ∗-monomorphism whose image
commutes with Λω(A). Universality of ‖ · ‖max supplies us with a unique unital ∗-homomorphism
Λω × Λ0

w : A⊗max Aω −→ Aω fulfilling

(Λω × Λ0
ω)(a⊗ b) = Λω(a)Λ0

ω(b).

We assert that it must be an injection. Due to A being nuclear, Λω × Λ0
ω defines a map on A⊗Aω.

According to theorem 3.4.3 any ideal I inA⊗Aω is the norm-closed linear span of elementary tensors
x⊗y with x ∈ IA and y ∈ IAω for some ideals IAEA and IAω EAω. In particular, this must be valid
for the kernel of Λω × Λ0

ω, having IA = A by simplicity of A. However, for any elementary tensor
1A ⊗ a belonging to ker(Λω × Λ0

ω) one has

0 = (Λω × Λ0
ω)(1A ⊗ a) = Λω(1A)Λ0

ω(a) = Λ0
ω(a).

This observation forces ker Λω × Λ0
ω to be isomorphic to {0}.

(ii): Consider the following sequence (bn)n≥1 of quadratic matrices;

[
0 0
0 1/2

]
,


0 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 3/4

 ,


0 0 0 0 · · ·
0 1/8 0 0 · · ·
0 0 1/4 0 · · ·
0 0 0 3/8 · · ·
...

...
...

...
. . .

 , . . . .

That is, bn is the diagonal matrix in M2n attaining the value k−1
2n on the k’th diagonal entry for

k = 0, 1, . . . 2n. Let (M2n , ϕn)n≥1 be the inductive sequence attached to M2∞ . Permuting with
suitable permutation matrices gives unitaries u1, u2, . . . permitting us to force

ϕn(bn) ≈2−(n+1) unbn+1u
∗
n.

Letting an = unbnu
∗
n for each positive integer n thus defines a Cauchy-sequence (an)n≥1 whose limit

in M2∞ we denote by a. Conjugation by unitaries does not alter spectra, hence σ(an) ⊆ σ(an+1) for
each n in N and each stage σ(an) must be contained in σ(a). Ergo,

Z[1/2] ∩ [0, 1] =

∞⋃
n=1

σ(an) ⊆ σ(a).

Taking closure yields σ(a) = [0, 1], since 0 ≤ a ≤ 1Q. Choose hereafter an arbitrary continuous
function f : [0, 1] −→ C. Due to uniqueness of traces, one has

τQ(f(an)) = τ2n(f(an)) =
1

2n

2n∑
k=0

f

(
k − 1

2n

)
.

Regarding the right-hand side as a Riemannian-sum, the limit for n → ∞ becomes the associated
Riemann-integral of f on the closed interval [0, 1] through continuity. The integral coincides with
the Lebesgue integral on [0, 1] by continuity of f once more. It follows that

τQ(f(a)) = lim
n→∞

τQ(f(an)) =

∫
[0,1]

f dm,

whereof a attains Lebesgue spectral measure with respect to τQ, for τQ(f(an)) → τQ(f(a)) by
continuity of the involved maps.
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Proposition 3.4.5. Suppose A denotes a unital separable nuclear C∗-algebra admitting a trace τ .
Then are there ∗-homomorphisms

θ : C([0, 1]) −→ Qω, π0 : C0(0, 1]⊗A −→ Qω and π1 : C0[0, 1)⊗A −→ Qω

with θ unital. Furthermore, π0,π1 are both compatible with θ and

τω ◦ π0 = τL ⊗ τ = τω ◦ π1.

Proof. By proposition 3.2.4 there exists a contractive order zero map ψ : A −→ Qω such that

τω
(
ψ(a)ψ(1A)n−1

)
= τ(a) (3.13)

for each a ∈ A and n ∈ N. Extract a sequence of positive contractions in Q whose norm-limit a0 has
spectrum [0, 1], remains a positive contraction and has Lebesgue spectral measure with respect to
the unique trace τQ, justifiable by lemma 3.4.4(ii). Define accordingly Λ: A −→ Q⊗Qω as

Λ(·) = a0 ⊗ ψ(·).

Plainly, Λ is of order zero, since ψ is. Let π0 : C(0, 1] ⊗ A −→ Q ⊗ Qω be the ∗-homomorphism
corresponding to Λ, meaning the continuous linear extension of the map defined on generating
elementary tensors by id(0,1] ⊗ a 7→ Λ(a), see proposition 1.4.9. Now, lemma 3.4.4(i) enables to us
to regard π0 as a unital ∗-homomorphism attaining values in Qω.

Recall that the minimal unitization of C0(0, 1] is ∗-isomorphic to the unital C∗-algebra consisting
of continuous functions on its one-point compactification, [0, 1]. Letting θ : C([0, 1]) −→ Qω be the
map induced hereon via the restriction of π0 onto C0(0, 1] ∼= C0(0, 1] ⊗ C1A certainly yields a
∗-homomorphism such that π0 becomes compatible with θ. One thereafter observes that

π0

(
idn(0,1] ⊗ a

)
= π0

(
(id(0,1] ⊗ a)(id(0,1] ⊗ 1A)n−1

)
= Λ(a)Λ(1A)n−1

= an0 ⊗ ψ(a)ψ(1A)n−1

must be valid for every a ∈ A and each n ∈ N. The above computation is precisely why we arranged
the empowered version (3.6) instead of settling with τ = τω ◦ ψ. Applying τQ⊗τω, which corresponds
to τω due to the unital embedding Q⊗Qω ↪→ Qω and uniqueness of trace on Q, gives

((τQ ⊗ τω) ◦ π0)
(
idn(0,1] ⊗ a

)
= τQ(an0 )τω

(
ψ(a)ψ(1A)n−1

)
(3.19)

= τQ(an0 )τ(a)

= (τL ⊗ τ)
(
idn(0,1] ⊗ a

)
.

The final equality is based on a0 having Lebesgue spectral measure with respect to τQ. As elementary
tensors of the form idn(0,1]⊗a canonically span the C-algebraic involutive tensor product C(0, 1]�A,
continuity of the acting linear maps ensures that τω ◦ π0 = τL ⊗ τ .

We craft the remaining ∗-homomorphism π1 as a unitary conjugation of π0. Consider at first the
positive contraction x = θ(id[0,1]). Compatibility of π0 guarantees that x = π0(id[0,1] ⊗ 1A). Let h
belong to C([0, 1]). Using some functional calculus leaning on 1A being a projection, one acquires
h(x) = π0(h(id[0,1])⊗ 1A) = π0(h⊗ 1A). Then τω ◦ π0 = τL ⊗ τ implies that

τω(h(x)) = (τω ◦ π0)(h⊗ 1A) = τL(h).

Hence 1Qω − x has Lebesgue spectral measure and we are thus permitted to invoke lemma 3.4.2(ii),
thereby granting us some unitary u in Qω fulfilling the relation uπ0(id[0,1])u

∗ = 1Qω − π0(id[0,1]).
Suppose hereafter that σ : C0[0, 1) ⊗ A −→ C0(0, 1] ⊗ A denotes the flip-map, meaning if f0 is the
map t 7→ f(1− t) associated to any f in C0(0, 1], then

σ(f ⊗ a) = f0 ⊗ a, a ∈ A, f ∈ C0(0, 1].
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Notice that σ(1[0,1] − id[0,1]) = id[0,1]. Keeping this in mind, let π1 be the composition

π1 : C0[0, 1)⊗A σ // C0(0, 1]⊗A π0 // Qω
Adu // Qω.

Being composed by ∗-homomorphisms, π1 must be one as well. Compatibility with θ in conjunction
with the recovery of trace remain to be verified. For the former, it suffices to achieve equality on
the element 1[0,1] − id[0,1], for it generates C0[0, 1). However, compatibility then stems from the
established compatibility of π0 with θ and unitality of θ;

π1

(
1[0,1] − id[0,1]

)
= uπ0

(
id[0,1]

)
u∗ = θ

(
1[0,1] − id[0,1]

)
.

As the Lebesgue integral is flip-invariant, one may easily deduce that (τL ⊗ τ) ◦ σ = τL ⊗ τ , so

τω ◦ π1 = τω ◦ (Adu ◦ π0 ◦ σ) = (τω ◦ π0) ◦ σ = (τL ⊗ τ) ◦ σ = τL ⊗ τ.

This finalizes the proof.

The tracial large cone ∗-homomorphisms constructed during the preceding chapter are the prime
candidates to build completely positive maps witnessing quasidiagonality of a given faithful trace.
The idea may vaguely be depicted in the following way. Suppose τ denotes a faithful trace acting on
a nuclear separable C∗-algebra A. To the associated triple

θ : C([0, 1]) −→ Qω, π0 : C0(0, 1]⊗A −→ Qω, and π1 : C[0, 1)⊗A −→ Qω,

let Λ0 be the restriction of π0 to C0(0, 1) ⊗ A and let Λ1 be the corresponding restriction for π1.
Imagine one had access to some unitary u in Qω fulfilling Λ1 = Adu ◦ Λ0. Then one may build a
∗-homomorphism π : A −→ M2(Qω) subject to

(tr2 ⊗ τω) ◦ π =
τ

2
. (3.14)

The formula for π may be expressed by the formula

π(a) =

[
Λ1(h0 ⊗ a) 0

0 0

]
+

[
1 0
0 u∗

]
θ2(R∗)

[
Λ1(h1 ⊗ a) 0

0 0

]
θ2(R)

[
1 0
0 u

]
+

[
Λ0(h2 ⊗ a) 0

0 0

]
Here h0 may be chosen as any positive continuous map on [0, 1] attaining the value 1 at t = 0, linear
on (0, 1/4] and 0 elsewhere, h2 denotes the map reflecting h0 at t = 1/2 and h1 may be any positive
continuous piecewise linear map such that the set {h0, h1, h2} comprises a partition of unity. Lastly,
R denotes a continuous rotation in M2(C([0, 1])) such that

R|0,1/4] =

[
1C([0,1]) 0

0 1C([0,1])

]
together with R|[3/4,1] =

[
0 1C([0,1])

1C([0,1]) 0

]
Verifying multiplicativity leans on the unitary equivalence Λ1 ∼ Λ0 while (3.20) stems from

((tr2 ⊗ τω) ◦ π)(a) =
1

2

(
τωπ1(h0 ⊗ a) + τωπ1(h1 ⊗ a) + τωπ0(h2 ⊗ a)

)
=
τ(a)

2

(
τL(h0 + h1 + h2)

)
=
τ(a)

2

One then considers the associated unital ∗-homomorphism πqd : A −→ π(1A)M2(Qω)π(1A). The
target algebra is in fact ∗-isomorphic toQω thanks to proposition 3.2.2 ensuring that M2(Qω) ∼= Qω
and π(1A) being a non-trivial projection. Furthermore, uniqueness of trace on Qω enables one
to conclude that (3.14) remains valid under the identification, hence quasidiagonality stems from
proposition 3.2.3. However, for a separable nuclear C∗-algbera A, manufacturing such a unitary u
is futile. Even searching for a unitary detecting approximate unitary equivalence of Λ1,Λ0 will be
difficult. We must fix this issue to some reasonable extend.



Chapter 4

The Stable Uniqueness Theorem

This chapter will attempt to unravel how Tikuisis, White and Winter bypass the issue of establishing
the aforementioned unitary equivalence using KK-theory. The principle behind tacitly invoking
KK-theoretic aspect revolves around “stable uniqueness” results due to Dadarlat and Eilers in [18],
whose work we are inclined to address. The chapter starts with a brief recap on Hilbert C∗-modules
alongside some fundamental observations based on Kasparov’s work.

4.1 Hilbert C∗-modules and KK-Theory

The theory established by Dadarlat and Eilers seeks to partially provide an answer to the following
question: For a pair of ∗-homomorphisms defining the same class in KK-theory, can we arrange to
some extend approximate unitary equivalence of these? Their work relies heavily on ideas due to
Lin and his work on the same matter, from which they achieve approximate unitary equivalence
provided that one passes to larger matrices with some ∗-homomorphism added.

To derive the stability theorem, one requires both standard pictures of KK-theory. We therefore
introduce these without proving neither the group axioms nor the properties such as homotopy
invariance. For a far more detailed survey of the Cuntz picture, the reader may consult sections
3.1-3.2 in [30] or Cuntz’ original paper [15].

Definition. SupposeA denotes some C∗-algebra. A Hilbert C∗-module over A is a C-vector spaceE
admitting anA-module structure and anA-valued inner product, meaning a map 〈·, ·〉 : E×E −→ A
subject to the following axioms:

· 〈ξ, η〉∗ = 〈η, ξ〉 for all ξ, η ∈ E;

· 〈·, ·〉 is C-linear in the second variable;

· 〈ξ, aη〉 = a〈ξ, η〉 for all ξ, η ∈ E and a ∈ A;

· 〈ξ, ξ〉 ≥ 0 with equality occurring if and only if ξ = 0, for every ξ ∈ E;

· E endowed with the norm ξ 7→ ‖〈ξ, ξ〉‖1/2A defines a complete normed space.

It is apparent that Hilbert spaces define Hilbert C∗-modules over C. As such the notion generalizes
Hilbert spaces and one obtains an analogue of the Cauchy-Schwarz inequality: If E denotes a Hilbert
C∗-modules over A containing elements ξ and η, one has for all a in A that

‖〈ξ, η〉‖A ≤ ‖ξ‖ · ‖η‖ and ‖aξ‖ ≤ ‖ξ‖ · ‖a‖A. (4.1)

For a proof, the reader is urged to consult section 3.3 in [30]. Hilbert C∗-modules form a vital
ingredient in the construction of the KK-functor and we shall often be working with a prototypical
one. Before exhibiting the example, some additional terminology will be fruitful.
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Definition. Suppose E,E0 denote Hilbert C∗-module over A. A linear map t : E −→ E0 is called
adjointable if there exists some linear map s : E0 −→ E fulfilling

〈sξ, η〉E0 = 〈ξ, tη〉E

for all ξ ∈ E and η ∈ E0. The map t is unique, hence commonly denoted by s∗. We write LA(E,E0)
to represent the collection of all adjointable maps t : E −→ E0, abbreviating LA(E) = LA(E,E). In
the latter scenario, one acquires a unital C∗-algebra having 1E = IdE as the unique unit, composition
of adjointable operators as multiplication and with the “operator” norm

‖s‖LA(E) := sup
ξ∈E1

‖sξ‖.

For verifications of the claim, we refer to [28] and/or [30]. A unitary u in LA(E,E0) is an adjointable
map such that uu∗ = 1E0 and u∗u = 1E . Completely parallel to ordinary Hilbert spaces, E and E0

are called isomorphic should there exist a unitary between them, any such being identified with one
another upon unitaries preserving the A-valued inner-product.1

Suppose A denotes any C∗-algebra. Then A admits a Hilbert C∗-module structure over itself having
〈a, b〉 = a∗b as its associated A-valued inner product. In accordance with this particular example,
the unital C∗-algebra L(A) := LA(A) represents a generalization of B(H). Keeping the comparison
in mind, let E be some Hilbert C∗-module over B. Define, for any pair of elements ξ, η in E, the
“rank one operator” ωξ,η as

ωξ,η(µ) = ξ〈η, µ〉.

Mimicking rank-one operators of B(H), we denote by FB(E) the vector space having the operators
ωξ,η form a basis and denote its norm-closure in LB(E) as KB(E). One may check that KB(E)
constitutes an ideal in LB(E). We refer to elements of the latter as compact operators and those in
former the finite rank operators. The proposition below was proven by Kasparov in [25] and bridges
the concept of adjointables and multiplier algebras.

Proposition 4.1.1 (Kasparov). One has LB(E) ∼=M(KB(E)) for every Hilbert B-module E.

Proof. We adopt the multiplier picture of M(KB(E)) throughout the proof. Define a linear map
∆: LB(E) −→ M(KB(E)) by sending an adjointable operator s to the pair ∆(s) := (s0, s1) con-
sisting of the adjointable operators fulfilling

s0(ωξ,η) = ωsξ,η, respectively, s1(ωξ,η) = ωξ,s∗η

for all ξ, η in E. Due to (4.1) yielding ‖sk(a)‖ ≤ ‖sk‖ · ‖a‖ for every finite rank operator a acting
on E and k = 0, 1, the map ∆ extends to the compact operators through density. We refer to the
extension by ∆ as well, hopefully without causing confusion.

The assignment is easily seen to be injective, for x0(ωξ,η) = 0 when ξ, η ∈ E forces ωxξ,xξ = 0
for each ξ in E and x = 0 thereof. The tricky part concerns surjectivity. Suppose (x, y) denotes a
multiplier of KB(E). Let p be the operator on E defined by the action

p(ξ) = lim
ε→0

x(ωξ,ξ)ξ(‖ξ‖2 + ε)−1.

The limit exists according to a standard application of (4.1) in conjunction with boundedness of the
multipliers. We assert that the linear map p∗ : E −→ E given by

p∗(ξ) = lim
ε→0

y(ωξ,ξ)
∗ξ(‖ξ‖2 + ε)−1

1In general, notions such as projections, self-adjoint elements etc. have analogues for modules, properties being
verified in the same fashion as Hilbert spaces, almost verbatim. For orthogonal decompositions, see 15.3.9 in [47].
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must be the adjoint of p. Due to ωη,η(η)(‖η‖2 + ε)−1 tending to η as ε→ 0, it follows that

〈η, p∗(ξ)〉 = lim
ε→0

〈
ωη,η(η)(‖η‖2 + ε)−1, y(ωξ,ξ)

∗ξ(‖ξ‖2 + ε)−1
〉

= lim
ε→0

〈
y(ωξ,ξ)ωη,η(η)(‖η‖2 + ε)−1, ξ(‖ξ‖2 + ε)−1

〉
= lim
ε→0

〈
ωξ,ξ · x(ωη,η(η))(‖η‖2 + ε)−1, ξ(‖ξ‖2 + ε)−1

〉
= lim
ε→0

〈
x(ωη,η(η))(‖η‖2 + ε)−1, ωξ,ξ(‖ξ‖2 + ε)−1

〉
= 〈p(η), ξ〉.

must be valid for any ξ, η insideE. The third equality is based on the pairing (x, y) being a multiplier.
The operator p thus becomes adjointable. Setting s(a) = x(ωξ,η(a)) − ωxξ,η(a) for each a in E,
followed by a slightly unpleasant computation entails that ωe,e0(s(a)) = 0 for any pair e, e0 ∈ E.
The obtained special case e = e0 = s(a) therefore forces s(a) = 0, whereby one may deduce that
p0(ωξ,η) = ωxξ,η for all ξ, η belonging to E with ∆(p) = (p0, p1). A completely analogues argument
will reveal that p1(ωξ,η) = ωξ,y∗η, hence ∆(p) = (x, y) as desired.

Due to the two pictures of KK-theory having, a priori, rather distinct points of view in regards to
their elements, we insist on moderately understanding how they interact with one another. This
demands a connection between the C∗-algebraic formulation of the adjointables, starting with the
interpretation of A as the compact adjointables.

Proposition 4.1.2. For every C∗-algebra A one has K(A) ∼= A. Hence L(A) ∼= A.

Proof. Consider the ∗-homomorphism π : A −→ L(A) given by π(a)b = ab for all a, b in A. For
each nonzero a in A, observe that ‖a‖ = ‖π(a∗)a/‖a‖‖ ≤ ‖π(a)‖. This in turn reveals that π is a ∗-
monomorphism. Define hereafter another mapϕ0 : F(A) −→ π(A) by the assignmentωa,b 7→ π(ab∗).
Due to π being an isometry, ϕ0 extends to an isometry ϕ : K(A) −→ π(A). The image of ϕ equals the
closure of the linear space spanned by elements of the form π(ab∗). Let {eα}α∈I be some approximate
unit ofA. Then any element a inA fulfills π(a) = limα∈I π(aeα) with the latter belonging to ϕ(K(A))
as ϕ has closed image. We conclude that K(A) ∼= π(A) ∼= A. The final assertion is immediate from
the preceding proposition.

The aforementioned prototypical Hilbert C∗-module we shall consider will be addressed now. Let H
be some separable infinite dimensional Hilbert space throughout the entire remainder of the chapter.
Every C∗-algebraB acts on the C-algebraic tensor productHB = H⊗B by multiplication on theB-
coordinate while leavingH unaltered. Equipping theB-moduleHB with theB-valued inner product
〈·, ·〉 : HB ×HB −→ B defined by declaring that

〈ξ ⊗ b, ξ0 ⊗ b0〉 = 〈ξ, ξ0〉H · b∗b0
forms a Hilbert C∗-module structure of B. The point of HB is its associated C∗-algebra LB(HB);
an acquaintance in cognito.

Proposition 4.1.3. Let B be some C∗-algebra. Then KB(HB) ∼= K ⊗ K(B) as C∗-algebras. In
particular, one has LB(HB) ∼=M(B ⊗K).

Proof. The identification stems from the following observation. Let ξ, η, µ ∈ H and a, b, c ∈ B be
arbitrary elements. Based on

ωξ⊗a,η⊗b(µ⊗ c) = (ωξ,η ⊗ ωa,b)(µ⊗ c)

we may conclude that the canonical isometry β : LC(H) ⊗ L(B) −→ LB(HB) defined in terms of
the bilinear map (s, t) 7→ s× t with (s× t)(ξ ⊗ b) := sξ ⊗ tb (see the appendix for an elaboration),
becomes a ∗-epimorphism via density of the finite rank operators. Indeed, the above gives

β(ωξ,η ⊗ ωa,b) = ωξ⊗a,η⊗b

for any ξ, η ∈ H and a, b ∈ B, granting surjectivity immediately. The remaining statement stems
from K(B) ∼= B yielding LB(HB) ∼=M(B ⊗K) thereof.
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Prior to venturing further towards our KK-theoretic notions, we present the heart of HB in the
shape of Kasparov’s Stabilization theorem. We omit proving it, in spite of exploiting it regularly.
For the record, a Hilbert C∗-module E over B is called countably generated should the existence of
a countable set {en}n≥1 of elements in E such that

D({en}n≥1, B) :=

{ m∑
k=1

ekbk : bk ∈ B, m ∈ N
}

is norm-dense inE be guaranteed. A reoccurring example isHB wheneverB is σ-unital. Additionally,
given Hilbert C∗-modules E and F over a common C∗-algebra A, the direct sum E ⊕F as C-vector
spaces admits an A-module structure in the ordinary manner for A-modules. We endow the module
with the map 〈·, ·〉 : (E ⊕ F )× (E ⊕ F ) −→ C given by

〈(a, b), (a0, b0)〉 = 〈a, a0〉E + 〈b, b0〉F

as an A-valued inner product.

Theorem 4.1.4 (Kasparov’s stabilization theorem). Suppose E denotes any countable generated
Hilbert B-module with B being σ-unital. Under these premises, one has E ⊕HB ∼= HB.

Proof. See theorem 2 of [25] for a proof.

KK-theory adopts several points of view. For our primary concern, the most prominent ones revolve
around representations of Hilbert C∗-modules. We discuss the concept attached now, including some
topological aspects that facilitate Skandalis’ modified version of KK-theory. Afterwards, we tacitly
derive special cases of representation producing elements of KK-theory.

Remark. Throughout the remaining chapter, B will denote a fixed σ-unital C∗-algebra and E will
denote a countably generated Hilbert C∗-module over B, unless specified otherwise.

Definition. Let A,B be arbitrary C∗-algebras and let E,F be Hilbert B-modules

· A ∗-homomorphism π : A −→ LB(E) will be referred to as a representation of A.

· Given two representations π : A −→ LB(E) and % : A −→ LB(F ), we define

π ⊕ % : A −→ LB(E)⊕ LB(F ) ∼= LB(E ⊕ F ); a 7→ (π(a), %(a)).

Here the latter identification is merely the assignment mapping a pair (a, b) into the adjointable
operator Ta,b : E ⊕ F −→ E ⊕ F fulfilling Ta,b(ξ, η) = (aξ, bξ) for all ξ ∈ E and η ∈ F .

The multiplier algebra associated to any C∗-algebra may be endowed with a natural locally convex
Hausdorff topology. Due to convergence becoming absolutely pivotal once we introduce homotopies
of representations, we are poised to address topological aspects. Suppose therefore that A is some
C∗-algebra. Define for each a in A seminorms ‖ · ‖ra, ‖ · ‖`a : M(A) −→ R+ by the formulas

‖x‖ra = ‖xa‖A, respectively, ‖x‖`a = ‖ax‖A.

The locally convex Hausdorff topology generated by the set {‖ · ‖ra, ‖ · ‖`a : a ∈ A} is commonly
referred to as the strict topology. In this topology, convergence of a net (xi)i∈I occurs if and only if

‖xa− xia‖A → 0 together with ‖ax− axi‖A → 0 (4.2)

hold for all a belonging to A. Notice further that upon identifying LB(E) withM(KB(E)), one may
equip the former with the strict topology.

The strict topology, multiplier algebras and adjointables permit us to properly investigate KK-
theory in two equivalent, although different, pictures. Since each perspective has strengths over its
equivalent counterpart, we shall lean on the usage of each variance throughout the entire chapter.
As such we exhibit both rigorously.
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Definition (Cuntz’ picture). Suppose A denotes any C∗-algebra.

· A quasihomomorphism from A into B is a pair (π, %) consisting of two not necessarily unital
representations π, % : A −→M(B ⊗K) for which the difference π(a)− %(a) belongs to B ⊗K for
all a in A. We denote by Ec(A,B) the collection of quasihomomorphisms from A into B.

· A quasihomotopy connecting two quasihomomorphisms (π, %) and (ϕ,ψ) is a family of quasiho-
momorphisms (πt, %t)t∈[0,1] from A into B, indexed over [0, 1], fulfilling

(π, %) = (π1, %1) together with (ϕ,ψ) = (π0, %0).

Additionally, we demand that t 7→ πt(a) and t 7→ %t(a) are strictly continuous maps for each a
in A whereas t 7→ πt(a)− %t(a) is required to be norm continuous for every such a. The obtained
equivalence relation is symbolically denoted by ∼h.

· The space Ec(A,B) may be equipped with an associative composition ⊕ given by

(π, %)⊕ (π0, %0) := (π ⊕ π0, %⊕ %0)

for any two pairs of quasihomomorphisms.

Definition (Kasparov’s picture). LetA denote some C∗-algebra and letE,F be HilbertB-modules.

· A triple (π, %, u) consisting of two representations π : A −→ LB(E), % : A −→ LB(F ) and an
adjointable operator u : E −→ F satisfying

uπ(a)− %(a)u ∈ KB(E,F ),

π(a)(u∗u− 1E) ∈ KB(E),

%(a)(uu∗ − 1F ) ∈ KB(F ),

for all a belonging to A, is called a KK-cycle from A into B. We define E(A,B) to be the space of
all KK-cycles from A into B, and endow it with the following associative composition:

(π, %, u)⊕ (π0, %0, u0) := (π ⊕ π0, %⊕ %0, u⊕ u0).

A cycle (π, %, u) is degenerate should the attached containments found above amount to the
expressions on the left-hand side being identically zero. The space of degenerate cycles from A
into B is denoted by D(A,B).

· An operatorial homotopy between KK-cycles (π, %, u) and (ϕ,ψ, v) is a collection (πt, %t, ut)t∈[0,1]

of cycles, indexed over [0, 1], such that t 7→ ut is norm continuous, t 7→ πt(a) and t 7→ %t(a) are
strictly continuous for each a in A, while fulfilling

(π1, %1, u1) = (π, %, u) together with (π0, %0, u0) = (ϕ,ψ, v).

In this scenario, we call (π, %, u) operatorially homotopic to (ϕ,ψ, v), symbolically represented via
(π, %, u) ∼oh (ϕ,ψ, v). This is easily seen to be an equivalence relation.

· Two KK-cycles, say (π, %, u) and (ϕ,ψ, v), are referred to as being equivalent if there exists a
degenerate cycle (γ, γ0, w) for which

(π, %, u)⊕ (γ, γ0, w) ∼oh (ϕ,ψ, v)⊕ (γ, γ0, w).

We write (π, %, u) ∼d (π, %, v) to represent this occurrence.
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Notice that the right-hand side of the compositions comprise a representation from A into

M(B ⊗K)⊕M(B ⊗K) ∼=M((K⊕K)⊗B) ∼=M(B ⊗K).

The first identification stems from the permanence property (iv) of proposition A.0.4 while the
latter amounts to an exploitation of separability. For Kasparov’s KK-theoretic picture, one employs
proposition 4.1.3. It is customary to regard (ϕ ⊕ ϕ0)(a) as the 2 × 2-diagonal matrix, acting on
LB(E) ⊕ LB(E), attaining the value ϕ(a) in the upper-left corner with ϕ0(a) in the lower-right
corner. The general isomorphism Mn(LA(E)) ∼= LA(En) of C∗-algebras allows such interpretations.
The isomorphism may be deduced in a fashion resembling the analogues statement for B(H).

Definition. Suppose A denotes a C∗-algebra and let B be some σ-unital C∗-algebra. We hereto
define the KK-groups in the Kasparov - and Cuntz picture by

KKc(A,B) = Ec(A,B)/ ∼h, respectively, KK(A,B) = E(A,B)/ ∼d,

endowed with the induced associative commutative compositions

[ϕ,ψ, u] + [π, %, v] := [(ϕ,ψ, u)⊕ (π, %, v)] and [ϕ,ψ] + [π, %] := [(ϕ,ψ)⊕ (π, %)]

in the respective order.

The type of elements in KK-theory we shall primarily encounter arise from existing ∗-homomorphisms.
Suppose π : A −→ B denotes some ∗-homomorphism. Selecting any finite rank projection p acting
on H, one may embed B into B ⊗ K via the ∗-monomorphism given by b 7→ p ⊗ b. As such π may
be regarded as a representation intoM(B⊗K) ∼= LB(HB). Therefore (π, 0) becomes a quasihomo-
morphism whereas (π, 0, 0) defines a degenerate cycle, hence

[π]c := [π, 0] together with [π] := [π, 0, 0] (4.3)

define elements in KKc(A,B) and KK(A,B), respectively, referred to as induced morphisms.

Remark. One may be fooled to believe that the group axioms are automatic. However, it ought
to be emphasized that the compositions on E(A,B) and Ec(A,B) are non-commutative. Moreover,
they lack inverses. In the quotients, everything fortunately pans out neatly. Due to details becoming
important momentarily, it seems prudent to elaborate moderately.

Consider any degenerate KK-cycle of the form (π, %, 1). Then [π, %, 1] = 0 holds in KK(A,B).
Similarly, the quasihomomorphism (π, π) associated to a representation π : A −→M(B⊗K) induces
the zero class in KKc(A,B), being homotopic to (0, 0). Given a cycle [π, %, u], one acquires the equality
−[π, %, u] = [−π,−%,−u]. This may be verified by considering the operator homotopy([

π 0
0 −π

]
,

[
% 0
0 −%

]
,

[
u cos t sin t
sin t −u cos t

])
,

which connects [π, %, u] + [−π,−%,−u] at t = 0 to([
π 0
0 −π

]
,

[
% 0
0 −%

]
,

[
0 1
1 0

])
at t = π/2. Since the latter expression has a degenerate cycle as representative, the claim follows.
In an analogues manner, one may verify that −[π, %] = [%, π], because the sum equals the induced
class of (π ⊕ %, %⊕ π) which may be continuously rotated into (π ⊕ %, π ⊕ %).

As a final note, the abelian groups KK(A,B) and KKc(A,B) are isomorphic via the mapping
induced from (π, %) 7→ (π, %, 1). We forego the proof completely for brevity.

As opposed to ordinary K-theory, KK-theory engages morphisms instead of projections or unitaries
of some given C∗-algebra. In K-theory, equality translates into stable equivalence, meaning Murray
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von-Neumann equivalence up to adding a a projection: [p]0 = [q]0 relative to some C∗-algebra A if
and only if p ⊕ r ∼ q ⊕ r for some projection r in Mk(A). One may ponder and pose the question
whether a resembling feature occurs in KK-theory. Our objective will be to (partially) supply an
affirmative answer. First some terminology.

Definition. Let A be some C∗-algebra and let E,F be Hilbert B-modules.

· Two representations π : A −→ LB(E) and % : A −→ LB(F ) are said to be approximately unitarily
equivalent if there exists a sequence (un)n≥1 of unitaries in LB(F,E) such that

lim
n→∞

‖π(a)− un%(a)u∗n‖ = 0 together with π(a)− um%(a)u∗m ∈ KB(E)

for every a in A and each positive integer m. We write π ∼a.u % to symbolically represent this.

· Two representations π, % : A −→ LB(E) are said to be properly approximately unitarily equivalent
if there exists a family (ut)t∈R+ consisting of unitaries in KB(E)+ such that

lim
t→∞

‖π(a)− ut%(a)u∗t ‖ = 0 together with π(a)− ut%(a)u∗t ∈ KB(E)

for all a in A and every positive real number t. Moreover, the corresponding assignment t 7→ ut is
required to be norm-continuous. We write π ≈p.u % to symbolically represent this.

Approximately unitarily equivalence is commonly very restrictive to demand under the assumption
that [π] = [%], or in the Cuntz picture [π]c = [%]c, so we will instead attempt to detect proper asymp-
totic unitary equivalence modulo adding a suitable representation. First of all, the easy implication
revealing that proper unitary equivalence removes KK-theoretic obstructions. It further serves the
purpose of justifying that the equivalence relation ≈p.u has potential.

Proposition 4.1.5. Let π, % : A −→M(B⊗K) be properly unitarily equivalent representations of
some C∗-algebra A. Then (π, %) becomes a quasihomomorphism with [π, %] = 0 in KK(A,B).

Proof. Suppose (ut)t∈R+ represents the continuous path of unitaries witnessing proper unitary
equivalence of π and %. Due to (B ⊗ K)+ containing B ⊗ K as an ideal, we may deduce that
π(a)−%(a) ∈ B⊗K since each ut belongs toK(HB)+ ∼= (B⊗K)+. To verify that [π, %, 1] must be zero,
assume for the time being that [π, %, 1] = [π, u1π(·)u∗1, 1] must be valid. Evidently, (π, u1π(·)u∗1, 1)
and (π, π, 1) are unitarily equivalent, i.e., the coordinates of the cycles are unitarily equivalent. As
unitary equivalent cycles induce the same KK-classes, we have

[π, %, 1] = [π, u1π(·)u∗1, 1] = [π, π, 1] = 0.

Ergo the proof reduces to establishing [π, %] = [π, u1πu
∗
1]. To accomplish this, put

µt(a) = π(a) and σt(a) =

{
u1/tπ(a)u∗1/t, if t > 0,

%(a), if t = 0,

for each real number 0 ≤ t ≤ 1. By our hypothesis imposed on the unitaries (ut)t∈R+ in conjunction
with (π, %) determining a quasihomomorphism, the family {(µt, σt) : t ∈ R+} defines a quasihomo-
topy transforming (π, %) into (π, u1π(·)u∗1). This proves the claim.

As described previously, our objective will be to develop a converse statement, at least in the nuclear
setting; such statements are commonly referred to as uniqueness statements of morphisms.
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4.2 Strict Nuclearity

The observation in proposition 4.1.5 greatly enhances our ability to detect the lack of KK-theoretic
distinction between ∗-homomorphisms. Deriving a converse statement requires substantial effort and
in fact ordinary KK-theory a priori seems inadequate to tackle the issue. Therefore, we add a cherry
on top: Strict nuclearity. The crux of restricting to a particular subgroup stems from the ability to
enable nuclearity, the idea originating from Skandalis in [40], whose work we record. Throughout
the entire section, we shall regard B as being a fixed σ-unital C∗-algebra.

Definition. Let A be any C∗-algebra.

· A completely positive map ψ : A −→ LB(E) is strictly nuclear if there exists a net (ψα)α∈J
consisting of finite-dimensionally factorable maps such that ψα(·)→ ψ(·) strictly.

· We define the nuclear KK-theory group ofA andB as follows. SupposeEnuc(A,B) denotes the sub-
set in Ec(A,B) consisting of strictly nuclear quasihomomorphisms and let∼nuc be the equivalence
stemming from restricting homotopy of quasihomomorphisms to strictly nuclear quasihomomor-
phisms. Define accordingly

KKnuc(A,B) = Enuc(A,B)/ ∼nuc .

· Parallel to the previous definition, the nuclear version of Kasparov’s picture may be defined in
the following manner. Let Enuc(A,B) represent the collection of all KK-cycles2 whose morphisms
are strictly nuclear and let Dnuc(A,B) be the subcollection of strictly nuclear degenerate cycles.
If ∼n.d denotes the equivalence relation obtained from ∼d by restricting to Dnuc(A,B), then

KKnuc(A,B) = Enuc(A,B)/ ∼n.d

defines the nuclear version of Kasparov’s KK-group.

Remark. If one mimicks the proof concerning the statement that nuclearity of completely positive
maps defined on nuclear C∗-algebras is automatic, one may deduce the same statement for strict
nuclearity — certainly, the norm-topology is stronger than the strict topology.

Observe that π ⊕ % remains strictly nuclear whenever each coordinate is strictly nuclear. As
such KKnuc(A,B) determines a normal subgroup within KK(A,B), hence induces a canonical map
θ : KKnuc(A,B) −→ KK(A,B).

The initial step towards establishing uniqueness of induced elements in KK-theory and lack of KK-
theoretic obstruction between them will be to translate the current distinction of representatives in
the same class into unitary equivalence. For any representation π : A −→M(B ⊗K), let

Dπ := {b ∈M(B ⊗K) : [b, π(A)] ⊆ B ⊗K}.

Lemma 4.2.1. Let A be some unital separable C∗-algebra, let π : A −→ M(B ⊗ K) be a unital
representation and suppose w0, w1 belong to Dπ. If [π, π, w0] = [π, π, w1] in KK(A,B), then there
exists a unital representation γ : A −→M(B ⊗K) such that

(π ⊕ γ, π ⊕ γ,w0 ⊕ 1) ∼oh (π ⊕ γ, π ⊕ γ,w1 ⊕ 1).

Under the hypothesis that π is strictly nuclear with [π, π, w1] = [π, π, w2] in KKnuc(A,B) the
representation γ may be chosen to be strictly nuclear.

2Some abuse of notation is being extended here. However, it ought to emphasize on no distinction occurring for
neither Kasparov’s nor Cuntz’ nuclear picture. We shall employ both versions and will remark when either enters.
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Proof. Due to [π, π, w0] − [π, π, w1] = 0 in KK(A,B), the representatives (π, π, w0) and (π, π, w1)
must differ by a degenerate cycle (γ0, γ1, u) up to operatorial homotopy, where γi : A −→ LB(Ei)
for i = 0, 1 is the representation and u : E0 −→ E1 is an adjointable operator, meaning

(π ⊕ γ0, π ⊕ γ1, w0 ⊕ u) ∼oh (π ⊕ γ0, π ⊕ γ1, w1 ⊕ u). (4.4)

Suppose (ut)t∈[0,1] denotes the continuous path of operators implementing the transformation of
w0⊕u into w1⊕u. We will tacitly reduce the proof into the unital scenario with u being a unitary. To
achieve this, look at the projection pi = γi(1A) in LB(Ei). Upon decomposing Ei into the direct sum
piEi⊕p⊥i Ei then restrcting γi to the first summand, we may assume that γi becomes unital. Having
arranged this, one may have the relation (4.4) withstand by replacing u with p1up0 and each ut with
(1⊕p1)ut(1⊕p0). The new cycle (γ0, γ1, p1up0) remains degenerate, (1⊕p1)u0(1⊕p0) = w0⊕p1up0

and (1 ⊕ p1)u1(1 ⊕ p0) = w1 ⊕ p1up0, thereby constituting an operatorial homotopy between the
designated substitutions of Ei,u, ut and γi. For instance, degeneracy of (γ0, γ1, u) forces up0 = p1u,
so that degeneracy once more implies that

γ0(a)(p0 − (p1up0)∗(p1up0)) = γ0(a)(p0 − u∗p1u)p0 = γ0(a)(1E0
− u∗u)p0 = 0.

The remaining degeneracy-conditions are verified in resembling fashions. Furthermore, degeneracy
of the new cycle easily reveals that p1up0 becomes a unitary. Having established (4.4) in the unital
case with u being a unitary, notice that the family of triples (π⊕γ0, π⊕γ0, (1⊕u∗)ut), continuously
indexed over [0, 1], defines an operatorial homotopy

(π ⊕ γ0, π ⊕ γ0, w0 ⊕ 1) ∼oh (π ⊕ γ0, π ⊕ γ0, w1 ⊕ 1). (4.5)

If one picks an element t in [0, 1] and some a in A, then

(π ⊕ γ0)(a)(1HB⊕E0
− u∗t (1HB ⊕ u)(1HB ⊕ u∗)ut) = (π(a)⊕ γ0(a))(1HB⊕E0

− u∗tut)

yields the first condition of a cycle, since the elements (ut)t∈[0,1] implementing the operatorial homo-
topy (4.4) entail that the right-hand side above must be compact for each t in [0, 1]. The remaining
axioms of a cycle are verified similarly. To finish the proof, we need some trickery allowing the choice
Ei = HB for each index i = 0, 1. Let σ : A −→ LB(HB) be any unital representation. Due to (4.5),
the degenerate cycle (σ, σ, 1HB ) evidently satisfies

(π ⊕ γ0 ⊕ σ, π ⊕ γ0 ⊕ σ,w0 ⊕ 1E0 ⊕ 1HB ) ∼oh (π ⊕ γ0 ⊕ σ, π ⊕ γ0 ⊕ σ,w1 ⊕ 1E0 ⊕ 1HB ). (4.6)

Invoking Kasparov’s stabilization theorem, we may extract a unitary v : E0⊕HB −→ HB witnessing
the isomorphism E0 ⊕HB ∼= HB of Hilbert B-modules. Defining γ = Adv ◦ (γ0 ⊕ σ) gives a unital
representation γ : A −→ LB(HB) such that (π ⊕ γ, π ⊕ γ,wi ⊕ 1) becomes a cycle for each index
i = 0, 1. On the merits of (4.6), the cycle fulfills

(π ⊕ γ, π ⊕ γ,w0 ⊕ 1) = (π ⊕Adv(γ0 ⊕ σ), π ⊕Adv(γ0 ⊕ σ), w0 ⊕Adv(1E0 ⊕ 1HB ))

∼oh (π ⊕Adv(γ0 ⊕ σ), π ⊕Adv(γ0 ⊕ σ), w1 ⊕Adv(1E0 ⊕ 1HB ))

= (π ⊕ γ, π ⊕ γ,w1 ⊕ 1).

This tackles the assertion in the non-nuclear case. Repeating the proof and noting that the degenerate
cycle (γ0, γ1, u) may be chosen to be strictly nuclear whenever π is with [π, π, w1] = [π, π, w2] in
KKnuc(A,B), the newly assigned map γ = Adv ◦ (γ0 ⊕ σ) becomes strictly nuclear provided that
both summands γ0 and σ are strictly nuclear, being the conjugation of a strictly nuclear map. Since
γ0 could be chosen to be strictly nuclear, one needs to justify that a strictly nuclear representation
σ : A −→ LB(HB) exists. We refer to proposition 2.18 in [18] for this.

For convenience, we add a lifting lemma of unitaries.
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Lemma 4.2.2. Suppose A denotes a unital C∗-algebra containing a non-trivial ideal I. Let

0 // I
ι // A

q // B // 0

be a short-exact sequence of C∗-algebras. If so, every unitary w in A fulfilling q(w) ∼h 1B relative
to U(B) provides a unitary w0 in I+ homotopic to w relative to U(A).

Proof. Suppose the relation q(w) ∼h 1B is detected via some continuous path (ut)t∈[0,1] of unitaries
inB. Compactness of the unit interval and continuity of the map t 7→ ut provides a positive integer n
making the family 1B = u0, u1, . . . , un = q(w) of unitaries inB satisfy uk+1 ≈1 uk for each k ≤ n−1.
We inductively construct unitaries v0, v1, . . . , vn in A such that vj lifts uj while vj ≈1 vj+1 for every
1 ≤ j ≤ n− 1. Indeed, since unitaries within a distance of 2 from one another are homotopic, these
unitaries extend to a homotopy v0 ∼h vn relative to U(A) in which q(v0) = 1B (hence v0 lies in
I+ by exactness). It therefore suffices to establish the existence of vn−1, upon setting vn := w and
repeating the process.

Write zn = un−1u
∗
n for each n. Since un−1 ≈1 un, the normal element zn − 1B = un−1u

∗
n − 1B

defines a strict contraction, so its spectral radius cannot exceed 1. Hence −1 cannot belong to the
spectrum of zn. We must thus have exp(iθ) /∈ σ(zn) for some real value θ. The acquired continuous
map f : (θ, θ + 2π) −→ R given by exp(it) 7→ t satisfies λ = exp(if(λ)) for each λ in the spectrum
of zn. Letting bn = f(zn) yields a self-adjoint element in B subject to zn = exp (ibn). Lift bn via q
to some self-adjoint an in A with ‖an‖ = ‖bn‖. Set vn−1 = exp(ian)vn and observe that

q(vn−1) = exp(iq(an))q(vn) = exp(ibn)un = un−1.

Furthermore, we have

‖vn − vn−1‖ ≤ ‖1− exp(ian)‖ = ‖1− exp(ibn)‖ ≤ ‖un − un−1‖ < 1.

Thus we have constructed vn−1, proving the claim in view of our previous remarks.

Our next step towards a characterization of equality in KK-theory begins with introducing a general-
ization of the Calkin algebra, the corona algebras. LetA be a non-unital C∗-algebra and symbolically
write Q∗(A) :=M(A)/A. For our purposes A will serve as B ⊗K in which case β will represent the
canonical ∗-epimorphism β : M(B ⊗K) −→ Q∗(B ⊗K).

A peculiar feature hereof is the following short-exact sequence. Consider the image of β when
restricting to Dπ. An element β(x) herein is zero whenever x defines an element in B ⊗ K whose
commutator [x, π(A)] with π(A) remains in B ⊗K. Setting for each subset M ⊆ Q∗(B ⊗K),

M c := {y ∈ Q∗(B ⊗K) : [y,M ] ⊆ B ⊗K},

we acquire a short-exact sequence

0 // B ⊗K
j // Dπ

β // (βπ(A))c // 0 (4.7)

of C∗-algebras with ∗-homomorphisms as morphisms. We unveil the use of (4.7) momentarily. As a
final intermezzo, we mimick the `2-construction associated to a C∗-algebra for Hilbert modules. Let
E be some Hilbert B-module and write E∞ = E ⊕ E ⊕ . . . as a C-vector space. Define accordingly
a Hilbert B-module in terms of the following structural data:

E∞ :=

{
(ξn)n≥1 ∈ E∞ :

∞∑
n=1

‖ξn‖2E <∞
}

;
〈
(ξ1, ξ2, . . .), (η1, η2, . . .)

〉
=

∞∑
n=1

〈ξn, ηn〉E .

The ordinary techniques proving completeness of `2(N) may be adapted to verify completeness
of E∞. Here the algebraic operations are the obvious/usual ones for B-modules. Given a (unital)
representation π : A −→ LB(E) there exists an induced (unital) representation π∞ : A −→ LB(E∞)
defined by the assignment π∞(a)(ξ1, ξ2, . . .) = (π(a)ξ1, π(a)ξ2, . . .) for (ξn)n≥1 in E∞.
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Theorem 4.2.3 (Dadarlat-Eilers). Suppose A and B are separable C∗-algebras. Let (π, %) be any
quasihomomorphism from A into B. Then the following statements are equivalent.

(i) [π, %] = 0 in KK(A,B).

(ii) There exists a representation σ : A −→M(B ⊗K) such that π ⊕ σ ≈p.u %⊕ σ.

Additionally, the representation σ may be chosen to be unital, should A admit one, whenever π, %
are unital. Lastly, if π and % are strictly nuclear, then the following are equivalent.

(i) [π, %] = 0 in KKnuc(A,B).

(ii) There exists a strictly nuclear representation σ : A −→M(B⊗K) such that π⊕σ ≈p.u %⊕σ.

Proof. The implication “(ii)⇐ (i)” in each case is immediate from proposition 4.1.5. We will com-
mence by reducing the whole situation to the unital case. Suppose (i) is equivalent to (ii) under the
hypothesis that the maps π, % are unital. Upon the unitization A+ inducing unital representations
π+, %+ : A+ −→ M(B ⊗ K), each being strictly nuclear whenever π, % are so, in conjunction with
[π+, %+] = 0 remaining valid in KK(A,B), we may appeal to the unital scenario to construct σ+.
The sought representation σ may be chosen as the restriction of σ+ to the ideal A E A+. Thus, it
suffices to verify the implication (i)⇒ (ii) with π, % being unital.

Step 1. We shall manufacture σ by invoking lemma 4.2.1, then adjust the placement of the uni-
taries occurring therefrom. The map γ0 := π∞ ⊕ %∞ must be a unital representation from A into
LB((HB)∞⊕(HB)∞), whose codomain may be identified with LB(HB) due to Kasparov’s stabiliza-
tion theorem. Exploiting the same argument enables us to deduce that π ⊕ γ0 and %⊕ γ0 are unital
representations ofA intoM(B⊗K). Kasparov’s stabilization theorem ensures the existence of a uni-
tary u0 in LB(HB) conjugating π⊕γ0 onto %⊕γ0, yielding (π⊕γ0, π⊕γ0, u0) ∼oh (π⊕γ0, %⊕γ0, 1).
We therefore have

[π ⊕ γ0, π ⊕ γ0, u0] = [π ⊕ γ0, %⊕ γ0, 1] = [π, %, 1] = 0 = [π ⊕ γ0, π ⊕ γ0, 1].

The second equality is based on the cycle (γ0, γ0, 1) being degenerate. Invoking lemma 4.2.1 grants
us a unital representation γ : A −→M(B ⊗K) such that

(π ⊕ γ0 ⊕ γ, π ⊕ γ0 ⊕ γ, u0 ⊕ 1) ∼oh (π ⊕ γ0 ⊕ γ, π ⊕ γ ⊕ γ0, 1⊕ 1). (4.8)

Observe that the strictly nuclear version of lemma 4.2.1 permits (4.8) to withstand with γ being
strictly nuclear. Stipulate that Λπ := π ⊕ γ0 ⊕ γ, Λ% := %⊕ γ0 ⊕ γ together with u := u0 ⊕ 1. Then
Λ% = uΛπ(·)u∗, and we may infer that (Λπ,Λπ, u) ∼oh (Λπ,Λπ, 1). We take σ = γ ⊕ γ0.

Step 2. We shall later on apply a result concerning asymptotically inner automorphisms. However,
doing so requires the unitary u to be homotopic to another unitary in (B⊗K)+ relative to U(DΛπ ),
which we access now. Through to the operatorial homotopy (Λπ,Λπ, u) ∼oh (Λπ,Λπ, 1) established
during the preceding step, we may find a norm continuous path of unitaries (ws)s∈[0,1] inM(B⊗K)
subject to w0 = u, w1 = 1 and the conditions

[Λπ(a), ws], Λπ(a)(wsw
∗
s − 1), Λπ(a)(w∗sws − 1) ∈ B ⊗K. (4.9)

for each s in [0, 1] and a in A. Due to the former containment of (4.9) combined with unitality of
β, β(ws) defines a unitary in (βΛπ(A))c for every such s in [0, 1]. Additionally, the acquired norm
continuous path of unitaries (β(ws))s∈[0,1] joints β(u) to the unit of Q∗(B ⊗ K). For instance, the
latter in conjunction with the former containment of (4.9) ensure that

1− β(ws)
∗β(ws) = β(Λπ(1A)− w∗sws) = 0,

with the remaining conditions being shown similarly. Due to lemma 4.2.2 applied to the short exact
sequence (4.7), we are guaranteed the existence of a unitary v in (B ⊗K)+ homotopic to u, relative
to U(DΛπ ) as desired.
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Step 3. Let E be the C∗-algebra Λπ(A) + B ⊗K. We will now arrange a norm-continuous path of
unitaries (zt)t∈R+ such that

lim
t→∞

‖ztΛπ(a)z∗t − Λ%(a)‖ = 0 (4.10)

for every a insideA. To accomplish this, we equip the group of automorphisms on any C∗-algebra with
the uniform topology, i.e., the point-norm topology. In this regard, Adu becomes homotopic to Adv
relative to Aut(E) by the second step. The homotopy of unitaries entails that α := Adv∗u becomes
homotopic to the idE relative to Aut(E), for u ∼h v ensures that v∗u ∼h 1. Let (αs)s∈[0,1] be the
uniformly continuous path of unitaries joining α to the identity on E. Consider the C∗-subalgebra
D(n, j1, . . . , jn) generated by the set

(αj1s1 ◦ α
j2
s2
◦ · · · ◦ αjnsn)(Λπ(A)), n ∈ N, jk ∈ Z, sk ∈ [0, 1] ∩Q.

LetD be the C∗-subalgebra generated by all the subalgebrasD(n, j1, . . . , jn). ThenDmust be unital
and separable, since Λπ is unital while A is assumed to be separable. Due to D being invariant under
(αt)t∈[0,1], meaning αt(D) = D for each t ∈ [0, 1], the automorphism α must be homotopic to idD
via automorphisms therein. As such, proposition 2.14 in [16] provides a continuous path of unitaries
(zt)t∈R+ ⊆ vD ⊆ E subject to z0 = v and

lim
t→∞

‖ztdz∗t − udu∗‖ = 0 (∗)

for each element d in D. Thus the relation Λπ(·) = uΛ%(·)u∗ implies that

lim
t→∞

‖ztΛπ(a)z∗t − Λ%(a)‖ = lim
t→∞

‖ztΛπ(a)z∗t − uΛπ(a)u∗‖ (∗)
= 0

for every a belonging to A, granting (4.10).

Final Step. Recall that σ = γ0⊕γ. We now craft our unitaries detecting proper asymptotic unitary
equivalence of π⊕σ and %⊕σ. Since Λπ = π⊕σ together with Λ% = %⊕σ hold, the task boils down
to determining a continuous path of unitaries (ut)t∈R+ in (B ⊗K)+ fulfilling

lim
t→∞

‖utΛπ(a)u∗t − Λ%(a)‖.

By construction of E, we may determine some xt ∈ A and yt ∈ B⊗K subject to zt = Λπ(xt)+yt for
any t inside R+. Let β : DΛπ −→ β(π(A))c be the ∗-epimorphism of (4.7). The ∗-homomorphism βΛπ
is unital by construction, and we may without loss of generality assume that βΛπ is injective, hence
must be an isometry. Let some a in A be fixed. As (π, %) is a quasihomomorphism, the difference
π(·) − %(·) targets the compact adjontables, whence βπ = β%. Since ztz

∗
t = 1 and Λπ(1A) = 1, the

family (xt)t∈R+ must necessarily be a continuous path of unitaries satisfying

lim
t→∞

‖xtax∗t − a‖ = lim
t→∞

‖q(Λπ(xt)Λπ(a)Λπ(xt)
∗ − Λ%(a))‖ ≤ lim

t→∞
‖ztΛπ(a)z∗t − Λ%(a)‖ (4.10)

= 0.

The first equality stems from the isometric property of qΛπ. Setting ut := ztΛπ(xt)
∗ = 1+ytΛπ(xt)

∗

for each t ∈ R+ yields the desired unitaries, since

‖utΛπ(a)u∗t − Λ%(a)‖ ≤ ‖ztΛπ(a)z∗t − Λ%(a)‖+ ‖ztΛπ(x∗taxt − a)z∗t ‖
≤ ‖ztΛπ(a)z∗t − Λ%(a)‖+ ‖x∗taxt − a‖

tends to zero as t → ∞, completing the proof in view of our initial remark and our occasional
mentioning of how strict nuclearity may be arranged throughout the proof.

The implication (i)⇒(ii) is within reasonable proximity of uniqueness result. Uniqueness here should
be read as some approximation natured version of [π] = [%] in KK-theory implying Adu ◦ π = % for
some suitable unitary u. The weakened version we shall endorse concerns achieving approximate
unitary equivalence upon stabilizing with a nuclearly absorbing representation. Before deriving this,
we bring precision to the statement.
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Definition. Let A be a (unital) C∗-algebra and let E,F be Hilbert B-modules.

· A non-unital representation π : A −→ LB(E) is called nuclearly absorbing if π ⊕ % ∼a.u π for
every strictly nuclear representation % : A −→ LB(F ).

· A unital representation π : A −→ LB(E) is called unitally nuclearly absorbing if π ⊕ % ∼a.u π for
every strictly nuclear unital representation % : A −→ LB(F ).

In order to circumvent the necessity of unitality, we deduce some properties of nuclear absorption.

Proposition 4.2.4. Suppose A denotes a separable C∗-algebra.

(i) If π : A −→ LB(E) is non-unital nuclearly absorbing, the induced map π+ : A+ −→ LB(E)
given by a+ λ1A+ 7→ π(a) + λ1E becomes unitally nuclearly absorbing.

(ii) With A unital, every unitally nuclearly absorbing representation π : A −→M(B⊗K) induces
a non-unital nuclearly absorbing representation πs : A −→M(K(H ⊕H) ⊗ B) given by the
sum πs = 0⊕ π, where the first summand acts on HB.

Proof. (i): Let σ : A+ −→ LB(F ) be a unital strictly nuclear representation. The restriction σ0 of σ
onto A remains strictly nuclear, whereupon π ⊕ σ0 ∼a.u π holds by hypothesis. Let (un)n≥1 be the
sequence of unitaries from E ⊕ F into E witnessing the equivalence. Then

un(π+ ⊕ σ)(a+ λ1A+)u∗n = un(π(a)⊕ σ0(a) + λ(1E⊕F ))u∗n → π(a) + λ1E = π+(a+ λ1A+).

(ii): Let σ : A −→ LB(F ) be some strictly nuclear representation. Write p = σ(1A) to obtain a
projection acting onE and decompose accordinglyE = pE⊕p⊥E. The representation σ thus attains
the form σ = pσ(·)p ⊕ 0 having the second summand act on p⊥E, so that σp := pσ(·)p defines a
unital strictly nuclear representation σp : A −→ LB(pE), being the compression of a strictly nuclear
map by a projection. Due to π being unitally nuclearly absorbing, one has σp ⊕ π ∼a.u π. Invoking
Kasparov’s stabilization theorem, p⊥E ⊕HB ∼= HB follows and hence

σ ⊕ πs = (σp ⊕ 0p⊥E)⊕ (0HB ⊕ π) ∼a.u σp ⊕ π ⊕ 0HB ∼a.u 0HB ⊕ π = πs.

This proves the claim.

Lemma 4.2.5. Suppose π, %, γ, σ : A −→M(B⊗K) are unital representations fulfilling the equiv-
alences π⊕γ ≈p.u %⊕γ and γ ∼a.u σ. Then there exists a sequence (un)n≥1 comprised of unitaries
belonging to (B ⊗K)+ subject to

‖un(π ⊕ σ)(a)u∗n − (%⊕ σ)(a)‖ → 0

for every element a in A.

Proof. On one hand, there is a continuous path of unitaries (wt)t∈R+ ⊆ (K(H2)⊗B)+ such that

lim
t→∞

‖wt(π(a)⊕ γ(a))w∗t − %(a)⊕ γ(a)‖ = 0

for every a ∈ A. On the other hand, we may find unitaries (vn)n≥1 ⊆ (K⊗B)+ fulfilling

lim
n→∞

‖γ(a)− vnσ(a)v∗n‖ = 0

for every a inside A. Setting un = (1⊕ vn)wn(1⊕ vn)∗ defines a unitary in (K(H2)⊗B)+ such that

‖un(π(a)⊕ σ(a))u∗n − %(a)⊕ σ(a)‖
≤ ‖wn(π(a)⊕ vnσ(a)v∗n)w∗n − %(a)⊕ vnσ(a)v∗n‖
= ‖wn(π(a)⊕ vnσ(a)v∗n)w∗n ± %(a)⊕ γ(a)− %(a)⊕ vnσ(a)v∗n ± wn(π(a)⊕ γ(a))w∗n‖
≤ ‖γ(a)− vnσ(a)v∗n‖+ ‖vnσ(a)v∗n − γ(a)‖+ ‖wn(π(a)⊕ γ(a))w∗n − %(a)⊕ γ(a)‖
= 2‖γ(a)− vnσ(a)v∗n‖+ ‖wn(π(a)⊕ γ(a))w∗n − %(a)⊕ γ(a)‖ → 0.

This verifies the claim.
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Proposition 4.2.6 (Dadarlat-Eilers). Let A be some separable C∗-algebra, B be some σ-unital
C∗-algebra and let further π, % : A −→ B ⊗K be two nuclear ∗-homomorphisms inducing the class
in KKnuc(A,B). Let γ : A −→M(B ⊗K) be any nuclearly absorbing representation. Under these
premises, there exists, for each finite F ⊆ A and ε > 0, a unitary u ∈ M3(B ⊗K)+ fulfilling

‖u(π(a)⊕ 0⊕ γ(a))u∗ − (%(a)⊕ 0⊕ γ(a))‖ < ε

for every element a belonging to F .

Proof. Choose some finite subset F ⊆ A and tolerance ε > 0. By our hypothesis imposed on the
∗-homomorphisms π, %, they form a strictly nuclear quasihomomorphism (π, %) subject to

[π, %] = [π, 0] + [0, %] = [π, 0]− [%, 0] = 0

in KKnuc(A,B). Invoking theorem 4.2.3, we may deduce that π⊕σ ≈p.u %⊕σ for some strictly nuclear
representation σ : A −→M(B⊗K). Since the induced representation γs = 0⊕γ defines a non-unital
nuclear absorbing representation regardless of whether γ is unital or not, see proposition 4.2.4, we
may infer that σ ⊕ γs ∼a.u γs. This in turn yields

π ⊕ σ ⊕ 0⊕ γ ≈p.u %⊕ σ ⊕ 0⊕ γ and σ ⊕ 0⊕ γ ∼a.u 0⊕ γ.

The sought unitaries are hereby obtained by applying the preceding lemma to the representations
π, %, σ ⊕ γ and γs in the respective order of the lemma, completing the proof.

4.3 Adding Quasidiagonality

We draw near our designated stable uniqueness. However, we should locate a unitary in some matrix
algebra ofB as opposed to its stabilization. The added representation γ along the lower-right diagonal
entry there needs to be controlled with greater efficiency. To adjust the result into a more manageable
uniqueness result, Dadarlat and Eilers throw quasidiagonality into the mix.

Definition. A representation γ : A −→M(B⊗K) for any pair of C∗-algebrasA,B is quasidiagonal
if there exists an approximate unit (en)n≥1, quasicentral in γ(A), of finite-rank projections inB⊗K.

Remark. Regarding B ⊗K as the inductive limit of the sequence (Mn(B), dn)n≥1, we may assume
each projection en lies in Mrn(B) for some integers (rn)n≥1. Using this convention, the corresponding
sequence (γn)n≥1 consisting of completely positive maps γn : A −→ Mrn(B) given by a 7→ enγ(a)en
is referred to as the quasidiagonalization of γ.

Theorem 4.3.1 (Dadarlat-Eilers). Suppose A and B denote unital C∗-algebras with A being sep-
arable. Let γ : A −→ M(B ⊗ K) be a quasidiagonal unitally nuclearly absorbing representation,
quasidiagonality being implemented via the projections (en)n≥1. Let further (γn)n≥1 be the quasidi-
agonalization of γ with targets Mrn(B). Suppose π, % : A −→ B are two nuclear ∗-homomorphisms
inducing the same class in KKnuc(A,B) such that π(1A) is unitarily equivalent to %(1A), and
assume in addition one may arrange that

enπ(a)en = π(a) and en%(a)en = %(a) (4.11)

for every a inside A. Under these premises, there exists, for every finite subset F ⊆ A and tolerance
ε > 0, a positive integer n together with a unitary u in Mrn+1(B) fulfilling

‖u(π(a)⊕ γn(a))u∗ − (%(a)⊕ γn(a))‖ < ε

whenever a lies in F .
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Proof. Certain estimates occurring during the proof are omitted for brevity. However, we will flag
any scenario wherein quasidiagonality enters the scene for emphasis. To ease the notational burden,
we add the abbreviations πγ(·) = (π⊕ 0⊕ γ)(·) and %γ(·) = (%⊕ 0⊕ γ)(·). Upon replacing the map
% with the nuclear ∗-homomorphism v%(·)v∗, where v denotes an existing unitary implementing the
unitary equivalence of %(1A) and π(1A), we may assume that π(1A) = %(1A) throughout the proof.
Apply proposition 4.2.6 to obtain a unitary v in (M3(K)⊗B)+ satisfying

vπγ(a)v∗ ≈ε %γ(a), a ∈ F. (4.12)

Define a projection by pn = en⊕en⊕en for each positive integer n. Due to (en)n≥1 being quasicentral
on the image of γ, we have ‖[v, pn]‖ → 0 by (4.11). Our following step will be to perturb pnvpn towards
a unitary. Indeed setting xn = pnvpn for any integer n, we acquire

‖x∗nxn − pn‖ ≤ ‖(pnv∗ − v∗pn)pnvpn‖+ ‖v∗pn(vpn − pnv)‖+ ‖v∗pnv − pn‖
≤ ‖[pn, v∗]‖+ 2‖[v, pn]‖ → 0.

Note that the quasicentral property of (en)n≥1 arising from quasidiagonality is crucial here. Therefore
xnx

∗
n becomes invertible in the unital corner algebra induced by pn, hence it admits a unitary polar

decomposition xnx
∗
n = z|x∗nxn| therein. The unitary z := xnx

∗
n|x∗nxn|−1 in M3rn(B) will be within

0 < δ < 13 distance of xn. For simplicity, write

πγn(a) = π(a)⊕ 0⊕ γn(a) and %γn(a) := %(a)⊕ 0⊕ γn(a)

for every a inA. Then (4.11) entails that πγn(a) = pnπγn(a)pn and %γn(a) = pn%γn(a)pn. Combining
this particular observation with the bound xn ≈δ z alongside (4.12), some triangle inequality trickery
will grant an estimate

zπγn(a)z∗ ≈h(δ) %γn(a) (4.13)

for some bounded function h satisfying h(δ) → 0 should δ → 0. To finalize the proof, consider the
projection e = π(1A)⊕ γn(1A) = %(1A)⊕ γn(1A), which evidently satisfies eπγn(·)e = πγn(·) with a
similar relation being valid for %γn . Repeating the perturbation procedure for the unitary z, we may
assume without loss of generality that zez∗ = e. Having arranged this, w := eze becomes a partial
isometry belonging to Mrn+1(B) such that w∗w = ww∗ = e, whereby the element

u := w + 1rn+1 − e

must be a unitary in Mrn+1(B). Let a ∈ F be arbitrarily chosen. Letting δ be small enough to force
h(δ) < ε and heavily exploiting that eπγ(a)e = πγ(a) will give

‖u(πγn(a))u∗ − %γn(a)‖ = ‖wπγn(a))w∗ − %γn(a)‖
≤ ‖ezeπγn(a)ez∗e− e%γn(a)e‖
≤ ‖zπγn(a)z∗ − %γn(a)‖ < ε,

wherein the latter bound stems from (4.13), completing the proof.

The Dadarlat-Eilers stable uniqueness theorem almost ends the section. In what follows, we seek to
encapsulate the strategy whereby we enable it by posing the question: Why does even γ exist? The
remainder of the section carries an exposition of building such maps.

Fullness will play an essential role momentarily and the crucial consideration is the induced
“diagonal map” that captures γ in the shape of a representation on A. Suppose γ : A −→ B defines a

3Specifying δ is unnecessary. We will only need to to be sufficiently small to force ‖x∗nxn−pn‖ < 1 for invertibility
and making the following estimates strictly smaller than ε.
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unital full ∗-homomorphism. Let {eij}i,j≥1 denote the ordinary matrix units in Mn of any dimension
n. We define an associated “diagonal map” dγ : A −→M(B ⊗K) induced by γ via the formula

dγ(a) =

∞∑
k=1

γ(a)⊗ ekk.

For completeness, we justify its existence and quasidiagonality: For an increasing sequence of rank
n projections (pn)n≥1 converging strictly to 1H, consider the sequence en = pn ⊗ 1B of projections
in B ⊗ K. The existence of the projections pn may be justified by noting that the strict topology
on B(H) =M(K) coincides with the σ-strong topology, which on bounded subsets such as Proj(H)
agrees with the strong-operator topology. We claim that the acquired sequence (γn)n≥1 of maps
γn : A −→ Mn(B) defined by

γn(a) :=

n∑
k=1

γ(a)⊗ ekk
(

= γn(a)
)

subsumes the role of a quasidiagonalitzation of γ. Certainly, the sequence (γn)n≥1 converges in the
point-strict topology (easily checked), hence dγ becomes meaningful. Since each en is of rank n, the
corner algebra enM(B ⊗K)en embeds into Mn for each positive integer n. Ergo,

γn(a) =

n∑
k=1

γ(a)⊗ ekk = endγ(a)en

must be valid for any a in A, proving the claim. The map dι is unital by strict continuity of left -
and right multiplication. Having established quasidiagonality, we only lack nuclear absorption. We
will lean on an alternative characterization found as proposition 2.19 in [18]. For the proof CP(A,B)
denotes all c.p maps ψ : A −→ B.

Proposition 4.3.2. Let A be a unital separable C∗-algebra, let B be some σ-unital C∗-algebra and
let π : A −→ LB(E) be a unital representation. Then the following are equivalent.

(i) π is unitally nuclearly absorbing.

(ii) For every unital completely positive map ψ : A −→ Mn ⊆ LB(Bn) there exists some norm-
bounded sequence (wn)n≥1 in KB(Bn, E) such that

lim
n→∞

‖ψ(a)− w∗nπ(a)wn‖ → 0 together with lim
n→∞

‖w∗ne‖ = 0

hold for each a in A and every e in KB(E).

Theorem 4.3.3 (Dadarlat-Eilers, Lin). Suppose A denotes a unital separable C∗-algebra and let
γ : A ↪→ B be unital and full. Then dγ becomes unitally nuclearly absorbing.

Proof. Let ψ : A −→ Mn ↪→ Mn(B) = LB(Bn) be a unital completely positive map. We extract
nuclear absorption through the characterization of proposition 4.3.2. We reduce the task into the
scenario in which ψ is a state, that is, whenever n = 1. Firstly, recall the one-to-one correspondence
∆: CP(A,Mn(B)) −→ CP(Mn(A), B) defined by.

∆

( n∑
i,j=1

eij ⊗ ϕij(·)
)( n∑

i,j=1

eij ⊗ aij
)

:=

n∑
i,j=1

ϕij(aij)

where {eij}i,j denotes the canonical unit matrices in Mn, a = [aij ] in Mn(A) and ϕij : A −→ B is
the (i, j)′th-coordinate map of some completely positive map ϕ : A −→ Mn(B).
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This reduces to the case n = 1, because the amplification γn remains full, whereupon replacing
γ with γn provides the general case from the n = 1 situation. Having accomplished this, the idea
revolves around invoking excision of states, then supplying a Krein-Milman argument after settling
the extremal case. By hypothesis, the map γ is faithful (fullness implies injectivity), hence we identify
γ(A) with A throughout. Suppose that F ⊆ A is any finite subset and let some tolerance ε > 0 be
given. Our objective will be to find some isometry v in LB(B,Bm) for some m in N fulfilling

ψ(a) ≈ε v∗(a⊗ 1m)v (4.14)

for every a inside F , having ψ be some state acting on A. Suppose initially that ψ is pure. Appealing
to excision for pure states, we may find some x ≥ 0 in A such that

ψ(a)x2 ≈ε xax. (4.15)

Define next, for each z ∈ (0, 1), continuous functions fz, gz : [0, 1] −→ [0, 1] by

fz(t) =


0, if t = 0

affine, if 0 ≤ t ≤ z
1, if t ≥ z

, gz(t) =


0, if t ≤ z
1, if 2−1(z + 1) ≤ t
affine, if z ≤ t ≤ 2−1(z + 1)

.

Some continuous functional calculus easily entails the following properties.

· For a sufficiently large z0 ∈ (0, 1), one may assume that x = fz0(x) due to fz(t)→ id[0,1] as z → 1.

· The element fz0(x) ≥ 0 still satisfies the estimate in (4.15).

· Setting y = gz0(x) one acquires ‖x‖ = ‖y‖ = 1 and xy = y = yx.

Since π is full, one may appeal to lemma 1.2.5 to produce elements b1, . . . , bm ∈ B such that one
has b∗1y

2b1 + b∗2y
2b2 . . . + b∗my

2bm = 1B . Here comes the trick: Letting v denote the column matrix
[yb1, . . . , ybm]t produces an element inLB(B,Bn) satisfying v∗v = 1B , meaning an isometry therein.
Furthermore, the property xy = y ensures that

(x⊗ 1m)v = [xyb1, . . . , xybm]t = [yb1, . . . ybm]t = v.

This in turn implies that v∗(x⊗ 1m) = v∗. Therefore,

‖ψ(a)1B − v∗(a⊗ 1m)v‖ = ‖ψ(a)v∗(x2 ⊗ 1m)v − v∗(x⊗ 1m)(a⊗ 1m)(x⊗ 1m)v‖

≤ ‖ψ(a)x2 ⊗ 1m − xax⊗ 1m‖
(4.15)
< ε.

Therefore (4.14) has been established for pure states. For a general state ψ, determine positive real
numbers α1, . . . , αk summing to 1 and pure states ψ1, . . . , ψk on A such that∥∥∥∥ψ(a)−

k∑
i=1

αiψi(a)

∥∥∥∥ < ε/2, a ∈ F. (4.16)

Choose for each pure state an isometry vi satisfying viv
∗
i ≤ (0, . . . , 0, 1m⊗ 1B , 0 . . .) and (4.14) with

respect to the tolerance ε/2, with the non-trivial entry occurring in the i’th stage. The isometry

condition alongside α1 + . . . + αk = 1 guarantee that v :=
∑k
i=1 α

1/2
i vi becomes an isometry.

Finally, (4.14) in conjunction with (4.16) entail that

‖ψ(a)− v∗(a⊗ 1mk)v‖ =

∥∥∥∥ψ(a)−
k∑
i=1

αi(v
∗
i (a⊗ 1m)vi)

∥∥∥∥
≤
∥∥∥∥ψ(a)−

k∑
i=1

αiψi(a)

∥∥∥∥+

k∑
i=1

αi‖ψi(a)− v∗i (a⊗ 1m)vi‖ < ε

for every a in F , completing the proof.



82 CHAPTER 4. THE STABLE UNIQUENESS THEOREM

4.4 Applying the UCT

To enable the stable uniqueness theorem, one must arrange a myriad of assumptions to activate
it. The troublesome aspect arising hereby stems from K-theory not preserving general products,
which causes a certain obstacle when dealing with ultrapowers. An additional hindrance concerns
the control of the integer n occurring in Dardalat-Eilers’ theorem; we need a n. The final section of
the chapter attempts to unravel the machinery permitting these changes.

Let a sequence (Bn)n≥1 consisting of C∗-algebras be given. Denote the product algebra `∞(Bk,N)
by B for notational convenience. Let now pn : B −→ Bn be the n’th projection ∗-homomorphism.
From functoriality, there are induced group homomorphisms

Ki(pn) : Ki(B) −→ Ki(Bn) and pi∗ : Ki(B) −→
∏
n∈N

Ki(Bn)

for each i = 1, 2. The latter morphism is the product map induced by the homomorphisms Ki(pn).
The unfortunate situation which may occur is that pi∗ might fail to be an isomorphism. To encompass
product - and limit algebras, including ultrapowers, Dadarlat and Eilers investigate the total K-
theory. We introduce the notion, albeit without much further elaboration.

Definition. Suppose A denotes some C∗-algebra. We define the i’th K-theory of A with coefficients
in Z/nZ as the abelian group

Ki(A;Z/nZ) := Ki(A⊗B),

where B is any C∗-algebra fulfilling Ki(B) ∼= Z/nZ and Ki+1(B) ∼= {0}4 for each i in N. The total
K-theory of A is then the abelian group

K(A) =
∏
n∈N

Kn(A;Z/nZ).

Here the product is interpreted as the direct product.

Maintain the previous notation with pn∗ being the group homomorphism induced by the projections
Kn(pk ⊗ id) : Kn(B ⊗Zn) −→ Kn(Bk ⊗Zn) with Zn being any C∗-algebra having Kn(Zn) ∼= Z/nZ
and Kn+1(Zn) ∼= {0} as K-theoretic data. Consider the acquired homomorphism

σ : K(B) =
∏
n∈N

Kn(B;Z/nZ)
∏
n p

n
∗−→
∏
n∈N

(∏
k∈N

Kn(Bk;Z/nZ)

)
=
∏
k∈N

K(Bk). (4.17)

Group homomorphism between total K-theory are in general ,,flawed”. One instead considers group
homomorphisms preserving Bockstein operations, whose set we denote by HomΛ(K(A),K(C)) for
any pair of C∗-algebras A,B. However, to avoid deterring completely from the overall aim, we avoid
the formal definition. Hopefully, the expert will not have qualms hereto.

Regardless, (4.17) produces morphisms between sets of morphisms as follows. Due to σ attaining
values in the product occurring on the right-hand side of (4.17), it may uniquely be presented on
the form σ = (σ1, σ2, . . .). Let σ∗ denote the mapping assigning a morphism ϕ : K(A) −→ K(B) to
the morphism (ϕσk)k≥1, having ϕσk be the composition

ϕσk : K(A)
ϕ−→ K(B)

σk−→ K(Bk).

Then one acquires the morphism

σ∗ : HomΛ(K(A),K(B)) −→
∏
k∈N

HomΛ(K(A),K(Bk)). (4.18)

4The choice is irrelevant for us. So one could select Kn(A;Zn) = Kn(A⊗On+1) as Cuntz in [14] computes the
zeroth K-group of On+1, namely K0(On+1) ∼= Z/nZ.
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The first result we invoke tackles injectivity of (4.18). In order to have induced elements of limit
algebras of KK-theory kept at bay, Dadarlat and Eilers impose constraints to these sequences, such
as (Bn)n≥1, to prevent unpredictable behavior. We address C∗-algebras of this kin.

Definition. A C∗-algebra A is an admissible target of finite type if A is unital, of real rank zero
and fulfills the following K-theoretic properties.

· The canonical map [·]1 : U(A) −→ K1(A) is surjective.

· For any p in K0(A), one has [1B ]0 + p ≥ 0 whenever np ≥ 0 for some n in N.

· For every k in N and projections p, q in Mk(A), [p]0 = [q]0 implies that p⊕ 1B ∼ q ⊕ 1B .

· For every p in K0(A) and every n in N, there exists some q in K0(A) such that −[1B ]0 ≤ q ≤ [1B ]0
together with p− q ∈ nK0(A) become valid.

The prime example, at least for us, is Q. Indeed K1(Mn) = {0}, hence continuity of the functor
K1(·) yields K1(A) = {0} for every UHF-algebra A, granting the first condition. The second one
follows immediately for UHF-algebras due to their K0-group being unperforated. Since Mn has the
cancellation property, so does any finite dimensional C∗-algebra being the finite direct sum of such.
Cancellation passes to inductive limits, whereupon Q obtains cancellation and this clearly implies
the third condition above. For the remaining one, notice that nK0(Q) = nQ = Q, so that one may
select q = 0. Real rank zero of Qω stems from proposition B.0.7.

We proceed to stating the main theorem attached to the UCT. The theorem was proven by
Dardalat and Eilers in [18], whose proof we omit. One ought to notice that their proof merely tackles
limit algebras as opposed to ultraproducts. An inspection of their proof will permit one to adjust
various passages to include ultraproduct algebras, verbatim. Therefore, our version deviates slightly
from the original. The statement demands some setup

Theorem 4.4.1 (Kasparov). Let A,B,C be some C∗-algebras with A separable. Then there exists
an associative Z-bilinear map “ · “: KK(A,B)×KK(B,C) −→ KK(A,C), written multiplicatively.
The map is called the Kasparov product and has the following properties.

(i) [π] · [%] = [π ◦ %] for all ∗-homomorphisms π : A −→ B and % : B −→ C.

(ii) The abelian group KK(A,A) admits a unital ring-structure using the Kasparov product as
multiplication while having [idA] act as the unique multiplicative unit.

(iii) The Kasparov product restricts to Z-bilinear maps

“ · “: KK(A,B)×KKnuc(B,C) −→ KKnuc(A,C);

“ · “: KKnuc(A,B)×KK(B,C) −→ KKnuc(A,C),

fulfilling the functorial property (i).

Remark. The third condition in fact contains additional information, each of which are straightfor-
ward although important. Suppose θ : KKnuc(A,B) −→ KK(A,B) denotes the canonical map for
C∗-algebras A,B with A being separable. Then the products of (iii) are compatible with θ, i.e.,

θ(x · y) = θ(x) · y and θ(y′ · x′) = y′ · θ(x′) (4.19)

whenever x ∈ KKnuc(A,B), y ∈ KK(B,C) and x′ ∈ KKnuc(B,C), y′ ∈ KK(A,B), with C being an
additional C∗-algebra.

The condition (iii) together with (4.19) will be useful in the future. Our current main objective
will be to activate the UCT-condition. We are therefore inclined to address the correspondences of
ordinary K-theory with the bivariant KK-theory.
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Proposition 4.4.2. Suppose A denotes a separable C∗-algebra. Then there are isomorphisms

KK(C, A) ∼= K0(A) and KK(C0(R), A) ∼= K1(A)

of abelian groups. In particular, the Kasparov product induces group homomorphisms

κ0 : KK(A,B) −→ Hom(K0(A),K0(B)); κ0([π, %])([p]0) = [p]0 · [π, %],

κ1 : KK(A,B) −→ Hom(K1(A),K1(B)); κ1([π, %])([u]1) = [u]1 · [π, %].

Here we adopt the Cuntz-picture of KK-theory.

Definition. A separable C∗-algebra A satisfies the UCT-condition should the sequence

0 // Ext(Ki(A),Ki+1(B)) // KK(A,B)
κ0⊕κ1 // Hom(Ki(A),Ki(B)) // 0

be split short-exact for each σ-unital C∗-algebra B and any index i = 0, 1.

The UCT stands for ,,the universal coefficient theorem”, connecting it to the original theorem
of homological algebra. The impact of the UCT-condition reaches products of K-theory, i.e., the
structure of the natural maps such as (4.17) and (4.18). One of the obstacles one would encounter
during the proof of achieving quasidiagonality arises when attempting to apply the stable uniqueness
theorem to Qω; a priori we cannot control induced by ∗-homomorphisms on ultraproducts in KK-
theory. We now resolve the issue using admissible targets of finite type. In [17], it has been established
that the UCT-condition entails surjectivity of the induced group homomorphism

ΛBA : KK(A,B) // HomΛ(K(A),K(B)) (4.20)

associated to any separable C∗-algebra A and any σ-unital C∗-algebra B.

Proposition 4.4.3 (Dardalat-Eilers). Suppose (Bn)n≥1 denotes a sequence consisting of admis-
sible target algebras of finite type and write B = `∞(Bn,N). Let A be some C∗-algebra.

(i) The C∗-algebras B and
∏
ω Bn are admissible targets of finite type.

(ii) The map σ : K(B) −→
∏
n∈N K(Bn) in (4.17) is injective

(iii) The map σ∗ : HomΛ(K(A),K(B)) −→
∏
n∈N HomΛ(K(A),K(Bn)) in (4.18) is injective

(iv) The induced map ΛEA : KK(A,E) −→ HomΛ

(
K(A),K(E)

)
, in which E =

∏
ω Bn or E = B,

in (4.20) is an isomorphism if A fulfills the UCT-condition,

An additional feature that the UCT resolves is the distinction between Skandalis’ nuclear KK-
theory and Kasparov’s KK-theory; there are none. However, proving this requires a deep result due
to Rosenberg and Schochet. The statement reformulates the UCT-condition in terms of invertibility
in KK-theory. The proof is beyond the scope of the thesis. Alas, we merely state it. As a minor
comfort we may fortunately explain the salient feature attached.

Definition. Suppose A,B are C∗-algebras with A separable. Let θ : KKnuc(A,B) −→ KK(A,B)
be the canonical map.

· An element x in KK(A,B) is invertible provided the existence of an element y in KK(B,A)
fulfilling x · y = 1A and y · x = 1B is guaranteed.

· Two C∗-algebras A,B are KK-equivalent if KK(A,B) contains an invertible element.

· We refer to A as being KK-nuclear if there exists some u in KKnuc(A,A) such that θ(u) = 1A.
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Theorem 4.4.4 (Schochet-Rosenberg). A separable C∗-algebra E satisfies the UCT-condition if
and only if E is KK-equivalent to some commutative C∗-algebra. Furthermore, the class of separable
C∗-algebras satisfying the UCT-condition, denoted by N , satisfies the following properties.

(i) N is closed under taking inductive limits.

(ii) A ∈ N and A⊗K ∼= B ⊗K entails that B ∈ N .

(iii) N is closed under taking extensions by members of N .

(iv) For actions α, β on A, both Aoα Z and Aoβ R belong to N whenever A does.

Proposition 4.4.5. Let A be a separable C∗-algebra. Then the following are equivalent.

(i) A is KK-nuclear.

(ii) For each separable C∗-algebra B, the canonical map θ : KKnuc(A,B) −→ KK(A,B) is an
isomorphism of abelian groups.

(iii) For each separable C∗-algebra B, the canonical map θ : KKnuc(B,A) −→ KK(B,A) is an
isomorphism of abelian groups.

Moreover, A is KK-nuclear whenever A is KK-equivalent to a nuclear C∗-algebra.

Proof. Obviously (ii) and (iii) both imply (i), hence we are only required to justify the implica-
tion (i)⇒(ii) by reproducing the argument symmetrically for (i)⇒(iii). Let u be an element in
KKnuc(A,A) such that θ(u) = 1A. The map ι : KK(A,B) −→ KKnuc(A,B) defined by the assign-
ment x 7→ u · x must according to (4.19) obey the rule

θ(ι(x)) = θ(u · x) = θ(u) · x = 1A · x = x

for every x belonging to KK(A,B). Ergo θ determines an isomorphism. To verify the final statement,
let u be some invertible element in KK(A,B) withB being K-nuclear. Using the recently established
surjectivity, lift u via θ to some element x in KKnuc(A,B). Then θ(x · u−1) = u · u−1 = 1A.

The sought consequence is that the UCT-condition detects KK-nuclearity. Collecting the plethora
of observations with an added emphasis on sujrectivity of (4.18), we are fully prepared to modify
the stable uniqueness theorem. The initial step will be to control product morphisms.

Proposition 4.4.6. Let A be a member of N , Bn be an admissible target of finite type algebra for
n ∈ N. Set furthermore B = `∞(Bn,N). Suppose there are ∗-homomorphisms πn, %n : A −→ Bn
such that they induce the same morphism

K(πn) = K(%n) : K(A) −→ K(Bn).

Then the induced ∗-homomorphisms π∞, %∞ : A −→ `(Bn,N) define the same class in KKnuc(A,B).

Proof. By the hypothesis imposed on the sequences (π1, π2, . . .) and (%1, %2, . . .), they induce the
same element π̄ = %̄ ∈

∏
n HomΛ(K(A),K(Bn)). According to proposition 4.4.3(ii-iii), the morphism

σ∗ is injective. By construction, σ∗(π∗) = π̄ = %̄ = σ∗(%∗), which thus forces π∗ = %∗. Functoriality
of total K-theory thus ensures that the morphisms π∗ = %∗ give rise to the same element

q∗π∗ = q∗%∗ : K(A) −→ K(B)
q∗−→ K(`(Bn,N))

inside HomΛ(K(A),K(`(Bn,N)). Let us denote these elements by π∗ and %∗ once more.

According to proposition 4.4.3(iv) combined with the UCT-condition of A, the map Λ
`(Bn,N)
A

in (4.20) must be an isomorphism of abelian groups. Therefore, we may regard the corresponding
classes [π] and [%] in KKnuc(A, `(Bn,N)) as being equal. Notice that these belong to Skandalis’
nuclear version of KK-theory due to A being separable and in the UCT-class, see proposition 4.4.5
for details, as desired.
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Full ∗-homomorphisms will play a central role when appealing to the stable uniqueness result.
However, we will require such structural properties to pass into limit algebras, which may falter.
Dardalat and Eilers bypasses the issue by restricting to simple domains. Unfortunately, our domain
will not be simple, hence an altered version of the stable uniqueness theorem must be installed. In
order to track fullness, we introduce the notion of control functions.

Definition. Suppose A and B denote unital C∗-algebras. A control function attached to B is a
function ∆: (A+)1 \ {0} −→ N. Adopting this notion, a unital ∗-homomorphism γ : A −→ B is
called ∆-full if, for every nonzero positive contraction a in A, there exist contractions b1, . . . , b∆(a)

belonging to B such that

1B =

∆(a)∑
k=1

b∗kγ(a)bk.

Observe that a unital ∗-homomorphism γ : A −→ B is full if and only if B admits a control function
∆ such that γ is ∆-full. Certainly, fullness entails the existence of a control function ∆ turning γ
∆-full due to lemma 1.2.5 (in particular, unital ∗-homomorphisms having simple target algebras are
automatically ∆-full ). For the converse, we must to guarantee that the unit of B belongs to the
norm-closure of the ideal Ialg(γ(a)) generated by γ(a) for each nonzero element a. Due to ∆-fullness
implying this for all nonzero positive contractions a in A, the assertion may be deduced from γ(|a|)
belonging to the closure of Ialg(γ(a)).

Lemma 4.4.7. Suppose (ψn)n≥1 is a sequence of nuclear completely positive maps γn : A −→ En
between C∗-algebras with A being exact. Under these premises, the induced completely positive map
γ : A −→ `∞(En,N) must be nuclear.

Proof. We verify the local approximate factorization property of γ, see section 1.4. For brevity, write
E = `∞(En,N). Let some finite subset F ⊆ A together with tolerance ε > 0 be given. Based on
nuclearity of the involved morphisms, define for each n ∈ N a finite-dimensional factorization

A
ϕn // Mk(n)

ψn // En

such thatψnϕn(·) ≈ε/2 γn(·) on the setF . Exactness ofA yields the existence of some nuclear faithful
representation π : A −→ B(H). Appealing to Arveson’s extension theorem, the completely positive
map ϕn extends to completely positive map ϕ′n : π(A) −→Mk(n). Consider next the composition

σ : π(A)
ϕ′:=(ϕ′n) // `∞(Mk(n),N)

ψ:=(ψn) // E.

The map σ remains completely positive being composed by such. By construction, we furthermore
have ‖σπ(a) − γ(a)‖ = supn ‖ψnϕ′nπ(a) − γn(a)‖ < ε/2 for every element a belonging to F . From
nuclearity of π, there exists some finite-dimensional factorization

A
π0 // M`

π1 // π(A)

comprised of completely positive maps such that π(·) ≈ε/2 π0π1(·) on F . It follows that

σγ : A
π0 // M`

σπ1 // E

determines a finite-dimensional factorable completely positive map such that σγ(·) ≈ε γ(·) on the
finite subset F , completing the proof.

Remark. Comparing the following theorem below to theorem 4.3.3, it may seem peculiar why a
uniform choice of the integer n is necessary. Indeed, this is the sole reason why the UCT-condition
enters. The obstacle that would appear is a construction necessary to upgrade the maps (π0, π1, θ)
constructed during the previous chapter, which cannot depend on n at any cost whatsoever!
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Theorem 4.4.8 (Tikuisis-White-Winter). Suppose A denotes a separable unital exact C∗-algebra
in the UCT-class admitting a control function ∆. Fix some finite subset F ⊆ A together with toler-
ance δ > 0. Under these premises, there exists a positive integer n satisfying the following property.
For each admissible target algebra B of finite type, unital ∆-full ∗-homomorphism γ : A −→ B and
nuclear ∗-homomorphisms π, % : A −→ B such that

· π∗ = %∗ : K(A) −→ K(B); and (s.1)

· π(1A) is unitarily equivalent to %(1A), (s.2)

there exists a unitary u in Mn+1(B) subject to

u(π(a)⊕ γn(a))u∗ ≈δ %(a)⊕ γn(a)

for every element a in F .

Proof. Seeking a contradiction, assume the conclusion fails. Let ∆ be a control function attached to
B, F ⊆ A be finite and let δ > 0 fixed. Then, for every positive integer n we may determine some
admissible target algebra Bn of finite type, a unital ∆-full map γn : A −→ Bn together with nuclear
∗-homomorphisms πn, %n : A −→ Bn fulfilling (s.1)-(s.2) and for which

max
a∈F
‖u(πn(a)⊕ γnn(a))u∗ − %n(a)⊕ γnn(a)‖ ≥ δ (4.21)

holds for every unitary u in Mn+1(Bn).
To ease the notational burden, letπ∞, %∞, γ∞ : A −→ `(Bn,N) be the induced ∗-homomorphisms.

According to lemma 4.4.7, nuclearity of the morphisms πn, %n implies nuclearity of the induced maps
π∞ and %∞. Upon collecting the unitaries implementing (s.2), in the respective order, into a unitary
of `(Bn,N) one obviously obtains unitary equivalence of π∞(1A), %∞(1A).

We claim that γ∞ must be ∆-full. Invoking ∆-fullness of each coordinate map γn, one may for
each nonzero positive contraction a ∈ A find contractions b1,n, . . . , b∆(a),n in Bn such that

1Bn =

∆(a)∑
k=1

b∗k,nγn(a)bk,n.

Let q : `∞(Bn,N) −→ `(Bn,N) be the canonical quotient map. Setting bk := q(bk,1, bk,2, . . .) yields
an element in `(Bn,N). Since 1`(Bn,N) = q(1Bn)n≥1 in conjunction with the quotient map q being a
∗-homomorphism, one has

1`(Bn,N) =

∆(a)∑
k=1

b∗kγ∞(a)bk.

Hence γ∞(a) is ∆-full. Appealing to theorem 4.3.3, quasidiagonality of the induced diagonal repre-
sentation dγ∞ : A −→M(B⊗K) follows. Remember that the quasidiagonalization of dγ∞ is (γn∞)n≥1.
The stable uniqueness theorem (specifically theorem 4.3.3), applicable upon proposition 4.4.6 re-
moving any KK-theoretic obstructions between π∞ and %∞, yields the existence of a positive integer
m together with a unitary u in Mm+1(`(Bn,N)) such that

u(π∞(a)⊕ γm∞(a))u∗ ≈δ %∞(a)⊕ γm∞(a)

whenever a belongs to F . Lift the unitary u to some sequence (un)n≥1 consisting of unitaries in
Mm+1(Bn), achievable via proposition 2.3.3. Choosing n sufficiently large will permit us to force

un(πn(a)⊕ γmn (a))u∗n ≈δ %n(a)⊕ γmn (a) (4.22)

for each element a inside F . Upon passing to a sufficiently large choice of n ≥ m, the diagonally
embedded version of un in Mn+1(Bn), meaning the unitary v := un⊕ 1Bn ⊕ . . .⊕ 1Bn having n−m
copies of 1Bn , fulfills (4.22). Thus, v becomes an obstruction towards (4.21), as required.



Chapter 5

Achieving Quasidiagonality

The labor finally comes to fruition. Having build a duo of ∗-homomorphisms (π0, π1) fulfilling certain
compatibility criteria in terms of a third one θ and with a stable uniqueness theorem, quasidiagonality
of a faithful trace τ on our nuclear separable C∗-algebra satisfying the UCT is within our reach.
Tikuisis, White and Winter manage to produce completely positive maps through (π0, π1) that are
approximately multiplicative and remember the trace, thereafter stitch these maps together to form
the designated morphism, much alike the method at the end of chapter 3.

The underlying strategy concerns a “stable uniqueness across the interval produce”. Due to the
extensive length, the proof has been separated into two major sections, commencing with proving
the so-called patching lemma. In an honest attempt to shed some light upon the idea, a flawed outline
of the main proof will be depicted, whereby the strategy hopefully becomes more vivid.

5.1 Patching

Let A be a nuclear unital separable C∗-algebra satisfying the UCT-condition. Let (π0, π1, θ) be the
triple of ∗-homomorphisms granted by proposition 3.4.5. Let Λ0,Λ1 be the restrictions of π0, π1 onto
the suspension C0(0, 1)⊗ A. We initially tread the idea under a stronger condition than the actual
one. Consider the situation wherein one may determine a positive integer n together with unitaries
u, v ∈ Mn+1(Qω) such that

Λn0 = u(Λn−1
0 ⊕ Λ1)u∗ while Λn1 = v(Λn−1

1 ⊕ Λ0)v∗. (5.1)

One may even weaken the condition by demanding the unitary equivalences to occur on restrictions
to C0(In, A) for some relatively open intervals In ⊆ [0, 1]. In this manner, we may cut [0, 1] into 2n
equidistant subintervals In. Imagine having established (5.1) on the restrictions to the 2n intervals
In, then one acquires the chain of equivalences

Λn0 ∼u Λn−1
0 ⊕ Λ1 ∼u Λn−2

0 ⊕ Λ2
1 ∼u . . . ∼u Λ0 ⊕ Λn−1

1 ∼u Λn1

on the respective restrictions to In. Mimicking the argument presented on page 64 to each equiva-
lence, one may collect these 2n ∗-homomorphisms via a partition of unity into a single completely
positive map Λ: A −→M2n ⊗M2 ⊗Qω ∼= Qω witnessing quasidiagonality of τ . To our dismay, the
underlying induced maps to larger matrices will rely on n, hence without a uniform choice of n the
argument becomes circular. To overcome the dependence, we are compelled to control n; this is why
the uniform version of the stable uniqueness theorem was needed.

Summarizing, under the presumption that one separates [0, 1] into 2n suitable open intervals
without losing compatibility, the issue remaining revolves around obtaining the unitary equivalences
in (5.1). However, supplying (5.1) on the nose seems demanding, but fortunately an approximation-
esque version will suffice. The patching lemma to be described expresses the asymptotic multiplica-
tive and trace-preserving properties arising from (5.1) up to any tolerance.
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Definition. SupposeA denotes some C∗-algebra. We will refer to a quadruple (π, %, θ, E) consisting
of a unital C∗-algebra E and ∗-homomorphisms

π : C0(0, 1]⊗A −→ E, % : C[0, 1)⊗A −→ E and θ : C([0, 1]) −→ E,

in which θ is unital, as a compatible system of A if π, % are compatible with θ and tracially recover
the trace τ in the sense that τE ◦ π = τE ◦ % = τL ⊗ τ for every trace τE acting on E.

Additionally, for every given familyJ = {J1, J2, J3} consisting of mutually disjoint open intervals
in [0, 1], a compatible system (π, %, θ, E) will be called patched via J if there exists a completely
positive map ψ : C0(0, 1)⊗A −→ M2(E) such that

· the restrictions of ψ and π ⊕ 0 onto C0(J1)⊗A coincide; (p.1)

· the restrictions of ψ and %⊕ 0 onto C0(J3)⊗A coincide; (p.2)

· one has τ ◦ π = τ ◦ % = (τE ⊗ Tr2) ◦ ψ for every trace τE acting on E. (p.3)

The notion of patched compatible systems has no occurrence in the original proof. It has been added
for emphasis on the first step in the proof, namely the design of (π0, π1, θ). The existence of compatible
systems attached to nuclear unital separable C∗-algebras was established in proposition 3.4.5, so
essentially patchability hereof remains to be accounted for.

Lemma 5.1.1 (Patching Lemma). Let A be some unital C∗-algebra. Let furthermore J1 = (0, 1/3),
J2 = (1/3, 2/3) and J3 = (2/3, 1), then set J := {J1, J2, J3}. If so, there exists a partition of unity
{f0, f1, f2} ⊆ C([0, 1]), with the support of f1 being located on the open interval J2, while fulfilling
the following property.

For every compatible system (π, %, θ, E) of A and every unitary u inside E, there exists some
completely positive map ψ : C(0, 1) ⊗ A −→ M2(E) making (π, %, θ, E) patched via the family J .
Furthermore, ψ satisfies

‖ψ(sg)− θ2(g)ψ(s)‖ ≤ ‖s‖ · (‖[θ(f1), u]‖ · ‖g‖+ ‖[θ(gf1), u]‖) (5.2)

together with

‖ψ(st)− ψ(s)ψ(t)‖ ≤ ‖s‖ · ‖t‖ ·
(
7‖[u, θ(f1)]‖+ 2‖[u, θ(f0f1)]‖+ 5‖[u, θ(f1f2)]‖

)
+ ‖t‖ ·

(
‖%(f1f2s)u− uπ(f1f2s)‖+ ‖%(f1s)u− uπ(f1s)‖

)
(5.3)

for every s, t ∈ C0(0, 1)⊗A and g ∈ C([0, 1]).

Observation. Notice that the bounds on the error of multiplicativity attached to ψ and its com-
patibility of θ2 are all described in accordance with

ω := ‖π|C0(J2)⊗A(·)− u%|C0(J2)⊗A(·)u∗‖.

Ergo such a patched system would give rise to an exact multiplicative completely positive map ψ
provided that ω = 0. Now, maintain the notation in the patching lemma. Suppose now that two
finite subsets F0 ⊆ C0(0, 1) ⊗ A, F ⊆ C([0, 1]) and some tolerance ε > 0 have been chosen. Under
these premises, one may find some finite subset G ⊆ C0(J2) ⊗ A together with a δ > 0 such that,
whenever uπ(s)u∗ ≈δ %(s) for each s in G, one has

ψ(st) ≈ε ψ(s)ψ(t) and ψ(sg) ≈ε θ2(g)ψ(s)

for all s, t ∈ F0 and g ∈ F . To achieve such a pair (G, δ), letG consist of all configurations of products
emerging in (5.2)-(5.3) for which s ∈ F0 and g ∈ F . Select thereafter some δ > 0 small enough to
guarantee that both

(M0 + 1)Mδ ≤ ε and 14M0Mδ + 2M0δ ≤ ε
become valid, where M0 = max{‖s‖ : s ∈ F0}, respectively, M = {‖g‖ : g ∈ F}.
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Proof. We initially build our partition of unity. Let f0, f2 ∈ C([0, 1]) be given as

f0|[0, 13 ] = 1, f0|[ 1
3 ,

2
5 ] is linear, f0|[ 2

5 ,1]
= 0;

f2|[0, 35 ] = 0, f2|[ 3
5 ,

2
3 ] is linear, f2|[ 2

3 ,1]
= 1.

Setting f1 = 1C([0,1]) − f0 − f2 thus gives a partition of unity. By the construction and location of
supports, the support of f1 must be located on J2 = (1/3, 2/3). The situations is displayed in the
figure found beneath.

1

0
0 1

3
2
5

3
5

2
3

1

f0 f2f1

Suppose a compatible system (π, %, θ, E) attached to A is given. Let some unitary u in E be fixed.
Upon identifying C([0, 1],M2) with C([0, 1])⊗M2

∼= M2(C([0, 1])), choose your favourite unitary V
hereon subject to the relation

V |[0, 25 ] =

[
1C([0,1]) 0

0 1C([0,1])

]
together with V |[ 3

5 ,1]
=

[
0 1C([0,1])

1C([0,1]) 0

]
. (5.4)

For instance, a reparametrized rotation matrix will work. Define a unitary w in M2(E) by

w = θ2(V ∗)
(
1E ⊕ u

)
θ2(V ).

As usual, θ2 denotes the 2-amplification of θ unlike the diagonal map θ2. For future purposes, we
record a repeatedly exploited observation. Let h be the generating element of C([0, 1]), i.e., the
identity map onto [0, 1]. Since h ⊕ h lies within the center of M2(C([0, 1])) and θ determines a ∗-
homomorphism, θ2(h) will commute with θ2(V ). Appealing to multiplicativity of θ in conjunction
with the generating property of h therefore yields[

im θ2, θ2(V )
]

= 0. (5.5)

Keeping in this mind, we define ψ0, ψ1, ψ2 : C(0, 1)⊗A −→ M2(E) by

ψ0(s) = π(f0s)⊕ 0, ψ2(s) = %(f2s)⊕ 0 and ψ1(s) = w(π(f1s)⊕ 0)w∗.

Set ψ = ψ0 + ψ1 + ψ2. Due to each ψk being a diagonal map induced from ∗-homomorphisms for
k = 0, 1 whereas ψ1 is the conjugation by a unitary of a ∗-homomorphism, each map ψk obviously
becomes a ∗-homomorphism. Hence the map ψ must be completely positive. Justifying the criteria
(p.1)-(p.3) is easy. Indeed the support of f0 contains the open interval J1 whereon f0 = 1. However,
the remaining elements f1, f2 vanish on the interval J1, so that ψ|J1 = π(·)⊕0. An argument running
parallel provides (p.2), replacing the role of ψ0 with ψ2.

Regarding the property (p.3), suppose τ denotes some trace onE such that τ ◦ π = τ ◦ % = τL⊗τ .
Then observe that this property yields

(τ ⊗ Tr2)(ψ(s)) = τ(π(f0s) + %(f2s) + π(f1s)) = (τ ◦ π)(f0s+ f1s+ f2s) = (τ ◦ π)(s).

The final equality stems from P = {f0, f1, f2} comprising a partition of unity. For the two bounds
(5.2)-(5.3), we recall the following consequence of compatibility:

π(sh) = θ(h)π(s) = π(s)θ(h) and %(th) = θ(h)%(t) = %(t)θ(h) (∗)
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holds for each s ∈ C0(0, 1]⊗A, t ∈ C0[0, 1)⊗A and h ∈ C([0, 1]). When referring to compatibility, we
implicitly use (∗) throughout the proof. Let us proceed to establishing (5.2). Rescaling accordingly if
necessary, verifying it on contractions h ∈ C([0, 1]) and s ∈ C0(0, 1)⊗A suffices. We shall estimate
the right-hand side of

‖ψ(hs)− θ2(h)ψ(s)‖ ≤
∑

k=0,1,2

‖ψk(hs)− θ2(h)ψk(s)‖.

Compatibility of the system (π, %, θ, E) entails that ψk(sh) = θ2(h)ψk(s) if k = 0, 2, thereby turning
the two corresponding terms above into zero. We therefore need only concern ourselves with the case
k = 1. For this, note that (5.5) implies that ‖[w, θ2(·)]‖ = ‖[u, θ(·)]‖. Compatibility thus yields

‖ψ1(hs)− θ2(h)ψ1(s)‖ = ‖wθ2(f1h)(π(s)⊕ 0)w∗ − θ2(h)wπ(f1s)⊕ 0)w∗‖
≤ ‖wθ2(f1h)(π(s)⊕ 0)w∗ − θ2(hf1)w(π(s)⊕ 0)w∗‖
+ ‖θ2(hf1)w(π(s)⊕ 0)w∗ − θ2(h)wθ2(f1)(π(s)⊕ 0)w∗‖
≤ ‖[u, θ2(hf1)]‖+ ‖[u, θ(f1)]‖. (5.6)

In the scenario without contractions, one scale by these to acquire (5.2). Proving (5.3) is far more
tedious, so prepare yourself for long-winded computations. Upon rescaling afterwards, we are only
required to deduce the condition on contractions s, t ∈ C0(0, 1)⊗A. It has been deemed optimal to
consider each case separately. Indeed, we must derive the bound from

‖ψ(s)ψ(t)− ψ(st)‖ ≤
∑

i,j=0,1,2

‖ψi(s)ψj(t)− θ2(fi)ψj(st)‖ =: ω(s, t).

Case 1. Here we tackle the endpoint cases, meaning the terms stemming from the indices i, j = 0, 2.
For i = j = 0 compatibility of the system ensures that

θ2(f0)ψ0(st) = θ(f0)π(stf0)⊕ 0 = (π(f0s)⊕ 0)(π(f0t)⊕ 0) = ψ0(s)ψ0(t).

Replacing π with % and 0 with 2 provides the same conclusion for i = j = 2. If i, j = 0, 2 are distinct,
compatibility in conjunction with f0f2 = 0 by construction yields θ2(fi)ψj(st) = 0 = ψi(s)ψj(t). It
follows that no contribution to ω(s, t) is supplied from the terms in which i, j = 0, 2.

Case 2. Consider the case where i = j = 1. Compatibility implies that

ψ1(s)ψ1(t) = wθ2(f1)(π(f1st)⊕ 0)w∗ and θ2(f1)ψ1(st) = θ2(f1)w(π(f1st)⊕ 0)w∗,

whereby the contribution for i = j = 1 to ω(s, t) becomes

‖ψ1(s)ψ1(t)− θ2(f1)ψ1(st)‖ ≤ ‖[θ2(f1), w]‖ = ‖[θ(f1), u]‖.

Case 3. Here we settle the cases wherein i, j ∈ {0, 1}. The support of f0 agrees with the interval
upon which V subsumes the role of the unit by (5.4). Since θ defines a ∗-homomorphism, the unitary
θ2(V ) must act as the unit on θ(f0)⊕ 0 and thus w,w∗ act as the unit on θ(f0)⊕ 0. Compatibility
guarantees that θ commutes with π pointwise, so exploiting this ensures

ψ1(s)ψ0(t) = w(θ(f1)π(s)⊕ 0)w∗(θ(f0)π(t)⊕ 0)

= θ2(f0f1)π(st)⊕ 0

= θ2(f1)ψ0(st).

Hence the contribution to ω(s, t) of the term associated to i = 1 and j = 0 is zero. For the reverse
situation, ease the notational burden by letting ε1 := ‖[u, θ(f1)]‖ and ε01 := ‖[u, θ(f0f1)]‖. Recall
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that θ2(V ) acts as the unit on θ(f0)⊕ 0. Then

θ2(f0)wθ2(f1) = θ2(f0)(1E ⊕ u)θ2(V )θ2(f1)

(5.5)
=
[
θ(f0f1)⊕ θ(f0)uθ(f1)

]
θ2(V )

≈ε1
[
θ(f0f1)⊕ θ(f0f1)u

]
θ2(V )

≈ε01
[
θ(f0f1)⊕ uθ(f0f1)

]
θ2(V )

= [θ(f0f1)⊕ uθ(f0f1)
]

≈ε1+ε01 [θ(f0f1)⊕ θ(f0)uθ(f1)
]
.

Declaring that µ := 2ε1 + 2ε01, then using that w,w∗ acts as the unit on θ(f0)⊕ 0 yields

ψ0(s)ψ1(t) = (θ(f0f1)π(st)⊕ 0)w∗

= (θ(f0f1)⊕ θ(f0)uθ(f1))(π(st)⊕ 0)w∗

≈µ θ2(f0)w(π(f1st)⊕ 0)w∗

= θ2(f0)ψ1(st).

The total contribution to ω(s, t) stemming from the indices i, j = {0, 1} is thus bounded by µ.

Case 4. Here we tackle the terms arising from {i, j} = {1, 2}. In a fashion resembling the previous
case, put ε21 := ‖[u, θ(f1f2)]‖. The relations (5.4)-(5.5) combined with compatibility ensure that

θ2(f2)wθ2(f1) =

[
θ(f2) 0

0 θ(f2)

]
θ2(V )∗

[
1E 0
0 u

]
θ2(V )

[
θ(f1) 0

0 θ(f1)

]
(5.4)
=

[
0 θ(f2)u

θ(f2) 0

]
θ2(V )

[
θ(f1) 0

0 θ(f1)

]
(5.5)
=

[
0 θ(f2)uθ(f1)

θ(f1f2) 0

]
θ2(V )

≈ε1
[

0 θ(f1f2)u
θ(f1f2) 0

]
θ2(V )

≈ε21
[

0 uθ(f1f2)
θ(f1f2) 0

]
θ2(V )

(5.4)
=

[
uθ(f1f2) 0

0 θ(f1f2)

]
(5.7)

≈ε21
[
θ(f1f2)u 0

0 θ(f1f2)

]
.

The sixth equality is based on V determining the permuted unit matrix on the support of f2, so that
it rotates offdiagonal-matrices with values in the image of θ. Setting µ′ := ε1 + 2ε21, then exploiting
that V rotates off-diagonal matrices on the support of f2 therefore provides the estimates

ψ2(s)ψ1(t) =

[
%(s) 0

0 0

] [
θ(f2) 0

0 θ(f2)

]
w

[
θ(f1) 0

0 θ(f1)

] [
π(t) 0

0 0

]
w∗

(5.7)
≈µ′ θ2(V ∗)

[
0 0

%(f1f2t)uπ(t) 0

]
w∗,

alongside

ψ1(f2st) = w

[
π(f1f2st) 0

0 0

]
w∗

(5.4)
= θ2(V ∗)

[
0 0

uπ(f1f2s)π(t) 0

]
w∗.
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Applying (5.6) having f2 replace h, the contribution to ω(s, t) in the cases stemming from the
situations {i, j} = {1, 2} thus becomes

‖ψ2(s)ψ1(t)− θ2(f2)ψ1(st)‖
(5.6)

≤ ‖ψ2(s)ψ1(t)− ψ1(f2st)‖+ ‖ψ1(f2st)− θ2(f2)ψ1(st)‖
≤
(
µ′ + ‖%(f1f2s)u− uπ(f1f2s)‖

)
+ (ε21 + ε1)

= ‖%(f1f2s)u− uπ(f1f2s)‖+ 3ε21 + 2ε1.

The reverse configuration amounts to calculations of the same nature, so details have been spared.
First of all, the fact that V turns into the permuted unit on the support of f2 forces

w

[
θ(f1f2) 0

0 0

]
= θ2(V ∗)

[
0 0
0 uθ(f1f2)

]
(5.8)

≈ε21 θ2(V ∗)

[
0 0
0 θ(f1f2)u

]
=

[
θ(f1f2)u 0

0 0

]
.

Let µ′′ := ε1 + ε21 and compute

ψ1(s)ψ2(t) = w

[
π(s) 0

0 0

] [
θ(f1) 0

0 θ(f1)

]
w∗
[
θ(f2) 0

0 θ(f2)

] [
%(t) 0

0 0

]
(5.7)
≈µ′′ w

[
π(s) 0

0 0

] [
θ(f1f2)u∗ 0

0 θ(f1f2)

] [
%(t) 0

0 0

]
(5.8)
≈ε21

[
θ(f1f2)uπ(s)u∗%(t) 0

0 0

]
.

On the other hand, notice that one has θ2(f1)ψ2(st) = θ(f2)%(f1s)%(t) ⊕ 0. Remember in addition
that the members of P and both s, t are all contractions. Entering this alongside the above estimate
into the corresponding term in ω(s, t) gives the bound:

‖ψ1(s)ψ2(t)− θ2(f1)ψ2(st)‖ ≤ µ′′ + ε21 + ‖θ(f1)uπ(s)u∗ − %(f1s)‖
≤ ε1 + 2ε21 + ‖θ(f1)uπ(s)u∗ − uθ(f1)π(s)u∗‖+ ‖uπ(f1s)u

∗ − %(f1s)‖
≤ ε1 + 2ε21 + ‖[u, θ(f1)]‖+ ‖uπ(sf1)− %(sf1)u‖
≤ 2ε1 + 2ε21 + ‖uπ(sf1)− %(sf1)u‖.

This establishes all possible contributions to ω(s, t). Collecting all contributions of the distinct cases
yield (5.3) modulo scaling by ‖s‖ and ‖t‖ throughout, completing the proof.

Remark. If one follows the proof with the assumption that π and % are in fact unitarily equivalent,
one basically reproduces the proof of multiplicativity of the map π constructed on page 64. The
benefit of the patching lemma is its ability to tackle general compatible systems and approximate
unitary equivalences (in the main theorem, the trio (π0, π1, θ) will not fully do the job).

The properties (p.1)-(p.2) on the other hand may seem oddly placed. However, they will allow
us to arrange the unitary equivalence on overlaps of several intervals; we apply the patching lemma
more than once during the main proof.

The patching lemma permits one to “glue” an alteration of our compatible system conjured in
proposition 3.4.5 via an approximately multiplicative and approximately θ2-compatible completely
positive map. This feature surely seems intriguing from a quasidiagonal point of view. During the
process, the trace will be twisted, so we salvage this by adjusting it via corner algebras arising
from projections attached to the intervals. No mischief occurs here, for pQωp ∼= Qω while also
Qω ↪→ pQωp⊗M2 may be arranged.
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Lemma 5.1.2. Let a be some positive contraction in Qω having Lebesgue spectral measure. For
each relatively open interval I ⊆ [0, 1] there exists a projection pI in Qω fulfilling the following.

(i) pI commutes with a.

(ii) pIh(a) = h(a)pI = h(a) for each h in C0(I).

(iii) h(a)pI = pI for every h in C([0, 1]) which restricts to the identity on I.

(iv) One has pIpJ = 0 for disjoint relatively open intervals I, J ⊆ [0, 1].

(v) One has τω(pI) = |I|.

Proof. Let %ω : `∞(Q) −→ Qω be the quotient map. Choose some positive contractive lift (b1, b2, . . .)
in `∞(Q) of a. Due toQ having real rank zero, each element bn may be approximated by self-adjoint
elements an of finite spectrum, see proposition B.0.7. The sequence (a1, a2, . . .) determines an element
in `∞(Q) and lifts a. Being elements of finite spectra, their spectra are discrete, thereby eliminating
potential continuity issues ahead. Let χI : [0, 1] −→ {0, 1} denote the indicator map attached to I.
Then set pI,n = χI(an) for each n in N and put pI = %ω(pI,1, pI,2, . . .).

(i)-(iii): The continuous functional calculus commutes with ∗-homomorphisms, hence with %ω
and every projection map pk : `∞(Q) −→ Q. As an element in `∞(Q) is uniquely in terms of the
actions of pk onto it, we deduce that

h(%ω(a1, a2, . . .)) = %ω(h(a1, a2, . . .)) = %ω(h(a1), h(a2), . . .)

for any h belonging toC([0, 1]). Identifying an with idσ(an)(an), it is evident that pI,n must commute
with an, which combined with the preceding observations forces a to commute with pI . Arguments
heavily resembling this one will yield (ii)-(iii).

(iv)-(v): (iv) is an immediate consequence of χIχJ = 0 for disjoint elements and the continuous
functional calculus being of order zero. To verify (v), we evaluate |I| in the following manner. Let
X denote the subcollection in C([0, 1]) consisting of positive contractions, X0 := X ∩C0(I) and let
XI be the subcollection in X whose elements restrict to the identity on I. Due to a having Lebesgue
spectral measure, we may infer that

|I| =
∫

[0,1]

χI dm = sup
h∈X0

∫
[0,1]

h dm
(ii)
= sup

h∈X0

τω(h(a)pI) ≤ sup
h∈X0

τω(h(a)2)1/2τ(pI)
1/2 ≤ τ(pI).

The first inequality stems from the Cauchy-Schwarz inequality (1.3) for positive functionals, whereas
the latter is based on a being a positive contraction. For the reverse inequality, one appeals to (iii)
whereby Lebesgue spectral measure of a entails that, for every h in XI , we must have

τω(pI)
(iii)

≤ τω(h(a)2)1/2τω(pI)
1/2 ≤ inf

f∈XI

∫
[0,1]

f dm = |I|.

Altogether |I| = τω(pI), granting (v). This proves the claim.

When attempting to enable the patching lemma, the unitary equivalence occurring in the observation
underneath it must be arranged. Accomplishing this requires the stable uniqueness theorem, hence
demands ∆-fullness. Acquiring ∆-fullness will be done via the following preliminary result.

Lemma 5.1.3. Suppose A and B denote unital C∗-algebras with B having strict comparison of
positive elements with respect to bounded traces. Let γ : A −→ B be some unital ∗-homomorphism.
If for each positive contraction a ∈ A one has some ma ∈ N satisfying τ(γ(a)) > 2m−1 whenever
τ ∈ T (B), then γ becomes ∆-full with ∆(a) = m2

a as control function.
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Proof. To ease the notation write b = γ(a). Due to T (B) being weak∗-compact in the unital case,
the real-number ε = 2−1 minτ∈T (A) τ(b) exists. Choose some trace τ acting on B, should it exist.
Define hereafter an element z in Mm ⊗A by

z = (b− ε)2
+ ⊕ (b− ε)2

+ ⊕ . . .⊕ (b− ε)2
+ (m-copies occuring).

For every positive contraction e, dτ ((e − ε))2
+) exceeds τ(e). Since τ dominates dτ , regarded as a

dimension function induced on W (A), one may deduce the inequality

ε ≤ τ(b− ε1B) ≤ τ
(
(b− ε)+

)
≤ dτ

(
(b− ε)2

+

)
.

The element 1B ⊕ 0⊕(m−1) is Cuntz-equivalent to 1B . Hence

dτ (1B ⊕ 0⊕(m−1)) = 1 < mε ≤ mdτ ((b− ε)2
+) = dτ (z).

Strict comparison thus forces e = 1B⊕0⊕(m−1) to be Cuntz subequivalent to z in the matrix algebra
A⊗Mm.Our objective will be to compare 1B with z without the use of diagonal matrices. This will
be accomplished trough the following minor trick. According to proposition 3.3.2, given any δ > 0
there exists some element r in Mm(A) such that (e− δ)+ = rzr∗. Some functional calculus reveals
that (1− δ)e = (e− δ)+. Declaring that r0 := (1− δ)−1/2r thus ensures that

r0zr
∗
0 = e and r0e = e.

The latter condition forces r0 to be a column-matrix [b1, b2, . . . , bm]t in M1,m(A). Entering the
expressions for e, r0 and z yields

(1B ⊕ 0m−1) = r0zr0 =

m∑
k=1

bk(b− ε)2
+b
∗
k ⊕ 0m−1.

The sum on the right-hand side needs to rearranged to omit using the cut-down. For this, note that
the C∗-identity ensures that ‖bk(b−ε)+‖ ≤ 1 for each integer k = 1, 2, . . . ,m. Consider the function
h : [0, 1] −→ R+ defined by

h(t) =

{
t−1/2, if ε ≤ t,
tε−3/2, if 0 ≤ t ≤ ε.

For every t in [0, 1] exceeding ε one has h(t)2t = 1, whereby (b− ε)+h(b)2b = (b− ε)+. Consider the
element xk = m−1/2bk(b−ε)+h(b) belonging toA for each k = 1, . . . ,m. This must be a contraction,
since the previous bound on ‖bk(b − ε)+‖ forces ‖xk‖ ≤ (mε)−1/2‖bk(b − ε)+‖ < 1. Hence, due to
h(b) commuting with b, one may infer that

m2∑
k=1

xkbx
∗
k = m

m∑
k=1

m−1bk(b− ε)+h(b)bh(b)(b− ε)+b
∗
k

=

m∑
k=1

bk(b− ε)+h(b)2b(b− ε)+b
∗
k

=

m∑
k=1

bk(b− ε)2
+b
∗
k = 1B ,

proving the claim.
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5.2 Implementing Quasidiagonality

We arrive at the grand finale; the proof of the main theorem. Due to the taxing length, it has
been split into three major parts. Moreover, motivations for each step will be supplied, hopefully
building some intuition during the process while conveying the underlying strategy. For the record,
the chronological order exhibited here deviates from the original version in [42]. During the entire
proof, the supports are all open unless specified otherwise. Without further ado, the main theorem.

Theorem 5.2.1 (Tikuisis - White - Winter). Faithful traces acting on nuclear separable C∗-algebras
fulfilling the UCT-condition are automatically quasidiagonal.

Proof. According to theorem 4.4.4, the class comprised of nuclear members in N is stable under re-
stricting to subalgebras and extensions in the category of separable C∗-algebras with∗-homomorphisms.
Since any separable C∗-algebra B constitutes an ideal in its (separable) unitization B+, B satisfies
the UCT-condition if and only if B+ does. In addition, the trace τ on A is quasidiagonal and faithful
if and only if the induced trace on A+ is according to the remark on page 46. Thus assuming the
presence of a unit causes no hindrances in the proof.

Let therefore A be a unital separable nuclear C∗-algebra fulfilling the UCT-condition and fix
some faithful trace τ hereon. Let furthermore some finite subset FA ⊆ A together with tolerance
ε > 0 be given. Without loss of generality, we may assume that FA contains the unit in A. The task
amounts to finding a positive integer N and a completely positive map ψ : A −→ M2N (Qω) ∼= Qω
subject to the condition

ψ(ab) ≈ε ψ(a)ψ(b) and
1

2
τ(e) = (τω ⊗ τ2N )(ψ(e)) (5.9)

for every a, b ∈ FA and each e ∈ A. Since each involved map is linear and positive, verifying (5.9)
on self-adjoint contractions will suffice, so we further assume that FA ⊆ A1 is involutive.

Part 1. In the current part, we prescribe a setup that to each positive integer n0 permits one to
form a partition of unity attached to C([0, 1]) subordinate to a collection of n0 subintervals in [0, 1].
There are many functions involved in the process, so illustrations have been made along the way.
The reader is recommended to primarily focus on these

The procedure contains two intermediate steps. First we construct five continuous functions on
[0, 1], where two of these arise as reflections of former ones. Define f, g`, gr, h`, hr ∈ C([0, 1]) by

f |[0, 19 ] = 0, f |[ 1
9 ,

2
9 ] is linear , f |[ 2

9 ,
7
9 ] = 1, f |[ 7

9 ,
8
9 ] is linear , f |[ 8

9 ,1]
= 0;

and

g`|[0, 89 ] = 1, g`|[ 8
9 ,1]

is linear , g`(1) = 0

gr(0) = 0, gr|[0, 19 ] is linear , gr|[ 1
9 ,1]

= 1;

h`|[0, 29 ] = 1, h`|[ 2
9 ,

3
9 ] is linear , h`|[ 3

9 ,1]
= 0;

hr|[0, 69 ] = 0, hr|[ 6
9 ,

7
9 ] is linear , hr|[ 7

9 ,1]
= 1.

The subscripts r and ` are supposed to indicate whether the majority of the support lies on the left -
or right hand side of the interval [0, 1]. Furthermore, gr, h` are reflections hr, h` against the midpoint
t = 1/2 in the respective order. In the language of the observation presented after lemma 5.1.1, set

F0 = {f ⊗ a, f ⊗ ab : a, b ∈ FA} ⊆ C0(0, 1)⊗A and F = {f, gr, g`, hr, h`} ⊆ C([0, 1]).
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Fix some δ0 < ε/24. For an illustration displaying the functions, see the following figure.

0
0

gr g`

1

1

1
9

f

h` hr

2
9

3
9

6
9

7
9

8
9

Let us consider a blueprint of the proof. It will fail, however, it displays how the patching lemma
enters. Let J = {J1, J2, J3} be the family of disjoint intervals of the lemma 5.1.1 and consider some
compatible system (π, %, µ,E) in which E ∼= Qω. Invoking the observation following the patching
lemma, one may construct a finite subset G ⊆ C0(J2)⊗A and δ > 0, such that if

uπ(s)u∗ ≈δ %(s) (5.10)

for every s in G and some unitary u inside E, then one may determine the existence of a completely
positive map ϕ : C0(0, 1)⊗A −→ M2(E) satisfying

· (τE ⊗ Tr2) ◦ ϕ = τL ⊗ τ ; (cp.1)

· the map ϕ makes (π, %, µ,E) a compatible system patched via J ; (cp.2)

· one has ϕ(st) ≈δ0 ϕ(s)ϕ(t) together with ϕ(hs) ≈δ0 µ2(h)ϕ(s) for all s, t ∈ F0 and h ∈ F . (cp.3)

As discussed previously (5.10) cannot be ensured for the compatible system (π0, π1, θ,Qω), otherwise
ϕ would subsume1 the role of the designated ψ in (5.9). Providing (5.10) is achieved at the cost of
passing to larger matrices, whereby we extend the original compatible system by forming maps onto
the diagonal parts. As such we must instead produce several maps resembling ϕ and stitch these
together. The ability to stitch these maps is the crux of the procedure.

Throughout the remainder of the part, select some positive integer n0 and set m = 2n0 + 1.
Define accordingly n0 + 2 relatively open intervals Ik ⊆ [0, 1] by

Ik =

(
2k − 2

m
,

2k + 1

m

)
∩ [0, 1], k = 0, . . . , n0 + 1.

Based on these intervals, we form our partition of unity as follows. Define for each k = 1, . . . , n0 a
positive function αk : [0, 1] −→ [0, 1] by stipulating that

αk|[0, 2k−2
m ] = 0, αk|[ 2k−2

m , 2k+1
m ] is linear , αk|[ 2k+1

m ,1] = 1.

Observe that αk maps Ik homeomorphically onto (0, 1), stretching each endpoint by an m/3 factor.
Using the αk maps, we create a collection of maps P = {fk : k = 0, . . . , n0} constituting a partition
of unity for C([0, 1]) subordinate to the collection I of intervals Ik for k = 0, 1, . . . n0 + 1. Write

fk = f ◦ αk, g`,k = g` ◦ αk and gr,k = gr ◦ αk

for every k = 1, . . . , n0. To tackle the endpoint cases set g`,0 = h` ◦ α1 and gn0+1,r = hr ◦ αn0 .
Consider for a brief moment the situation for some fixed index k = 1, . . . n0. The image αk(Ik) is an
identical copy of αk−1(Ik−1) shifted to the right-hand side by 2/m. Ergo the ascending linear part

1The idea is exhibited on page 64 would work, but multiplicativity will only be achieved approximately.
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of fk initiates once the descending one of fk−1 begins. If the setup strikes the reader as daunting,
the figure below might depict the locations of supports and linear parts more vividly.

2k−4
m

2k−2
m

2k−1
m

2k
m

2k+1
m

2k+3
m

fkfk−1 fk+1
1

0

The support of fk−1 + fk + fk+1 equals the union of summands’ support, meaning Ik−1 ∪ Ik ∪ Ik+1.
Moreover, the location of their supports entail that at most two terms contribute at a time. Hence

(fk−1 + fk + fk+1)|Ik = 1. (5.11)

To manufacture the partition of unity, we are inclined to add the cases k ∈ {−1, 0, n0 + 1, n0 + 2}.
Observe first that I0 = [0, 1/m) whereas In0+1 = (1 − 1/m, 1]. Keeping this in mind, recall that f
vanishes on the closed interval [0, 1/9]. The intervals Ik all have length 3/m, hence the map f1 must
necessarily vanish on [0, 1/3m]. The endpoint function f0 should therefore restrict to 1 thereon. A
symmetric argument ensures an analogues observation for fn0

. As such stipulating that

f0|[0, 1
3m ] = 1, f0|[ 1

3m ,
2

3m ] is linear , f0|[ 2
3m ,1]

= 0

fn0+1|[0,1− 2
3m ] = 0, fn0+1|[1− 2

3m ,1−
1

3m ] is linear , fn0+1|[1− 1
3m ,1]

= 1

ensures, in conjunction with (5.11), that the set P := {fk; k = 0, . . . , n0} comprises a partition of
unity on C([0, 1]) subordinate to I, where we add the convention f−1 = fn0+2 = 0 to avoid index
issues ahead. A few properties attached to P will be recorded, albeit not of current significance. Fix
again some k = 1, . . . , n0. Then one checks that

g`,k−1 = h` ◦ αk and gr,k+1 = hr ◦ αk.

Consider next the product fkg`,k. The map g` restricts to t 7→ 1 on the support of f . Due to αk(Ik)
being a homeomorphic copy of (0, 1) and the support of fk being properly contained in Ik, one may
infer that fkg`,k = fk if k = 0, . . . , n0. Arguments running parallel provide the same for gr,k.

Having established a partition of unity based on a given parameter n0, we craft the associated
compatible system - when passing to larger matrices, we must configure our compatible system
thereto. On the merits of proposition 3.4.5, the quadruple (π0, π1, θ,Qω) constitutes a compatible
system with respect to the unique trace on Qω, i.e.,

τω ◦ π0 = τω ◦ π1 = τL ⊗ τ. (5.12)

In terms of n0, define n0 + 1 ∗-homomorphisms σ0, σ1, . . . , σn0
as follows. Remember that π0 is

defined on C0(0, 1]⊗A whereas π1 is defined on C[0, 1)⊗A. Extend (π0, π1, θ) to n0-matrices by

σ0 = πn0
1 : C0[0, 1)⊗A −→ Mn0

(Qω);

σn0
= πn0

0 : C0(0, 1]⊗A −→ Mn0
(Qω);

σk = πn0−k
1 |C0(0,1)⊗A ⊕ πk0 |C0(0,1)⊗A : C0(0, 1)⊗A −→ Mn0

(Qω).

Notice that compatibility withstands: σ0 and σn0
are compatible with the diagonal map θn0 . During

the proof, we change the codmains to some corner algebras, thereby altering the trace. Luckily,
there is a backdoor; lemma 5.1.2 will be used to rescale the trace in the corner algebras. Being a ∗-
homomorphism the element z := θ(id[0,1]) constitutes a positive contraction in Qω having Lebesgue
spectral measure, the latter property was proven during the proof of proposition 3.4.5. Furthermore,
the intervals Ik are all of length 3/m unless k = 0, n0 + 1, and Ik ∩ Ij = ∅ holds whenever |k− j| > 1
for indices k, j = 0, . . . , n0 + 1. Applying lemma 5.1.2 onto z, one acquires projections p0, . . . , pn0+1

in Qω fulfilling:
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· pkpj = 0 whenever |k − j| > 1; (p.1)

· pk commutes with the image of θ for k = 1, . . . , n0; (p.2)

· τω(pk) = |Ik| = 3/m for k = 1, . . . , n0 and τω(p0) = τω(pn0+1) = 1/m; (p.3)

· for each k = 0, . . . , n0 + 1, the element θ(fk−1 + fk + fk+1) acts as a unit on pk; (p.4)

· the projection p0 acts as a unit on the images θ(C0(I0)) and π1(C0(I0)⊗A);

· the projection pn0+1 acts as a unit on the images θ(C0(In0+1)) and π0(C0(In0+1)⊗A);

· for all k = 1, . . . , n0, pk acts as the unit on θ(C0(Ik)), π0(C0(Ik)⊗A) and π1(C0(Ik)⊗A). (p.5)

Before proceeding to the next part, we justify the application above. The property (p.1) is immediate
from Ik ∩ Ij = ∅ whenever |k − j| > 1 combined with the corresponding orthogonality occurring
in lemma 5.1.2. The lemma ensures that pk commutes with z. However, id[0,1] generates C([0, 1]),
hence pk must commute with the image of θ, whereupon (p.2) follows. The third property is a direct
consequence of the lemma together with the measure of Ik whereas (p.4) may be deduced from (5.11)
alongside unitality of θ.

The final conditions in (p.5) require extra treatment. Fix some integer k = 1, . . . , n0. According
to the lemma part (ii), the projection pk act as the unit upon the C∗-algebra E ⊆ Qω generated
by elements of the form h(z) with h being any member of C0(Ik). Due to the continuous functional
calculus commuting with ∗-homomorphisms, one has E = θ(C0(Ik)). Suppose B denotes the hered-
itary C∗-subalgebra generated by θ(C0(Ik)). Compatibility of the system (π0, π1, θ,Qω) passes to
restrictions of π0, π1 onto open subintervals in (0, 1). In particular, compatibility ensures that

πi
(
{s⊗ a : s ∈ C0(Ik), a ∈ A}

)
⊆ B, i = 0, 1.

It follows that B contains πi(C0(Ik)⊗A) via linearity and continuity of the involved maps for each
index i = 0, 1 and every choice of k = 0, . . . , n0 + 1, yielding the third part of (p.5). This completes
the setup of part 1, which we employ with respect to the stable uniqueness theorem.

Part 2. We invoke the procedure in a specific manner, namely in terms of the stable uniqueness
theorem. The unitary equivalence therein will be the fuel to enabling (5.10). To apply theorem 4.4.8
we introduce an auxiliary algebra C, which becomes ∗-isomorphic to the unitization of C0(J2)⊗A.
This will help us recover ∆-fullness, since τL ⊗ τ will restrict a faithful trace on C. Let

C =
{
s ∈ C([0, 1], A) : there exists a z ∈ C such that s|[0, 13 ] = s|[ 2

3 ,1]
= z1A

}
.

Consider the map β : C0(J2, A)+ −→ C given by s + d1 7→ s + d1A, where 1 denotes the unit
attached to C0(J2, A)+. The map is well-defined, since the s term vanishes outside J2 by hypothesis.
One checks that β must be a ∗-isomomorphism, meaning C ∼= C0(J2, A)+ ∼= (C0(J2) ⊗ A)+. The
latter algebra remains nuclear. Due to A fulfilling the UCT-condition by hypothesis, it must be KK-
equivalent to some abelian C∗-algebra E. According to example 19.1.2(c) in [3], KK-equivalence
passes to minimal tensor products factor-wise, whereof C ∼= (A⊗C0(J2))+ becomes KK-equivalent
to the abelian C∗-algebra (E ⊗ C0(J2))+ and thus must fulfill the UCT-condition.

Keeping theorem 4.4.8 in mind, we must present a control function. Appealing to corollary 1.3.2,
the trace τL⊗ τ restricted to C must be faithful. Define a control function ∆: (C+)1 \ {0} −→ N by
choosing, for each s in C, some square number ∆(s) such that

(τL ⊗ τ)(s) >
2

∆(s)1/2
. (5.13)

On the merits of proposition 4.4.3, the ultrapowerQω is an admissible target of finite type. Moreover,
nuclearity of C turns completely positive maps having C as domain into nuclear maps. Altogether,
theorem 4.4.8 may be accessed to provide the following property.
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Observation 5.2.2. The triple (G, δ,∆) consisting of the control function ∆ above, the finite
subset G ⊆ (C0(J2) ⊗ A)+ ∼= C and tolerance δ > 0 prescribed previously on page 97 admits a
positive integer n satisfying the following property

Suppose γ : C −→ Qω denotes a ∆-full map and let π, % : C −→ Qω be unital ∗-homomorphisms
inducing the same morphisms in total K-theory. Under these premises, one may extract some
unitary u in Mn+1(Qω) such that, for every s in G, one has

u(π(s)⊕ γn(s))u∗ ≈δ %(s)⊕ γn(s).

Repeat the construction exhibited in part 1 with n0 = 2n (som = 4n+1) and maintain the notation
therein. Deviating slightly from the original proof, we will finish the proof under certain assumptions.
Afterwards we arrange the assumed properties. The reader is therefore asked to humor the following
train of thought. For every k = 0 . . . , 2n− 1, let

Λk := σk|C0( 2k
m , 2k+1

m )⊗A ⊕ 02n : C0

(
2k

m
,

2k + 1

m

)
⊗A −→M4n ⊗Qω;

Λ2n := σ2n|C0(I2n+1)⊗A ⊕ 02n : C0(I2n+1)⊗A −→M4n ⊗Qω;

Λ0 := σ0|C0(I0)⊗A ⊕ 02n : C0(I0)⊗A −→M4n ⊗Qω.

Formulated in words, Λk denotes the restriction of σk onto the right-hand third of Ik for k = 1, . . . , 2n.
To reduce the notation, for each integer k = 1, . . . , 2n− 1 set

F k0 = {fk ⊗ a, fk ⊗ ab : a, b ∈ FA} and F k = {fk, g`,k, gr,k, hr,k, h`,k}.

If one has no qualms with minor abuse of notation, one may write F k0 = F0 ◦ αk together with
F k = F ◦ αk for every such integer k. Now, suppose we were able to derive the these tools:

Claim. There exists a completely positive map ψk : C0(Ik) ⊗ A −→ pkQωpk ⊗M2 ⊗M2n for each
positive integer k = 0, . . . , n0 + 1 satisfying the properties below.

· One has (τω ⊗ τ4n) ◦ ψk = 1
2τL ⊗ τ ; (cpn.1)

· one has ψ0 = Λ0 and ψ2n+1 = Λ2n; (cpn.2)

· the restriction of ψk onto C0

(
2k−2
m , 2k−1

m

)
⊗A agrees with Λk−1 and

· the restriction of ψk onto C0

(
2k
m ,

2k+1
m

)
⊗A agrees with Λk for all k = 1, . . . , 2n; (cpn.3)

· for each positive integer k = 1, . . . , 2n, all s, t ∈ F k0 and every h ∈ F k one has

ψk(st) ≈δ0 ψk(s)ψk(t) and ψk(s)θ4n(h) ≈δ0 ψk(hs) ≈δ0 θ4n(h)ψk(s)

while ψ0 together with ψ2n+1 are ∗-homomorphisms compatible with θ4n. (cpn.4)

Finalizing the proof modulo justifying the claim may be accomplished by summing the completely
positive maps therein. Certainly, it seems plausible that property (cpn.1) will allow us to pick up
half the trace in this manner whereas (cpn.4) ought to supply approximate multiplicativity. The
remaining properties are to ensure that stitching the maps together does not cause obstructions on
overlaps. This is somewhat the vague idea, so let us dive into the delicate and delicious technicalities.
Consider the map ψ : A −→ Qω ⊗M2n ⊗M2 expressed as

ψ(a) =

2n+1∑
k=0

ψk(fk ⊗ a).

Recall that the support of fk lies in Ik, whereby one may regard fk as an element of C0(Ik). It follows
that the above map is meaningful and completely positive being the pointwise sum of completely
positive maps combined with fk ≥ 0 for each k = 0, . . . , 2n+ 1.
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The point of decorating with the partition of unity will be presented first. Let us establish the
latter property in (5.9) regarding the trace. Due to P = {fk : k = 0, . . . , 2n} forming a partition of
unity, one may deduce that

(τω ⊗ τ4n)(ψ(a)) =

2n+1∑
k=0

(τω ⊗ τ4n)
(
ψk(fk ⊗ a)

) (cpn.1)
=

τ(a)

2

2n+1∑
k=0

τL(fk) =
1

2
τ(a)

for every a belonging toA, granting the second half of (5.9). In order to show the first half of (5.9), we
truncate the task into a manageable problem. Let elements a, b in FA be given. According to (p.1),
the projections pk, pj are orthogonal whenever |k− j| > 1. Upon ψk attaining values in pkQωpk, the
images of ψk, ψj must be orthogonal provided that |k − j| > 1. Simplifying the notation by setting
ψ−1 = ψ2n+2 = 0 to match the convention f−1 = f2n+2 = 0, one may conclude that

ψ(a)ψ(b) =

2n+1∑
k,j=0

ψk(fk ⊗ a)ψj(fj ⊗ b)

=

1∑
j=−1

2n+1∑
k=0

ψk(fk ⊗ a)ψk+j(fk+j ⊗ b).

On the other hand,

ψ(ab) =

2n+1∑
k=0

ψk(fk ⊗ ab)
(p.4)
=

2n+1∑
k=0

ψk(fk ⊗ ab)
1∑

j=−1

θ4n(fk+j)

=

1∑
j=−1

2n+1∑
k=0

ψk(fk ⊗ ab)θ4n(fk+j).

Let Ne and No denote the subcollections of {0, . . . , 2n + 1} consisting of all even and odd integers
therein, respectively. Then

ψ(a)ψ(b)− ψ(ab) =

1∑
j=−1

∑
k∈Ne

ψk(fk ⊗ a)ψk+j(fk+j ⊗ b)− ψk(fk ⊗ ab)θ4n(fk+j)

+

1∑
j=−1

∑
k∈N0

ψk(fk ⊗ a)ψk+j(fk+j ⊗ b)− ψk(fk ⊗ ab)θ4n(fk+j).

We shall investigate the norm of each term arising in both the odd and even parts. To this end, let
ek,j denote the element in Qω ⊗M4n given by the expression

ek,j = ψk(fk ⊗ a)ψk+j(fk+j ⊗ b)− ψk(fk ⊗ ab)θ4n(fk+j).

Let qk be the projection pk ⊕ . . . ⊕ pk inside M4n for each integer k = 0, . . . , 2n + 1. The property
(p.5) guarantees that ek,j = qkek,jqk+j . The finite sequences (pk)k∈Ne , (pk)k∈N0 consist of mutually
orthogonal projection according to (p.1), whereupon∥∥∥ ∑

k∈Ne

ek,j

∥∥∥ =
∥∥∥ ∑
k∈Ne

qkek,jqk+j

∥∥∥ = max
k∈Ne

‖qkek,jqk+j‖ = max
k∈Ne

‖ek,j‖

becomes valid for each j = −1, 0, 1. Repeating the argument, mutatis mutantis, the same bound
may be supplied for the odd part. Entering these estimates yields

‖ψ(a)ψ(b)− ψ(ab)‖ ≤ 2

1∑
j=−1

max
k
‖ek,j‖. (5.14)
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Ergo we are only required to estimate ‖ek,j‖ for each k = 0, . . . , 2n + 1 and j = −1, 0, 1. The
crucial feature of ‖ek,j‖ revolves around it being expressed solely in terms of how multiplicative ψk
is and how compatible ψk is with θ4n, each approximation emerging in (cpn.4). The estimates will
be established in separate scenarios. Suppose at first j = 0. At the endpoint cases k = 0, 2n + 1,
the corresponding maps ψk are ∗-homomorphisms compatible with θ4n by (cpn.4). This entails that
e0,0 = e2n+1,0 = 0, and for the remaining choices of k, (cpn.4) implies that

ψk(fk ⊗ a)ψk(fk ⊗ b) ≈δ0 ψk(f2
k ⊗ ab) ≈δ0 ψ(fk ⊗ ab)θ4n(fk).

Thus the total contribution of the term attached to j = 0 will be 4δ0. We proceed to handling the
case wherein j = 1 fulfills k+ j = 0, . . . , 2n+ 1. Since the case j = −1 will supply the same estimate
via minor configurations, we confine ourselves to j = 1 and discuss the substantial adjustments.
Recall that g`,k acts as the unit on fk whenever k = 0, . . . , 2n (see page 98). Meanwhile gr,k acts as
the unit on fk for integers k = 1, . . . , 2n+ 1. Therefore

fkg`,k = fk, respectively, gr,k+1fk+1 = fk+1. (5.15)

Consider the former term arising in ek,1. We will rewrite the expression, modulo some error depending
on δ0, using (cpn,4). Obtaining this will be accomplished by invoking the compatibility inherited by
the morphisms σk. According to (cpn.3), the maps ψk agree with the restrictions Λk−1,Λk to the
left (resp. right) -hand side of Ik, so we employ these maps through a trick. Now,

ψk(fk ⊗ a)ψk+1(fk+1 ⊗ b)
(5.15)

= ψk(fkg`,k ⊗ a)ψk+1(gr,k+1fk+1 ⊗ b)
(cpn.4)
≈2δ0 ψk(fk ⊗ a)θ4n(g`,kgr,k+1)ψk+1(fk+1 ⊗ b)

(cpn.4)
≈2δ0 ψk(fkgr,k+1 ⊗ a)ψk+1(g`,kfk+1 ⊗ b).

As such one may swap the placements of gr,k+1 and g`,k by paying an error of 4δ0. Fix momentarily
an integer k = 1, . . . , 2n. If one compares the supports of each factor in fk+1g`,k and similarly for
fkgr,k+1, then one may verify that

fk+1g`,k ∈ C0

(
2k − 2

m
,

2k − 1

m

)
, respectively, fkgr,k+1 ∈ C0

(
2k

m
,

2k + 1

m

)
.

Then compatibility once more ensures that

ψk(fk ⊗ a)ψk+1(fk+1 ⊗ b) ≈4δ0 ψk(fkgr,k+1 ⊗ a)ψk+1(g`,kfk+1 ⊗ b)
(cpn.3)

= Λk(fkgr,k+1 ⊗ a)Λk(g`,kfk+1 ⊗ b)
= Λk(fkgr,k+1 ⊗ a)Λk(g`,k ⊗ b)θ4n(fk+1)

(5.15)
= Λk(fkgr,k+1 ⊗ ab)θ4n(fk+1)

(cpn.3)
= ψk(fkgr,k+1 ⊗ ab)θ4n(fk+1)

(cpn.4)
≈δ0 ψk(fk ⊗ ab)θ4n(fk+1).

The total contribution of the term attached to j = 1 will then be 10δ0. Reiterating the trick for
j = −1, where g`,k is replaced with gr,k and gr,k+1 replaces g`,k−1 leads to the same locations
of support in terms of the interval Ik−1. The computations preceding and following the trick will
supply the exact same estimates, albeit one must replace Λk with Λk−1 throughout. Altogether the
contribution of the cases j = ±1 becomes 10δ0 a piece, whereupon (5.9) must be valid due to

‖ψ(a)ψ(b)− ψ(ab)‖ ≤ 4δ0 + 10δ0 + 10δ0 = 24δ0 < ε.

In summary, the proof has been reduced into deducing the claim.
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Part 3. We finalize the proof by proving the claim. The maps ψ0, ψ2n+1 are straightforward; letting
ψ0 = Λ0 and ψ2n+1 = Λ2n will work. Indeed the property (p.5) implies that p0⊕ . . .⊕ p0 acts as the
unit onto the image of Λ0. Hence the map Λ0 attains values inside the corner p0Qωp0 ⊗M4n and
fulfills (cpn.1) automatically through (5.12). The required compatibility of Λ0 stems from (cpn.2)
being automatic in conjunction with the established compatibility of the ∗-homomorphism π1. The
same argument may be applied to ψ2n+1 = Λ2n+1 to provide the same properties. Since Λk is a
∗-homomorphism for each index k, the choice of ψ0, ψ2n+1 do the job.

For the remaining cases, choose some integer k = 1, . . . , 2n. In order to invoke observation 5.2.2
in part 2, we encode the ∗-homomorphisms (π0, π1) into morphisms from C into the corner pkQωpk
as follows. Regarding the nuclear unital C∗-algebra C as an isomorphic copy of (C0(J2)⊗A)+, one
may define maps γ0, γ1 : C −→ pkQωpk by

γ0(s+ z1C) = zpk + π0(s ◦ αk) and γ1(s+ z1C) = zpk + π1(s ◦ αk).

Due to pk being the unit of pkQωpk, both maps must be unital. We assert that they even constitute
∗-homomorphisms. Linearity and preservation of involution are easily verified, while

γ0(s+ z1C)γ0(t+ z′1C) = zz′pk + z′π0(s ◦ αk)pk + zpkπ0(t ◦ αk) + π0

(
(s ◦ αk)(t ◦ αk)

)
(p.5)
= zz′pk + z′π0(s ◦ αk) + zπ0(t ◦ αk) + π0(st ◦ αk)

= γ0

(
(st+ zt+ z′s) + zz′1C).

Multiplicativity of γ1 may be deduced verbatim. From this point onwards, there are two separate
situations to cover, namely for k ≤ n and k > n. Dealing with k ≤ n during the computations, we
shall concurrently describe the corresponding method for the case k > n. Stipulate that

γ = γ1 if k ≤ n and γ = γ0 if k > n.

Suppose k ≤ n. The unital ∗-homomorphism γ will serve as the ∆-full morphism in observation 5.2.2.
Therefore we must verify ∆-fullness, which is where lemma 5.1.3 benefits us. For simplicity, denote
the restriction of τω onto the corner pkQωpk by τω,k. Notice that uniqueness of trace on pkQωpk ∼= Qω
entails that τω,k(·) = zτω(·) for some scalar z. As such 1 = zτω(pk) implies that

τω,k(a) =
τω(a)

τω(pk)

(p.3)
=

m

3
τω(a) (5.16)

for every element a belonging to pkQωpk. Furthermore, the map αk maps Ik homeomorphically onto
(0, 1) stretching by a 3/m-factor as |Ik| = 3/m, so

(τL ⊗ τ)(e ◦ αk) =
3

m
(τL ⊗ τ)(e) (5.17)

for any e inside C0(0, 1)⊗A. Let c = s+ z1C be some nonzero positive element in C. If k ≤ n, then

τω,k(γ(c)) = τω,k
(
zpk + π1(s ◦ αk)

)
(5.16)

= z +
m

3
τω(π1(s ◦ αk))

(5.12)
= z +

m

3
(τL ⊗ τ)(s ◦ αk)

(5.17)
= z + (τL ⊗ τ)(s)

= (τL ⊗ τ)(c) >
2

∆(c)1/2

with the latter estimate being a consequence of (5.13). Invoking lemma 5.1.3 reveals that γ must
be ∆-full holds regardless of whether k ≤ n or k > n (recall that ∆(c) was chosen to be a square).
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The lacking ingredient is control of the induced total K-theory maps (γ0)∗, (γ1)∗ : K(C) −→ K(Qω),
where we identify pkQωpk with Qω. Remember that π0, π1 defines ∗-homomorphisms on cones of A,
that is, contractible spaces. Every ∗-homomorphism having a contractible domain is automatically
contractible itself. The restriction of π0, π1 onto C0(Ik)⊗A thus determine contractible morphisms
into Qω. Based on τω(pk) > 0 due to (p.3), extract via proposition 3.2.2 some positive integer N
and ∗-monomorphism Qω ↪→ pkQωpk ⊗MN such that pkapk 7→ pkapk ⊗ e11. Consider thereafter
the ∗-homomorphisms γ̃0, γ̃1 : C0(J2)⊗A −→ pkQωpk ⊗MM defined as

γ̃0(s) = π0(s ◦ αk)⊗ e11 and γ̃1(s) = π1(s ◦ αk)⊗ e11.

Notice that the embedding Qω ↪→ pkQωpk ⊗MN permits us to regard γ̃0, γ̃1 having the alleged
codomain. Surely, the images of the restrictions of π0, π1 toC0(Ik) attain values in pkQωpk according
to (p.5). We next examine their unitizations. Let now γj,C denote the induced unitized map from
C ∼= (C0(J2) ⊗ A)+ into pkQωpk ⊗MN . The scenario is visualized in the commutative diagram
beneath wherein j = 0, 1.

0 // C0(J2)⊗A

γ̃j

��

ι // C
% //

γj,C

��

pkQωpk

z 7→z⊗1N

��

// 0

0 // pkQωpk ⊗MN
id // pkQωpk ⊗MN

%⊗id // pkQωpk ⊗MN
// 0

Here % represents the ∗-epimorphism given via s+ z1C 7→ zpk, ι is the canonical embedding into the
unitization (see page 6). Commutativity of the diagram guarantees that

γj,C(s+ z1C) = γ̃j(s) +
(
zpk ⊗ 1N

)
=
(
(πj(s ◦ αk) + zpk)⊗ e11

)
⊕ 0N−1 + 0⊕ %N−1(s+ z1C)

= γj(s+ z1C)⊕ %N−1(s+ z1C)

Due to π0, π1 restricting to homotopic maps in the space of ∗-homomorphisms from C0(Ik)⊗A into
Qω ↪→ pkQωpk ⊗MN and αk being a homeomorphism, γ̃0 ∼h γ̃1 follows.

Homotopy invariance (γ̃0 and γ̃1 are both contractible, hence so must their unitizations be) of to-
tal K-theory forces γ0,C , γ1,C to induce the same map in total K-theory. Functoriality in conjunction
with the previous computation ensures that

(γ0)∗ ⊕ (%N−1)∗ = (γ1)∗ ⊕ (%N+1)∗

It follows that (γ0)∗ + (N − 1)%∗ = (γ1)∗ + (N − 1)%∗, whence (γ0)∗ = (γ1)∗ as desired. Unitally
identifying the corner pkQωpk with Qω, observation 5.2.2 then grants us some unitary u0 inside
Mn+1(Qω) fulfilling the estimate

u0(γ1(s)⊕ γn(s))u∗0 ≈δ (γ0(s)⊕ γn(s)) (5.18)

for each s inG. Since k ≤ n by hypothesis, the ∆-full ∗-homomorphism γ agrees with γ1. Adding the
element γn−k1 (s)⊕ γk−1

0 (s) on each side of (5.18), within the matrix algebra M2n(pkQωpk), retains
the approximation (5.18). One therefore has

(u0γ
n+1
1 (s)u∗0)⊕ γ2n−k−n

1 (s)⊕ γk−1
0 ≈δ γ0(s)⊕ γn1 (s)⊕ γ2n−k−n

1 (s)⊕ γk−1
0 (s)

for all s in G. Permuting the diagonal entries corresponds to conjugation by a unitary. Hence con-
jugating by suitable unitaries allows one to find some unitary u in M2n(pkQωpk) such that

u(γ2n+1−k
1 (s)⊕ γk−1

0 (s))u∗ ≈δ γ2n−k
1 (s)⊕ γk0 (s) (5.19)

for every s in G. One may repeat this trick for k > n, instead adding γ2n−k
1 (s)⊕ γk−n−1

0 (s) to both
sides of (5.18). Having established a unitary equivalence between maps essentially of the form σk,
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we may form our compatible system (π, %, µ,Qω) implementing (5.10) and patch it to enable (cp.1)-
(cp.3), then translate this into the properties in the claim. Define π, % : C0(0, 1)⊗A −→ M2n(pkQωpk)
via the compositions

π(s) = σk−1(s ◦ αk), respectively, %(s) = σk(s ◦ αk).

The domains are meaningful due to s ◦ αk having support on Ik and αk(Ik) ∼= (0, 1) as topological
spaces. The codomains are correct, for qk := pk ⊕ pk ⊕ . . .⊕ pk, with 2n-copies occurring, subsumes
the role of the unit on the images of the maps σk−1, σk restricted to Ik, according to property (p.5).
Since γj is the unitized ∗-homomorphism of the assignment s 7→ πj(s ◦ αk) on J2,

π|C0(J2)⊗A = σk−1|C0(J2)⊗A
def
=
(
γ2n−k+1

1 ⊕ γk−1
0

)
|C0(J2)⊗A;

%|C0(J2)⊗A = σk|C0(J2)⊗A
def
=
(
γ2n−k

1 ⊕ γk0
)
|C0(J2)⊗A.

The missing map µ should simply be θ viewed as a map on the image of αk, albeit we should compress
by pk to match the codomains. As such letting µ : C([0, 1]) −→ M2n(pkQωpk) be defined as

µ(h) = (pkθ(h ◦ αk)pk)2n

provides the required unital ∗-homomorphism; according to (p.1), the projection pk commutes with
the image of θ, whereof µ(1C([0,1])

) = pk ⊕ pk ⊕ . . .⊕ pk. Let now E = M2(pkQωpk) ∼= Q. Then the
quadruple (π, %, µ,E) becomes a compatible system due to the established compatibility attached
to (π0, π1, θ,Qω) combined with

τω,k(π(s))
(5.16)

=
m

3
(τω ⊗ τ2n)(σk−1(s ◦ αk))

=
m

3 · 2n
τω
(
(2n− k + 1)π1(s ◦ αk) + (k − 1)π0(s ◦ αk)

)
(5.12)

=
2n ·m
3 · 2n

(τL ⊗ τ)(s ◦ αk)

(5.17)
= (τL ⊗ τ)(s)

for all s inside C0(0, 1)⊗A. The same computation yields the analogue condition for %. The equiv-
alence (5.19) holds for every element in G ⊆ C0(0, 1) ⊗ A, so in particular the restrictions of π
and % onto C0(J2)⊗ A must obey (5.19), granting the equivalence (5.10) to the compatible system
(π, %, µ,E). In conclusion, the properties (cp.1)-(cp.3) are fulfilled with respect to (π, %, µ,E) via
some completely positive map ψ0 : C0(0, 1)⊗A −→ pkQωpk⊗M4n. To supply ψ0 with the designated
domain, the completely positive map ψk : C0(Ik)⊗A −→ pkQωpk ⊗M4n given by

ψk(s) = ψ0(s ◦ αk|−1
Ik

)

will work. We finalize the proof by describing how these properties imply those occurring in the
claim. For (cpn.1), one computes:

((τω,k ⊗ τ4n) ◦ ψk)(s)
(5.16)

=
m

3
((τω ⊗ τ4n) ◦ ψ0)(s ◦ αk|−1

Ik
)

(cp.1)
=

m

3
(τL ⊗ τ)(s ◦ αk|−1

Ik
)

(5.17)
= (τL ⊗ τ)(s)

for each s in C0(Ik)⊗A. Since αk|−1
Ik

is a homeomorphism, the properties (cpn.2)-(cpn.3) are easily

seen to correspond to the patching condition of (π, %, µ,E), meaning (cp.2). Upon F k0 , F
k becoming

F0, F , respectively, under the image of αk|−1
ik

(see page 100 for their definition), the approximations
(cp.3) grant the ones in (cpn.4), except for δ0-almost commutativity of θ4n and ψk. However, ap-
plying the involution on (cp.3) will provide this (each involved map is positive, hence preserves the
involution) without hindrances due to FA consisting of self-adjoints. This complete the proof.
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5.3 Consequences

The main theorem has a wide range of applications. We exhibit a select few of these. The reader
should be warned, the amount of references will be vast and one ought not expect a completely
self-contained exposition. For the majority of results, save the Rosenberg conjecture, there will be
missing details and the section therefore primarily serves as a survey of understanding the results
with an added emphasis on where the main theorem enters.

Let us initiate the section with the Rosenberg theorem and his conjecture. For completeness, we
provide a proof of Rosenberg’s theorem and its converse. To avoid notational confusion, a brief recap
of the reduced group C∗-algebras and amenable groups is supplied.

The Rosenberg Problem

Let G be a discrete group. Let `2(G) be the associated Hilbert space consisting of square summable
functions ξ : G −→ C, whose point-image ξ(s), for s ∈ G, will be written as ξs for notational purposes.
Let further {δs}s∈G represent the canonical orthonormal bases therein and let λ : CG −→ U(`2(G))
be the left regular representation associated to the group ring CG. Here λ(CG) is implicitly endowed
with the ordinary ∗-algebraic structure having

C∗r (G) := λ(CG)
‖·‖
⊆ B(`2(G))

be its minimal completion inducing a C∗-algebraic structure. The resulting C∗-algebra is called the
reduced group C∗-algebra associated toG. On the opposite end of the scope, the full group C∗-algebra
associated to G is the C∗-algebra is the completion of CG under the universal norm ‖ · ‖u, that is,

‖a‖u = sup{‖π(a)‖ : π is a non-degenerate representation of CG}.

The full group C∗-algebra is denoted by C∗(G). Every unitary representation u0 : G −→ U(`2(G))
onto some Hilbert space induces a unital representation u : CG −→ B(`2(G)). The induced repre-
sentation will automatically be ‖ · ‖u-contractive, so that u extends to a unital ∗-homomorphism
πu : C∗(G) −→ B(`2(G)), uniquely even. This property is referred to as the universal property of
the full group C∗-algebra.

Another pivotal property attached to C∗r (G) is its inherited faithful trace, the so-called canonical
trace. We often forego mentioning additional traces or their whereabouts, if present at all, due to the
subject being a large field of study in its own right. However, existence of a faithful one is obviously
crucial to us. The canonical trace τ : C∗r (G) −→ C is the functional given by

τ(a) = 〈aδ1G , δ1G〉

The proposition found below is well-known.

Proposition 5.3.1 (and definition). For any discrete group G, the following are equivalent.

(i) G admits a left-translation invariant finitely additive probability measure, meaning a finitely
additive measure µ : G −→ C such that µ(G) = 1 and µ(s.A) = µ(A) for any subset A ⊆ G,
where s.A represents the left-translation action onto A.

(ii) There exists a left-translation invariant state on `∞(G), the mentioned translation being the
induced one on `∞(G), meaning s.ξ(t) = ξ(s−1t) for each ξ in `∞(G) and s, t in G.

If G satisfies either, hence both, of the conditions one calls G amenable.

Amenability is the group-theoretic interpretation of nuclearity and vice versa. This assertion may be
justified through the following statement, whose proof may be uncovered as theorem 2.6.8 in [9]. For
the record, there are countless characterizations of amenability differing from those supplied here.
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Theorem 5.3.2. For a discrete group G, the following are equivalent.

(i) G is amenable.

(ii) C∗r (G) ∼= C∗(G).

(iii) C∗r (G) is nuclear.

We shall address a resembling question in terms of quasidiagonality. Does amenability translate into
quasidiagonality of the reduced group C∗-algebra? One implication was proven by Rosenberg, namely
that quasdiagonality forces amenability of the group in question. Rosenberg himself conjectured the
converse to be valid as well. However, the posed questioned remained unanswered for several years
until recently. We provide the full argument here in two steps. We initially verify an equivalent
characterization of amenability in terms of the reduced group C∗-algebra, then modify the proof to
deduce Rosenberg’s theorem2. Afterwards, we apply the main theorem to assemble the equivalence
of amenability and quasidiagonality.

Proposition 5.3.3. A discrete group G is amenable if and only if C∗r (G) admits a finite dimen-
sional representation.

Proof. The “only if “ part is trivial, for amenability entails C∗r (G) = C∗(G), whereupon universality
of C∗(G) induces the sought finite dimensional representation via s 7→ 1.

For the converse, suppose one has a finite dimensional representation π : C∗r (G) −→ Mn. The
proof is essentially encapsulated within the upcoming commutative diagram. Recall that `∞(G)
faithfully represents into B(`2(G)) as multiplication operators. Denote the representation by %, then
use Arveson’s extension theorem to produce a commutative diagram

B(`2(G))

ψ

%%

`∞(G)
%oo

ϕ=ψ|`∞(G)

��
C∗r (G)

ι

OO

π
// Mn

τn // C

Here ι represents the inclusion map and ψ is the unital completely positive from Arveson’s theorem.
Consider the composed map τ := τn ◦ ψ. Due to ψ restricting to the unital ∗-homomorphism π on
C∗r (G), the C∗-algebra C∗r (G) must belong to its multiplicative domain. Ergo,

τ(uau∗) = τn(ψ(u)ψ(a)ψ(u)∗)
(1.10)

= τn(ψ(uu∗)ψ(a)) = τ(a). (5.20)

One checks that λsξλ
∗
s = s.ξ whenever s ∈ G and ξ ∈ `∞(G). Applying the trace, it follows that the

relation τ(s.ξ) = τ(λsξλ
∗
s) = τ(ξ) must be valid by (5.20). As such τ constitutes a left-translation

invariant state on `∞(G), since ψ being unital completely positive forces ‖ψ‖ = ‖ψ(1)‖ = 1.

Theorem 5.3.4. Suppose G denotes any discrete, not necessarily countable, group. Under this
hypothesis, the following conditions are equivalent.

(i) G is amenable.

(ii) C∗r (G) ∼= C∗(G).

(iii) C∗r (G) is nuclear.

(iv) C∗r (G) is quasidiagonal.

2Rosenberg himself used a different strategy relying on Hilbert-Schmidt operators.
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Proof. The equivalence (i)⇔(iv) is the sole one missing. We commence by proving (iv)⇒(i). Let
once more % be the faithful representation of `∞(G). Consider the scenario in which G is countable.
It is apparent that C∗r (G) must be separable thereby. Suppose (ϕn)n≥1 denotes the sequence unital
completely positive maps ϕn : C∗r (G) −→ Mk(n) detecting quasidiagonality. In the spirit of the
previous proof, consider the commutative diagram below.

`∞(G)
% // B(`2(G))

ψn

&&
C∗r (G)

ι

OO

ϕn // Mk(n) ⊆ Q
δω // Qω

τω // C

Here ι denotes the natural inclusion. The map ψn is the unital completely positive map arising
from Arveson’s extension theorem. In accordance with the diagram, let ϕ : C∗r (G) −→ `∞(Mk(n),N)
denote the map induced from the sequence (ϕn)n≥1. Let likewise ψ be the unital completely positive
one associated to the sequence (ψn)n≥1. By commutativity of the above diagram in conjunction with
the inclusions Mk(n) ⊆ Q providing an inclusion `∞(Mk(n),N) ⊆ `∞(Q), we acquire the new larger
commutative diagram

`∞(G)
% // B(`2(G))

ψ // `∞(Q)

id

��

%ω // Qω

id

��

τω // C

C∗r (G)

ι

OO

ϕ // `∞(Q)
%ω // Qω

τω // C

The composed map πr := %ω ◦ ϕ defines a ∗-monomorphism due to asymptotic multiplicativity - and
isometry properties of the sequence (ϕn)n≥1, while π := %ω ◦ ψ must be unital completely positive.
Upon π restricting to the ∗-homomorphism πr on C∗r (G), the algebra C∗r (G) must belong to the
multiplicative domain of π. Thus the composition τ := τω ◦ π satisfies a property resembling (5.20)
through an analogues argument.

For the converse implication, let us treat the countable case as well. Since C∗r (G) admits a
faithful trace and is separable via countability, it fulfills every requirement of theorem 5.2.1 due to
Tu’s theroem (granting the UCT-condition, see his original article [45] on the matter). Ergo, the
canonical faithful trace must be quasidiagonal, upon which C∗r (G) must be quasidiagonal due to the
final part in proposition 3.2.3. We emphasize on separability being an indispensable ingredient for
this argument, i.e., countability of G.

The countable case entails the general one as follows. The groupG is the inductive, non-sequential,
limit of its subgroups generated by finite subsets having inclusions as connecting morphisms, each
of which must be amenable, say G = lim−→Gα. Since inductive limits of amenable groups remain
amenable while the same remains true for inductive limits of quasidiagonal C∗-algebras with faithful
connecting morphisms, the assertion stems from the countable case in conjunction with

C∗r (G) = C∗r
(

lim−→Gα
) ∼= lim−→C∗r (Gα).

For a proof of the latter isomorphism, we refer to proposition 1.5.2 in [30].

The Blackadar-Kirchberg Problem

The next aim will be to establish sufficient criteria to deduce quasidiagonality. The converse consid-
eration has been addressed prior, namely that stably finiteness and existence of trace are necessary
conditions to sustain quasidiagonality in the unital case. Based on these necessities, Blackadar and
Kirchberg posed the following question: Are separable nuclear stably finite C∗-algebras automat-
ically quasidiagonal? An affirmative answer would entail that separable nuclear C∗-algebras are
quasidiagonal if and only if they are stably finite. Stably finite unital nuclear separable C∗-algebras
do admit at bare minimum one trace due to the following result.
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Theorem 5.3.5 (Blackadar-Handlemann, Haagerup). Every unital stably finite C∗-algebra admits
a quasitrace. Therefore every exact stably finite C∗-algebra admits a trace.

The latter contribution was accomplished by Haagerup in the unital case, who verified that qua-
sitraces on exact C∗-algebras are full-fledged traces. For references of the above, see theorem 1.1.4
in [35]. Since we restrict ourselves to nuclear C∗-algebras, we omit providing the formal definition of
quasitraces. We turn our gaze towards an affirmative answer to Blackader-Kirchberg’s problem for
the subclass consisting of simple C∗ algebras in the UCT-class. For the proof, we require a result of
Pedersen, whose proof may be found in [34] as theorem 5.6.1.

Proposition 5.3.6. Within every C∗-algebra A there exists a minimal norm-dense algebraic two-
sided ideal, symbolically denoted by Ped(A) and commonly referred to as the Pedersen ideal.

Theorem 5.3.7. Let A be a separable nuclear C∗-algebras fulfilling the UCT-condition.

(i) If A admits a faithful trace, then A must be quasidiagonal. In particular, A must be quasidi-
agonal should it admit a trace and be simple.

(ii) If A is stably finite and simple, then it must be quasidiagonal.

Proof. (i): Suppose τ denotes any faithful trace acting on A. According to theorem 5.2.1, τ must
be quasidiagonal, whereby proposition 3.2.3 provides quasidiagonality. The second statement stems
from the closed left-ideal Lτ = {a ∈ A : τ(a∗a) = 0} being two-sided for traces, hence must be
trivial as τ 6= 0. It follows that τ is automatically faithful, whence the first part applies.

(ii): For the second statement, suppose A is separable, nuclear, stably finite, and satisfies the
UCT-condition. The proof requires several involved results. As such we record their statements in
brevity during the proof. Consider the stabilization A⊗K of A. In the event of A⊗K admitting a
nonzero projection p, the corner B := p(A⊗K)p must be hereditary. We wish to invoke L. Brown’s
theorem to acquire a stable isomorphism betweenA andB, then transfer quasidiagonality therefrom
via theorem 5.3.5 and the Tikuisis-White-Winter theorem. However, this requires B to be full.
This may be deduced from the correspondence between left-ideals and hereditary subalgebras; any
hereditary subalgebra of a simple C∗-algebra is simple. By simplicity, any element is automatically
full, permitting the use of L. Brown’s theorem. Ergo we have

p(A⊗K)p⊗K = B ⊗K ∼= A⊗K.

According to theorem 5.3.5, B admits a trace τ . Upon B being hereditary in the nuclear C∗-algebra
A⊗K, it must be nuclear itself. The trace τ is automatically faithfulness by simplicity ofB whereas the
UCT-condition passes to hereditary subalgebras, whereupon B inherits the UCT-condition through
A. The Tikuisis-White-Winter theorem thus ensures quasidiagonality of τ , hence quasidiagonality
ofB according to (i). The quasidiagonality is inherited toA via the canonical embeddingA ↪→ A⊗K
given by a 7→ a⊗ e with e being any rank one projection.

Assume now thatA⊗K is projectionless. In [4], Blackadar-Cuntz managed to verify that for stable
simple C∗-algebras, the existence of an infinite projection is the sole obstruction towards the existence
of lower-semicontinuous dimension functions defined on the Pedersen ideal. The stabilization of A is
always stable while it cannot contain infinite projections by hypothesis. Since simplicity stems from
simplicity ofA, K, thenA⊗K must admit some lower-semicontinuous dimension function. According
to Haagerup’s theorem, applicable upon A ⊗ K being nuclear, combined with the correspondence
between traces and lower-semicontinuous dimension functions, A ⊗ K must admit some trace τ
defined on Ped(A⊗K) in the sense that τ is bounded on positive elements thereon. By separability
of A, the stabilization becomes σ-unital. Due to minimality, Ped(A⊗K) belongs to

Jτ := {e ∈ A⊗K : ‖τ(e)‖ <∞}Calg A⊗K.

Thus the claim below (for algebraic simplicity, we refer to corollary 2.2 in [43]) reveals that τ is a
trace on A⊗K and the Tikuisis-White-Winter theorem applies thereof to grant (ii).
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Claim. For every σ-unital algebraically simple C∗-algebra E, each lower semi-continuous trace de-
fined on Ped(E) is a trace acting on E.

Proof of claim. Choose an increasing approximate unit (en)n≥1 of E such that enen+1 = en+1 for
each positive integer n3. Fix some positive element a in E. Set accordingly µn = a1/2ena

1/2 to
acquire an increasing sequence consisting of positive contractions converging in norm to a. Then

τ(a) = sup
n
τ(µn) = sup

n
τ(e1/2

n ae1/2
n )

(1.2)

≤ sup
n
τ(en)‖a‖.

Lower semi-continuity of τ was exploited during the first equality. Therefore ‖τ‖ = supn τ(en)
must hold. Seeking a contradiction, assume that τ were unbounded. Based on the just established
formula for ‖τ‖, one may extract an increasing subsequence (mk)k≥1 of integers in N such that
τ(zk) ≥ 1 for all k in N, where zk := emk+1

− emk . Due to en acting as a unit on en−1, the
sequence (zk)k≥1 consists of mutually orthogonal positive contractions. Hence the series

∑∞
k=1 zkk

−1

converges absolutely to some positive contraction z. Since τ is densely defined and lower semi-
continuous, one has

∑∞
k=1 k

−1 ≤
∑∞
k=1 τ(zk)k−1 = τ(z) <∞, a contradiction.

Spreading Quasidiagonality

Before attending classification natured results, we strengthen the main theorem in the unital case. It
shall be revealed that the imposed faithfulness on a single existing trace ensures quasidiagonality of
every not necessarily faithful trace. The essential component entering the scene is a lemma in [8] by
N. P. Brown, which describes how no distinction occurs between the trace simplex and quasidiagonal
traces for certain classes of C∗-algebras.

Proposition 5.3.8. Suppose A is a class of C∗-algebras containing C such that A is closed under
performing inductive limits with connecting ∗-monomorphisms, taking extensions by members in
A and tensoring with Mn for each n. Consider the three following conditions.

(i) Every trace on A is quasidiagonal, for every simple separable unital member A in A .

(ii) Every trace on A is quasidiagonal, for every residually finite member A in A .

(iii) Every trace on A is quasidiagonal, for every quasidiagonal member A in A .

The implications (i)⇒(ii)⇒(iii) are all valid.

Proof. We restrict ourselves to proving (ii)⇒(iii). The remaining implication may be derived from
lemma 6.1.20 in [8], nothing that the hypothesis concerning Popa algebras in property (ii) is avoid-
able. Suppose A denotes a quasidiagonal member in the class A , the assumed quasidiagonality
being implemented via the sequence (ψn)n≥1 of unital completely positive maps ψn : A −→ Mk(n).
The idea becomes more transparent after establishing some setup. Consider the unital completely
positive map ψ : A −→ `∞(Mk(n),N) induced via the sequence (ψn)n≥1 and let E = C∗(ψ(A)). We
shall investigate the obtained sequence

0 // c0(Mk(n),N) // E + c0(Mk(n),N)
%∞ // A // 0,

where %∞ : `∞(Mk(n),N) −→ `(Mk(n),N) denotes the quotient map. Due to (ψn)n≥1 being asymp-
totically isometric - and multiplicative, the associated induced map ψ composed with %∞ turns into
a ∗-monomorphism. Therefore the above sequence is meaningful and short-exact, regarding %∞ as
its restriction onto E + c0(Mk(n),N). The point here is that c0(Mk(n),N) is residually finite dimen-
sional and it ought to belong to A . After having settled these properties, our hypothesis allows us
to determine the designated unital completely positive maps.

3This may be arranged using the continuous functional calculus. We omit dwelling into details.
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Having showcased the strategy we dive into the rigorous execution. Upon passing to a suitable
subsequence of (ψn)n≥1, we may arrange that ψ becomes multiplicative up to any tolerance. Suppose
some finite subset F ⊆ A together with tolerance ε > 0 has been selected. Let furthermore τ be
some fixed trace acting on A. As discussed, we may assume without loss of generality that

ψ(a)ψ(b) ≈ε ψ(ab), a, b ∈ F. (5.21)

Our objective will be to enable (ii) on E + c0(Mk(n),N). For this, observe that the containment
C ∈ A in conjunction with A being stable under tensoring with matrix-algebras entails M` ∈ A
for every positive integer `. Due to the class being closed under extensions, finite direct sums of
elements in A remain in A . Exploiting this particular property along with A being closed under
performing inductive limits, one may deduce that

c0(Mk(n),N) = lim−→

( n⊕
i=1

Mk(i)

)
∈ A .

The preceding short-exact sequence thus guarantees that B := E + c0(Mk(n),N) determines a
residually finite dimensional member in A , which permits the use of (ii). Passing to the quotient we
acquire the induced trace τB : B −→ C given by

τB(·) = (τ ◦ %∞)(·).

According to the hypothesis (ii), τB must be quasidiagonal. Let (ϕn)n≥1 denote the sequence de-
tecting quasidiagonality of τB , meaning for some stage n there exists a unital completely positive
map ϕ := ϕn : B −→Mk fulfilling

ϕ(ψ(a)ψ(b)) ≈ε ϕ(ψ(a))ϕ(ψ(b)), (5.22)

τk ◦ ϕ ≈ε τB . (5.23)

One thereof defines γ : A −→ Mk by a 7→ ϕ(ψ(a)) to produce a unital completely positive map
subject to the estimates

γ(ab) = ϕ(ψ(ab))
(5.21)
≈ε ϕ(ψ(a)ψ(b))

(5.22)
≈ε ϕ(ψ(a))ϕ(ψ(b)) = γ(a)γ(b).

An analogues computation leaning on (5.23) ensures that γ recovers the trace τ up to an ε-based
error, completing the proof.

Combining this result of N. Brown with theorem 5.3.7(i), we deduce the following.

Corollary 5.3.9. Any trace acting on a separable unital nuclear quasidiagonal C∗-algebra satis-
fying the UCT-condition is quasidiagonal.

Proof. According to theorem 4.4.4, the N whose members are separable C∗-algebras in the UCT-
class, contains C and is stable under tensoring with Mk for any positive integer k, extensions and
performing inductive limits with monic connecting morphisms. The class consisting of nuclear C∗-
algebras is likewise closed under performing these operations, see proposition 1.4.6, hence the sub-
class Nnuc consisting of nuclear members in N must be subject to these properties as well. Invoking
the Tikuisis-White-Winter theorem, every trace acting on a simple member in Nnuc must be qua-
sidiagonal. The preceding proposition thereby entails that every trace acting on a quasidiagonal
member in Nnuc must be quasidiagonal itself, proving the claim.
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5.4 Connections to the Classification Program

The primary goal behind deriving the main theorem was arguably to provide an affirmative answer
to a question posed when the classification of nuclear unital separable simple C∗-algebras in the
UCT class was within reach. This final section will attempt to convey an overview of how the main
theorem affects the classification program. For the record, the work is a culmination of a myriad of
involved results from several participants. At first, let us discuss what “classification” means.

Suppose C denotes some class of C∗-algebras, for instance the class of AF-algebras4. The class C is
classifiable if there is a collection of invariants for members in C , suggestively denoted by K(·), such
that one acquires

A ∼= B in C ⇐⇒ K(A) ∼= K(B).

The isomorphism on the right-hand side depends on the collection of invariants, or “data”. To
visualize the principle, consider the class U comprised of UHF-algebras. These are classifiable via
their K-theoretic data and placement of unit, that is, one has

A ∼= B in U ⇐⇒ (K0(A), [1A]0) ∼= (K0(B), [1B ]0),

where the right-hand isomorphism ought to be read thus: There exists some abelian group isomor-
phism ϕ : K0(A) −→ K0(B) satisfying ϕ([1A]0) = [1B ]0 and ϕ arises as the group homomorphism
induced by a unital ∗-isomorphism π : A −→ B. K-theory is a prime candidate to encapsulate clas-
sification. However, it tends to be insufficient when pursuing classification of say nuclear separable
simple unital C∗-algebras, despite this originally being conjectured by Elliott.

In an effort to mend the wound, the K-theoretic data was updated and transformed into what in
modern terms is called the Elliott invariant. Let N be the class of unital simple separable nuclear
C∗-algebras fulfilling the UCT-condition. The Elliott invariant consists of six invariants all of which
are collected into a 6-tuple, namely

Ell(A) := (K0(A),K0(A)+,K1(A), [1A]0, T (A), rA).

The invariants, save the latter rA, have been accounted for already. The map rA is defined in the
following manner. Recall that for any preordered abelian group (G,G+, u) with order unit u, the
set S(G) denotes the weak∗-compact convex set of unit-preserving states on G. Let τ be some trace
acting on A and define K0(τ) : K0(A) −→ R by

K0(τ)([p]0 − [q]0) = τ(p− q)

for any pair of projections p, q in P∞(A). Here one adopts the standard picture of K0(A) in the unital
scenario. The above is independent on the choice of representatives due to traces lacking the ability
to distinguish Murray - von Neumann equivalent elements. The assignment rA : T (A) −→ S(K0(A))
is then τ 7→ K0(τ). This becomes weak∗ to weak∗-continuous and affine.

For two membersA,B inN , one declares that Ell(A) ∼= Ell(B) should the following conditions be
met. Firstly, the preordered abelian groups (K0(A),K0(A)+, [1A]0) and (K0(B),K0(B)+, [1B ]0) ad-
mit some unit-preserving group isomorphism ϕ : K0(A) −→ K0(B) such that ϕ(K0(A)+) = K0(B)+

becomes valid. Secondly, there must exist some group isomorphism ψ : K1(A) −→ K1(B) and, lastly,
the existence of an affine homeomorphism α : T (A) −→ T (B) making the diagram

T (A)

rA

��

α // T (B)

rB

��
S(K0(A))

ϕ∗ // S(K0(B))

commute, where ϕ∗ is the induced morphism ϕ∗(f) = ϕ ◦ f , is demanded. The greatest achievement
so far is exhibited in the following.

4The classification of AF-algebras somewhat serves as a narrative example here, see the first chapter in [35].
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Theorem 5.4.1. The subclass in N whose members consists of those having finite nuclear dimen-
sion and in which every trace is quasidiagonal is classified via the Elliott invariant. More precisely,
every isomorphism between Elliott invariants lifts to an isomorphism of the C∗-algebras.

The theorem was proven in [20] by Elliott, Gong, Niu and Lin, heavily relying on older results and
especially on the large paper [19]. Let us shed some light upon the new entity: Nuclear dimension. We
bring forth this notion alongside its stronger version, finite decomposition rank, without further elab-
oration outside those specifications we require to understand the aforementioned result. However,
let us initially apply the main theorem. Indeed it makes the assumption regarding quasidiagonality
of traces obsolete, viz.:

Corollary 5.4.2. The subclass in N whose members consists of those having finite nuclear dimen-
sion is classified via the Elliott invariant. More precisely, every isomorphism between two Elliott
invariants lifts to an isomorphism of the C∗-algebras.

So what is nuclear dimension? Finite nuclear dimension (and its big brother finite decomposition
rank) may be regarded as a refined version of nuclearity.

Definition. A C∗-algebra E has nuclear dimension n, written dimnuc(E) = n, if there exists some
net (ϕα, ψα, Fα)α∈J comprised of completely positive maps ϕα : E −→ Fα, ψα : Fα −→ E with ϕα
being contractive and finite-dimensional C∗-algebras Fα such that

· ψαϕα(·)→ id(·) in the point-norm topology;

· each of the algebras Fα decompose into n-ideals Fα =
⊕n

k=0 I
α
k and ψα restricts to an order zero

map on each summand.

If the morphism ψα of the approximating net may be chosen as contractions, then A is said to have
decomposition rank n, written dr(A) = n. For both notions, if such an integer n cannot be found,
then one declares the nuclear dimension and decomposition rank to be infinite.

We confine ourselves to supplying a few remarks. It is apparent that dr(A) ≤ dimnuc(A). Further-
more, a C∗-algebra must be nuclear in the event of either dimension being finite. Some additional
notable observations regarding both notions is that they generalize the topological dimension in the
sense that dimnuc(C0(Ω)) = dr(C0(Ω)) = dim(Ω) for any locally compact second countable space
X, see [50], [27]. Both notions also enjoy some ordinary permanence properties concerning comput-
ing the nuclear dimension (resp. decomposition rank). These “dimension” invariants of C∗-algebras
have been predicted by Toms and Winter to be the topological formulations of notions established
hitherto. We address in brevity the Toms-Winter conjecture.

Conjecture 5.4.1 (Toms-Winter). Let A be a separable, simple, unital, nuclear, and infinite
dimensional C∗-algebras. Then the following are equivalent.

(i) A is Z-stable, meaning A⊗Z ∼= Z.

(ii) A has finite nuclear dimension.

(iii) A has strict comparison.

Moreover, (i) may be replaced by finite decomposition rank if A is stably finite.

Combining the results in [37], [48], the implications (i)⇒(ii)⇒(iii) hold in full generality, whereas
(ii)⇒(i) together with (iii)⇒(ii) hold should the extreme boundary of T (A) be compact and finite-
dimensional, all of which are consequences of results found in [26], [38], [44] and Theorem B in [23],
respectively. In particular, the additional condition is fulfilled in the monotracial case and one may
combine the main theorem with Theorem F in [23] to obtain the equivalence of all four conditions.
Hence the Toms-Winter conjecture is valid for monotracial C∗-algebras.



Appendix A

Multiplier Algebras and Tensor Products
of Adjointable Operators

Multiplier algebras occur non-stop throughout the thesis. The definition alongside existence (and
uniqueness) are assumed familiar, albeit two realizations of multiplier algebras come into play
throughout the thesis. As such the concept has received a spot in the appendix together with certain
handy permanence properties. First and foremost, the general notion.

Definition. LetE be some C∗-algebra. A multiplier algebra M ofE is a unital C∗-algebra containing
E as an essential ideal, meaning E non-trivially intersects every ideal in M , fulfilling the following
universal property. For any additional multiplier algebra N , there is a ∗-monomorphism σ : N ↪→M
such that the diagram

N

σ

&&
E

ι

OO

idE

// E

commutates, where ι denotes the ordinary inclusion map.

The multiplier algebra exists and the universal property applied twice allows on to effortlessly deduce
uniqueness up to ∗-isomorphism. Therefore, one often refers to the multiplier algebra ofA, commonly
denoted byM(A). A few characterizations are listed beneath.

Proposition A.0.3. Suppose A is some C∗-algebra faithfully represented on A, say A ⊆ B(H).

(i) The idealizer IA of A, meaning

IA =
{
x ∈ B(H) : ax, xa ∈ A for all a ∈ A

}
constitutes a copy of M(A).

(ii) The space of double centralizers, meaning

{(L,R) ∈ B(A)×B(A) : aL(b) = R(a)b, a, b ∈ A},

with B(A) denoting the space of bounded operators on A, constitutes a copy of M(A).

Proof. For the realization (i) we refer to lemma A.2.1 in [30], whereas the realization (ii) may be
recovered in [47] as proposition 2.2.11.
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ComputingM(A) in general may be plainly unachievable. However, a couple of important instances
are M(C0(Ω)) = Cb(Ω) for any locally compact Hausdorff space Ω; and M(K(H)) = B(H). The
latter is especially instructive to keep in mind when examining KK-theory. We close the discussion
of multiplier algebras by deducing a few permanence properties. It requires some aid from Hilbert
modules, so a minor detour is taken.

Definition. Suppose E,F denote Hilbert A,B-modules, respectively. Form the C-algebraic tensor
product E � F . Endow E � F with the A�B action defined on elementary tensors by

(a⊗ b)(ξ ⊗ η) = aξ ⊗ bη

for all a ∈ A, b ∈ B, ξ ∈ E and η ∈ F . Equip E � F with an A � B-valued inner product1 by
declaring that for each ξ, ξ0 ∈ E together with η, η0 ∈ F ,

〈ξ ⊗ η, ξ0 ⊗ η0〉 = 〈ξ, ξ0〉E ⊗C 〈η, η0〉F .

Being bounded in the minimal tensor norm on A� B, it extends to A⊗ B. We define E ⊗ F to be
Hilbert-A⊗B obtained from applying the double completion procedure.

Remark. For Hilbert spacesH,K there exists a ∗-monomorphism B(H)⊗B(K) ↪→ B(H⊗K). Tensor
products of adjointables give rise to a similar inclusion. Verifying this requires extra meticulous care.
A detailed exposition of the fact may be recovered in fourth chapter 4 of [28]. Let E,F be Hilbert
modules over a common C∗-algebra A. Then the map β0 : LA(E)×LA(F ) −→ LA(E⊗F ) given by
(s, t) 7→ s⊗ t, wherein

(s⊗ t)(ξ ⊗ η) := sξ ⊗ tη

for each ξ ∈ E and η ∈ F , induces a ∗-monomorphism β : LA(E)⊗ LA(F ) ↪→ LA(E ⊗ F ).

Proposition A.0.4. Let A,B be a C∗-algebra. If so, the following hold.

(i) A ∼=M(A) whenever A admits a units.

(ii) One has Mn(M(A)) ∼=M(Mn(A)) for all n in N.

(iii) One has M(A1 ⊕ . . .⊕An) ∼=M(A1)⊕ . . .⊕M(An) for C∗-algebras A1, A2, . . . , An.

(iv) There exists a unital ∗-monomorphism β0 : M(A)⊗M(B) −→M(A⊗B).

Proof. (i): By hypothesis. one must have (1A − 1M(A))A = {0}. Since A is an essential ideal inside
M(A), it follows that 1A = 1M(A), whereupon A =M(A).

(ii): Suppose x belongs to the idealizer M(Mn(A)) of Mn(A). Representing A faithfully into
some Hilbert spaceH, we may assume without loss of generality that A ⊆ B(H). By hypothesis, the
element x = [xij ] must satisfy xa, ax ∈ Mn(A) for any element a = [aij ] inside Mn(A). In particular,
this must be valid for the column-matrix [a, 0, . . . , 0]t ∈ An, which translates into

[x11a, x21a, . . . , xn1a]t = xa ∈ An,

so that each entry must belong to A. Due to the choice of a being arbitrary, each of the entries xk1

for k ≤ n must determine an element inM(A). Similar arguments apply to ensure the containments
xij ∈M(A) for all remaining pairs of indices i, j ≤ n. The idealizer of Mn(A) must thereby coincide
with Mn(M(A)), grantingM(Mn(A)) ↪→ Mn(M(A)). The reverse inclusion is obvious.

(iii)+(v): The proof of (iii) proceed in the same fashion as (ii), although easier. We omit the
details. To prove (iv) one appeals to the embedding L(A)⊗L(B) ↪→ L(A⊗B). The ∗-isomorphisms
K(A) ∼= A andM(K(A)) ∼= L(A) from section 4.1 thus imply thatM(A)⊗M(B) ↪→M(A⊗B).

1Separation of points is quite difficult to ensure. We refer to [28] chapter 6 for a detailed survey.



Appendix B

Stable Rank One and Real Rank Zero

Stable rank one and real rank zero are two invariants of C∗-algebras that tend to appear in the thesis.
Stable rank one is used solely to invoke Elliott and Ciuperca’s classification of ∗-homomorphisms
defined on C0(0, 1] in terms of their Cuntz semigroup. Real rank zero is primarily used to control
K-theoretic behavior and therefore the current appendix was written to supply an overview.

Definition. A unital C∗-algebra A has stable rank one, written sr(A) = 1, if the topological group
GL(A) consisting of invertible elements in A is norm dense in A.

Remark. Invertible elements in a C∗-algebra A admit unitary polar decompositions. Moroever,
elements in A admitting a unitary polar decomposition belong to GL(A). Letting UP(A) denote the
collection of unitary polar decomposable elements in A yields

GL(A) ⊆ UP(A) ⊆ GL(A).

In particular, stable rank one becomes equivalent to UP(A) being norm-dense in A.

Proposition B.0.5. The following hold.

(i) Finite dimensional C∗-algebras have stable rank one.

(ii) If (An)n≥1 denotes a sequence of unital C∗-algebras with stable rank one, then `∞(An,N)
attains stable rank one.

(iii) Stable rank one passes to quotients of C∗-algebras. Thus, stable rank passes to ultrapowers
along a free ultrafilter ω on N.

(iv) Inductive sequences of stable rank one C∗-algebras with unital connecting morphisms have
stable rank one. Hence UHF-Algebras have stable rank one.

Proof. (i): The spectrum of an element a inside a finite dimensional C∗-algebra is necessarily finite.
As such, one may choose an element λ of length at most δ > 0 belonging to the resolvent. This
entails that b = a− 1Aλ becomes invertible and ‖a− b‖ < δ. Thus, we may determine an invertible
element b within any ε-distance of a (choosing δ sufficiently small) as desired.

(ii): To please the eyes, abbreviate `∞(An,N) by A. Suppose a = (a1, a2, . . .) belongs to A so
that each an belongs to An for n ∈ N and fix some tolerance ε > 0. Upon each An having stable
rank one, there exists some unitary un satisfying an ≈ε un|an| in An. The tuple (u1, u2, . . .) clearly
defines a unitary in A, whereof (un|an|) becomes an element in A such that

‖(an)− (un) · |(an)|‖ = sup
n∈N
‖an − un|an|‖ < ε.

Therefore UP(A) lies norm-densely inside A, granting (ii).
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(iii): Suppose I denotes an ideal inside a stable rank one C∗-algebra A. Fix some tolerance
ε > 0 and let π : A −→ A/I be the canonical ∗-epimorphism. An element b in A/I admits a lift
a in A under π. Due to A having stable rank one, there exists a unitary u in A subject to the
relation a ≈ε u|a|. The ∗-homomorphism π is unital, so that π(u) must be a unitary inside A/I
fulfilling π(a) ≈ε π(u|a|) = π(u)|π(a)|, for the continuous functional calculus commutes with ∗-
homomorphisms. It follows that UP(A/I) is norm-dense in A/I as desired.

(iv): Suppose (An, ϕn)n≥1 is an inductive sequence consisting of stable rank one C∗-algebras
and unital ∗-homomorphisms. Write A for the inductive limit and and let ϕ∞n : An −→ A be the
associated maps ϕ∞n per usual. The inductive limit may be identified with the norm-closure of⋃
n ϕ
∞
n (An). Any element a in Amust therefore be the norm-limit of a sequence (ϕ∞n(m)(an(m)))m≥1.

Let some tolerance ε > 0 be fixed and exploit that each An is of stable rank one to produce untaries
un(m) in An fulfilling an(m) ≈ε/2 un(m)|an(m)| for each m in N. Select hereafter some m in N such
that ϕ∞n(m)(an(m)) ≈ε/2 a. Since each connecting map is unital, ϕ∞n(m)(un(m)) becomes a unitary.
Moreover, one has

ϕ∞n(m)(un(m))|ϕ∞n(m)(an(m))| = ϕ∞n(m)(un(m)|an(m)|) ≈ε a.

Again one exploits that the continuous functional calculus commutes with ∗-homomorphisms. Alto-
gether, the set of unitary polar decomposable elements is norm-dense, yielding stable rank one.

A notion resembling stable rank one is real rank zero. Real rank zero will primarily enter to control
unpredictable K-theoretic behavior once we to modify a stable uniqueness theorem by Dadarlat and
Eilers. Although we avoid dwelling deep into the theory of real rank zero, it does pose a pivotal
notion to us. To remedy the absence of using real rank zero, examples are given.

Definition. A unital C∗-algebra A has real rank zero, symbolically represented by RR(A) = 0,
provided that the set of invertible self-adjoint elements therein is dense in Asa.

For non-unital C∗-algebras, one requires the unitization to be of real rank zero. Real rank zero
demands that a vast amount of projections must exist. This interpretation may be justified through
the theorem below, due to Pedersen and L. Brown in [7].

Theorem B.0.6. For a unital C∗-algebra A, the following conditions are equivalent.

(i) A has real rank zero.

(ii) The set of self-adjoint elements having finite spectra are norm-dense in Asa.

(iii) Every hereditary subalgebra in A admits an approximate unit (not necessarily increasing)
consisting of projections.

We present some fundamental properties attached to real rank zero, again omitting proofs entirely.
Verifications are carried out in full detail in [7]. We present these permanence properties, thereby
supplying a larger framework of when real rank zero may be expected. Additionally, they reveal real
rank zero of Qω.

Proposition B.0.7. Let A,A1, A2, . . . some C∗-algebras. Then:

(i) real rank zero passes to quotients;

(ii) real rank zero passes to inductive limits;

(iii) real rank zero passes to hereditary subalgebras;

(iv) real rank zero passes to matrix algebras, meaning if RR(A) = 0, then RR(Mn(A)) = 0.
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The reader is warned that stable rank one and real rank zero do not imply one another, despite
their deceptively resembling appearances. Regardless, the standard examples occurring through the
thesis of stable rank one prevail.

Examples.

· Every finite dimensional C∗-algebra must have real rank zero. Indeed, every self-adjoint element
therein has a finite spectrum, whereby an argument running parallel (i) in proposition B.0.5
implies the second condition of the preceding theorem.

· In light of finite dimensional C∗-algebras having real rank zero, all UHF-algebras and ultraproducts
thereof must fulfill the same condition by the above permanence properties.

· Every von Neumann algebra has real rank zero.

· The Cuntz-algebra On, i.e., the universal C∗-algebra generated by n partial isometries v1, . . . vn
for which v1v

∗
1 + . . .+ vnv

∗
n = 1, has real rank zero for each positive integer n.
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