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Abstract

The project conveys a survey of quasidiagonality. Quasidiagonality originates from block-
diagonality of bounded operators acting on Hilbert spaces, a concept introduced by Halmos.
Quasidiagonality extends to the realm of C∗-algebras expressed in terms of completely positive
maps and has proven itself to be an adamant invariant of C∗-algebras. The first aim of the
project is to establish the notion of quasidiagonal C∗-algebras properly in its various disguises,
following closely the footsteps of Voiculescu’s approach in establishing the abstract shape of
quasidiagonality alongside its concrete ones.

Studying quasidiagonal C∗-algebras eventually forces one to consider group theoretic, prob-
ably approximation natured, properties translating into quasidiagonality of the reduced group
C∗-algebra. Indeed, Jonathan Rosenberg succeeded in proving that quasidiagonality of the re-
duced group C∗-algebra associated to a discrete group G implies amenability of the group and
conjectured the converse to be true. Prior until recently, the validity of the converse remained
unanswered with a partial converse being confirmed by Ozawa, Rørdam and Sato. The full con-
verse of Rosenberg’s theorem was answered in the affirmative by a recent paper due to Tikuisis,
White and Winter invoking various disciplines in the operator algebraic setting including, but
not limited to, order zero maps, KK-theory and lifting theorems of separable nuclear - and/or
quasidiagonal C∗-algebras. In this project, the proofs of the aforementioned partial converse
together with investigations of ingredients used during the derivation of the full version are
carried out in detail.
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Prologue

The project carries an exposition of quasidiagonality. Quasidiagonality has roots reaching block-
diagonal operators, a concept introduced by Halmos that generalized the notion of diagonalizable
matrices to the infinite-dimensional case. Being block-diagonal is quite restrictive, so one modifies
block-diagonality by weakening the condition and thus creates an approximation natured version.
Since C∗-algebras arguably form generalizations of subalgebras occurring in bounded operators act-
ing on Hilbert spaces, it is natural to extend the quasidiagonality to this context. A number of
participants, especially Voiculescu, succeeded in achieving a version of quasidiagonal C∗-algebras
including a characterization based on completely positive maps.

Quasidiagonality is a rigid structure to impose on a C∗-algebra and has been extensively studied
partly to achieve classification results concerning nuclear separable C∗-algebras. A significant example
is the reduced group C∗-algebra associated to a discrete group in which recent progress has been
made by providing an affirmative answer to Rosenberg’s conjecture. Rosenberg’s conjecture states
the converse of Rosenberg’s theorem; that quasidiagonality of the reduced group C∗-algebra implies
amenability of the group in play. The project essentially attempts to convey a survey of quasidiagonlity
in general and understand the aforementioned converse of Rosenberg’s conjecture.

In the first chapter, a broad treatment of various preliminaries are given with the notable theory oc-
curring being unique properties of UHF-algebras and ultraproducts. The chapter includes background
theory regarding UHF-algebras, AF-algebras, crossed products, group C∗-algebras, the prerequisites,
inductive limits and ultraproducts. It is based on knowledge gathered from texts such as [2,], [5], [17],
[12] and [10].

The second chapter tears through the seventh chapter in [2] and attempts to present quasidiago-
nality in detail with the overall aim of understanding the numerous characterizations and examples.
Permanence properties are proven as well, having an added emphasis on the heralded homotopy
invariance theorem due to Voiculescu’s.

The third chapter gives a crash course on KK-theory, the UCT-class and groupoid C∗-algebras
with the sole purpose of comprehending, to some extend, these abstract and indispensable beasts
when understanding quasidiagonality. For the record, the project solely considers Cuntz picture of
KK-theory, sadly, and the theory hereof is extracted from his original article [4].

The fourth chapter pursues the proof of a partial converse to Rosenberg’s conjecture, proven in the
article [9] by Ozawa, Rørdam and Sato. The theorem is the deepest one emerging in the project and
a whole chapter is devoted to it for this particular reason. We even present the results of Chou/Osin
from the articles [3] and [8], which the partial answer exploits.

The fifth and final chapter brings an exposition of certain considerations concerning quasidiago-
nality that Tikuisis, White and Winter use to prove a full-fledged answer to Rosenberg’s conjecture,
in the affirmative. Although the project initially sought to understand, to whichever extend possible,
this particular answer, the writer had to settle with discussing various aspects in the article [13]. The
chapter includes mentioning of quasidiagonal traces, embedding/lifting criteria for quasidiagonality
and order zero maps, all based on [15] and [13].

Acknowledgment. I genuinely appreciate Mikael Rørdam’s guidance during the project. It is a
pleasure learning from you and the subject had both challenging and intriguing features. I cannot
deny having learned a tremendous amount over the past half year. Sincerely, thank you.



Chapter 1

Preliminaries

We begin our journey by introducing the notation and preliminary results necessary to understand
the topics emerging in this project. The chapter is quite long, however, most of the results have general
shapes and the writer deemed isolating the statements herein, as opposed to continuously deriving
these as lemmas whenever needed, to be advantageous. Thus, anyone familiar with the preliminary
results may safely skip the entire chapter and start dwelling into the world of quasidiagonality instead,
perhaps returning later on.

The project assumes a solid knowledge of general operator algebra theory including von Neumann
algebraic aspects such as the existence of the enveloping von Neumann algebra associated to every
C∗-algebra, fundamentals concerning contractive completely positive maps, K-theory, the classifica-
tion of UHF - and AF algebras and the reader must be fluent in approximation properties with an
added emphasis on nuclearity. Furthermore, we demand that category theoretic terms sound quaint
to the audience. Of course, we shall exhibit the main theory required, partly to settle the notation
once and for all.

1.1 The Basics

Here we present the notation together with basic constructions arising in the group theoretic and
C∗-algebraic frameworks. We shall begin the discussion by addressing groups at first. For the record,
there will be close to zero proofs occurring herein save some considerations of the GNS-construction
in the separable case, which we exploit repetitively in the project.

Prerequisites concerning groups. Groups are typically denoted by G,H and N ; never assumed
to be discrete unless specified otherwise. The neutral element of a group G is denoted by 1G or
occasionally merely 1 should the group in question be understood. In fact, we assume these to be
topological, although we rarely work outside the setting of discrete groups.

Group actions on some set M , with M having an algebraic structure or not, are commonly de-
noted by α or β. We implicitly assume that the automorphism groups of any such set M refers to
automorphism in the corresponding category. As such any action α : G −→ Aut(M) will act by home-
omorphisms provided M is a topological space, by automorphisms of groups provided M is a group
and so on. To avoid an overwhelming amount of paranthesis, we denote α(g) by αg instead.

A groupG is free provided no relations occur onG eg. the integersZ. Since free groups are uniquely
determined by their generating sets, one often represents these by FS having S being the generating
set. The free group FS is known to fulfill the following universal property: given any set function
f : S −→ G there exists a unique group homomorphism ϕ : Fs −→ G such that ϕ|S = f|S .

Given abelian groups G and H, let HomZ(G,H) be the abelian group of group homomorphism
G −→ H equipped with pointwise operations.

1
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Prerequisites concerning C∗-Basics. For any normed space X, the ball of radius r > 0 centered
around the origin will be denoted (X)1 and the dual ofX byX∗. Hilbert spaces are typically symboli-
cally represented asH andK. Within any Hilbert space, the orthogonal complement of a subspaceM
is written asM⊥. For every bounded operator T : H −→ K, we let Ran T symbolize the norm-closure
of the image T (H) in K.

C∗-algebras are denoted by A, B and C throughout the entire project. These are never assumed
to be unital nor separable unless stated otherwise. We denote by 1A the unit of A in the presence of
one. In the following section, A and B will be fixed C∗-algebras whereasH and K will be some pair of
fixed Hilbert spaces.

· The Banach algebra consisting of bounded operatorsH −→ K between Hilbert spaces is represented
as B(H,K), abbreviating B(H) in the case where H = K and Mn whenever H = Cn. For every
Hilbert space H, we denote the finite rank operators hereon by F(H) and the compact operators
by K(H). We shorten the notation into F and K, respectively, whenever H is separable.

· We write C∗-Alg to symbolize te category of C∗-algebras having ∗-homomorphism1 as morphisms.
The subcategory of separable C∗-algebras is denoted C∗s -Alg. We adopt the convention of calling
a two-sided ideal in C∗-Alg a ∗-ideal for brevity. Thus, C∗-algebras are called simple if they only
contain trivial ∗-ideals.

· Every ∗-homomorphism is automatically contractive, hence continuous. Moreover, their images
are closed, so they form C∗-algebras themselves.

· An injective ∗-homomorphism is called a ∗-monomorphism. Every ∗-homomorphism π is injective
if and only if π is an isometry. A surjective ∗-homomorphism is called a ∗-epimorphism.

· Hom(A,B) will represent the biadditive 2 abelian group of ∗-homomorphism A −→ B.

· The unitalization A+ of A is the unital C∗-algebra containing A as an ideal. As a complex vector
space, it may be identified with A⊕ C having as ∗-algebraic operations the ones defined as

(a+ λ1A+)(b+ µ1A+) = (ab+ µa+ λb) + (λµ)1A+ and (a+ λ1A+)∗ = a∗ + λ1A+ .

It is a well-established fact thatA+ ∼= A⊕C wheneverA admits a unit. The assignmentA 7→ A+ is
functorial in the sense that any bounded linear map π : A −→ B (resp. ∗-homomorphism) extends
to a bounded linear map π+ : A+ −→ B+ (resp. ∗-homomorphism) via

π+(a+ λ1A+) = π(a) + λ1B+ .

· The collection of positive elements in A is denoted by A+, the collection of self-adjoints by Asa,
the set of projections by Proj(H) and the group of unitaries by U(A). We simply write U(H) and
Proj(H) wheneverA = B(H). Every self-adjoint element is the sum of two positive elements, hence
every element in A is the sum of at most four positive elements in A.

· We shall stipulate that a ≥ 0 whenever a belongs to A+. The set Asa will implicitly be endowed
with the order ≤ defined by declaring that a ≤ b if and only if b − a ≥ 0. The positive elements
A+ form a positive cone in A when equipped with the relation ≤.

· For two projections p and q in Proj(H), the reader is assumed to be familiar with the relations,

p ≤ q ⇐⇒ Ran p ⊆ Ran q ⇐⇒ pq = p = qp.

· The spectrum σ(a) associated to an element a inside a unital C∗-algebra A consists of all complex
numbers λ for which λ1A − a cannot be invertible in A. We define the spectrum of an element
a belonging to a non-unital C∗-algebra to be the spectrum of a regarded as an element in the
unitalization. The spectrum σ(a) defines a nonempty norm-compact subspace of (A)‖a‖.
1a prior, ∗-homomorphism are non-unital in this project.
2Additivity being with respect to finite direct sums of C∗-algebras and `∞-sums in the general case.
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· Gelfand, Naimark. Every commutative C∗-algebra A is ∗-isomorphic to C0(Ω) for some locally
compact Hausdorff space Ω. Moreover, A is unital if and only if Ω is compact.

· For any normal element a inside A, there exists a ∗-isomorphism C(σ(a)) −→ C∗(a) given by
f 7→ f(a), known as the continuous functional calculus, such that for every continuous function
f : σ(a) −→ C one has σ(f(a)) = f(σ(a))3.

· An approximate unit of some ideal I / A is an increasing net {eα}α∈Λ consisting of contractions
eα ≥ 0 acting as a unit in the norm limit on A, i.e. limα∈Λ eαa = limα∈Λ aeα = a for each a ∈ A.
The C∗-algebra A is called σ-unital should it admit a countable approximate unit. Additionally,

‖a+ I‖ = lim
α∈Λ
‖a− eαa‖, a ∈ A.

The approximate {eα}α∈Λ unit is called quasicentral provided that limα∈Λ(eαa − aeα) = 0 for
each a ∈ A as well. Every ∗-ideal of some C∗-algebra admits an approximate unit {eα}α∈I and
quasicentral one may be extracted from the convex hull of an approximate unit 4.

· Mn(A) denotes the C∗-algebra consisting of n× n-matrices with values in A whose operations are
multiplication of matrices and involution being the operation of taking the conjugate transpose.
The assignment A 7→ Mn(A) is functorial in the sense that every linear map π : A −→ B induces a
linear map ϕn : Mn(A) −→ Mn(B) given by

ϕn([aij ]i,j) = [ϕ(aij)]i,j

for every [aij ] inside Mn(A), frequently called the n’th amplification of ϕ. The n’th amplification
of a ∗-homomorphism remains a ∗-homomorphism.

· A bounded linear map ϕ : A −→ B is said to be positive whenever ϕ(A+) ⊆ B+. A positive
bounded linear functional ω : A −→ C is called a state should ‖ω‖ = 1, which is equivalent to
ω(1A) = ‖ω‖ = 1 in the event of A being unital. Given any positive linear functional ϕ on A, one
has the following Cauchy-Schwarz esque inequality

|ϕ(a∗b)|2 ≤ ϕ(a∗a)ϕ(b∗b), a, b ∈ A. (1.1)

· Any bounded linear map ϕ : A −→ B is called faithful if ϕ(a∗a) > 0 for all nonzero a in A. The
corresponding ideal measuring the deficiency of faithfulness is Lϕ = {a ∈ A : ϕ(a∗a) = 0}.
· The state space S(A) is the subspace of A∗ consisting of all states ω on A. In the unital case,
S(A) defines a weak∗-compact convex subspace ofA∗. The state space is large enough to separate
points inA, that is, for every a ∈ A there exists a state ω : A −→ C such that ω(a) 6= 0. Therefore,
one has a ≤ b in A if and only if ω(a) ≤ ω(b) for all ω ∈ S(A).

· A positive linear functional τ : A −→ C is called a trace if τ(ab) = τ(ba) for all a, b ∈ A. The trace
is called a tracial state if it is a state. The C∗-algebra A is said to be monotracial should it admit a
unique tracial state. The unique faithful tracial state Mn, denoted τn, is the C-linear extension of
eii 7→ 1, where eii is the (i, i)’th matrix unit. Moreover, the following are equivalent in the presence
of a unit on A:

· τ is a trace on A.

· τ(a∗a) = τ(aa∗) for all a ∈ A.

· τ(u∗au) = τ(a) for all a ∈ A and every u ∈ U(A).

3The latter statement perhaps known as the spectral mapping theorem to some.
4This is difficult to prove. A proof may be found in [5, Theorem I.9.16].
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· A partial isometry inA is an element v therein such that v∗v defines a projection inA. Furthermore,
v satisfies the following constantly exploited characteristic properties:

· v is a partial isometry in A if and only if v∗ is.

· v = vv∗v together with v∗vv∗ = v∗ hold.

· In B(H), an operator ν is a partial isometry if and only if it restricts to an isometry on ker ν⊥.

· A ∗-homomorphism of the form π : A −→ B(H) is called a representation of A. Furthermore, we
adopt the following conventions concerning representations.

· π is called separable if H is separable.

· π is called non-degenerate if π(A)H is norm-dense in H.

· A vector ξ in H is called cyclic with respect to π provided that π(A)ξ is norm-dense in H.

· For every positive linear functional ϕ on an involutive algebra A, there exist a Hilbert space Hϕ,
a representation πϕ : A −→ B(Hϕ) together with a cyclic unit vector ξϕ. The Hilbert space Hϕ is
the quotient A/Lϕ endowed with the inner product 〈·, ·〉 : Hϕ ×Hϕ −→ C given by

〈[a], [b]〉 = ϕ(b∗a)

for all a, b ∈ A and is commonly denoted L2(A,ϕ). The pair (ξϕ, πϕ) recover ϕ via

ϕ(a) = 〈πϕ(a)ξϕ, ξϕ〉 (1.2)

for all a belonging to A. The obtained triple (πϕ,Hϕ, ξϕ) is called the GNS-triple associated to
ϕ. For every C∗-algebra A, let Hu =

⊕
ω∈S(A)Hω. The universal representation associated to A

is the induced faithful non-degenerate representation πu : A −→ B(Hu). As such any C∗-algebra
canonically embeds into B(H) for some Hilbert space H non-degenerately.

We will primarily deal with separable C∗-algebras, so we derive a separable version of the GNS con-
struction that we shall invoke implicitly whenever separability is is assumed. Recall that for every
self-adjoint element a ∈ A there exists some ω in S(A) fulfilling |ω(a)| = ‖a‖.

Proposition 1.1.1. Every separable C∗-algebra admits a canonical faithful non-degenerate sepa-
rable representation.

Proof. Suppose A is a separable C∗-algebra having {an}n≥1 as its dense subset. Upon rescaling in
conjunction with splitting each an into the their real and imaginary parts, i.e., writing an = arn + iain
with arn, a

i
n ∈ A being self-adjoint, we may assume that each an must be self-adjoint unit vectors.

Choose for every positive integer n some state ωn acting on A subject to |ωn(an)| = ‖an‖ = 1. Define
from the sequence {ωn}n≥1 of states, a positive linear functional ω : A −→ C by

ω(·) =

∞∑
n=1

1

2n
ωn(·).

The functional ω becomes bounded due to each ωn being contractive. By density, any unit vector
a ≥ 0 in A lies within a distance strictly smaller than 1 of some an. Therefore one has |1− ωn(a)| =
|ω(an− a)| < 1 whereof ωn(a) > 0. The normalization a′ = a‖a‖−1 of some a ≥ 0 inside A thus must
satisfy ω(a′) ≥ ωn(a′) > 0 as a consequence, hence ω(a) > 0 for every a ∈ A+, verifying that ω has to
be faithful. The associated Hilbert space L2(A,ω) may hereby be identified with A and the equation
(1.2) applied to (πω,Hω, ξω) yields

‖πω(a)‖2 = 〈πω(a∗a)ξω, ξω〉 = ω(a∗a)

for all a, b ∈ A. Faithfulness of ω therefore entails faithfulness of πω so that A represents faithfully
and non-degenerately on Hω ∼= A, which is separable. This completes the proof.
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Tensor Products of C∗-Algebras. Tensor products appear at almost every single page after
exceeding page 12, and we recall various facts thereof, at least the most commonly used ones. However,
the reader is assumed to be fluent in spatial tensor products of C∗-algebras.

Algebraically, the tensor product A � B of algebras is the unique algebra such that for every
algebra C and bilinear map σ : A × B −→ C there exists a unique homomorphism A � B −→ C
making the diagram

A×B

σ
##

// A�B

{{
C

commute. The algebraic tensor productA�B of involutive algebras may be endowed with factor-wise
multiplication and involution to form an involutive algebra, meaning (a⊗ b)(a0⊗ b0) = aa0⊗ bb0 and
(a⊗b)∗ = a∗⊗b∗ on elementary tensors, itself compatible with ∗-representations. The aforementioned
compatibility being that given a pair of ∗-representations π : A −→ B(H) and % : B −→ B(K), the
map π ⊗ % : A � B −→ B(H ⊗ K) defined via the formula (π ⊗ %)(a ⊗ b) = π(a) ⊗ %(b) defines a
∗-representation. Here H⊗K is endowed with the inner product

〈ξ ⊗ η, ξ0 ⊗ η0〉 = 〈ξ, ξ0〉 · 〈η, η0〉,

which is easily seen to satisfy ‖ξ⊗η‖ = ‖ξ‖·‖η‖. We define the spatial tensor product, denotedA⊗B,
to be the norm closure of A�B under the spatial tensor norm defined thus: Choose once and for all
(choice being irrelevant, although this is non-trivial) a pair of faithful representations π : A −→ B(H)
and % : B −→ B(K), then declare that∥∥∥∥ n∑

k=1

ak ⊗ bk
∥∥∥∥ =

∥∥∥∥ n∑
k=1

π(ak)⊗ %(bk)

∥∥∥∥.
The spatial tensor product is an additive, in both variables, associative bifunctor being covariant
in both variables. Functoriality extends to the following property: Every pair of ∗-homomorphism
π : A −→ C and % : B −→ C ′ induce a ∗-homomorphism A⊗B −→ C ⊗C ′ via a⊗ b 7→ π(a)⊗ %(b).

Prerequisites concerning completely positive maps. Completely positive maps are the heart of
the project and are, without a shadow of a doubt, our favorite morphisms next to ∗-homomorphism.
Numerous facts regarding completely positive maps will be exploited constantly throughout the
project. The most essential being presented here.

A positive linear map ϕ : A −→ B between C∗-algebras is completely positive, abbreviated c.p, if
the n’th amplification ϕn : Mn(A) −→ Mn(B) is positive for every n ∈ N. We call a contractive c.p
map ϕ c.c.p and a unital c.p map u.c.p. Every c.c.p map fulfills ‖ϕ(1A)‖ = ‖ϕ‖ in the unital case,
hence u.c.p maps are c.c.p. One easily verifies that positive linear maps are involutive, so c.p maps
are as well.

· Let B be a C∗-subalgebra of A. A conditional expectation E : A −→ B is a contractive completely
positive map such that E|B = idB and E(bab0) = bE(a)b0 for all a ∈ A and b, b0 ∈ B.

· A linear map ϕ : A −→ B between C∗-algebras is nuclear if there are nets (ϕα)α∈J and (ψα)α∈J
consisting of c.c.p maps ϕα : A −→ Mn(α) together with ψα : Mn(α) −→ A fulfilling ψα ◦ ϕα → ϕ
in the point-norm topology. For a separable C∗-algebra we require such sequences to exist and
one may always choose the c.c.p maps in play to be unital should ϕ be unital. We call A nuclear
whenever the identity hereon is nuclear.

· Stinespring’s dilation theorem. For every completely positive map ϕ : A −→ B(H) there
exists a triple (σ, V,K), called the Stinespring dilation of ϕ, consisting of a ∗-homomorphism
σ : A −→ B(K) and a bounded operator V : H −→ K witnessing ϕ via ϕ(·) = V ∗σ(·)V .
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· Arveson’s extension theorem. B(H) is an injective object in the category of C∗-algebras with
c.c.p maps as morphisms. That is, every c.c.p map ϕ : A −→ B(H), with A being C∗-subalgebra of
B, extends to a c.c.p map ψ : B −→ B(H).

· The correspondence theorem. There is a one-to-one correspondence of sets between completely
positive maps Mn −→ A and positive elements in Mn(A) determined by ϕ 7→ [ϕ(eij)]i,j where eij
denotes the (i, j)’th unit matrix in Mn.

Prerequisites concerning von Neumann algebras. We will barely address von Neumann alge-
bras in this project, however, we require some theory regarding the enveloping von Neumann algebra
associated to every C∗-algebra, so we establish the concepts required hereof. Understanding von
Neumann algebras forces one to understand, at minimum, one locally convex topology on B(H).

· The strong-operator topology on B(H) is defined to be the locally convex Hausdorff topology induced
by the family of seminorms a 7→ ‖aξ‖ indexed over all ξ ∈ H. We write sot- limi∈Λ ai to denote the
strong-operator limit of a net (ai)i∈Λ should it exist.

· Every increasing net (ai)i∈Λ consisting of self-adjoint operators, with respect to the ordering on
self-adjoint elements, admits a strong-operator limit.

· According to von Neumann’s double commutant theorem, a C∗-algebra M ⊆ B(H) defines a von
Neumann algebra if and only if one, hence both, of the following conditions hold:

M
sot

= M or M ′′ = M

where M ′ denotes the commutant of M , i.e,. M ′ = {b ∈ B(H) : ab = ba, for all a ∈ M }, and
M ′′ = (M ′)′. A von Neumann algebra, should it appear, will be denoted by M .

· The double dual A∗∗ of any C∗-algebra becomes a von Neumann algebra via the isomorphism
A∗∗ ∼= πu(A)′′, called the enveloping von Neumann algebra.

Prerequisites concerning ordinals. We review some facts about ordinals, excluding proofs en-
tirely. For a rigorous introduction to ordinals along with transfinite induction, the reader is urged to
consult the book [6]. By definition, an ordinal α is a non-empty set endowed with the relation ∈ while
obeying the rules:

x ∈ α ∧ y ∈ x ⇒ y ∈ α and x ∈ y ∧ y ∈ x ⇒ x = y.

· LetO be the collection5 of all ordinals. We define an order relation< onO by stipulating thatα < β
if and only if α ∈ β. An ordinal α is called a successor provided it attains the form α = β ∪ {β} for
some ordinal β differing from α, which evidently fulfills β ∈ α.

· We define the successor of an ordinal α by s(α) = α ∪ {α}. In accordance with this terminology,
an ordinal α is called a successor whenever α = s(β) for some ordinal β. An ordinal α which is not
a successor is called a limit ordinal and must be of the form α =

⋃
β<α β. It is well-known that

every ordinal is either a successor or a limit ordinal, but never both.

· One commonly defines an additive structure on O by α + 0 = α, then inductively defining the
operations via α + s(β) := s(α + β) and α + λ =

⋃
β<λ s(α + β) for each limit ordinal λ. In

particular, α + 1 = s(α). Thus,
∑
i∈I αi is merely the recursively defined sum of the ordinals αi

over some indexing set I. It evidently contains all the ordinals αi.

· The principle of transfinite induction. Suppose P (α) is a property defined on all ordinals α.
If P (β) is true for every ordinal β < α, then P (α) must be true.

5Strictly speaking this is not a set, but we still treat it as one.
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A K-theoretric toolkit. We exhibit the knowledge of K-theory that are needed to read the notes flu-
ently, certain result being stated in the future. K-theory of C∗-algebra arises from studying homotopic
projections and unitaries upon passing to higher dimensional matrix algebras, so we must address the
homotopy matter, especially due to the notion bearing independent interest itself. Throughout the
section, I will denote the closed interval [0, 1] in R.

Definition. Suppose A and B are C∗-algebras. Then,

· any pair of unitaries u, v ∈ A, in the presence of a unit, are called homotopic if there exists a
continuous map θ : I −→ U(A) fulfilling θ(0) = u and θ(1) = v;

· any pair of projections p, q ∈ A are called Murray - von Neumann equivalent if there exists a partial
isometry v in A satisfying p = v∗v and q = vv∗. The obtained Murray - von Neumann relation ∼
defines an equivalence relation on A;

· any pair of ∗-homomorphisms π, % : A −→ B are said to be homotopic if there exists a family {σt}t∈I
of ∗-homomorphisms σt : A −→ B fulfilling σ0 = π and σ1 = % with t 7→ σt being continuous. The
obtained relation ∼h defines an equivalence relation on Hom(A,B).

· We refer to A as homotopically dominating B if there exist ∗-homomorphisms π : A −→ B and
% : B −→ A subject to the relation π% ∼H idB . In the event of A and B homotopically dominating
one another through the same pair of ∗-homomorphisms, meaning π% ∼h idB and %π ∼h idA, we
call A and B homotopy equivalent while symbolically writing A ∼=h B.

Our sole purpose of applying K-theory concerns unital C∗-algebras, so we confine ourselves to this
special case. Fix some unital C∗-algebra A and define

P∞(A) =

∞⋃
n=1

Proj(Mn(A)) together with U∞(A) =

∞⋃
n=1

U(Mn(A)).

Alternatively, one may regard the latter as being an inductive limit in the category of groups, which
we introduce in the upcoming section. As such the reader may find it valuable to return to this section
afterwards. We define associative operations ⊕ on these entities by mapping a pair a ∈ Mn(A) and
b ∈ Mn(B) into the matrix having a in the first diagonal entry and b in the second, or in shorthand
the assignment (a, b) 7→ diag(a, b).

Define an equivalence relation on P∞(A) by declaring that p ∼0 q, with p ∈ Mn(A) and
q ∈ Mm(A), if and only if there exists an element v ∈ Mn,m(A) such that p = v∗v together with
q = vv∗ hold. Define hereafter another equivalence relation on U∞(A) by stipulating that u ∼1 v,
where u ∈ Mn(A) and v ∈ Mm(A), if and only if one may find some integer k ≥ n,m such that
u⊕ 1k−n becomes homotopic to v ⊕ 1k−m. The obtained quotients are the K-groups.

Definition. For every given unital C∗-algebra A, we define the K-groups to be the abelian groups
K0(A) = P∞(A)/ ∼0 and K1(A) = U∞(A)/ ∼1 endowed with the composition ⊕.

Theorem 1.1.2. The abelian groups Kn(A) for n = 0, 1 associated to any C∗-algebra A produce
additive covariant functors Kn(·) : C∗-Alg −→ Ab assigning to each ∗-homomorphism π : A −→ B
the induced group homomorphism Kn(π) : Kn(A) −→ Kn(B) defined as K∗(π)[a] = [πk(a)] for each
a ∈ Mk(A). Furthermore, these satisfy the following properties:

· K0 is stable, meaning K0(Mn(A)) ∼= K0(A).

· Kn is homotopy invariant, meaning π ∼h % entails that Kn(π) = Kn(%).

· Kn is split-exact, meaning it maps split-exact sequences to split-exact sequences.

· Kn is half-exact, meaning it maps exact sequences to sequences which are exact in the middle.
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1.2 Ultrafilters and Products of C∗-Algebras

Towards the end of project, we will be exploiting unique convergence properties of ultrafilters. The
current section provides an introduction to ultrafilters and general products of C∗-algebra in extreme
brevity having most proofs omitted. We begin the exposition of ultrafilters by addressing the basics.

Definition. Let S be some set. A family F consisting of subsets in S is said to

· be nontrivial if ∅ /∈ F ;

· be direct if A ⊆ B ⊆ S and A ∈ F implies B ∈ F ;

· have the finite intersection property if A,B ∈ F entails A ∩B ∈ F ;

· be maximal if for every A ⊆ S one must have that either A ∈ F or S \A ∈ F .

We call F a filter provided it is nontrivial, direct and has the finite intersection property. A maximal
filter F is called an ultrafilter. Note that the maximality property of an ultrafilter forces every subset
A ⊆ S or its complement to lie therein, but never both.

Let M be some subcollection of subsets in S without ∅ and with the finite intersection property. We
define the filter generated by M , symbolically denoted by F(M), to be the family consisting of all
V ⊆ S such that there exist members J1, . . . , Jn ∈ M whose intersection belong to V . The finite
intersection property together with directness are easily verified and for nontriviality suppose the
empty set did lie in F(M). Then there are n-many members J1, . . . , Jn in M whose intersection is
empty, so ∅ = Jk ∩ Jl ∈M for some indices 1 ≤ k, l ≤ n, a contradiction.

Another construction of a filter may be given as follows. Suppose M ⊆ S is nonempty and define
F to be the family of B ⊆ S containing M . One easily checks that F defines a filter on S. We call F
the principal filter associated to S. An ultrafilter F is said to be free if it is non-principal. Here is one
important existence result concerning ultrafilters.

Proposition 1.2.1. Every filter is contained in an ultrafilter. In particular, for any nonempty set
S and nonempty family M of subsets therein, there exists a free ultrafilter F on S containing M .

Proof. A rigorous proof of the first claim may be recovered in [2, theorem A.5]. For the latter, let
F = F(M) be the filter generated by M to obtain a containment M ∈ F . Apply hereafter the first
part to extend F to an ultrafilter.

Our main interest in ultrafilters concerns convergence along these, a notion we emphasize on.

Definition. Let X be a topological space and (xs)s∈S some net over a directed set S that admits a
filter F . The net (xs)s∈S is said to converge to x along F if, for every open neighbourhood U around
x the corresponding set S(U) = {s ∈ S : xs ∈ U} belongs to F . Equivalently, if for every open
neighbourhood U around x, there exists some A ∈ F fulfilling NA = {xs ∈ X : s ∈ A} ⊆ U . The
resulting limit point x is denoted lims→F xs.

Plainly, every continuous map f : X −→ Y satisfies f(limi→F (xi)) = limi→F f(xi) for any filter F
on some set I and net (xi)i∈I converging along F . We now derive the absolute reason to consider
ultrafilters in this project: convergence is easy to guarantee.

Theorem 1.2.2. Suppose X denotes a Hausdorff topological space and let S be some nonempty
directed set admitting an ultrafilter F . Under these premises, any net (xs)s∈S converging along F
has a unique limit point. Moreover, any net converges F provided X is compact.
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Proof. Suppose that x and y are two distinct limit points of (xs)s∈S along F . Choose two disjoint
open neighbourhoods U and V around these, respectively. The corresponding sets S(U) and S(V )
obviously become disjoint. The finite intersection property combined with nontriviality of F ensures
that both cannot lie in F simultaneously, a contradiction.

To ease the notation, let N c
A be the closure of NA in X, F be an ultrafilter on S and write

N =
⋂
A∈F N c

A. Any limit point x of (xs)s∈S along F must belong to N . Otherwise x would belong
to the open set X \ N c

A for some A ∈ F and by convergence we may find some B ∈ F such that
NB ⊆ X \ N c

A from which NA ∩NB = ∅, contradicting A ∩B 6= ∅.
Conversely, every element in N determines a limit point of (xs)s∈S . Indeed, by maximality of F

we have S(X \U) = X \S(U) ∈ F if S(U) lies outside F some open neighbourhood U of x. Therefore
we must have x ∈ N c

S(X\U) ⊆ X \ U since X \ U is closed, a contradiction.
The two previous observation combine into the following, invoking uniqueness of limits along F :

every net (xs)s∈S converges along F if and only if N is nonempty. However, due to the collection of
the closed sets N c

A indexed over F having the finite intersection property, compactness of X ensures
that the intersection of all its members, i.e. N , must be nonempty as desired. Voila.

Notable Remark. Given an inclusion F ⊆ G of filters, convergence along F evidently implies con-
vergence along G. Moreover, one may check that ordinary convergence of sequences is equivalent to
convergence along the Frechét filter, which is defined to be the family all subsets having a finite com-
plement. Since every free ultrafilter contains the associated Frechét filter in the infinite case, ordinary
convergence of sequences implies convergence along a free ultrafilter on N.

Definition. Suppose (Ai)i∈I denotes a collection of C∗-algebras over some indexing set I. We define
the `∞-sum of the sequence (Ai)i∈I as the C∗-algebra defined by

`∞(Ai, I) =

{
(ai)i∈I : ai ∈ Ai, sup

i∈I
‖ai‖ <∞

}
.

endowed with ordinary coordinatewise operations and supremum norm. Furthermore, we define the
c0-sum c0(Ai, I) of (Ai)i∈I to be the closure of the subset consisting of tuples (ai)i∈I in `∞(Ai, I)
such that ‖ai‖ = 0 for all except finitely many indices i ∈ I. The subspace c0(Ai, I) becomes a ∗-ideal
inside `∞(Ai, I). The resulting quotient

`(Ai, I) =
`∞(Ai, I)

c0(Ai, I)

becomes a C∗-algebra. Given a free ultrafilter ω on some indexing set I, we construct the ultraproduct
of (Ai)i∈I as follows. Let cω0 (Ai, I) be the collection of elements (ai)i∈I inside `∞(Ai, I) satisfying
limi→ω ‖ai‖ = 0. No mischief appears here: by boundedness of (ai)i∈I , the corresponding real-valued
sequence (‖ai‖)i∈I lies in some bounded precompact set, whereupon theorem 1.3.2 applies to assure
the existence of the above limit. One may show that cω0 (Ai, I) defines a ∗-ideal inside `∞(Ai, I). We
hereof define the ω-ultra product of (Ai)i∈I by

`ω(Ai, I) =
`∞(Ai, I)

cω0 (Ai, I)

and endow it with the C∗-norm6

‖%((ai)i∈I)‖ = lim
i→ω
‖ai‖, (1.3)

where % : `∞(Ai,I ) −→ `ω(Ai, I) is the canonical quotient map. The formula is meaningful on the
merits of theorem 1.3.2 once more. There is an alternative configuration of computing the norm in
Q(An) in a fashion mirroring the ultraproduct norm, see for instance [10, lemma 6.1.3] for a proof:

‖%(a)‖ = lim sup
n→∞

‖an‖. (1.4)

6here the (ai)i∈I is implicitly a chosen lift of its image under %, the choice posing no obstruction, see ....
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1.3 Inductive Limits and Infinite Tensor Products

The current section carries an exposition of inductive limits and in particular infinite tensor product
C∗-algebras, starting with general inductive limits including the group theoretic version. A large por-
tion of these facts are considered well-known in this project, however, the required results are stated
including references to make the project more self-contained. Inductive limits behave well within both
the C∗-algebraic - and group algebraic framework. Perhaps the reader will swiftly assert how do adopt
the inductive limit notion to define infinite tensor products at first glimpse.

Definition. Let A be a category. An inductive system in A consists of a family of pairs (Ai, ϕi)i∈I ,
where I is some directed nonempty set,Ai denotes an object in A for every i ∈ I and ϕij : Ai −→ Aj
is a morphism for every pair of indices i ≤ j in I fulfilling

ϕii = idAi together with ϕij ◦ ϕjk = ϕik for i ≤ j ≤ k.

The morphisms ϕij are commonly referred to as the connecting morphisms. In the event of I being
countable, we frequently forego the mentioning of a system and instead present the inductive system
in terms of a sequence

A1
ϕ1 // A2

ϕ2 // A3
ϕ3 // · · ·

Such a sequence is called an inductive sequence, wherein for n ≤ m we write

ϕn,m = ϕm−1 ◦ ϕm−2 ◦ . . . ◦ ϕn : An −→ Am.

An inductive limit of an inductive system (Ai, ϕi)i∈I in A is a pairing (A, {ϕ∞i }i∈I), withA denoting
an object A and ϕ∞i : An −→ A being a morphism, such that the diagram

Ai

ϕ∞i ��

ϕij // Aj

ϕ∞j~~
A

commutes for every pair of indices i ≤ j in I. The pairing is required to fulfill the following universal
property : for any additional pairing (B, {λ∞i }i∈I), there exists a unique morphism λ : A −→ B
fulfilling λ ◦ ϕ∞i = λ∞i for each index i ∈ I. Applying the universal property twice easily entails
that the inductive limit, should it exist, is unique up to isomorphism in the category A . Hence we
may freely speak of the inductive limit A of an inductive system (Ai, ϕi)i∈I and we shall denote it
by A = lim−→(Ai, ϕij). The above diagram translates into commutativity with i = n and j = n + 1
whenever the indexing set I is countable.

In the category of C∗-algebras with ∗-homomorphisms as morphisms, one must address the issue of
whether inductive limits even exist. Fortunately, they always do herein and quite a fair amount of
added structure may be uncovered. Since we shall primarily work with inductive sequences of C∗-
algebras, we avoid dwelling too deep into the general setting of C∗-algebras. For completeness, the
group theoretic version will be supplied to the reader with the construction added.

Proposition 1.3.1. In the category of groups with group homomorphisms as morphisms, inductive
limits of inductive systems exist. In fact, the inductive limit of an inductive system may be explicitly
described in the following manner. Suppose (Gi, ϕij)i∈I denotes an inductive system and let G be
the quotient of the disjoint union

⋃
i∈I Gi with respect to the equivalence relation

gi ∼ gj in G
def.⇐⇒ ∃k ∈ I : ϕik(gi) = ϕjk(gj).

Then there exists an isomorphisms lim−→(Gi, ϕij) ∼= G of groups. Furthermore, inductive limits arising
from inductive sequences of abelian groups exist and the same statement remains true in the category
of ordered abelian groups.
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Proof. The proof is straightforward. One merely verifies that G must satisfy the universal property
of inductive limits whereupon existence together with uniqueness implies the desired. For the latter
two assertions, we refer to [10, 6.2.5, 6.2.6] for rigorous proofs.

Remark. There is a precedence to regard an inductive limitG of an inductive system (Gi, ϕij)i∈I as a
unionG =

⋃
i∈I Gi. This is quite justifiable as the inductive limit, by construction, for most practical

purposes behaves in this sense. The main idea may be sketched thus: replacing the i’th stage Gi with
the quotient Gi/ kerϕij for all i ≤ j assures the existence of the following commutative diagrams;
upon invoking the universal property of quotient maps to factor each ϕ∞i : Gi −→ G and composition
Gi −→ Gj −→ Gj/ kerϕij through the quotient Gi/ kerϕij , for all i ≤ j ≤ k in I.

Gi //

ϕ∞i
��

Gi/ kerϕij

∃!ψijzz
G

Gi/ kerϕij
∃!σij // Gj/ kerϕij

Gi

OO

ϕij
// Gj

OO

Exploiting commutativity will reveal that the pairing (G, {ψij})i,j∈I determines an isomorphic model
of G associated to the directed system of quotients Gi/ kerϕij , whose connecting morphisms σij be-
come injections by construction. The benefits of such a point of view is, amongst several, preimages
under group homomorphisms preserve inductive limits, meaning if ϕ : G −→ H is a group homomor-
phism having G be a directed limit viewed as the union

⋃
i∈Gi Gi, then

ϕ−1(G) = ϕ−1

(⋃
i∈I

Gi

)
=
⋃
i∈I

ϕ−1(Gi) ∼= lim−→ϕ−1(Gi). (1.5)

Observations such as these are frequently hidden between the lines in other literature. We shall neither
refer to these observations and consider the previous discussion sufficient7.

Proposition 1.3.2. Suppose (Ai, πij)i∈I denotes an inductive system in the category C∗-Alg. Then
the system (Ai, πij)i∈I admits an inductive limit (A, {π∞i }i∈I) and satisfies the following properties.

· The union
⋃
i∈I π

∞
i (Ai) determines a dense subset of A. One may replace each summand by Ai

should each πij be a ∗-monomorphism.

· For I = N: ‖π∞n (a)‖ = limm→∞ ‖πn,m(a)‖ for all a ∈ A and integer n ≥ 1.

· For I = N: The kernel of π∞n equals the set of all a ∈ An for which ‖πn,m(a)‖ → 0 as m→∞.

Proof. See [10, 6.2.4].

Our main application of inductive limits will be to properly introduce infinite tensor algebras. Induc-
tive limits in conjunction with the preceding theorem, more specifically the first property thereof,
provide a method to construct infinite tensor products by iteratively embed n-tensor algebras into
one another and then consider its inductive limit. More formally, suppose A1, A2, . . . , Am denotes a
finite collection of unital C∗-algebras. We define the iterated tensor product of these as

m⊗
n=1

An =

(m−1⊗
n=1

An

)
⊗Am

7Hopefully the arguments granted will convince the reader of the validity, for going into further details supplies
no greater epiphany according to the writer.
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Due to tensor products obeying an associative law, that is,A⊗ (B⊗C) ∼= (A⊗B)⊗C canonically in
the C∗-algebraic sense, the ordinary rules of tensor calculus extend naturally to the iterated version.
As such one foregos placing the paranthesis overall. Elementary tensor elements become those of the
form

⊗n
m=1 an with an belonging to An for each 1 ≤ n ≤ m. Furthermore, since the spatial tensor

norm determines a cross-norm, a straightforward induction argument reveals that∥∥∥∥ m⊗
n=1

an

∥∥∥∥ =

m∏
n=1

‖an‖.

for any elementary tensor. It is apparent that
⊗m

n=1 1An serves as a unit for the algebra. A special
case of iterated tensor products naturally appear in the form of finite dimensional ones: Suppose
n1, n2, . . . nm are integers and let N denote their product. By successively applying the identity
Mk ⊗M`

∼= Mk` one may deduce that
⊗m

k=1 Mnk
∼= MN . Another reoccurring version is the notion

of F -folds of tensor products; suppose F denotes a finite set, A denotes some unital C∗-algebra and
define in accordance with the above, modulo an appropriate choice of enumeration of F , the spatial
F -fold tensor algebra by ⊗

F

A := A⊗A . . .⊗A (|F |-times).

Notice that whenever n ≤ m are positive integers and A1, A2, . . . , Am is a collection of unital C∗-
algebras, one has a canonical ∗-monomorphism π :

⊗n
k=1Ak −→

⊗m
k=1Ak given by the assignment

π

( n⊗
k=1

ak

)
=

n⊗
k=1

ak ⊗
m⊗

k=n+1

1Ak .

Similarly, if M ⊆ N is an inclusion of finite sets one has a natural embedding
⊗

M A ↪→
⊗

N A given
by adding the unit to the remaining |N \M |-many tensor-factors onto elements in the former algebra
provided A is unital. These observations permit us to extend our notion to the infinite case.

Definition. Suppose (An)n≥1 denotes some sequence of unital C∗-algebras and letπn be the canonical
∗-monomorphism discussed previously. We define the infinite tensor product associated to (An)n≥1

to be the inductive limit
∞⊗
k=1

Ak = lim−→

(
n⊗
k=1

Ak, πk

)
.

On the virtues of proposition 1.3.2, it contains the union
⋃∞
n=1(

⊗n
k=1Ak) as a dense subspace.

Moreover, if A denotes a unital C∗-algebra and N some infinite set, let F denote the collection of
finite sets contained in N and let πF :

⊗
F A −→

⊗
GA be the ∗-monomorphism induced via the

inclusion F ⊆ G occurring in F . Using this notation, we define the spatial N -fold tensor product of
A to be the inductive limit ⊗

N

A = lim−→

(⊗
F

A, πF

)
,

which contains the union
⋃
F∈F (

⊗
F A) as a dense subset.

Remark. Since the tensor products have the above dense subsets, elementary tensors inside the
tensor-algebra

⊗∞
n=1An of unital C∗-algebras are those of the form a =

⊗∞
n=1 an where an differs

from 1An for only finitely many indices n. Naturally, an analogue version is given for infinite N -folds⊗
N A of some fixed C∗-algebra A. Lastly, for such an elementary tensor a one has

‖a‖ =
∏
n∈V
‖an‖, (1.6)

where V denotes the collection of n ∈ N for which ak 6= 1Ak . This generalizes the above formula.
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1.4 A word on AF - and UHF Algebras

Approximately finite dimensional algebras, abbreviated into AF-algebras, are interesting examples
of C∗-algebras arising from inductive limits while being classified. In fact, George Elliot classified
AF-algebras solely in terms of their ordered K-theory. A special case of AF-algebras is the class con-
sisting of UHF-algebras, a shorthand for uniformly hyperfinite, whose classification was established
by Glimm without K-theory. Glimm’s work included the use of supernatural numbers, which is a no-
tion suitable for describing UHF-algebras in terms of infinite tensor products. Since we shall exploit
properties of UHF-algebras during the survey of elementary amenable groups and their connections
to quasidiagonality, a brief treatment of these has been deemed necessary.

Definition. An AF-algebra is an inductive limit of finite-dimensional C∗-algebras. The subclass
of UHF-algebras consists of C∗-algebras that are ∗-isomorphic to some inductive limit of matrix-
algebras Mn(k) with unital connecting ∗-monomorphisms. To distinguish these from one another, it
is customary to keep track of the indices n(k) and collect these into a sequence {n(k)}k≥1 commonly
referred to as the type of the algebra lim−→Mn(k).

Proposition 1.4.1. An inductive limit A of simple C∗-algebras An containing a common unit and
having unital ∗-monomorphisms ϕn : An −→ An+1 as connected morphisms is simple and unital.

Proof. By hypothesis, the connecting morphisms are embeddings, which permit us to assume that⋃∞
n=1An defines a norm-dense subspace of A. Suppose I is ∗-ideal inside A differing from A itself.

In particular, I cannot contain the identity on A and it admits a nontrivial quotient morphism
π : A −→ A/I whose restriction πn to An defines an ideal kerπn E An. Upon each An being simple,
the kernel of πn has to equal either {0} or An with the latter failing due to 0 6= π(1A) = πn(1A). The
map πn must therefore be isometric for each n ∈ N, whence

∞⋃
n=1

An ⊆ {a ∈ A : ‖π(a)‖ = ‖a‖}.

As the right-hand side is norm-closed in A, it coincides with A by density. It follows that π must be a
∗-monomorphism, forcing I to be the zero ideal as desired.

Lemma 1.4.2. Suppose A1 ⊆ A2 ⊆ . . . is an increasing sequence of C∗-algebras whose union is
dense inside a unital C∗-algebra A. If An contains the unit of A and admit a trace for every integer
n ≥ 1, then A admits a tracial state. In particular, inductive limits of C∗-algebras admitting tracial
states with unital ∗-monomorphisms as connecting morphisms admit tracial states.

Proof. The proof revolves around a clever application of the Hahn-Banach extension theorem com-
bined with the finite intersection property. LetTn denote the collection of states onAwhose restriction
to An defines a tracial state. By hypothesis, An admits a trace τ0. On the merits of Hahn-Banach’s
extension theorem, τ0 extends to a state τ on A whose restriction must be a traicial state on An. The
set Tn must be non-empty hereof, and closed (hence compact) because

Tn =
⋂

a,b∈An

{ϕ ∈ S(A) : ϕ(ab− ba) = 0}.

Due to the collection (An)n≥1 being increasing, one may infer that (Tn)n≥1 must be decreasing, so
the finite intersection property yields T =

⋂
n≥1 Tn 6= ∅. The element therein determines a state on

the union
⋃∞
n=1An, hence extends to A by density in conjunction with continuity, proving existence

of a trace on A. The final statement is immediate from the first.



14 CHAPTER 1. PRELIMINARIES

Proposition 1.4.3. Any UHF-algebra is faithfully monotracial, unital and simple.

Proof. Having established the previous lemma, the proof is quite dull. Recall that Mn is monotracial,
unital and simple for every integer n ≥ 1. Since every UHF-algebra A satisfies the hypotheses of the
previous lemma on the merits of Mn being unital monotracial and simple for every positive integer n,
it admits a tracial state τ . By simplicitly of A, the ideal Lτ = {a ∈ A : τ(a∗a) = 0} must be the zero
ideal for otherwise τ = 0. This implies that τ is faithful.

Concerning uniqueness of the trace: any additional tracial state % on A must agree with τ when
restricted to Mn(k), whereupon uniqueness of traces on matrix-algebras entails that %|A0

= τ|A0
with

A0 =
⋃∞
n=1 Mn(k). Since the latter is dense in A, continuity guarantees that % = τ . Therefore A

becomes monotracial while the remaining two properties follow from the preceding proposition.

The previous rather accessible invariants of UHF-algebras, although fruitful, may be improved upon
tremendously. In fact, Glimm completely classified UHF-algebras via the notion of supernatural num-
bers even without using K-theory. Supernatural numbers permit us to rephrase UHF-algebras more
conveniently, hence a brief survey of these is carried out.

Definition. A supernatural number N is an increasing sequence of nonnegative integers (nk)k≥1

including the possibility of nk = ∞ for any k ∈ N. Formally, we regard the supernatural number N
as being the formal infinite prime factorization

N = pn1
1 pn2

2 pn3
3 · · ·

where nk may be any nonnegative integer or∞ with the pk factors being primes listed in order. The
product of two supernatural numbers N = (nk)k≥1 and M = (mk)k≥1 is NM = (nk +mk)k≥1. We
write N |M whenever nk ≤ mk for all indices k and refer to this as N dividing M.

Adopting the notation of Glimm, given a sequence of natural numbers (nk)k≥1 fulfillingnk|nk+1 for
all k ∈ N there is an associated supernatural number δ[(nk)] = pα1

1 pα2
2 · · · defined as follows. Formally,

decompose nk = p
α1,k

1 p
α2,k

2 · · · , i.e. regard each of the integers nk as a supernatural number, then
define hereby

αm = sup{αmk : k ∈ N}.

An UHF-algebra of type (nk)k≥1 thus admits a supernatural number δ[(nk)]. Hence we denote the
UHF-algebra having N as “the supernatural number” N associated to it by MN , calling MN to be
the UHF-algebra of type N .

Given a sequence (nk)k≥1 consisting of natural numbers, it is apparent that n(k) divides δ[(nk)] for
every integer k ≥ 1 as supernatural numbers, so in some sense δ[(nk)] is the “supremum” of the inte-
gers nk occurring in the sequence. We illustrate the adamant use of both K-theory and supernatural
numbers by stating the most fundamental result in the classification of UHF-algebras.

Theorem 1.4.4 (Glimm, Elliot). Let A and B be UHF-algebras of type N and M , respectively.
The following four statements are equivalent:

· A ∼= B.

· N = M .

· (K0(A), [1A]0) ∼= (K0(B), [1B ]0).

In other words, UHF-algebras are completely classified via supernatural numbers and K-theory.

Proof. See [10, theorem 7.4.5] for a rigorous proof.
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The K-theory of UHF - and AF-algebras is wealthy: there are intriguing features concerning mor-
phisms of these C∗-algebras and their K-theoretic kin. One may often recover ∗-homomorphisms from
morphisms between the associated K-groups, which we shall exploit momentarily. For the sake of ref-
erence and adjusting the statements accordingly, we exhibit these.

Lemma 1.4.5. Suppose (An, ϕn) is an inductive sequence in the category of C∗-algebras with
limit A and let B be any UHF - or finite dimensional C∗-algebra. Assume that one has two positive
group homomorphisms α : K0(A1) −→ K0(B) and β : K0(B) −→ K0(A) satisfying β◦α = K0(ϕ∞1 ).
Under these premises, there exists a positive group homomorphism ω : K0(B) −→ K0(An) for some
positive integer n, which is unital provided each ϕn and α are unit preserving morphisms.

Proof. We omit proving it in detail and simply assert that the proof of [10,proposition 7.3.3] may be
adjusted to the UHF case. An inspection of the proof will reveal that finite-dimensionality is strictly
speaking not required and only continuity of the K0 functor is being applied.

For the upcoming proposition, recall that a C∗-algebra A has the cancellation property if for every
pair of projections p, q ∈ P∞(A) one has [p]0 = [q]0 if and only if p ∼0 q. Examples of C∗-algebras
having the cancellation property include finite-dimensional ones and AF-algebras.

Proposition 1.4.6. Let A be a finite dimensional C∗-algebra and B some unital C∗-algebra having
the cancellation property. If so, any two ∗-homomorphisms ϕ,ψ : A −→ B are equal in K0 if and
only if they are unitarily equivalent. Moreover, any positive unit-preserving group homomorphism
α : K0(A) −→ K0(B) stems from a unital ∗-homomorphisms ϕ : A −→ B, i.e., K0(ϕ) = α.

Proof. See [10,proposition 7.3.2] for a proof.

Supernatural numbers are paramount and permit us to characterize UHF-algebras as infinite tensor
products. LetA be the UHF-algebra of type (nk)k≥1, meaningA equals the inductive limit of wherein
nk divides nk+1 for every index k. For each index k, write nkdk+1 = nk+1. Then the canonical ∗-
isomorphism Mn ⊗Mm

∼= Mnm ensures that Mnk = Mnk−1
⊗Mdk for every k ∈ N. Applying these

identifications successively, the inductive sequence transforms into

Mn1
// Mn1

⊗Md2
// Mn1

⊗Md2 ⊗Md3
// · · ·

Stipulating that n1 = d1 hereof yields A =
⊗∞

n=1 Mdn . Any repetition of the divisors dk may be
collected into the factors of the form Mdαnn with αn potentially being infinite. The associated sequence
(αn)n≥1 is precisely the powers arising in the supernatural number associated toA. As such, ifN and
N ′ are the supernatural numbers of (αn)n≥1 and (βn)n≥1, respectively, then

MN ⊗MN ′ =

( ∞⊗
n=1

Mpαnn

)
⊗
( ∞⊗
n=1

Mpβnn

)
∼=
∞⊗
n=1

(
Mpαnn ⊗Mpβnn

)
∼=
∞⊗
n=1

Mpαn+βn
n

.

The second isomorphism is the assignment (
⊗∞

n=1 an) ⊗ (
⊗∞

n=1 bn) 7→
⊗∞

n=1(an ⊗ bn) defined on
elementary tensors and then extended via continuity. The latter C∗-algebra is precisely the UHF-
algebra having NN ′ as supernatural number, whereupon we infer that MN ⊗MN ′

∼= MNN ′ must be
valid. Using a simple induction argument, given UHF-algebras MN1 ,MN2 , . . . ,MNm one obtains

m⊗
n=1

MNn
∼= MN1N2···Nm . (1.7)

For the infinite case, one needs to tread more carefully, so the proof has been separated into several
parts. As a matter of fact, our strategy will be to investigate supernatural numbers associated to
direct limits of UHF-algebra, initiating this with some intermediate observations.
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Lemma 1.4.7. Suppose A denotes the limit of the inductive sequence (Ak, ϕk) with each Ak being
UHF, B is some finite dimensional C∗-algebra and let some integer m ∈ N be fixed. Under these
premises, there exists a unital ∗-homomorphism π : B −→ A if and only if there exists some k ∈ N
together with a unital ∗-homomorphism % : B −→ Ak.

Proof. The if part trivially holds, since Ak naturally embeds unitally into the limit A. For the con-
verse, we apply lemma 1.4.5 replacing A1 by C without loss of generality8. By hypothesis, the as-
sumed unital ∗-homomorphism π : A −→ B induces a unit-preserving positive group homomorphisms
α : K0(B) −→ K0(A) while the canonical embedding C = A1 ↪→ B induces a unit-preserving positive
group homomorphismβ : K0(A1) −→ K0(B). These morphisms evidently satisfyαβ = K0(π∞1 ), so we
may invoke lemma 1.4.5 to determine a positive unit-preserving group homomorphism γ : K0(B) −→
K0(Ak). Due to UHF-algebras having the cancellation property, proposition 1.4.6 applies to imply
that γ is induced via a unital ∗-homomorphisms B ↪→ Ak.

Lemma 1.4.8. Suppose A denotes the limit of an inductive sequence (Mnk , ϕk) of matrix-algebras.
Let n = δ[(nk)] be the corresponding supernatural number occurring in the inductive sequence. Then
there exists a unital ∗-homomorphism Mm −→ A if and only if m|n.

Proof. This is merely a restatement of a previous remark: m must divide nk whenever there exists a
unital ∗-homomorphism Mm −→ Mnk for some positive integer k 6= 1, so m divides n as nk divides
n for every such k. Hence m divides n provided a unital ∗-homomorphism Mm −→ B exists.

Conversely, ifm divides n then it must divide nk for some k ∈ N, whereupon the existence of some
unital ∗-homomorphism Mm −→Mnk is guaranteed as asserted.

Proposition 1.4.9. Let (Ak, ϕk)k≥1 be an inductive sequence of UHF-algebras with limit A wherein
the connecting morphisms ϕk : Ak −→ Ak+1 are unital. Suppose in addition Ak has

N(k) =

∞∏
i=1

p
nk(i)
i

as its associated supernatural number for every k ∈ N. Under these premises, the tensor product
A1⊗ . . .⊗An is canonically isomorphic to the UHF-algebra of type N1N2 · · ·Nn and A becomes an
UHF-algebra of type

N =

∞∏
i=1

p
n(i)
i ; n(i) = sup{nk(i) : k ∈ N}.

In particular, the C∗-algebra
⊗

N MN(k) determines an UHF-algebra of type N ′ =
∏∞
k=1N(k).

Proof. The former assertion was already established. For the remaining ones, notice that the super-
natural number N described in the statement is precisely the supernatural number subject to the
following relation: For every natural number m one has that m|N if and only if there exists some
index k for which m|N(k). Verifying this is almost accomplished instantly when considering m ∈ N
as a supernatural number. Combining the two previous lemmas entails

m|N ⇐⇒ Mm ↪→ A ⇐⇒ ∃k : Mm ↪→ Ak ⇐⇒ ∃k : m|N(k).

This immediately implies the sought conclusion concerning the supernatural number N and A. For
the latter claim, simply consider the obtained identifications

∞⊗
k=1

MN(k) = lim−→
( n⊗
k=1

MN(k)

) (1.7)∼= lim−→(MN(1)···N(n)) ∼= Mδ[(N1···Nn)n] = MN ′

to conclude the desired.
8A contains a copy of C regardless, so passing to this new sequence leaves the limit unaltered.
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Note that the final statement ensures that
⊗

I MN
∼= MN whenever N = p∞ for some prime p and I

is countable. We finalize the section with an observation concerning UHF-algebras, namely that they
all contain a rich family of conditional expectations preserving the norm sufficiently well.

Proposition 1.4.10. Let MN be an UHF-algebra of type N = (n1, n2, . . .) and MN =
⊗m

k=1 Mn(k).
There exists a conditional expectation Em : MN −→Mn(m) defined by

∞⊗
k=1

ak 7−→
n(m)⊗
k=1

ak

where n(m) = n1n2 · · ·nm. Moreover, the composed map Mn −→ Em(MN )
ιm
↪→MN is an isometry.

Proof. The mapEm is obviously a conditional expectation on elementary tensors, hence on all of MN

by continuity. Finally, note that for every elementary tensor a =
⊗∞

k=1 ak in MN one has

‖ιmEm(a)‖ =

∥∥∥∥ n⊗
k=1

ak ⊗
∞⊗

k=n+1

1k

∥∥∥∥ (1.6)
=

n∏
k=1

‖ak‖ = ‖a‖

By linearity and continuity of the maps involved, we are done.

1.5 From Groups to C∗-Algebras

It was conjectured by Rosenberg that quasidiagonality was equivalent to the discrete group in ques-
tion being amenable after he proved one implication. In essence, the recent discoveries of Tikusis,
Winter and White provide the converse, so a small note concerning group C∗-algebras is supplied.
The construction is assumed to be well-known in these notes, however, it was deemed necessary to
recall certain parts. The reader is referred to [2, section 4.1] for proofs.

We adopt the following conventions. Given a discrete group G, the point image u(s) of a unitary rep-
resentation u : G −→ U(H) is written as us to dodge potential confusion. The concrete one encoding
the left-translation onG is called the left regular representation and we denote it λ or λG for emphasis
on G, that is, the unitary representation λ : G −→ U(`2(G)) given by

λsξ(t) = ξ(s−1t)

for all s, t ∈ G. The collection {δs}s∈G consisting of one-point masses δs : G −→ {0, 1}, meaning
δs(g) = 1 if g = s and zero otherwise, determines an orthonormal basis of `2(G) whereof λ rewrites
into λsδt = δst for all s, t ∈ G. As a remaining ingredient, given a discrete group G we define the
complex group ring C[G] associated to G as the C-algebra C[G] = Cc(G,C) or alternatively

C[G] =

{∑
s∈G

ass : as ∈ C only finitely many as are nonzero

}
.

Here s abbreviates δs, such that as 6= 0 for all except finitely many elements s in G. C[G] is endowed
with the natural product and involution(∑

s∈G
ass

)
·

(∑
t∈G

btt

)
=
∑
s,t∈G

asbtst and

(∑
s∈G

ass

)∗
=
∑
s∈G

ass
−1.

The image of C[G] under the left-regular representation λ hereby defines an involutive subalgebra of
B(`2(G)) in the sense that λ extends linearly to C[G] by setting λ

(∑
s∈G ass

)
=
∑
s∈G asλs. Hence

the image λ(C[G]) contains the collection {λs : s ∈ G} as a basis and a straightforward computation
reveals that λ in fact becomes faithful, hence the following notion becomes meaningful.
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Definition. The reduced group C∗-algebra associated to a discrete group G is the norm closure of
λ(C[G]) regarded as an involutive subalgebra in B(`2(G)). The resulting C∗-algebra is symbolically
represented by C∗λ(G) and the assignment G 7→ C∗λ(G) determines a functor Grp −→ C∗-Alg.

Observation. SupposeG denotes a discrete group. The reduced group C∗-algebra admits a canonical
faithful tracial state9 τ given by

τ(a) = 〈aδ1G , δ1G〉

For the sake of completeness, we state Rosenberg’s theorem. We shall not formally define amenable
groups, since the author could not decide between the almost uncountable number of equivalent char-
acterizations. Regardless, here is Rosenberg’s theorem.

Theorem 1.5.1 (Rosenberg). Under the premise of the reduced group C∗-algebra associated to a
discrete group being quasidiagonal, the group in question must be amenable.

Before proceeding, a functorial property of the assignment G 7→ C∗λ(G) will be taken into account.

Proposition 1.5.2. Suppose (Gi)i∈I is some directed system of discrete groups with respect to
inclusions Gi ↪→ Gj for all indices i ≤ j. Let G be the corresponding direct limit. Under these
premises, one has a ∗-isomorphism of the reduced group C∗-algebras

C∗λ(lim−→Gi) ∼= lim−→C∗λ(Gi).

In other words, C∗λ(·) is a continuous functor 10.

Proof. According to [2,Corollary 2.5.12], any pair of indices i ≤ j induce an embedding of unital C∗-
algebras ψij : C∗λ(Gi) ↪→ C∗λ(Gj), hence forms a directed system of C∗-algebras whose corresponding
limit we shall denote by A for simplicity. Upon Gi embedding into G for any i ∈ I, we may deduce
that there exists a net (ψi)i∈I consisting of ∗-monomorphismC∗λ(Gi) ↪→ C∗λ(G) fulfilling ψi = ψij ◦ψj
whenever i ≤ j in I. The universal property of direct limits thus produces a unique ∗-homomorphism
ψ : A −→ C∗λ(G) such that the diagram below commutes for all i ∈ I.

C∗λ(Gi)

ψi $$

ι // A

ψ
}}

C∗λ(G)

We assert that ψ must necessarily be a ∗-isomorphism. We may identify A with the norm-closure of
the union

⋃
i∈I C

∗
λ(Gi). Assume a = limn→∞ ai(n) wherein ai(n) belongs to C∗λ(Gi) for some index

i ∈ I. Since ∗-homomorphisms are injections precisely when they are isometric, it suffices to verify
that ‖ψ(a)‖ = ‖a‖. However, due to ψj being an isometry by the very same reasoning, we may exploit
norm continuity of each ψj and commutativity of the diagram to write

‖ψ(a)‖ = ‖ lim
n→∞

ψ(ai(n))‖ = lim
n→∞

‖ψi(ai(n))‖ = lim
n→∞

‖ai(n)‖ = ‖a‖

proving ψ to be an embedding. In order to show that ψ must be a ∗-epimorphism, observe that each
algebra λ(C[Gi]) embeds intoA. By density of the involving algebras, every element in C∗λ(G) is some
norm-limit of linear combinations of elements in the involutive algebra λ(C[Gi]). Commutativity of
the diagram ensures that ψ maps onto any such element by continuity combined with linearity. This
finalizes the proof.

9However, this tracial state is rarely unique! In fact, uniqueness is connected to simplicitly of C∗λ(G).
10A functor F is continuous if it preserves direct limits,
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1.6 Crossed Products

The functor G 7→ C∗λ(G) encodes the group in the sense that G under the image of λ sits faithfully
therein. However, the construction lacks the merits of remembering group actions G y A on C∗-
algebras. The crossed product is a C∗-algebraic object seeking to mend this particular flaw, copying
the ordinary construction of semidirect products with the group being replaced by a unital C∗-algebra.
The crossed product thus needs to contain the following data: a copy of both the group and C∗-algebra
in question and an encoded version of the actionGy A. The majority of results together with proofs
are contained in [2, section 4.1].

Definition. A C∗-dynamical system is a triple (A,α,G) consisting of a topological group G acting
continuously on a C∗-algebra A via ∗-automorphisms α : G −→ Aut(A). We will denote an automor-
phism α(s) stemming from α applied to an element s in G by αs instead to avoid confusion.

Suppose (A,α,G) denotes a dynamical system, wherein A is unital and G is discrete. Such a system
will frequently be referred to as being unital and discrete for obvious reasons. Let Cc(G,A) denote
the linear space of finitely supported maps ξ : G −→ A or, equivalently,

Cc(G,A) =

{∑
s∈G

ass : as ∈ A only finitely many as are nonzero

}
.

Once more the s is an abbreviation for the one-point mass s 7→ δs. Due toA being unital, the groupG
admits a group homomorphism u : G −→ U(Cc(G,A)) given by s 7→ 1As. We endow Cc(G,A) with
the following twisted convolution as product and twisted involution as involution;(∑

s∈G
ass

)
·
(∑
t∈G

btt

)
=
∑
s,t∈G

asαs(bt)st , respectively,

(∑
s∈G

ass

)∗
=
∑
s∈G

αs−1(a∗s)s
−1.

These maps turns Cc(G,A) into an involutive algebra generated by A and the unitaries {us}s∈G such
thatu : G −→ Cc(G,A) implements the action ofα in the sense thatαs(·) = us(·)u∗s for every sbelong-
ing toG. Thus, the construction determines an involutive algebra with canonical generating elements,
which contains an isomorphic copy of A via the assignment a 7→ aue while containing a copy of G via
s 7→ us. The remaining ingredient is the C∗ norm. As always, the easiest way to form one is to steal one.

Definition. A covariant representation of a unital discrete C∗-dynamical system (A,α,G) is a triple
(π, ϕ,H) consisting of a Hilbert spaceH, a representation π : A −→ B(H) together with some unitary
representation ϕ : G −→ U(H) implementing the action α, meaning (π ◦ αs)(·) = ϕs(·)ϕ∗s for all s in
G. The integrated form of (π, ϕ,H) is the induced representation πα×ϕ : Cc(G,A) −→ B(H) defined
on generating elements by

(πα × ϕ)(aus) = π(a)ϕs.

The covariant representation (π, ϕ,H) is said to be faithful (respectively non-degenerate) provided π
is faithful (respectively non-degenerate) as a representation.

Definition. The universal or full crossed product AoαG associated to a unital discrete C∗-dynamical
system (A,α,G) is the norm closure of the involutive algebra Cc(A,G) with respect to the universal
norm, meaning

‖x‖u :=
{
‖π(x)‖H : (π, ϕ,H) non-degenerate covariant representation of (A,α,G)

}
.

Moreover, A oα G fulfills the following universal property: every covariant representation (π, ϕ,H)
hereof induces a ∗-homomorphism πα × ϕ : Aoα G −→ B(H).
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Much alike the reduced group C∗-algebra, we attempt to borrow a norm in B(H) for some suitable
Hilbert space H. Covariant representations allow this in the faithful case. However, what canonical
representation will always exist? The answer is the naive one: use the left-regular representation and
tensor it with whichever faithful representation on the C∗-algebra you prefer. Elaborating upon this
further, suppose (A,α,G) denotes unital discrete C∗-dynamical system, let π : A −→ B(H) be any
faithful representation and let λ : G −→ U(`2(G)) be the usual left-regular representation on G.
Define a representation πα : A −→ B(H)⊗ `2(G) by

πα(a)(ξ ⊗ δs) = π(αs−1(a))ξ ⊗ δs,

for every s ∈ G, a ∈ A and ξ ∈ H. One may verify that the integrated form πα × (1 ⊗ λ), com-
monly abbreviated into πα × λ, becomes faithful as well. We may hereof finish our construction. A
priori, one may expect the choice of π to have an impact, which fortunately is revealed to be false, cf.
[2,Proposition 4.1.5] for an argument of the matter.

Definition. The reduced crossed product A oα,r G associated to a unital discrete C∗-dynamical
system (A,α,G) is the norm-closure ofCc(G,A) under the image of the faithful representation πα×λ,
the choice of π being irrelevant. Symbolically written, we define

Aoα,r G = (πα × λ)(Cc(G,A))
‖·‖

↪→ B(H⊗ `2(G)).

In particular, Aoα G is the C∗-algebra generated by the set {πα(a), λs : a ∈ A, s ∈ G}.

The reader might ponder why no mentioning of functoriality concerning the reduced crossed product
has appeared. The reason is simply that we have not introduced the morphisms properly, for ordinary
∗-homomorphism are insufficient due to the twisted convolution imposed on Cc(G,A) demanding
interactions with the action. Therefore, it seems adequate to address these.

Definition. Suppose (A,α,G) and (B, β,G) denote two discrete unital C∗-dynamical systems. A
unital ∗-homomorphism ϕ : A −→ B is said to be G-equivariant whenever the diagram

A

ϕ

��

αs // A

ϕ

��
B

βs

// B

commutes for all s ∈ G. In the event of ϕ : A −→ B being a G-equivariant morphism, it induces
a ∗-homomorphism ϕc : Cc(G,A) −→ Cc(G,B) via the formula ϕc(aus) = ϕ(a)us on generating
elements. The corresponding ∗-homomorphism Aoα,r G −→ B oβ,r G extending ϕc is denoted ϕr,
whereas the induced ∗-homomorphism Aoα G −→ B oβ G is abbreviated into ϕu.

Here are some frequently exploited facts concerning equivariant morphisms. These are applied con-
stantly in the literature with a minimal amount of reference.

Proposition 1.6.1. The assignments (A,α,G) 7→ A oα,r G and (A,α,G) 7→ A oα G from the
category of C∗-dynamical systems with G-equivariant maps determines a functor assigning to each
G-equivariant morphism ϕ the extensions ϕr and ϕu, respectively.

We finalize the section with two permanence properties that will be needed later on. We derive these
here, since they bear independent interest on their own. The pivotal one is an associativity-esque
one: the reduced crossed product commutes with the semidirect product. This has at minimum two
benefits; first of all one may often pass some problem into studying a semidirect product instead of
successive crossed products, and secondly it is quite pleasing to the eyes.
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Proposition 1.6.2. Suppose (A,α,G) denotes a discrete unital C∗-dynamical system. Define the
tensor product action α⊗α : G×Gy A⊗A by letting (α⊗α)(s,t) = αs⊗αt for all s, t ∈ G. Then
one has an isomorphism of C∗-algebras

(A⊗A) oα⊗α G2 ∼= (Aoα,r G)⊗ (Aoα,r G).

Proof. Fix a faithful representation π : A −→ B(H). The map π̄ = π ⊗ π : A ⊗ A −→ B(H ⊗ H)
becomes faithful, hence the integrated form π̄α⊗α,r × λ̄ determines M = (A ⊗ A) oα⊗α,r G2 with
λ̄ denoting the left-regular representation associated to the direct product G2. On the other hand,
the spatial tensor product N = (A oα,r G) ⊗ (A oα,r G) is fully determined via the representation
(πα×λ)⊗ (πα×λ). To ease the notation, we shall identify A with its isomorphic image in B(H). The
dense involutive subalgebra ofM is generated by elementary tensors a⊗ b and the canonical unitaries
{u(s,t)}(s,t)∈G×G implementing the action α⊗ α. Furthermore, the identity

(π̄α × λ̄)((a⊗ b)u(s,t))(ξ ⊗ η ⊗ δ(g,h)) = [(αg ⊗ αh)∗(a⊗ b)⊗ λ(s,t)](ξ ⊗ η ⊗ δ(g,h))

= α∗g(a)ξ ⊗ α∗h(b)η ⊗ δ(sg,th)

must be valid for all a, b ∈ A, s, t, g, h ∈ G and ξ, η ∈ H. One hereafter observes that the latter
expression belongs to the algebra B(H⊗H⊗ `2(G×G)). Keeping this in mind, consider the unitary
operator v : `2(G2) −→ `2(G) ⊗ `2(G) defined by letting vδ(s,t) = δs ⊗ δt. The operator evidently
fulfills v∗(δs⊗ δt) = δ(s,t) for every s, t ∈ G, whereupon `2(G2) may be identified with `2(G)⊗ `2(G).
The switch operator, which merely swaps the tensor coordinates, is another unitary, so the latter
expression above may be identified with

(π̄α × λ̄)((a⊗ b)u(s,t))(ξ ⊗ η ⊗ δ(g,h))
∼=7→ (α∗g(a)ξ ⊗ δsg)⊗ (α∗h(b)η ⊗ δth)

= (πα × λ)(aus)(ξ ⊗ δg)⊗ (πα × λ)(but)(ξ ⊗ δh).

The dense subalgebra of N is generated by the set {(π × λ)(aus)⊗ (π × λ)(but) : a, b ∈ A, s, t ∈ G}
and the right-hand side above must belongs to N , whence any generating element in M corresponds
uniquely to a generating element in N , proving the sought isomorphism M ∼= N by continuity
combined with linearity of the involved maps.

Proposition 1.6.3. Let (A,α,G) be a discrete unital C∗-dynamical system and suppose H is some
discrete group acting on G by automorphisms ϕ : H −→ Aut(G). The action β : GoH y A defined
by setting β(s,t)(·) = αϕt(s)(·) for all (s, t) ∈ GoH extends the action α11 and

(i) there exists an action τ : H y Aoα G such that (Aoα G) oτ H ∼= Aoβ (GoH);

(ii) there exists an action τ : H y Aoα,r G such that (Aoα,r G) oτ,r H ∼= Aoβ,r (GoH).

Proof. Define a map τ : H −→ Aut(AoαG) by letting τt(aus) = β(1G,t)(a)uϕt(s) for every generating
element aus belonging toAoαG and every t inH, where the collection {ut}t∈G denotes the generating
unitaries in Cc(G,A). Since the assignments t 7→ ut, t 7→ ϕt and t 7→ β(1G,t) are homomorphisms, τ
is readily shown to be an action provided it attains values Aut(A oα G). We only prove the multi-
plicativity property of the image point τt for any t ∈ H, the involutive part being proven similarly.
Let a, a0 ∈ A and s, s0 ∈ G be given. Then

τt(ausa0us0) = τt(aαs(a0)uss0)

= β(1G,t)(aαs(a0))uϕt(ss0)

= β(1G,t)(aβ(s,1H)(a0))uϕt(ss0)

= β(1G,t)(a)αϕt(s)(a0)uϕt(s)uϕt(s0)

= β(1G,t)(a)uϕt(s)β(1G,t)(a0)uϕt(s0)

= τt(aus)τt(a0us0).

11In the sense that β|G = α.
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Here the fifth equality is based on αϕt(s)(·) = uϕt(s)(·)u∗ϕt(s) for all s ∈ G and t ∈ H. Therefore the

triple (A oα G, τ,H) becomes a discrete unital C∗-dynamical system. It remains to be proven that
this C∗-dynamical systems indeed produces the two isomorphisms in the statements (i)-(ii).

(i) For the sake of simplicity, letM = (AoαG)oτH andN = Aoβ (GoH). Adopting this notation,
we shall identify the corresponding C∗-algebras in play by their dense subspaces, namely

Aoα G = span{aus : a ∈ A, s ∈ G},

N = span{awg : a ∈ A, g ∈ GoH},
M = span{ausvt : a ∈ A, t ∈ H, s ∈ G},

with the collections {vt}t∈H and {wg}g∈GoH consisting of the canonical generating unitaries im-
plementing the respective actions τ and β. Observe that β(1G,t)(a) = τt(a) = vtav

∗
t for all a

belonging to A whereas uϕt(s) = τt(us) = vtusv
∗
t . Due to the action ϕ on G translating into

ϕt(s) = tst−1 in G o H for all s in G and t in H, one may deduce that wtwsw
∗
t = wϕt(s) holds.

Define σ : Cc(H,A oα G) −→ Cc(G o H,A) by the assignment ausvt 7→ awst. Now, fasten your
seatbelt and notice that combining all this yields

σ(ausvt · a0us0vt0) = σ(ausτt(a0us0)vtt0)

= σ([ausβ(1G,t)(a0)uϕt(s0)]vtt0)

= σ([aβ(s,t)(a0)]usϕt(s0)vtt0)

= aβ(s,t)(a0)ws(wtws0w
∗
t )wtwt0

= aβ(s,t)(a0)w(s,t)w(s0,t0)

= σ(ausvt)σ(a0us0vt0).

for all s, s0 ∈ G, t, t0 ∈ H and a, a0 ∈ A. During the third equality, usβ(1G,t)(·) = αs(·)us being
valid for s ∈ G and t ∈ H is exploited. Another cumbersome computation shows that σ preserves the
involution, hence σ constitutes a ∗-homomorphism, which is clearly an isomorphism. The universal
property of the full crossed product entails the sought isomorphism, proving that N ∼= M .

(ii) Let us maintain the notation in (i) except with the crossed products being reduced. Upon choosing
some faithful representation π : A −→ B(H), we may infer the inclusion A ⊆ B(H) without loss of
generality. Suppose λG is the left-regular representation of G, λH the one for H and λ̄ is the one
associated to GoH. For every s, g ∈ G, t, h ∈ H, ξ ∈ H and every a ∈ A,

((πα × λG)τ × λH)(ausvt)(ξ ⊗ δg ⊗ δh) = [(πα × λG)(τh−1(aus))](ξ ⊗ δg)⊗ λHt δh
= [(πα × λG)(β(1,h−1)(a)uϕh−1 (s))](ξ ⊗ δg)⊗ δth
= α∗gβ

∗
(1,h)(a)ξ ⊗ λGϕh−1 (s)δg ⊗ δth

= β∗(g,h)(a)ξ ⊗ δϕh−1 (s)g ⊗ δth.

On the other hand,

(πβ × λ̄)(aw(s,t))(ξ ⊗ δ(g,h)) = (β∗(g,h)(a)⊗ λ̄(s,t))(ξ ⊗ δ(g,h))

= β∗(g,h)(a)ξ ⊗ δ(sϕt(g),th)

and the unitary δs ⊗ δt 7→ δ(ϕt(s),t) is readily seen to provide the sought identification.

Proposition 1.6.4. Suppose (A,α,G) is some unital discrete C∗-dynamical system. The associated
linear map E : Cc(G,A) −→ A defined on generating elements by E(

∑
s∈G asus) = ae, where us

denotes the s’th unitary implementing the action α, defines a contractive linear map extending to
a faithful conditional expectation Aoα,r G −→ A.

Proof. See [2,Proposition 4.1.9] for a proof.





Chapter 2

Quasidiagonality

Quasidiagonality originates from a concept introduced by Halmos in the 1970’s, known as block-
diagonality of operators acting on Hilbert spaces. This particular notion generalizes the ability to
diagonalize ordinary n× n-matrices by capturing essential properties of diagonal matrices. The first
chapter seeks to slowly present quasidiagonality in its many formulations, initiating the exposition
by discussing block-diagonality vividly and then proceed to addressing the C∗-algebraic version. Af-
terwards, several core equivalent formulations of quasidiagonal C∗-algebras will be derived together
with permanence propertiers.

2.1 From Block-Diagonality to Quasidiagonal C∗-Algebras

The current section attempts to provide some intuition behind block-diagonal operators to the reader
prior to rigorously presenting the notion. We shall exhibit the principle of block-diagonality, then
attempt to capture the essence by an example. For the record, we adopt the canonical commutator
bracket notation, meaning [a, b] = ab− ba for elements in general algebras.

Definition. A bounded operator a acting on a Hilbert space H is said to be block-diagonal if there
exists an increasing net (pα)α∈Λ of finite rank projections on H converging to the identity 1H in the
strong-operator topology such that ‖[a, pα]‖ = 0 for every index α in Λ. In the event of H being
separable one implicitly demands that a sequence of such projections may be chosen.

In order to obtain some intuition, consider the case where H = `2(N) endowed with the usual or-
thonormal basis {δn}n≥1. The family {pn}n≥1 consisting of orthogonal projections pn onto the closed
subspace spanned by {δ1, . . . , δn} fulfills pn → 1H in the strong-operator sense. Let a be a block-
diagonal operator acting on H with respect to (pn)n≥1. The triangle inequality effortlessly entails
‖[a, pn − pn−1]‖ = 0 while another computations reveals that pn+1 − pn ⊥ pn − pn−1 for every posi-
tive integer n, hence we obtain a decomposition H =

⊕
n(pn − pn−1)H wherein p0 = 0. This yields

the following matrix picture of a:

a =


ap1

a(p2 − p1)
a(p3 − p2)

. . .

 .

Inspired by this, we interpret T as being “block-diagonal”. In general one cannot expect operators to
be block-diagonal and therefore one modifies the notion by transforming into quasidiagonality.

24
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Definition. An element a inside B(H) is said to be quasidiagonal provided there exists an increasing
net (pα)α∈Λ consisting of finite rank projections converging to the identity 1H in the strong operator
topology and fulfilling ‖[a, pα]‖ → 0. A collection Ω of elements in B(H) is said to be quasidiagonal if
such an increasing net (pα)α∈Λ of finite rank projections satisfying ‖[a, pα]‖ → 0 for all a ∈ Ω exists.
We implicitly require a sequence of such projections to exist provided that H is separable.

Our first objective will be to “localize” the notion of quasidiagonality, thus revealing the local nature
of quasidiagonality as opposed to its arguably more global appearance. For the record, we shall tem-
porarily refer to the following property as being locally quasidiagonal for emphasis for now, in spite
of this becoming redundant in due time.

Definition. A collection Ω of elements in B(H) is referred to as being locally quasidiagonal if for all
ε > 0, every finite F ⊆ Ω and every finite N ⊆ H there exists a finite rank projection p acting on H
subject to ‖[a, p]‖ < ε together with ‖pξ − ξ‖ < ε for all ξ ∈ N and a ∈ F .

Obviously, the ordinary definition of quasidiagonality must imply the local one. However, proving
equivalence is slightly technical, so we shall isolate a perturbation trick at first. Using the trick we
may derive that quasidiagonality and its local cousin are the same. However, we shall only prove the
separable version, leaving changing various passages into the net-lingo to you.

Lemma 2.1.1. Suppose A denotes a unital C∗-algebra containing two projections p and q.

(i) If ‖p−q‖ < 1, then there exist partial isometries ν and µ inside A such that u = ν+µ defines
a unitary in A satisfying uqu∗ = p and ‖1A − u‖ ≤ 4‖p− q‖.

(ii) If ‖pq − q‖ < 1/4, then there exist partial isometries ν and µ inside A such that u = ν + µ
defines a unitary in A satisfying uqu∗ ≤ p and ‖1A − u‖ ≤ 10‖p− q‖.

Proof. (i) Let a = pq throughout the entire proof and notice that ‖a∗a − q‖ = ‖q(p − q)q‖ < 1 by
hypothesis. The involutive algebra qAq has q as the unit, whereof a∗a must be invertible in qAq1.
The corresponding positive square root |a|−1

q therefore becomes an invertible positive element in qAq.
Setting ν = a|a|−1

q yields the polar decomposition a = ν|a|q within qAq. Furthermore,

ν∗ν = |a|−1
q (a∗a)|a|−1

q = |a|−1
q |a|2|a|−1

q = q and νν∗ = a|a|−2
q a∗ = p(q|a|−2

q q)p ∈ pAp

Through these relations we infer that ν∗ν = q and νν∗ ≤ p. In an analogue fashion, aa∗ becomes
invertible in pAp because of the estimate ‖aa∗ − p‖ = ‖p(q − p)p‖ < 1 while being a subject to
νν∗ ≥ p, whence νν∗ = p follows. We proceed to estimating ν; observe that

‖|a| − q‖ ≤ ‖a∗a− q‖ = ‖qpq − q3‖ ≤ ‖p− q‖.

In conjunction with νq = ν, the above yields the estimate

‖q − ν‖ ≤ ‖q − a‖+ ‖ν|a| − ν‖ = ‖(q − p)q‖+ ‖ν(|a| − q)‖ < 2‖p− q‖ (2.1)

Defining b = qp and applying the same argument to the orthogonal projections, we may determine a
partial isometry µ for which q⊥ = µ∗µ and p⊥ = µµ∗. Moreover, the very same approach as above
easily implies that ‖q⊥−µ‖ ≤ 2‖p− q‖. Routine calculations reveal that u = ν+µmust be a unitary
in A, so the assertion stems from (2.1) granting ‖1A−u‖ ≤ ‖q− ν‖+ ‖q⊥−µ‖ ≤ 4‖p− q‖ combined
with the following calculation. Consider the expansion

uqu∗ = (ν + µ)q(ν∗ + µ∗) = νqν∗ + νqµ∗ + µqν∗ + µqµ∗

= νν∗ + νµ∗ + µν∗ + µν∗νµ

= p+ νµ∗ + µν∗ + µν∗νµ.

1In a unital C∗-algebras, any element a of distance strictly smaller than 1 from the identity turns 1A−a invertible.
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According to the rearrangement, verifying that µν∗ = µ∗ν = 0 will grant us uqu∗ = p. However,
due to µ, ν being partial isometries combined with q = ν∗ν, q⊥ = µ∗µ, we may hereof deduce that
µν∗ = µq⊥ν∗ = µν∗ − µqν∗ = 0. Similarly, µ∗ν = 0, completing the proof of part (i).

(ii) Abbreviate ε = ‖q − pq‖ < 1/4 and let b = pq. Due to ‖q − b∗b‖ = ‖q2 − qpq‖ = ε < 1,
the positive element b∗b admits an invertible positive square root |b|−1

q in qAq such that ν := b|b|−1
q

defines a partial isometry fulfilling b = ν|b|, q = ν∗ν and p0 = νν∗ ≤ p. Moreover, ‖q − ν‖ ≤ 2ε via
an argument completely similar to the one in (i), thereby entailing

‖q − νν∗‖ ≤ ‖q − ν‖+ ‖ν − νν∗‖ ≤ ‖q − ν‖+ ‖νν∗ν − νν∗‖
≤ ‖q − ν‖+ ‖q − ν‖
≤ 4ε.

In particular, we obtain ‖q⊥ − p⊥0 ‖ ≤ 4ε < 1. Part (i) thus applies to produce a partial isometry µ
fulfilling q⊥ = µ∗µ together with p⊥0 = µµ∗. This must satisfy ‖q⊥−µ‖ ≤ 2‖q⊥−p⊥0 ‖ ≤ 8ε according
to the exact same estimate as in part (i). Finally, letting u = ν + µ provides us with a unitary in A
subject to uqu∗ ≤ p and ‖1A − u‖ ≤ ‖q − ν‖+ ‖q⊥ − µ‖ ≤ 10ε.

Proposition 2.1.2. A separable Ω ⊆ B(H) is quasidiagonal if and only if Ω is locally quasidiagonal.

Proof. Quasidiagonality implying localy quasidiagonality is obviously true whereas the converse is
far more troublesome to handle. LetN ⊆ H, F ⊆ Ω be fixed finite subsets and let some δ > 0 be given
(to be specified later on). The overall idea revolves around considering the orthogonal projection onto
the closed linear space K spanned by N and extract a suitable projection from its unit ball, then fix
whatever gap may arise.

The unit ball of K must be compact by finiteness of N , so the open cover consisting of the
open balls B(ξ, δ) with ξ ∈ (K)1 admits a finite subcover. As such there exists a finite collection
F ′ = {ξ1, . . . , ξm} ⊆ (K)1 such that the corresponding collection of open ballsB(ξk, δ) for 1 ≤ k ≤ m
cover (K)1. In particular, whenever p is a finite rank projection satisfying ‖pη − η‖ < δ for vectors
η ∈ F ′, then for every unit vector ξ ∈ K we have

‖pqξ − qξ‖ ≤ ‖qξ − ξ′‖+ ‖ξ − ξ′‖+ ‖pqξ − ξ‖ ≤ 3δ,

where q is the orthogonal projection onto K and ξ′ is some vector in F ′ fulfilling ‖qξ − ξ′‖ < δ
together with ‖ξ − ξ′‖ < δ, whose existence stems from the covering of (K)1. Upon Ω being locally
quasidiagonal, such a projection p exists including the approximation property ‖[p, a]‖ < δ for every
a ∈ F . If we specify δ slightly by demanding δ < 1/4, we may invoke lemma 2.1.1 to find a unitary u
in B(H) subject to q ≤ upu∗ and ‖1− u‖ ≤ 30δ. Thus,

‖p− upu∗‖ = ‖pu∗ + p− pu∗ − upu∗‖ ≤ ‖(1− u)pu∗‖+ ‖p(1− u∗)‖ ≤ 60δ. (2.2)

Define hereof a projection q by setting e := upu∗. We assert that e is the sought projection. To see
this, one continues to compute; for each element a inside F one has

‖upu∗a− aupu∗‖ ≤ ‖upu∗ − p‖ · ‖a‖+ ‖a‖ · ‖upu∗ − p‖+ ‖[a, p]‖
(2.2)
< δ(120‖a‖+ 1).

For the latter condition, suppose ξ belongs to N and let ξ′ be an element of F ′ making ‖qξ − ξ′‖ < δ
together with ‖ξ − ξ′‖ < δ valid. Under these premises, using that q ≤ p one obtains

‖eξ − ξ‖ ≤ ‖qξ − ξ‖ ≤ ‖qξ − ξ′‖+ ‖ξ − ξ′‖ ≤ 2δ.

Since δ was not specified further than being strictly smaller than 1/4, we can make it sufficiently small
to force the two preceding estimates strictly smaller than ε. One could for instance choose δ > 0 small
enough to force δ < ε/(4δ(120M + 1)) where M = max{‖a‖ : a ∈ F}. Voila.
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Having established the local appearance of quasidiagonality, we proceed towards the central concept
in this project: quasidiagonal C∗-algebras. The definition is quite natural in the sense that every C∗-
algebra corresponds to an isomorphic of a subalgebra in B(H) due to the GNS-construction, wherein
quasidiagonality becomes meaningful.

Definition. A representation π : A −→ B(H) of some C∗-algebra is quasidiagonal if its image π(A)
defines a quasidiagonal subcollection of B(H). The C∗-algebra A is referred to as being quasidiagonal
if a quasidiagonal faithful representation of A exists.

As usual, it is convenient to adapt invariants of C∗-algebras to approximation-esque versions. The
characterization is due to Voiculescu and we aim towards deriving one of his key results concerning
quasidiagonality: the aforementioned notion coincides with the approximation natured one. Proving
this, however, is quite involved and we require the aid of another involved theorem of Voiculescu.
Its statement alone is quite difficult to understand, so we introduce or perhaps recall some concepts
regarding representations.

Definition. Two representations π : A −→ B(H) and % : A −→ B(K) of a C∗-algebra A are said to

· be approximately unitarily equivalent if there exists a sequence (un)n≥1 of unitaries un : H −→ K
fulfilling that for every a belonging to A one has ‖%(a)− unπ(a)u∗n‖ → 0 as n→∞;

· be approximately unitarily relative to the compacts ifπ and % are approximately unitarily equivalent
via unitaries un : H −→ K such that %(a)− unπ(a)u∗n is compact for each a in A.

Furthermore, a representation π : A −→ B(H) is called essential provided that its image in B(H)
contains no nonzero compact operators, that is, π(A) ∩K(H) = {0}.

Remark. Every representation π : A −→ B(H) of a C∗-algebra A gives rise to an essential repre-
sentation by the infinite inflation meaning the ∗-homomorphism π∞ : A −→

⊕
n B(H) ∼= B(

⊕
nH)

defined by A 7→ (π(a))n≥1. This is quite clear from the outset, since, loosely speaking, an element of
the form (π(a))n≥1 cannot occur as a norm-limit of finite rank operators.

The deep results due to Voiculescu are the following three. For the record, we omit proving the two
first and confine ourselves with proving the third, being the variation we shall deploy.

Theorem 2.1.3 (Voiculescu). Suppose H and K are separable Hilbert spaces and suppose A denotes
a separable C∗ subalgebra in B(H) having 1H as a unit. If ι : A ↪→ B(H) denotes the inclusion and
π : A −→ B(K) is any unital representation whose restriction π|A∩K(H) is trivial, then ι must be
approximately unitarily equivalent to ι⊕ π : A −→ B(H)⊕ B(K) relative to the compacts.

Corollary 2.1.4. Let A be a unital C∗-algebra admitting a pair of faithful essential representations
π1, π2 : A −→ B(H). Under these premises, π1 and π2 become approximately unitarily equivalent
relative to the compacts.

As promised, Voiculescu’s theorems tend to have difficult statements. The one we shall invoke later on
is no exception. In fact, we must introduce another technical term regarding contractive completely
positive maps into B(H) whose sole obstruction towards becoming full-fledged ∗-homomorphisms is
K(H). For the record, Q(H) denotes the Calkin algebra associated to H.

Definition. Let q : B(H) −→ Q(H) be the quotient map and A some unital C∗-algebra. A unital
completely positive map ϕ : A −→ B(H) is referred to as being a representation modulo the compacts
provided that q ◦ ϕ : A −→ Q(H) becomes a ∗-homomorphism. We call ϕ a faithful representation
modulo the compacts if q ◦ ϕ is faithful.
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Theorem 2.1.5 (Voiculescu). Suppose A denotes a unital separable C∗-algebra admitting a faithful
separable representation ϕ : A −→ B(H) modulo the compacts. Let ηϕ : A −→ R+ be the map

ηϕ(a) = 2 max{‖ϕ(a∗a)− ϕ(a∗)ϕ(a)‖1/2, ‖ϕ(aa∗)− ϕ(a)ϕ(a∗)‖1/2}.

If so, any faithful unital separable essential representation π : A −→ B(K) admits a sequence
(un)n≥1 consisting of unitaries un : H −→ K subject to

lim sup
n→∞

‖π(a)− unϕ(a)u∗n‖ ≤ ηϕ(a)

for every element a belonging to A.

Proof. The reader is kindly asked to humor the following train of thought. Suppose we had established
the existence of a representation π : A −→ B(K) together with unitaries un : H −→ K satisfying the
conditions of the theorem. Any additional faithful essential representation % : A −→ B(H′) will be
approximately unitarily equivalent to π relative to the compacts according to corollary 2.1.4, say via
unitaries vn : K −→ H′. The sequence (wn)n≥1 of unitaries wn = vnun : H −→ H′ hereof satisfies the
sought bound

lim sup
n→∞

‖%(a)− wnϕ(a)w∗n‖ ≤ lim sup
n→∞

(‖%(a)− vnπ(a)v∗n‖+ ‖vnπ(a)v∗n − wnϕ(a)w∗n‖) ≤ ηϕ(a)

Thus the proof amounts to verifying the existence of such a representation π. To achieve existence,
suppose (σ, V,L) denotes the unital Stinespring dilation corresponding to the u.c.p map ϕ, that is,
the map σ : A −→ B(L) is a representation and v : H −→ L is the bounded operator witnessing ϕ by
ϕ(·) = v∗σ(·)v for all a inside A. Write p = vv∗ to obtain a projection and observe that

(p⊥σ(a)p)∗(p⊥σ(a)p) = pσ(a∗)p⊥σ(a)p

= vv∗σ(a∗a)vv∗ − vv∗σ(a∗)vv∗σ(a)vv∗

= vϕ(a∗a)v∗ − vϕ(a∗)ϕ(a)v∗.

for all a ∈ A. This grants us the estimate

‖p⊥σ(a)p‖ ≤ ‖ϕ(a∗a)− ϕ(a)ϕ(a∗)‖1/2 ≤ 2−1ηϕ(a). (2.3)

Decompose L into the direct sum L = pH ⊕ p⊥H. The bounded operator σ(a) acting on L, when
viewed as a bounded operator acting on the above decomposition, has the matrix form

Mσ(a) :=

(
pσ(a) pσ(a)p⊥

p⊥σ(a)p p⊥σ(a)

)
.

This may be readily verified by a straightforward computation. Let Nσ(a) denote the associated
matrix arising from Mσ(a) by deleting the diagonal parts of Mσ(a). One evidently has

‖Nσ(a)‖ = max{‖p⊥σ(a)p‖, ‖(p⊥σ(a)p)∗‖}
(2.3)

≤ 2−1ηϕ(a). (2.4)

We have arrived at the vital part of the proof. The main idea is arguably to construct matrices whose
difference becomes a matrix appearing as a block matrix having reoccurring copies of Nσ along the
diagonal. Due to demanding essential representations, we ought to make infinite copies of the already
established representation, upon which the remark on page 27 arrives to our aid. To this end, consider
the Hilbert space rearrangement2

pL ⊕
( ∞⊕
n=1

p⊥L ⊕ pL
)

=

∞⊕
n=1

(pL ⊕ p⊥L) =

∞⊕
n=1

L.

2the “identification” simply being the choice of where the parentheses start.
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Keeping the preceding in mind, define %∞ :=
⊕

n % and σ∞ =
⊕

n σ where %(a) is the bounded
operator having the following matrix form for all a ∈ A:

M%(a) =

(
σ(a)22 σ(a)21

σ(a)12 σ(a)11

)
.

Herein σ(a)ij is the (i, j)’th entry occurring in the matrix Mσ(a). The operator σ(a)11 ⊕ %∞(a) may
be regarded as the matrix

T =


σ(a)11 0 0 · · ·

0 M%(a) 0 · · ·

0 0 M%(a)
. . .

...
...

...
. . .

 .

whereas σ∞(a) has as associated matrix the one with copies of Mσ(a) along the diagonal. Under the
matrix picture, the corresponding matrix of θ(·) = σ(·)11 ⊕ %∞(·)− σ∞(·) becomes the block-matrix
having copies ofNσ(a) along the diagonal with alternating signs, starting with the negative alteration,
i.e., −Nσ(a). More vividly described:

Mθ =



0 −σ(a)21 0 0 · · ·
−σ(a)12 0 σ(a)21 0 · · ·

0 σ(a)12 0 −σ(a)21 · · ·

0 0 −σ(a)12 0
. . .

...
...

...
. . .

. . .

 .

Splitting Mθ into the sum of two diagonal parts and applying the triangle inequality ensures that

‖σ(a)11 ⊕ %∞(a)− σ∞(a)‖ ≤ 2‖Nσ(a)‖
(2.2)

≤ ηϕ(a) (2.5)

for each element a in A. This matrix trick has given us a potential candidate and the assumptions
imposed on ϕ will reveal themselves to reach our end goal. Let us abbreviate B = ϕ(A) + K(H) and
note that due to ϕ being a faithful separable representation modulo the compacts,B becomes a unital
separable C∗-algebra contained in B(H). If q denotes the canonical quotient map B(H) −→ Q(H) of
the Calkin algebra restricted toB, then one has an isomorphism q(B) ∼= A. According to theorem 2.1.3,
the inclusion ι : B ↪→ B(H) is unitarily equivalent to the representation ι ⊕ (%∞ ◦ q) relative to the
compacts. So there are unitaries wn : H −→ H⊕ (

⊕
n p
⊥L ⊕ pL) fulfilling

‖ι(b)⊕ (%∞ ◦ q)(b)− wnι(b)w∗n‖ → 0.

for every b ∈ B. The identifications B ∼= ι(B) and q(B) ∼= A permit us to replace ι(b) above with
ϕ(a) while viewing the image of q as elements in A, meaning we may replace q(b) with an element in
A above. This in turn allows us to assume, without loss of generality, that

‖ϕ(a)⊕ %∞(a)− wnϕ(a)w∗n‖ → 0 (2.6)

for every element a insideA. Our candidate for a representation π : A −→ B(K) and sequence (un)n≥1

of unitaries un : H −→
⊕

n L will be the representation π = σ∞, the separable Hilbert space K =⊕
n L and as unitary un = (v ⊕ 1)wn for all n ∈ N. The remainder of the proof amounts to making

some computations. Indeed the expression v∗σ(·)v = ϕ(·) rearranges into pσ(·) = vϕ(·)v∗ when
conjugating by v, whereof

(v ⊕ 1)[ϕ(a)⊕ %∞(a)](v ⊕ 1)∗ = σ(a)11 ⊕ %∞(a)



30 CHAPTER 2. QUASIDIAGONALITY

must be true for all a ∈ A, thereby entailing

lim sup
n→∞

‖π(a)− unϕ(a)u∗n‖ = lim sup
n→∞

‖σ∞(a)− (v ⊕ 1)wnϕ(a)w∗n(v ⊕ 1)∗‖

≤ lim sup
n→∞

(‖σ∞(a)− σ(a)11 ⊕ %∞(a)‖+ ‖(ϕ(a)⊕ %∞(a))− wnϕ(a)w∗n‖

which is bounded by ηϕ(a) on the merits of (2.4) combined with (2.5). This completes the proof.

We conclude our smaller detour and return to quasidiagonality. Firstly, the abstract approximation
characterization of quasidiagonal C∗-algebras. We temporarily invent our own name for the notion
until the equivalence of characterizations have been verified, although Voiculescu apparently did not
make one himself. As a remark, the proof works in the non-separable case. However, the proof is
essentially the same modulo technical variations with nets. We settle with the separable case, since
this will be sufficient for our purposes.

Definition. A C∗-algebra A is said to be abstractly quasidiagonal should there exist a net (ϕα)α∈Λ

consisting of contractive completely positive maps ϕα : A −→ Mn(α) which is asymptotically multi-
plicative meaning ‖ϕα(ab)→ ϕα(a)ϕα(b)‖ and asymptotically isometric meaning ‖ϕα(a)‖ → ‖a‖ for
all a, b ∈ A. In the separable case, one requires the net be a sequence instead.

At long last, we may truly determine the various approximation characterizations of quasidiagonality.
Furthermore, we shall simply refer to quasidiagonality as being either of the equivalent versions after
the proof, perhaps specifying later on if deemed necessary. The proof is a collaboration of several
participants although the credit is commonly granted to Voiculescu. Without further ado:

Theorem 2.1.6. Let A be a separable unital C∗-algebra. Under this hypothesis, the following
conditions are equivalent.

(i) A is quasidiagonal.

(ii) A is abstractly quasidiagonal.

(iii) A is abstractly quasidiagonal via unital completely positive maps.

(iv) Every faithful unital essential separable representation of A must be quasidiagonal.

Proof. The implications (iv) ⇒ (i) and (iii) ⇒ (ii) are trivial, so we need only verify the train of
implications (i)⇒ (ii)⇒ (iii)⇒ (iv) to complete the proof.

(i) ⇒ (ii): The proof of this implication does not revolve around how to cook up the desired c.c.p
maps, but why the only choice one can make works. Supposeπ : A −→ B(H) denotes the quasidiagonal
faithful separable quasidiagonal representation. Let (pn)n≥1 be a sequence of finite rank operators
converging to the identity in the strong operator sense such that ‖[pn, π(a)]‖ → 0 as n→∞ for all a
in A. The naive approach is to simply compresses the image of π(a) via the existing projections. This
yields c.c.p maps ψn : A −→ pnB(H)pn ∼= Mk(n) defined in terms of the assignments a 7→ pnπ(a)pn
for all positive integers n. The desired result hereby stems from

‖pnπ(a)π(b)pn − pnπ(a)pnπ(b)pn‖ = ‖pn(pnπ(a)− π(a)pn)π(b)pn‖
≤ ‖[pn, π(a)]‖ · ‖b‖ → 0.

being valid for all a, b ∈ A in conjunction with π being faithful entailing that, for all a ∈ A, one has

‖pnπ(a)pn − π(a)‖ ≤ ‖pnπ(a)(pn − 1H)‖+ ‖(pn − 1H)π(a)‖ → 0.
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(ii) ⇒ (iii). This is possibly the least interesting, although important, of the implications while
having a tedious amount of technical joggling using the continuous functional calculus. Ergo, the level
of details might seem low. Let ψn : A −→ Mk(n) be the sequence of asymptotically isometric - and
multiplicative c.c.p maps associated to A. Plainly, one may assume that

‖ψn(1A)2 − ψn(1A)‖ < 1

n
, n ∈ N. (2.7)

According to the continuous functional calculus, one may deduce that the spectrum of ψn(1A) must
be contained in [0, 1] since ψn is positive and contractive3. The spectral elements in fact satisfy a more
restrictive condition: due to the containment

σ(ψn(1A)2 − ψn(1A)) ⊆ σ(ψn(1A))2 − σ(ψn(1A))

combined with (2.7), any spectral element λ of ψn(1A) must satisfy |λ2 − λ| < 1/n for all positive
integers n. Hence the spectrum of ψn(1A) must belong to [0, 1/n) ∪ (1− 1/n, 1]. Given any bounded
interval I ⊆ R, let χI denote the indicator map supported on I. If f : σ(ψn(1A)) −→ {0, 1} is the
mapping χ[1/2,1] restricted to the closed set In := σ(ψn(1A)), then for every t ∈ In one has

|t− f(t)| = |t− 1|χ[1/2,1] + |t|χ[0,1/2) <
χIn
n

<
1

n
.

The isometric property of the continuous functional calculus thus yields ||ψn(1A)−f(ψn(1A))|| < 1/n
for all positive integers n. Letting pn := f(ψn(1A)) provides a projection such that

‖ψn(1A)pn − pn‖ ≤ ‖pn‖ · ‖ψn(1A)− pn‖ → 0.

The element ψn(1A)pn thus becomes invertible in the matrix algebra pnMk(n)pn, hence its positive
square root admits an inverse herein and another routine calculations will reveal that its distance
from pn tends to zero as n tends to infinity. The obtained sequence of unital completely positive
ϕn : A −→Mk(n) given by the map

ϕn(·) = (ψn(1A)pn)1/2ψn(·)(ψn(1A)pn)1/2

therefore works. We omit presenting the latter two computations and leave them to the reader.

(iii) ⇒ (iv) We have reached the critical point of the proof, wherein we must invoke Voiculescu’s
theorem. Suppose (ϕn)n≥1 is a sequence consisting of asymptotically isometric - and multiplicative
unital c.p mapsϕn : A −→Mk(n). Define accordingly a c.p map π : A −→ `∞(Mk(n),N) by identifying

the codomain by B(H) for H =
⊕

n Ck(n) and taking the infinite inflation map. Let qn denote the
orthogonal projection ofH onto its n’th component. By construction, the projection qn witnesses ϕn
in the sense that ϕn(·) = qnπ(·)qn for all n ∈ N. Recall that an operator a acting on the product
`∞(Mk(n),N) is compact if and only if ‖qnaqn‖ → 0 as n tends to infinity. As such, if π(a) is compact
for some element a in A, then ‖ϕn(a)‖ → 0 and thereof ‖a‖ = 0 due to (ϕn)n≥1 being asymptotically
isometric. Furthermore,

‖qn(π(ab)− π(a)π(b))qn‖ = ‖qnπ(ab)qn − qnπ(a)π(b)qn‖ = ‖ϕn(ab)− ϕn(a)ϕn(b)‖ → 0

is true for all elements a, b ∈ A. As such π(ab)− π(a)π(b) must be compact for all a, b ∈ A, which in
combination with the preceding observations imply that π must be a faithful representation modulo
the compacts. The main idea behind π revolves around its rather explicit nature while allowing us
to invoke Voiculescu’s theorem, thereby permitting us to perturb its corresponding projection onto
the n’th components via unitaries in the following manner. Suppose % : A −→ B(K) is some faithful
essential separable representation and let ε > 0 together with finite subsets F ⊆ A and N ⊆ K be

3More precisely, we apply the spectral mapping theorem here.
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fixed. Upon qn ⊥ qn+1 for every positive integern, the sum pn =
∑n
i=1 qn becomes a projection readily

verified to fulfill that pn → 1H in the strong operator topology while satisfying pnπ(a) = π(a)pn for
all a ∈ A and n ∈ N. These projections are the natural candidates to force the norm ‖[%(a), pn]‖ to
become small. This particular choice tends to fail, so we must perturb our representation % slightly
and this is where Voiculescu’s theorem enters the scene: Choose a positive integer N large enough to
ensure

‖ϕn(aa∗)− ϕn(a)ϕ(a∗)‖1/2 < ε/2 and ‖ϕn(a∗a)− ϕn(a∗)ϕn(a)‖1/2 < ε/2. (2.8)

for every n exceedingN . Voiculescu’s theorem, meaning theorem 2.1.5, permits us to determine some
unitary v : H −→ K satisfying

‖%(a)− vπ(a)v∗‖ ≤ ηπ(a)
(2.8)
< ε (2.9)

The remainder of the proof is simply to perturb the projections pn by setting en := vpnv
∗, for then

the aforementioned relations between the family of projections pn and point images π(a) combined
with (2.9) permit us to infer that

‖en%(a)− %(a)en‖ = ‖vpnv∗%(a)− %(a)vpnv
∗‖

≤ ‖vpnv∗%(a)− vpnπ(a)v∗‖+ ‖vπ(a)pnv
∗ − %(a)vpnv

∗‖
≤ ‖v∗%(a)− π(a)v∗‖+ ‖vπ(a)− %(a)v‖
= ‖v∗%(a)− v∗vπ(a)v∗‖+ ‖vπ(a)v∗v − %(a)v‖
< ε

whenever n is sufficiently large and every a ∈ F . Lastly, we have

‖enξ − ξ‖ = ‖vpnv∗ − vv∗ξ‖ = ‖(pn − 1H)(v∗ξ)‖ → 0

for all ξ ∈ N , completing the proof.

2.2 Properties, Examples and Homotopy Invariance

Having established the notion of quasidiagonal C∗-algebras in various disguises, we continue the sur-
vey by deriving a few basic permanence properties. None of these properties are particularly powerful
except for the homotopy invariance, which is an indispensable tool in the quasidiagonality arsenal.
However, we shall begin with justifying that assuming a C∗-algebra to be unital when considering
quasidiagonality is relatively harmless.

Proposition 2.2.1. The unitalization of any quasidiagonal C∗-algebra is quasidiagonal.

Proof. Suppose (ϕα)α∈Λ is the assumed net asymptotically isometric - and multiplicative contractive
completely positive maps ϕα : A −→Mn(α). Due to Mn(α) being unital, we may extend each ϕα to a
unital completely positive map ψα : A+ −→Mn(α) by setting ψα(a+ λ1A+) = ϕα(a) + λ1n; consult
for instance [2, proposition 2.2.1] for a proof of this fact. Due to

‖ψα(a+ λ1A+)ψα(b+ µ1A+)− ψ(ab+ λb+ µa+ λµ1A+)‖
= ‖(ϕα(a) + λ1A+)(ϕα(b) + µ1A+)− ϕα(ab)− λϕα(b)− µϕα(A) + λµ1A+‖
= ‖ϕα(a)ϕα(b)− ϕα(ab)‖ → 0

being valid for all a, b ∈ A and scalars λ, µ ∈ C, we deduce that (ψα)α∈Λ becomes an asymptotically
multiplicative net of unital completely positive maps. The asymptotically isometric property may be
proven through a similar and easiar computation. This verifies the claim on the merits of theorem 2.1.6
and Voiculescu’s abstract characterization of quasidiagonality.
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The next lemma contains two semi-obvious permanence properties regarding hereditary aspects of
quasidiagonality. The former one will be needed during the proof of homotopy invariance, however,
the proof merely mimics previous techniques, adapting them ever slightly, whereas restriction to sub-
algebras retains quasidiagonality is obvious. As such, proofs have been omitted as no reward arises
from dwelling further into the matter.

Proposition 2.2.2. Suppose Ω denotes a quasidiagonal set of operators acting on a Hilbert space
H. Under this premise, the C∗-algebra generated by Ω becomes quasidiagonal. Furthermore, qua-
sidiagonality passes to subalgebras.

Now, for some of the more intriguing permanence properties, namely that quasidiagonality is pre-
served under `∞-sums, hence c0-sums due to the previous proposition, and tensoring with respect to
the spatial norm. The proofs are surprisingly easy in spite of their benefactors; you merely make the
naive choice.

Proposition 2.2.3. Let (An)n≥1 denote a sequence of C∗-algebras. Then each An is quasidiagonal
if and only if `∞(An,N) is quasidiagonal.

Proof. The if part is trivial since An ↪→ `∞(An,N) isometrically. In order to prove the converse, let
ϕnαn : An −→ Mk(αn) denote the corresponding asymptotically multiplicative - and isometric nets
of contractive completely positive maps indexed over sets Λn for every positive integer n. Define
accordingly a net of bounded linear maps ϕ(αn)n≥1

: `∞(An,N) −→ `∞(Mk(αn),N), indexed over the
directed product Λ1 × Λ2 × . . ., by

(bn)n≥1 7−→ (ϕnαn(bn))n≥1.

By hypothesis, each coordinate component of ϕ(αn)n≥1
is asymptotically multiplicative - and isomet-

ric. The assertion follows immediately from the definition of the `∞-sum norm.

Proposition 2.2.4. The spatial tensor product of two quasidiagonal C∗-algebras is again qua-
sidiagonal. In particular, the spatial tensor product A1 ⊗ A2 ⊗ . . . ⊗ An of unital C∗-algebras is
quasidiagonal if and only if each factor is quasidiagonal.

Proof. Suppose A and B are two quasidiagonal C∗-algebras admitting quasidiagonal faithful repre-
sentations π : A −→ B(H) and % : B −→ B(K). The tensor map π ⊗ % is well-known to produce a
faithful representation A ⊗ B −→ B(H ⊗ K) allowing us to identify the tensor product A ⊗ B with
the C∗-algebra generated by elementary tensors on the form π(a)⊗ %(b)4 with a ∈ A and b ∈ B.

Therefore, we it suffices prove that for every pair of finite sets F1 ⊆ A, F2 ⊆ B, every pair of finite
sets N1 ⊆ H, N2 ⊆ K and ε > 0 there exists a finite rank projection p acting onH⊗K such that one
has

‖[p, π(a)⊗ %(b)]‖ < ε together with ‖p(ξ ⊗ η)− ξ ⊗ η‖ < ε

whenever a⊗ b ∈ F1 ⊗ F2 and ξ ⊗ η ∈ N1 ⊗N2 are elementary tensors. Let such elements be given,
then exploit quasidiagonality to choose finite rank projections p and q fulfilling

‖[p, π(a)]‖ < ε

2 maxa∈F1
‖q%(b)‖

, ‖pξ − ξ‖ < ε1/2,

‖[q, %(b)]‖ < ε

2 maxb∈F2
‖π(a)p‖

, ‖qη − η‖ < ε1/2.

4This is based on the choice of faithful representations having no impact on the spatial tensor product.
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The projection p0 = p⊗ q admits a range of dimension equaling the product dim p = dim(p) dim(q)
meaning it must be of finite rank itself so that the estimates

‖[p⊗ q, π(a)⊗ %(b)]‖ = ‖pπ(a)⊗ q%(b)− π(a)p⊗ %(b)q‖
= ‖(pπ(a)− π(a)p)⊗ q%(b) + π(a)p⊗ (q%(b)− q%(b))‖
≤ ‖[p, π(a)]‖ · ‖q%(b)‖+ ‖π(a)p‖ · ‖[q, %(b)]‖
< ε

and
‖(p⊗ q)(ξ ⊗ η)− ξ ⊗ η‖ = ‖pξ − ξ‖ · ‖qη − η‖ < ε

yield the sought conclusion via lemma 2.2.3, proving the first assertion. The “if” part of the remaining
statement follows from repeated application of the first whereas the “only if” part stems from the
canonical mappings Ak ↪→ A1 ⊗ . . . ⊗ An being ∗-monomorphisms combined with quasidiagonality
passing to subalgebras.

To achieve a proof circumventing a notational nightmare, we isolate a preliminary result conveying a
local formulation of Voiculescu’s abstract characterization of quasidiagonality. The proof is merely a
standard trick passing from finite subsets to nets using inclusions.

Lemma 2.2.5. A C∗-algebra is quasidiagonal if and only if for every finite subsets F ⊆ A and
every ε > 0 there exists a c.c.p map ϕ : A −→Mn fulfilling

‖ϕ(ab)− ϕ(a)ϕ(b)‖ < ε together with ‖ϕ(a)‖ > ‖a‖ − ε

for any pair of elements a, b ∈ F .

Proof. The “only if” part is immediate, so we settle with the reverse implication. Suppose that given
any pairing (F, ε) consisting of a finite subsetsF ⊆ A and ε > 0, the mapϕF,ε : A −→Mn(F,ε) denotes
the assumed c.c.p map subject to the estimates described in the assertion. The collection F of pairs
(F, ε) endowed with the order ≤ defined by stipulating that (F, ε) ≤ (F ′, ε′) if and only if F ⊆ F ′

while simultaneously ε′ < ε is easily seen to produce a directed set, whereupon (ϕα)α∈F defines a net
of c.c.p maps A −→Mn(α). Indeed the net satisfies the sought estimates by construction, proving the
claim.

Proposition 2.2.6. Let (An, ϕn)n∈N be an inductive sequence consisting of quasidiagonal C∗-
algebras having ∗-monomorphisms as connecting morphisms. Then the associated inductive limit
becomes a quasidiagonal C∗-algebra.

Proof. According to the previous lemma, let F ⊆ A be finite and choose your favorite ε > 0. Without
loss of generality, we may assume that A is the norm closure of

⋃
nAn. Ergo, for every pair a, a0 ∈ F

may be norm approximated, within any tolerance δ > 0, via another pair b, b0 ∈ An for some
sufficiently large positive integer n.

Keeping this in mind, the hypothesis combined with the preceding lemma entails that An admits
a c.c.p map ϕ : An −→ Mn within an ε/3 tolerance of being multiplicative and isometric. Arveson’s
extension permits us to extend ϕ to a c.c.p map ψ : A −→ Mn. Moreover, choosing δ sufficiently
small, then exploiting continuity of the involved c.c.p maps forces the estimates ‖a − b‖ < δ and
‖a0 − b0‖ < δ to imply the bounds ‖ψ(bb0) − ψ(aa0)‖ < ε/3 and ‖ψ(a)ψ(a0) − ψ(b)ψ(b0)‖ < ε/3,
whereof one obtains the sought bound

‖ψ(a)ψ(a0)−ψ(aa0)‖ ≤ ‖ψ(a)ψ(a0)−ψ(b)ψ(b0)‖+ ‖ψ(b)ψ(b0)−ψ(bb0)‖+ ‖ψ(bb0)−ψ(aa0)‖ < ε.

Of course, an entirely analogous argument supplies the estimate ‖ψ(a)‖ > ‖a‖ − ε for all a ∈ F , so
we consider our work finished.
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Examples (a).

· Finite-dimensional C∗-algebras. Indeed, the classification of finite-dimensional C∗-algebras in con-
junction with proposition 2.2.4 evidently guarantee this.

· AF-algebras are quasidiagonal being inductive limits of finite-dimensional C∗-algebras by defini-
tion. This provides us with numerous examples despite of general inductive limits typically failing
to be quasidiagonal, including UHF-algebras of whichever type you prefer.

· Every AF-embeddable C∗-algebra becomes quasidiagonal due to the previous example combined
with quasidiagonality passing to subalgebras.

· The compact operators K(H) on some Hilbert space H are quasidiagonal. In particular, the stabi-
lization A⊗K of any quasidiagonal C∗-algebra remains quasdiagonal.

Another lovely feature of quasidiagonality is the existence of faithful tracial states.

Proposition 2.2.7. Quasidiagonal unital C∗-algebras admit a tracial states. In particular, simple
quasidiagonal unital C∗-algebras admit a faithful tracial state.

Proof. By hypothesis, A admits u.c.p asymptotically multiplicative maps ϕα : A −→Mn(α) indexed
over a directed set Λ. Let hereof τα : Mn(α) −→ C be the canonical tracial state for every index α
and define accordingly τ : A −→ C by setting τ to be the weak∗ cluster-point of the net consisting
of states τα ◦ ϕα acting on A, existence assured via weak∗-compactness of the state space. Due to
weak∗-continuity of addition, one has

τ(ab)− τ(ba) = (lim
α
τα[ϕα(ab)− ϕα(ba)]) = lim

α
τα[ϕ(a)ϕ(b)− ϕ(b)ϕ(b)] = 0

with the second equality stemming from ϕα being asymptotically multiplicative. For the latter as-
sertion, recall that the subset Lτ consisting of elements a in A fulfilling τ(a∗a) = 0 determines a
two-sided ∗-ideal in A, hence must coincide with A or be the zero ideal by simplicity. Since τ 6= 0 the
former cannot occur, so τ becomes faithful, completing the proof.

Unfortunately, investigating whether the maximal tensor products of quasidiagonal C∗-algebras re-
mains quasidiagonal is still undergoing whereas general inductive limits of quasidiagonal ones may
fail to become quasidiagonal. Another important class of C∗-algebras contained in the quasidiagonal
class is the so-called residually finite dimensional ones. We shall present a rather thorough survey of
residually finite dimensional C∗-algebras to emphasize on a few techniques arising hereby.

Definition. A C∗-algebraA is said to be residually finite dimensional, abbreviated into RFD, if there
exists a net (πα)α∈Λ consisting of ∗-homomorphism πα : A −→ Mn(α) such that the corresponding
inflation ∗-homomorphism π : A −→ `∞(Mn(α),Λ) becomes faithful. Equivalently, A is RFD if for
every nonzero element a ∈ A there exists a ∗-homomorphism πα : A −→Mn(α) such that πα(a) 6= 0.
As usual, a sequence of such homomorphisms is demanded whenever A is separable.

Example. Abelian C∗-algebras are automatically RFD-algebras. Indeed, for any locally compact
Hausdorff space Ω and bounded continuous map f : Ω −→ C differing from zero, one has f(z) 6= 0 for
some element z belonging to Ω so that one may define ψz : C0(Ω) −→ C by

ψz(f) = f(z).

By construction ψz(f) 6= 0, proving that C0(Ω) must be residually finite dimensional, whereupon the
assertions follows from Gelfand-Neimark’s theorem.
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Proposition 2.2.8. Residually finite dimensional C∗-algebras are quasidiagonal.

Proof. Suppose A is an RFD-algebra and suppose πα,a : A −→ Mn(α) is the ∗-homomorphism map-
ping a corresponding nonzero element a in A to some nonzero element. To simplify the notation, set
A0 = A \ {0} and define thus π : A −→ `∞(Mn(a), A0) as the infinite inflation indexed over A0 of
these existing ∗-homomorphisms, that is, the assignment b 7→ (πα,a(b))a∈A0

. Identify the codomain of
π side with B(

⊕
a∈A0

Cn(α)) via the ∗-isomorphism (Ta)a∈A0 7→ T where T is the bounded operator
on the latter algebra given by

T (ξa)
n(a)
k=1 = (Taξa)

n(α)
k=1 .

It is clear that π must be faithful due to each factor being so, hence it remains to be shown that
its image must be quasidiagonal. Write H =

⊕
a 6=0 Cn(α) to ease the notation. For every nonzero

element a ∈ A, let qa : H −→ Cn(α) be the canonical orthogonal projection. The strong-operator sum
pa :=

∑
b≤a qb defines a projection acting on H converging in the strong-operator topology towards

the identity 1H. The rank of pa must equal the sum of ranks of each qb appearing in its sum, hence it
has finite rank. Furthermore,

‖π(a)paξ − paπ(a)ξ‖ = ‖(πa(a))a 6=0paξ − pa(πa(a))a6=0ξ‖
= ‖(πa(a)ξb)b≤a − pa(πa(a)ξa)a 6=0‖
= ‖(πa(a)ξb)b≤a − (πa(a)ξb)b≤a‖
= 0

for all a ∈ A and ξ = (ξb)b6=0 in H. We conclude that π(A) must be block-diagonal.

2.3 Homotopy Invariance

As a grand finale to the chapter, we derive the heralded result due to Voiculescu. It asserts that
quasidiagonality is a homotopy invariant in the category C∗-Alg. The merits to such a permanence
properties are aplenty. For instance, it provides additional examples of quasidiagonal C∗-algebras,
namely the suspension and cone associated to any C∗-algebra. The proof calls for meticulous care,
so it has been separated into several parts with an emphasis on the actual strategy. Despite of not
being adequately equipped to prove Voiculescu’s theorem, we present a portion of it and thereof verify
quasidiagonality of the aforementioned algebras, partly to encapsulate the main idea in the proof.
The reader is strongly urged to consult the page 7 before venturing further.

Theorem 2.3.1 (Voiculescu). Any C∗-algebra homotopically dominated by a quasidiagonal C∗-
algebra must be quasidiagonal. In particular, quasidiagonality is a homotopy invariant in the cate-
gory of C∗-algebras having ∗-homomorphisms as morphisms.

Proof. Suppose π : A −→ B and % : B −→ A are ∗-homomorphisms such that π% ∼=H idB with A
being quasidiagonal. Define accordingly ϑ : B −→ B ⊕ %(B) by the assignment b 7→ π%(b) ⊕ %(b).
There exists by hypothesis some ∗-homotopy continuously transforming π% into the identity on B,
say σ : B × I −→ B satisfies σ(b, 0) = π%(b) and σ(b, 1) = b for every element b in B. The obtained
pairing (σ, ϑ) defines a map σϑ : (B ⊕ %(B))× I −→ B ⊕ %(B) given by

σϑ(b, %(b0), t) = σ(b, t)⊕ %(b0)

remains continuous in each variable, while the restriction (b, %(b0)) 7→ σϑ(b, %(b0), t) automatically
determines a ∗-homomorphism for all parameters 0 ≤ t ≤ 1, which transforms π%⊕ % into idB ⊕ % by
construction. Here is the crucial trick involved in the proof: suppose that given any pair of homotopic
∗-homomorphisms µ, ν : A −→ B with ν being a ∗-monomorphism and µ(A) quasidiagonal, one may



2.3. HOMOTOPY INVARIANCE 37

deduce quasidiagonality ofA. If this were true, then due to idB⊕% clearly being faithful in conjunction
with the inclusion

ϑ(B) = {(π%(b), %(b)) : b ∈ B} ∼= %(B) ↪→ A

guaranteeing quasidiagonality of ϑ(B), one obtains quasidiagonality of B. Here the identifications is
merely the assignment from %(B) onto ϑ(B) given by %(b) 7→ (π%(b), %(b)), which is readily checked
to determine an isomorphism of C∗-algebras based on faithfulness granting

‖ϑ(b)‖ = max{‖π%(b)‖, ‖%(b)‖} = ‖%(b)‖

for every element b ∈ B. This completes the proof, modulo the lemma 2.3.6 below.

Recall that given a C∗-algebra, there exists two C∗-algebras arising hereby n a functorial manner,
namely the suspension and cone. The cone of a C∗-algebra, denoted by C(A), consists of all continu-
ous functions f : I −→ A such that f(0) = 0 with I = [0, 1] and the suspension, denoted by S(A), is
the ∗-ideal herein consisting of all continuous functions f : I −→ A such that f(0) = f(1) = 0. The
cone and suspension of a C∗-algebra are paramount in K-theory and we shall derive quasidiagonality
of these.

Corollary 2.3.2. The functors A 7→ CA and A 7→ SA from the category of C∗-algebras maps into
the subcategory of quasidiagonal C∗-algebras. Described less abstractly, the suspension and cone of
a C∗-algebra is always quasidiagonal.

Proof. Due to quasidiagonality passing to subalgebras, it suffices to show that CA must be qua-
sidiagonal for any C∗-algebra A. However, the cone is always contractible, that is, homotopic to
the trivial algebra {0} via the homotopy σ : CA × I −→ CA given by σ(f, t)(s) = f(ts) for all
0 ≤ s ≤ 1 and continuous map f : I −→ A for which f(0) = 0: one has σ(f, 1)(s) = f(s) together
with σ(f, 0) = f(0) = 0. Therefore we may deduce that CA is homotopy equivalent to a single
point with the latter trivially being quasidiagonal. Thus CA becomes quasidiagonal because of the
homotopy invariance theorem, proving the claim.

As discussed, the proof of Voiculescu’s theorem relies on lemma 2.3.6. The preceding proof, in which
the lemma was assumed valid, unfolds the general strategy in Voiculescu’s approach. The proof ex-
ploits various trickery, so to maintain sanity these parts are tackled individually. First of and foremost,
we shall use the following criterion for quasidiagonality. Its content provides a local sufficient con-
dition for a C∗-algebra to be quasidiagonal in terms of families consisting of representations. The
reader should be warned of the next couple of results, details have generally been reduced into a bare
minimum to stay on track.

Lemma 2.3.3. A C∗-algebra A fulfilling the following condition must be quasidiagonal: for every
ε > 0 and finite subset F ⊆ A there exist a representation π : A −→ B(H) together with a finite
rank projection p acting on H subject to the estimates

‖[p, π(a)]‖ < ε and ‖pπ(a)p‖ ≥ ‖a‖ − ε (2.10)

for all a belonging to F .

Proof. Let F ⊆ A be finite, let ε > 0 be fixed and set M = max{‖a‖ : a ∈ F}. Suppose (π, p)
denotes the pairing fulfilling the estimates (2.10) in the statement with respect to the pair (F, ε/M).
Compression with bounded operators always yields a c.c.p map. Hence letting a 7→ pπ(a)p be denoted
by ϕ leaves a c.c.p map subject to

‖ϕ(a)ϕ(b)− ϕ(ab)‖ = ‖pπ(a)(pπ(b)− π(b)p)p‖ ≤M · ‖π(b)p− π(b)p‖ < ε

In a similar manner one obtains ‖ϕ(a)‖ > ‖a‖ − ε, so the desired stems from lemma 2.2.5.
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Proceeding further, some preparations concerning quasicentral approximate units.

Proposition 2.3.4. Suppose I denotes a σ-unital two-sided ∗-ideal in some C∗-algebra A. Then
there exists a quasicentral approximate unit {qn}n≥1 in I fulfilling qnqn−1 = qn−1 for all n ∈ N.

Proof. Let z =
∑∞
n=1 2−nen having {en}n≥1 denote the sequence acting as an approximate unit. Then

z is strictly positive according to proposition A.3.1. Construct any continuous function ψn : (0, 1] −→
[0, 1] having support outside the open interval (0, 2−n), attaining the value 1 on the closed bounded
interval [2−(n−1), 1] and linear in between the gap of the intervals. We have

ψn(t)ψn−1(t) =


1, if 0 < t < 1

2n ,

0, if 1
2n−1 ≤ t ≤ 1,

ψn−1(t), if z is in between the above.

simply because [2−n, 1] ⊆ [2−(n+1), 1] for all positive integers n. According to the proposition A.3.1,
constructing a sequence of increasing positive elements {ψn(z)}n≥1 determining an approximate unit
of I suffices. To achieve this, note that the multiplicative property of the continuous functional calculus
implies ψn(z)ψn−1(z) = ψn−1(z) for all n ∈ N, and if ω is a state on I we have

‖ω(ψn(z))‖ ≤ ‖ψn(z)‖ = ‖ψn‖∞ → 1,

since [2−n, 1]→ (0, 1]. Strict positivity of z easily entails limn→∞ ψn(z)a = limn→∞ aψn(z) = a. The
sequence {ψn(z)}n≥1 hereof becomes an approximate unit in I, from which a quasicentral approximate
unit {qn}n≥1 may be extracted. We leave the verifying the relation qnqn−1 = qn−1 to the reader; one
requires the proof of existence of quasicentral approximate units for this.

The intriguing feature of quasicentral approximate units is its property of asymptotically commut-
ing with elements, a property heavily resembling one of the quasidiagonal conditions. The preceding
result permits us to arrange the relation qnqn−1 = qn−1 which becomes essential when applying a
matrix trick. Another minor observation we shall invoke is a continuity-esque result.

Lemma 2.3.5. For every ε > 0 and element f in C0(0, 1], there exists a δ > 0 such that for every
C∗-algebra A and unit vectors e, a ∈ A with ‖[e, a]‖ < δ one has ‖[f(e), a]‖ < ε.

Proof. Through an application of the Stone-Weierstrass approximation theorem, we may approximate
f via polynomials within an ε/2 tolerance, thus permitting us to assume f = λ1x+ . . .+ λnx

n with
each λk belonging to C. To ease the notation, denote by Da(b) the derivation [b, a] = ba− ab for any
pair of elements a, b ∈ A. In the event of b being of unit length, we consider the action ofDa on powers,
whereof we obtain the rearrangement

Da(bk+1) = (bk+1a− babk+1) + (babk+1 − abk+1) = bDa(bk) +Da(b)bk.

combined with an induction argument the bounds ‖Da(bk+1)‖ ≤ ‖Da(bk)‖+ ‖Da(b)‖ for all k ≤ n.
Thus ‖Da(bk)‖ ≤ k‖Da(b)‖ for every k’th power not exceeding n. Ergo, choosing δ = ε/M , where
the constant is M =

∑n
k=1 k|λk|, and assuming ‖Da(e)‖ = ‖[e, a]‖ < δ entails according to the

continuous functional calculus the estimate

‖[f(e), a]‖ =

∥∥∥∥ n∑
k=1

λkDa(ek)

∥∥∥∥ ≤ n∑
k=1

k|λk| ‖Da(b)‖ < ε,

proving the claim.
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Lemma 2.3.6. Let ϕ,ψ : A −→ B be ∗-homotopic ∗-homomorphisms with ϕ a ∗-monomorphism
and ψ(B) determining a quasidiagonal C∗-algebra. Under these premises, A becomes quasidiagonal.

Proof. Step 1. Let ϕ,ψ : A −→ B be ∗-homotopic ∗-homomorphisms with ϕ being a monomorphism
and the image ofψ being quasidiagonal. Suppose π : B −→ B(K) denotes a faithful separable essential
representation of B and let σ : I ×A −→ B be the ∗-homotopy transforming ϕ into ψ, i.e., σ(0, a) =
ϕ(a) and σ(1, a) = ψ(a) for all a inA. Upon applying lemma 2.3.3, it will suffice to show that given an
ε > 0 and finite subset F ⊆ A there exist a representation % : A −→ B(H) and a finite rank projection
p acting on H such that

‖[p, %(a)]‖ < ε and ‖p%(a)p‖ ≥ ‖a‖ − ε.

Let δ > 0 be an arbitrary parameter (to be specified in the future after some setup). We may filter I
with a finite collection of intervals on the form V kn = [k/n, (k+1)/n] for 0 ≤ k ≤ n−1 by compactness
of the unit interval. Norm continuity of the map t 7→ σ(t, a) combined with the convergence V kn → {0}
for n→∞ implies the existence of some positive integer Nδ for which

‖σ(k/n, a)− σ((k + 1)/n, a)‖ ≤ δ. (2.11)

holds for all 0 ≤ k ≤ n − 1, n ≥ Nδ and a ∈ A. Due to F being finite, the orthogonal projection q
onto the image of the linear space spanned by F under ϕ has finite rank and satisfies the constraint

‖qπ(ϕ(a))q‖ ≥ ‖a‖ − ε, a ∈ F, (2.12)

due to ϕ being an isometry, or with some slight abuse of notation ‖qϕ(a)q‖ ≥ ‖a‖ − ε under the
identification B ∼= π(B). Next up, the quasicentral approximate unit trick: Since π is separable, the
corresponding ideal of compact operators on H becomes separable, hence it admits a quasicentral
approximate unit {en}n≥1 satisfying enen−1 = en−1 for any n ∈ N according to proposition 2.3.4.
The finite rank operators onK are dense in the compact ones, so there exists for every positive integer
k some finite rank operator fnk acting on K within 1/k distance of en. The quasicentral property
ensures that the right-hand side of

‖[a, fkn ]‖ ≤ ‖afkn − aen‖+ ‖aen − ena‖+ ‖ena− fkna‖

can be made arbitrarily small for eacha ∈ F . Thus, upon replacing each ek with fk, we may assume that
ek has finite rank in addition to being quasicentral, positive, of unit length, subject to ekek−1 = ek−1

for all k ∈ N, while q ≤ e1 ≤ e2 ≤ . . . ≤ en ≤ 1 and on the merits of {en}n≥1 being quasicentral have
the property

‖[ek, σ(k/n, a)]‖ ≤ δ, 0 ≤ k ≤ n− 1, a ∈ F. (2.13)

We arrive at a pivotal point. Since ψ(A) is quasidiagonal and π|ψ(A) essential, theorem 2.1.6 permits
us to find a finite rank projection p such that ‖[p, ψ(F )]‖ and ‖pξ − ξ‖ become arbitrarily small for
any basis vector of the finite-dimensional linear space Ran en. The approach presented during the last
half in the proof of proposition 2.1.2 allows one to determine a unitary perturbing p in a manner that
makes it dominate q5. The perturbed version of p remains a projection, which still asymptotically
commutes with ψ(F ). hence it will asymptotically commute with elements of the form σ(k/n, a) for
all 0 ≤ k ≤ n− 1 and a ∈ A.

We will not dwell into the technical estimates, for they are mere repetitions of previous ones and
therefore not particularly rewarding. The crucial point to be stressed is: We may ensure that en be-
comes a finite rank projection such that (2.13) remains valid for Fn.

5indeed the δ > 0 prescribed during the proof has no constraints attached to it, so we merely have to choose our
current δ > 0 sufficiently small for our purposes.
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Step 2. We proceed to the second vital step of the proof. The main idea revolves around “encoding”
the projection en into an almost diagonal matrix that almost commutes with the representation
a 7→

⊕n
k=0 σ(k/n, a). To accomplish this, define a bounded operator v : K −→ Kn+1 by

vξ =

n⊕
k=0

x
1/2
k ξ

where xk = ek − ek−1 and x0 = e0 for all indices k ≤ n. It ought to be apparent that each xk defines
a positive operator. Suppose ξ and η belong to K. From the computations

〈v∗vξ, η〉K =

〈 n⊕
k=0

x
1/2
k ξ,

n⊕
k=0

x
1/2
k η

〉
Kn+1

=

n∑
k=0

〈xkξ, η〉K = 〈enξ, η〉

one may deduce that v must be a partial isometry, whereupon p = vv∗ becomes a projection. This
projection will be our candidate and to verify this we identify its associated (n+1)×(n+1) matrix. To
ease the computational burden, we observe that for two indices i and j of at bare minimum distance
2 apart, say with i > j without loss of generality, one has

x
1/2
i x

1/2
j = (ei − ei−1)(ej − ej−1) = eiej − ei−1ej − eiej−1 + ei−1ej−1

= ej − ej − ej−1 + ej−1

= 0

due to the property ekek−1 = ek−1 being valid for every index 0 ≤ k ≤ n entailing that eiej = ej
along with ei−1ej = ej (using the hypothesis i− 1 > j). Keeping this in mind, notice that due to〈

ξ,

n∑
k=0

x
1/2
k ηk

〉
K

=

n∑
k=0

〈x1/2
k ξk, ηk〉K =

〈 n⊕
k=0

x
1/2
k ξ, η

〉
Kn+1

= 〈vξ, η〉Kn+1 ,

where η = (ηo, . . . , ηn) together with ξ = (ξ0, . . . , ξn), the adjoint of v must be operator
∑n
k=0 T

1/2
k .

Combining this with our preceding relation entails

vv∗ =

n∑
k=0

vx
1/2
k =

n⊕
`=0

n∑
k=0

x
1/2
` x

1/2
k =

[
x0 + x

1/2
0 x

1/2
1 , x

1/2
1 x

1/2
0 + x1 + x

1/2
1 x

1/2
2 , . . . , xn

]
.

The operator on the right-hand side may be more conveniently regarded as the matrix

M(p) =


x0 x

1/2
0 x

1/2
1 0 0 · · ·

x
1/2
1 x

1/2
0 x1 x

1/2
1 x

1/2
2 0 · · ·

0 x
1/2
2 x

1/2
1 x2 x

1/2
2 x

1/2
1 · · ·

...
...

. . .
. . .

. . .

0 0 · · · 0 xn


Define lastly % : A −→ B(Kn+1) via the assignment a 7→

⊕n
k=0 σ(k/n, a). By construction of our

well-designed semimagical collection {ek}nk=0 in conjunction with the relation (2), we have

‖p%(a)p‖ = max
0≤k≤n

‖ekσ(k/n, a)ek‖ ≥ ‖qσ(k/n, a)q‖ ≥ ‖a‖ − ε.

for every element a ∈ A. One ought to be careful during the final inequality, since we strictly speaking
only verified it on ϕ(A). However, choosing a sufficiently large positive integer n forces σ(k/n, ·) to
approach ϕ(·) within any tolerance, whereof we may apply (2.12) accordingly. The remainder of the
proof amounts to verifying that p asymptotically commutes with %(A).
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Final Step. SplitM(p) up into a sum of three diagonal matricesM(p) = U +D+Lwith U denoting
the upper diagonal matrix, L the lower one and D the diagonal part. Proving that each of these
asymptotically commutes with %(a) for any fixed unit vector a in A will suffice. The diagonal part is
straightforward. Indeed, for some index 0 ≤ k ≤ n−1 we have according to the relations (2.11)-(2.13),
the bound

= ‖xkσ(k/n, a)− σ(k/n, a)xk‖
≤ ‖|ek−1‖ · ‖σ((k − 1)/n, a)− σ(k/n, a)‖+ ‖[ek, σ(k/n, a)]‖
+ ‖[ek−1σ((k − 1)/n, a)− σ(k/n, a)ek−1‖
≤ δ + δ + ‖[ek−1‖ · ‖σ((k − 1)/n, a)− σ(k/n, a)‖+ ‖[ek−1, σ(k/n, a)]‖

which becomes smaller than 4δ due to (2.11). This settles the diagonal part and for the remaining
ones we require the aid of our preceding lemma. Certainly, according to lemma 2.3.5 we may arrange
δ > 0 in a manner such that

‖[σ(`/n, a), x
1/2
k ]‖ ≤ ε whenever |`− k| ≤ 1. (2.14)

Here the constraint |`− k| ≤ 1 is sufficient on the merits of (3). Now, due to

[L, %(a)] =

(
x

1/2
k+1x

1/2
k σ(k/n, a)− σ(k/n, a)x

1/2
k+1x

1/2
k

)n
k=0

,

another triangle-inequality trick stemming from adding and subtracting

x
1/2
k σ(k/n, a)x

1/2
k together with σ((k + 1)/n, a)x

1/2
k+1x

1/2
k

to the norm ‖[L, %(a)]‖, then exploiting (4) will provide us with ‖[L, %(a)]‖ ≤ 3ε. A similar computa-
tions grants the same estimate for U , whence ‖[M(p), %(a)]‖may be made smaller than 6ε+4δ, which
ought to be apparent because of the symmetry occurring in M(p). Choosing δ sufficiently small will
force ‖[M(p), %(a)]‖ smaller than ε, completing the proof.



Chapter 3

KK-Theory, Hilbert C∗-modules
and Groupoid C∗-algebras

During the previous chapter, the notion of quasidiagonality was established for abstract C∗-algebras
together with a plethora of permanence properties and examples. In spite of Rosenberg’s conjecture
having an answer in the affirmative, the required machinery to even partially answering this is vast.
This chapter seeks to collect a humble fraction of these concepts including a crash course in KK-theory,
Hilbert C∗-modules and groupoid C∗-algebras. We urge the reader to endure the lack of rigor in certain
aspects emerging in the KK-theory sections; the missing ingredients ought to be minor difficulties or,
at bare minimum, completely standard arguments. Regardless, the notions are independently very
general and exotic tools in the operator theoretic arsenal.

3.1 A Crash Course in KK-Theory: The KK-Groups

KK-theory was developed by G.G. Kasparov using Fredholm-modules to build a bifunctor from the
category of separable C∗-algebras into the category of abelian groups. The resulting theory succeeded
in encapsulating both the ordinary K-theory in one variable while containing information concerning
the K-homology in the second variable.

Joachim Cuntz managed to redefine KK-theory through the notion of quasihomomorphisms and
we adopt his picture of KK-theory. The approach of Cuntz arguably appears more abstract, however,
certain properties that otherwise are troublesome become easier to tackle. For the record, the author
apologizes for the generality and attempts to justify it by emphasizing on the key components ex-
ploited during the constructions. Let us begin with the basics.

Definition. Let A and B be C∗-algebras. A prequasihomomorphism from A into B is a diagram

A

ϕ+ ,,

ϕ−
22 M . I

% // B

whereinM denotes a C∗-algebra, I ⊆M defines a ∗-ideal and ϕ± are ∗-homomorphisms fulfilling the
relation ϕ+(a)− ϕ−(a) ∈ I for all elements a ∈ A.

It is apparent that any ∗-homomorphism ϕ : A −→ B gives rise to a prequasihomomorphism with
M = I, ϕ± = ϕ and % = idB , so indeed we have generalized the former condition. The prefix “pre”
leaves a slightly undesired generality for our purposes, hence we shall impose additional constraints
to our morphisms. The ideas behind the additional axioms will be unraveled momentarily.
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Definition. Suppose A and B are C∗-algebras. A quasihomomorphism is a prequasihomomorphism

A

ϕ+ //

ϕ−
// M . I ⊆ B

such that, as the diagram suggests, the connecting map % : I −→ B is a ∗-monomorphism and:

· M is generated by the images ϕ+(A) and ϕ−(A). (Q1)

· The ideal I is generated by the set {ϕ+(a)− ϕ−(a) : a ∈ A}. (Q2)

· The composed ∗-homomorphism A
ϕ±−→M −→M/I is an isometry. (Q3)

We denote a quasihomomorphisms by a pair (ϕ+, ϕ−), occasionally symbolically representing it by
writing (ϕ+, ϕ−) : A⇒ B and refer it the pairing as passing through I /M for emphasis on the entities
involved. Note that the first two axioms automatically ensure that A −→M −→M/I automatically
a ∗-epimorphism, hence a ∗-isomorphism according to (Q3).

Quasihomomorphisms may strike the reader as being mysterious entities, so we shall attempt to
unravel the idea by exhibiting a prototypical setting wherein quasihomomorphisms appear natu-
rally (in fact, some take this as the definition). Let A and B be C∗-algebras admitting a pair of
∗-homomorphisms ϕ+, ϕ− : A −→ M(B ⊗ K), where K denotes the compact operators on some
separable Hilbert space. Since the multiplier algebraM(A) contains A as an essential ideal,

A
ϕ+ 00

ϕ−
..M(A⊗K) . A = A

defines a quasihomomorphism fromA intoM(A⊗K). The reasoning behind the added tensor product
with the compacts will be revealed shortly. The main principle behind quasihomomorphisms is that
they define bona fide ∗-homomorphisms when we enlarge the domain using free products.

Definition. Let R be a ring. We define QR to be the ring generated by abstract symbols q(a) and a,
for all elements a inside R, satisfying the relation

q(ab) = aq(b) + bq(a)− q(a)q(b) and q(a+ b) = q(a) + q(b) (3.1)

for all a, b ∈ R.

The ring QR comes equipped with canonical ring monomorphisms ι, ῑ : R ↪→ QR, defined for all
elements a in R via ι(a) = a together with ῑ(a) = a − q(a). Hence their images produce two copies
of R that together generate QR, the verifications being routine calculations based on (3.1). One
commonly regards QR as being generated by these images, in which case the corresponding ideal qR
generated by the symbols q(a) becomes the ideal generated by ι(·)− ῑ(·).

The above construction is perhaps more familiar to the reader in the language of free products.
Indeed QR is the free product R ∗ R of the ring with itself, hence may be regarded as the unique
ring such that whenever there exist two homomorphisms from R into some ring S, then there exists
a unique ring-homomorphism α : R ∗R −→ S making the diagram below commute:

R

""

ῑ // R ∗R

α

��

R
ιoo

||
S

Returning to the C∗-algebraic context, notice that given a quasihomomorphism (ϕ+, ϕ−) : A ⇒ B
the associated map q(·) = ϕ+(·)− ϕ−(·) defines a linear map, which is readily checked to fulfill
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· q(ab) = ϕ+(a)q(b) + q(b)ϕ−(a) = ϕ−(a)q(b) + q(a)ϕ+(b) for all a, b ∈ A;

· q(ab) + q(a)q(b) = ϕ+(a)q(b) + q(a)ϕ(b) for all a, b ∈ A.

These relations, with an increased attentions towards the latter, ought to be compared toQA. Hereof,
one expects some connection between QA and quasihomomorphisms, which is precisely the content
of the following discussion. We may naturally endowQA with an involution by declaring q to preserve
the involution ofAmeaning q(a)∗ := q(a∗) and we may evidently regardQA as a complex vector space
by extending each involving maps, such as ι and ῑ, linearly. This gives rise to the following construction.

Definition. For every C∗-algebra A, we define QA to be the completion of the underlying involutive
algebra under the universal norm ‖ · ‖q : QA −→ R+ defined by

‖x‖q = sup
{
‖π(x)‖ : π : QA −→ B(H) non-degenerate representation

}
.

We denote the completion of QA and the ideal qA by QA and qA again, respectively.

Remark. If you read the previous construction with skeptical eyes, you are completely on track:
there is a priori absolutely no reason for free products to exist. We omit the proof of the existence
concerning free products of C∗-algebras together with the fact that the universal norm in fact is a
full-fledged norm as opposed to a seminorm.

Observation 1: Induced morphisms. Suppose A and B are C∗-algebra. Let ϕ,ψ : A −→ B be
∗-homomorphisms. The induced map Q(ϕ,ψ) : QA −→ B defined on generating elements by

ι(·) 7→ ϕ(·) together with ῑ(·) 7→ ψ(·)

becomes continuous, hence may be turned into a ∗-homomorphism by extending C-linearly and via
continuity. Conversely, every ∗-homomorphism QA −→ B arises in this particular fashion, since ∗-
homomorphisms onQA are uniquely determined by their action on the generating elements. We define
the universal quasihomomorphism associated to A in accordance with the diagram below.

A
ι //

ῑ
// QA . qA ⊆ QA

Conversely, any prequasihomomorphism

A

ϕ+ ,,

ϕ−
22 M . I

% // B

gives a ∗-homomorphism Q(ϕ+, ϕ−) : QA −→ B whose restriction to the ideal qA is an additional
∗-homomorphism q(ϕ+, ϕ−) : qA −→ B having values in I, for elements in qA are the of the form
ι(·)− ῑ(·), which are mapped into ϕ+(·)−ϕ−(·), whereof (Q2) applies. The induced ∗-homomorphism
q(ϕ,ψ) associated to a pair ϕ,ψ : A −→ B of ∗-homomorphisms is generally the assignment q(·) 7→
ϕ(·) − ψ(·) due to qA being generated by the differences ι(·) − ῑ(·) of the canonical embeddings. In
particular, the zero morphism qA −→ I is precisely q(ϕ,ϕ).

The two observations combine into a complete characterization of quasihomomorphisms and pre-
quasihomomorphisms. We prove the characterization for the sake of completeness and to comfort
ourselves with the aforementioned concepts. However, we require some notions.
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Definition. Two prequasihomomorphisms

A
--
11 M1 . I1 // B A

--
11 M2 . I2 // B

are referred to as being isomorphic if M1
∼= M2 and I1 ∼= I2 as C∗-algebras in a compatible manner.

The compatibility condition being commutativity of the following diagram:

A

∼=
��

**
44 M1

∼=
��

I1

∼=
��

? _oo // B

∼=
��

A
**
44 M2 I2?

_oo // B

On the merits of the compatibility in conjunction with the identifications, isomorphic prequasihomo-
morphisms determine the same morphisms in the appropriate sense.

Proposition 3.1.1. For any pair of C∗-algebras A and B, there exists a one-to-one correspondence
between quasihomomorphisms A⇒ B and the set Hom(qA, B). The correspondence is given by

A

ϕ+ ,,

ϕ−
22 M . I // B

Φ7−→ q(ϕ+, ϕ−) = ϕ+(·)− ϕ−(·),

ϕ : qA −→ B
Ψ7−→ A

pι 00

pῑ
.. QA/ kerϕ . qA/ kerϕ ⊆ B,

where p denotes the canonical quotient map.

Proof. The proof is based on the previous observations combined with certain identifications arising
hereby. In fact, the tricky part of the proof is understanding why the map Ψ works; they will auto-
matically become mutual inverses afterwards. Let (ϕ+, ϕ−) : A⇒ B be any prequasihomomorphism
passing through M . I. The image of Q(ϕ+, ϕ−) is the C∗-algebra generated by the images ϕ±(A),
which isomorphic to M due to (Q1). Due to the property (Q3), the ∗-homomorphism

µ : A ∼= ι(A)
Q(ϕ+,ϕ−) // M // M/I

must be a ∗-monomorphism. We proceed to investigating the role of qA in terms of the maps involved.
Consider the induced map σ = Q(idA, idA). The restrictions of σ onto ι(A) and ῑ(A) are obviously
injections whereas σ(qA) = {0} by construction. It follows that qA kerσ, whereupon

0 // QA //

q(ϕ+,ϕ−)

��

qA
σ //

Q(ϕ+,ϕ−)

��

A //

µ

��

0

0 // I // M // M/I // 0

becomes commutative with exact rows and the upper one being split. Some diagram chasing exploit-
ing that injectivity of µ will reveal that the kernel of Q(ϕ+, ϕ−) is the kernel of q(ϕ+, ϕ−), both
determining ideals in qA hereby. We denote the coinciding kernel by N for simplicity. Due to the
vertical maps, save µ, being ∗-epimorphisms, the first isomorphism theorem implies thatQA/N ∼= M
together with qA/N ∼= I. Ergo, the quasihomomorphisms

A
--
11 QA/N qA/N? _oo A

**
55 M I? _oo

must be isomorphic, implying ΨΦ = id. Conversely, given a ∗-homomorphism ϕ : qA −→ B, the
quasihomomorphism Ψ(ϕ) has the induced ∗-homomorphism q(pι, pῑ) assigned to it via Φ, where p
denotes the quotient map. However, one has q(pι, pῑ)(q(a)) = p(q(a)) for all a ∈ A. Since the map
q(a) 7→ p(q(a)) is merely ϕ in disguise, we deduce that ΦΨ = id, completing the proof.
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Observation 2: Functoriality and projection maps. Let A and B be C∗-algebras.

· We unravel properties of qA by extending it to a genuine functor. Suppose ϕ : A −→ B denotes
a ∗-homomorphism and define q(ϕ) : qA −→ qB via the actions ι(·) 7→ ι(ϕ(·)) and ῑ(·) 7→ ῑ(ϕ(·)).
There are two distinquished ∗-homomorphisms πA0 , π

A
1 : qA −→ A associated A, namely

πA0 = q(idA, 0) and πA1 = q(0, idA).

· We define the transposition morphism on qA to be the ∗-automorphism βA acting hereon, defined
by interchanging the point-images ι(a) and ῑ(a) for every a ∈ A. Notably,

πA0 ◦ βA = πA1 and (q(ϕ,ψ) ◦ βA)(q(a)) = ψ(a)− ϕ(a), a ∈ A. (3.2)

The latter one stems from q(ϕ,ψ) mapping any generating element ι(a) − ῑ(a) = q(a) into the
differenceϕ(a)−ψ(a), however,βA interchanged these two terms beforehand, granting the asserted.
The significance of βA is paramount, for its induced map in KK-theory becomes the inversion map.
We will omit the superscripts when addressing a single C∗-algebra for brevity.

Modulo the slightly obvious notion of homotopic quasihomomorphisms, KK-theory is nearly within
our grasp. However, the tricky part has risen: the actual group operation requires some meticulous
care. As a final preparation, we take a minor detour towards stable C∗-algebras.

Definition. For every C∗-algebra A, we define di : A −→ M2(A) to be the canonical i’th diagonal
embedding for each index i = 1, 2. Using this notation, we refer to A as being stable if there exists an
isomorphism κ : M2(A) −→ A such that κd1 and κd2 are homotopic to the identity on A.

Lemma 3.1.2 (Stabilization). For every C∗-algebra A, the spatial tensor product A⊗K is stable.

Proof. Recall that lim−→Mn(A), with the canonical diagonal embeddings as connecting morphisms,

may be identified with the norm-closure of the union
⋃∞
k=1 Mk(A). Moreover, the involutive algebra

A � F ⊆ A ⊗ K is norm-dense where F =
⋃∞
k=1 Mk, because F lies densely within the compact

operators on `2(N). To deduce that lim−→Mn(A) ∼= A⊗K it suffices to show thatA�F ∼=
⋃∞
k=1 Mk(A)

as involutive algebras by density in conjunction with uniqueness of ∗-norms. It is apparent that

A� F ∼= A�
( ∞⋃
k=1

Mk

)
=

∞⋃
k=1

A�Mk
∼=
∞⋃
k=1

Mk(A),

where the latter isomorphism stems from summing the isomorphismsA⊗Mk
∼= Mk(A) over all indices

k ∈ N. Exploiting this yields the sought identification due to

M2(A⊗K) = lim−→M2(Mn(A)) ∼= lim−→M2n(A) ∼= A⊗K

being valid as inductive limits remain unchanged when passing to subsequences. The last two condi-
tions are omitted and we stop here to stay on track.

Frequently, the procedure prescribed in the lemma is referred to as stabilization. Having settled the
stability technicalities, the KK-groups are within our grasp. Without further ado: the KK-theory
group will be defined.

Definition. We declare that two quasihomomorphisms (ϕ+, ϕ−) : A ⇒ B and (ψ+, ψ−) : A ⇒ B
are homotopic provided there exists a family (σt+, σ

t
−) : A ⇒ B consisting of quasihomomorphisms

indexed continuously (in norm) over the unit interval [0, 1] ⊆ R and such that one has σ0
± = ϕ±

together with σ1
± = ψ±. The equivalence relation is denoted by ∼q.
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Remark. One may readily verify that ∼q and the ordinary homotopy equivalence relation coincide
under the identification prescribed in proposition 3.1.1. We will therefore not distinguish between the
two points of view, however, having both has several beneficial factors; frequently quasihomomor-
phisms are properly suited to tackle one situation and vice versa.

Definition. For every pair of C∗-algebras A and B, we define the KK-theory or KK-group as

KK(A,B) = Hom(qA, B ⊗K)/ ∼h

with the relation being the ordinary one of ∗-homomorphisms. Equivalently, we define KK(A,B) to
be the set consisting of all quasihomomorphisms modulo ∼q.

Proposition 3.1.3. Let B be any stable C∗-algebra and define on Hom(qA, B)/ ∼h a composition
′′+′′ hereon by setting

[ϕ] + [ψ] = [κ(ϕ⊕ ψ)]

for any pair of quasihomomorphisms ϕ,ψ : A −→ B. Here κ denotes the existing ∗-isomorphism
M2(A) ∼= A and we abbreviate ϕ⊕ψ = d1ϕ+d2ψ. Under these premises, [qA, B] = Hom(qA, B)/ ∼ h
defines an abelian group having + as the additive composition, [0] as the neutral element and with
the inversion map being [ϕ] 7→ [ϕβA]. In particular, KK(·, ·) defines an abelian group.

Proof. We confine ourselves with tackling inverse elements and the neutral element, for the remaining
axioms are trivially true because of lemma 3.1.2. Supposeϕ : qA −→ B is a ∗-homomorphisms and note
that the identity [ϕ] + [0] = [κ(d1ϕ)] = [ϕ] holds due to κd1

∼=H idA being true by stability, proving
[0] to be an additive right-sided neutral elements whereas the left-sided part is proven similarly by
exploiting κd2

∼=H idA. According to proposition 3.1.1. proving [ϕ]+ [ϕβA] = [0] amounts to showing
that for every quasihomomorphism (ϕ+, ϕ−) : A⇒ B one has((

ϕ+ 0
0 ϕ−

)
,

(
ϕ− 0
0 ϕ+

))
∼q
((

ϕ+ 0
0 ϕ−

)
,

(
ϕ+ 0
0 ϕ−

))
,

since q(ψ,ψ) = 0 for any ∗-homomorphism ψ : qA −→ B. The sought homotopy family is merely the
one fixing the first entry and rotating the second accordingly, all of which are continuous maps.

3.2 Properties of KK-Theory and the UCT-class

We continue our journey into the wonders of KK-theory and address unique properties associated to
the functor(s). Unfortunately, there will be a lack of proofs during this section, for deriving either
demands effort. Alas, we must settle with understanding the majority of statements. Afterwards,
we discuss the UCT-class in brevity. This class of C∗-algebras has staggering properties suitable for
classification of nuclear C∗-algebras. The first unique aspect of KK-theory that distinguishes itself
from ordinary K-theory and K-homology: the Kasparov product. However, proving the existence of
the Kasparov product requires a technical intermediate result.

Successive Free Products. Suppose A is some C∗-algebra. For every positive integer n we induc-
tively define the n-fold free product of A to be qnA = qqn−1

A and q1
A = qA. The assignment A 7→ qnA

thus defines a functor for every such integer n having qn(ϕ) : qnA −→ qnB as induced morphism with
respect to some ∗-homomorphism ϕ : A −→ B.
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Lemma 3.2.1. For every separable C∗-algebra A, the associated C∗-algebras qA and q2
A become

homotopy equivalent up to stabilizing by, meaning spatially tensoring with M2(·). Specified further
in detail, there exists a ∗-homomorphism σA : qA −→ M2(q2

A) satisfying

π0σA ∼=H d1 together with σAπ
′
0
∼=H d′1,

where the maps d1 and d′1 represent the canonical upper-left diagonal embeddings qA ↪→ M2(qA) and
q2
A ↪→ M2(q2

A), respectively, while π0 and π′0 denote the induced projection maps M2(q2
A) −→ M2(qA)

and q2
A −→ qA from the second observation, respectively.

Proof. See [4, theorem 1.6] for a rigorous proof of the statement.

We omit the proof of the following theorem due to Cuntz and instead focus on the pivotal application
whereof the Kasparov product arises. The derivation revolves around using the lemma to ensure that
the identifications are compatible, thereby retaining an associative bilinear product.

Theorem 3.2.2 (Cuntz). Suppose A,B and C are C∗-algebras.

(i) There exists for any pair n,m ∈ N an associative product

[qnA, B]× [qmB , C] −→ [qn+m
A , C]; ([ϕ], [ψ]) 7−→ [ψqm(ϕ)].

(ii) Whenever A is separable and B is stable, the morphism π∗0 : [qnA, B] −→ [qn+1
A , B] given by

π∗0([ϕ]) = [ϕπ0],

where π∗0 is the aforementioned projection map qn+1
A −→ qnA, defines an isomorphism of

abelian groups. In particular, standard induction yields [qnA, B] ∼= [qA, B].

(iii) Whenever A is separable and B together with C are stable, there exists a Z-bilinear product

[qA, B]× [qB , C] −→ [qA, C]; [ϕ] · [ψ] = [ψ2q(ϕ)2σA].

Here σA is the ∗-homomorphism in lemma 3.2.1, ψ2 is the 2-amplification M2(qB) −→ M2(C)
of the ∗-homomorphism ψ : qB −→ C and q(ϕ)2 is the 2-amplification associated to q(ϕ). We
naturally identify M2(C) with C in the KK-groups to obtain the designated codomain.

In order to fully appreciate the Kasparov product, we throw some properties into the mix. It turns
out that the Kasparov product succeeds in describing the product of induced maps on KK-theory and
the composition of the quasihomomorphism from the ambient spaces. For the sake of convenience,
given a ∗-homomorphism ϕ : A −→ B, let KK(ϕ) to be the class in KK induced by the composition

qA
π0−→ A

ϕ−→ B.

Theorem 3.2.3 (Kasparov Product). Let A, B and C be C∗-algebras with A separable. Under
these premises, there exists a Z-bilinear associative product KK(A,B)×KK(B,C) −→ KK(A,C).
In addition, for every pair of ∗-homomorphisms ϕ : A −→ B and ψ : B −→ C of C∗-algebras, the
Kasparov product satisfies the following compatibility properties:

· KK(ϕ) ·KK(ψ) = KK(ϕ ◦ ψ);

· If ϕ is an isomorphism, then KK(ϕ) is an isomorphism;

· The associated abelian group KK(A,A) becomes a ring having the Kasparov product as multi-
plicative composition and 1A = KK(idA) = [πA0 ] as the multiplicative identity.
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Proof. Upon tensoring with the identity on the compact operators K acting on a separable Hilbert
space, we obtain a homomorphism τ : [qB , C ⊗ K] −→ [qB⊗K, C ⊗ K]. Due to tensoring with K
producing a stable C∗-algebra, theorem 3.2.2 produces an associative Z-linear “·” product

[qA, B ⊗K]× [qB , C ⊗K]
id×τ−→ [qA, B ⊗K]× [qB⊗K, C ⊗K]

·−→ [qA, C ⊗K]

This establishes existence. To achieve the compatibility properties, observe that given any triple
(ϕ,ψ, φ) of ∗-homomorphism for which the codomain of φ coincides with the domain of the remaining,
two one has the relation q(ϕ,ψ) ◦ q(φ) = q(ϕφ, ψφ). As such for every pair of classes [α] ∈ [qA, B] and
β ∈ [qB , C] one may infer that

[α] · [ψπA0 ] = [(ψπA0 )2q(α)2σA]

= [ψ2(q(idA, 0) ◦ q(α))2σA]

= [ψ2(απA0 )2σA]

= [ψ2α2d1]

= [ψα],

due to π0σA being homotopic to the diagonal embedding map d1 : qA −→ M2(qA) on the merits of
lemma 3.2.1. Here we naturally regard the resulting 2-amplifications as merely being the ordinary
maps when composing with d1. In a similar fashion, one may deduce that [ϕπA0 ] · [β] = [βq(ϕ)].
Applying these considerations grants us the rearrangement

KK(ϕ) ·KK(ψ) = [ϕπA0 ] · [ψπA0 ] = [ψϕπA0 ] = KK(ψ ◦ ϕ)

for ever pair of ∗-homomorphisms ϕ : A −→ B and ψ : B −→ C, verifying the first property whereas
the two remaining ones are immediate consequences. This finalizes the proof.

Having build the KK-groups together with the corresponding Kasparov product, we proceed towards
understanding the axioms of KK-theory as an abstract functor. In fact, Higson proved that the functor
KK(A, ·) from the category of separable C∗-algebras into the category of abelian groups is the unique
stable homotopy invariant and split-exact functor up to natural transformation. We will not dwell
further into this, however, we shall describe KK-theory abstractly in categorical terms.

Definition. We define KK to be the category having separable C∗-algebras as objects and elements
in the corresponding KK-groups as morphisms. The category KK gives rise to a functor from the
category of separable C∗-algebras into KK mapping a morphism ϕ : A −→ B into KK(ϕ).

The abstract framework has several beneficial factors, including the characterization due to Higson
that provides a certain degree of uniqueness. For instance, having the KK-groups be the morphisms in
KK supplies us with a versatile notion of KK-equivalence described next. For the record, we shall omit
writing class [·] for the elements in KK unless confusion may occur. Afterwards we discuss functorial
properties.

Definition. Let A and B be objects in KK. A morphism α in KK(A,B) is said to be invertible pro-
vided there exists another morphism in KK(B,A), suggestively denoted α−1, fulfilling the relations
α · α−1 = 1A and α−1 · α = 1B . The collection of invertible morphisms in KK(A,B) is commonly
denoted by KK(A,B)−1. Two separable C∗-algebras are referred to as being KK-equivalent, abbrevi-
ated symbolically into A ∼=KK B, if the corresponding set KK(A,B)−1 is nonempty or, equivalently,
if they are isomorphic objects in KK.
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Proposition 3.2.4. Suppose A and B are separable C∗-algebras. Any isomorphism ϕ : A −→ B
induces an invertible morphism KK(ϕ) in KK(A,B), i.e., an invertible element in KK.

Proof. An obvious consequences of the rule KK(ϕ) ·KK(ψ) = KK(ϕ ◦ ψ) from theorem 3.2.3.

Theorem 3.2.5. For every pair of separable C∗-algebra A and B, the associated KK-group deter-
mines a bifunctor given by the assignments A 7→ KK(A, ·) and B 7→ KK(·, B) such that the first is
contravariant while the second is covariant. Furthermore, the bifunctor fulfills the following.

· KK(·, ·) is split-exact in both variables meaning for every split-exact sequence in the category
C∗s -Alg, the sequence obtained by applying KK(·, ·) in either variable remains split-exact.

· KK(A, ·) is homotopy invariant meaning any two homotopic morphisms ϕ,ψ : B1 −→ B2 in
C∗s-Alg induce the same morphism KK(A,B1) −→ KK(A,B2).

· KK(A, ·) is stable meaning the ∗-homomorphism B −→ B ⊗K defined by b 7→ b⊗ p, where p is
some rank-one projection in K, induces an isomorphism KK(A,B) −→ KK(A,B ⊗K).

Proof. We restrict ourselves to proving split-exactness. Choose some split-exact sequence

0 // I
ψ // A

π
// B //

s
vv

0

in the C∗-algebraic setting. In general, any exact sequence in either the category of C∗-algebras or
abelian groups on the above form splits if and only if one has a decomposition I⊕B ∼= A. The strategy
will be to obtain such a decomposition, and upon tensoring with K we may assume that A and B
are stable C∗-algebras. At first we shall reduce the problem into constructing invertible morphisms
in KK(A,B ⊕ I) and KK(B ⊕ I, A). Consider any pair of C∗ algebras A0 and B0, separable if you
will, then consider the free product q(A0 ⊕ B0). The direct sum qB0 ⊕ qB0 evidently admits two
∗-monomorphisms qB0

, qA0
↪→ qA0

⊕ qB0
. The universal property of free products thus produces a

commutative diagram

qA0

%%

// qA0⊕B0

α

��

qB0
oo

yy
qA0
⊕ qB0

wherein each non-vertical morphism is a ∗-monomorphism. By commutativity of the diagram, αmust
be an isomorphism. Therefore, the functor q(·) is additive. Additivity of the spatial tensor product,
meaning (A0 ⊕ B0) ⊗ K ∼= (A0 ⊗ K) ⊕ (B0 ⊗ K), in conjunction with additivity of the bifunctor
Hom(·, ·) entail the trail of identifications of abelian groups

KK(A0 ⊕B0, B) ∼= [qA0
⊕ qB0

, B ⊗K] ∼= [qA0
, B ⊗K]⊕ [qB0

, B ⊗K] = KK(A0, B)⊕KK(B0, B),

KK(A,A0⊕B0) ∼= [qA, (A0⊗K)⊕(B0⊗K)] ∼= [qA, A0⊗K]⊕[qA, B0⊗K] = KK(A,A0)⊕KK(A,B0).

Formulated more concisely, the KK-bifunctor is biadditive. If there were invertible morphisms in
KK(A,B ⊕ I), then KK(·, A) ∼= KK(·, B ⊗ I) ∼= KK(·, B) ⊕ KK(·, I) and similarly for the second
variable, proving split-exactness. Ergo, our objective will be to determine two morphisms that are
multiplicatively inverses to one another.

To construct these two invertible morphisms, let throughout eij be the (i, j)’th unit matrix in
the full separable matrix algebra M2. Define α as the unique element in KK(A,B ⊕ I) induced
by the quasihomomorphism (π ⊕ idI , 0 ⊕ sπ) : M2(A) ⇒ B ⊕ I. Let further β = KK(ϕ), where
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ϕ : B ⊕ I −→ M2(A) is the ∗-homomorphism defined via (b, a) 7→ s(b) ⊗ e11 + ψ(a) ⊗ e22. Suppose
x = b⊕ a belongs to B ⊕ I and notice that when regarding α and β as being ∗-homomorphisms,

αβ(ι(x)− ῑ(x)) = αq(ϕ, 0)(ι(x)− ῑ(x))

= α(s(b)⊗ e11 + ψ(a)⊗ e22)

= q(π ⊕ id, 0⊕ sπ)(s(b)⊗ e11 + ψ(a)⊗ e22)

= πs(b)⊗ e11 + ψ(a)⊗ e22

= b⊗ e11 + ψ(a)⊗ e22

whereupon αβ, through an application of the first rule in theorem 3.2.5, may be identified with the
element arising from the ∗-homomorphism % : B ⊕ I −→ B ⊕ I given by the 2 × 2-matrix (b, a) 7→
b⊗e11+a⊗e22. This matrix clearly represents the identity onB⊕I. The reader is encouraged to verify
that βα may in a resembling manner be identified with a ∗-homomorphism, which is ∗-homotopic to
the one written in matrix form as b 7→ b⊗ e11. Since this merely represents the identity on B, we may
infer that ϕ = ψ−1. Voila.

We arrive at the finale of KK-theory required to fully understand the remainder of the project: the
universal coefficient theorem. The theorem is due to the work of Rosenberg and Schoebet. Formally,
it describes a sufficient condition of a separable C∗-algebra to satisfy a K-theoretic version of the
ordinary universal coefficient theorem from homological algebra by using KK-equivalence. However,
to truly understand the origin the writer deemed a slightly detour more insightful.

Observation 3. Let A and B be separable C∗-algebras. One may prove that KK-theory encodes
both K-groups by establishing (far easier spoken than achieved) the existence of two isomorphisms

K0(B) ∼= KK(C, B) and K1(B) ∼= KK(C0(R), B).

Exploiting these identifications permits us to define group homomorphisms

κ0 : KK(A,B) −→ Hom(K0(A),K0(B)); κ0([ϕ])([p]) = [p] · [ϕ],

κ1 : KK(A,B) −→ Hom(K1(A),K1(B)); κ1([ϕ])([u]) = [u] · [ϕ].

These satisfy that κn(KK(ϕ))[a] = K(ϕ)([a]) for n = 0, 1 and a being either a projection or unitary,
depending on the n, for every ∗-homomorphism ϕ : A −→ B. Moreover, they are compatible with the
Kasparov product in the sense that for all quasihomomorphisms ϕ,ψ : qA −→ B ⊗K.

κn([ϕ] · [ψ]) = κn([ϕ]) ◦ κn([ψ]), n = 0, 1. (3.3)

An interesting consequence of (3.3) is that κ∗ maps invertible elements into isomorphisms between
the corresponding K-groups. The converse, however, may be false. Much alike the ordinary universal
coefficient theorem, one seeks to implement a group measuring the failure of a converse. This leads to
the vital UCT-class and the universal coefficient theorem, proven in [11].

Definition. A C∗-algebra A is called K-abelian whenever A ∼=KK C0(Ω) for some locally compact
Hausdorff space Ω, meaningA is KK-equivalent to some abelian C∗-algebra. We define the UCT-class
U to be class consisting of separable K-abelian C∗-algebras and let UN be the subclass wherein each
member is nuclear.

Theorem 3.2.6 (Rosenberg, Schoechet). Suppose A is some σ-unital C∗-algebra in the UCT and
let B be any separable σ-unital C∗-algebra. Then there exists a split-exact sequence in C∗s-Alg:

0 // Ext(Kn(A),Kn+1(B)) // KK(A,B)
κ0⊕κ1 // Hom(Kn(A),Kn(B)) // 0

As a special case, any morphism α in KK(A,B) must be invertible if and only if both κ0(α) and
κ1(α) determine isomorphisms of abelian groups.
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3.3 Hilbert C∗-Modules

Hilbert C∗-modules form a natural generalization of Hilbert spaces by permitting the inner product
to attain values in any C∗-algebra. The notion was originally introduced by Kardison, although he
allowed only values in C(Ω) to be taken. Hilbert C∗-modules are significant in the construction of
groupoid C∗-algebras and Kasparov’s picture of KK-theory. We solely consider the former application
and commence with presenting basic notions, thereafter addressing towards completions.

Definition. Suppose A denotes a C∗-algebra and let H be a C-vector space equipped with a left
A-module structure. An A-valued semi-inner product on H is a map 〈·, ·〉 : H×H −→ A subject to

· 〈ξ, ξ〉 ≥ 0 for all ξ ∈ H;

· 〈·, ·〉 is linear in the second variable;

· 〈ξ, η〉∗ = 〈η, ξ〉 for all vectors ξ, η ∈ H;

· 〈ξ, aη〉 = 〈ξ, η〉a for all vectors ξ, η ∈ H and a ∈ A.

We call 〈·, ·〉 an A-valued inner product whenever 〈ξ, ξ〉 = 0 occurs if and only if ξ = 0. In the event
of H having an A-valued inner product, we define a norm ‖ · ‖H : H −→ R+ by ‖ξ‖2H = ‖〈ξ, ξ〉‖A,
thereof mimicking the idea of ordinary Hilbert spaces.

It is apparent that Hilbert spaces admit C-valued inner products. Furthermore, there is an obvious
notion analogue to the above wherein the linear space H is assumed be a right A-module instead.
Before finalizing the notion of Hilbert C∗-modules, we derive a Cauchy-Schwarz esque inequality for
left A-module endowed with an A-valued semi-inner product.

Lemma 3.3.1 (á la Cauchy-Schwarz). Let A be a C∗-algebra and H some left (resp. right) A-module
equipped with an A-valued semi-inner product. Then one has

‖〈ξ, η〉‖ ≤ ‖ξ‖ · ‖η‖ together with ‖a.ξ‖ ≤ ‖ξ‖ · ‖a‖

for every pair of vectors ξ, η ∈ H and a ∈ A.

Proof. Suppose ξ and η were two nonzero vectors insideH. A straightforward application of the well-
known inequality a∗ba ≤ ‖b‖a∗a for elements in the C∗-algebra A, where b ≥ 0, in conjunction with
the substitution a = 〈ξ, η〉 permits us to deduce the inequality

〈ξ, η〉∗〈ξ, η〉 ≥ 〈ξ, η〉∗ 〈ξ, ξ〉
‖ξ‖2

〈ξ, η〉. (3.4)

To provide the reader with some notational overview, we abbreviate x = ξ‖ξ‖−1, a = 〈ξ, η〉 and
y = ‖ξ‖η. Collecting these substitutions, keeping (3.4) in mind and highly invoking the axioms of an
A-valued semi-inner product yields the estimate

0 ≤ 〈ax− y, ax− y〉 = a∗〈x, x〉a− a∗〈x, y〉 − 〈y, x〉a+ 〈y, y〉

= 〈ξ, η〉∗ 〈ξ, ξ〉
‖ξ‖2

〈ξ, η〉 − a∗〈x, y〉 − 〈y, x〉a+ ‖ξ‖2〈η, η〉

≤ 〈ξ, η〉∗〈ξ, η〉+ ‖ξ‖2〈η, η〉.

Applying the norm of A on the above grants the sought inequality. The remaining assertion merely
stems from ‖aξ‖2 = ‖a∗〈ξ, ξ〉a‖ ≤ ‖ξ‖2‖a‖2 becoming valid from the first part.
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Definition. Suppose A denotes a C∗-algebra. A left A-module H endowed with an A-valued inner
product such that the associated norm on H is complete is called a Hilbert C∗-module over A.

Examples.

· Any Hilbert space is a Hilbert C∗-module over C.

· Every C∗ -algebra A is a Hilbert C∗-module over itself having as A-valued inner product, the
mapping 〈·, ·〉A defined by 〈a, b〉A = a∗b for all a, b ∈ A.

· Let Ω be a compact Hausdorff space, H be any Hilbert space and suppose {Hx}x∈Ω is a collection
of subspaces in H. Let E be the subspace of C(Ω,H) whose elements ξ : Ω −→ H fulfill ξ(x) ∈ Hx
for all x in Ω. ThenE may be endowed with a leftC(Ω)-action andC(Ω)-valued inner product each
given by

(g.ξ)(x) = ξ(x)g(x) respectively, 〈ξ, η〉(x) = 〈ξ(x), η(x)〉H

for all g ∈ C(Ω), ξ ∈ E and x ∈ Ω.

Completion. SupposeH0 denotes a left (or right)A-module having anA-valued semi-inner product,
where A is some C∗-algebra. Inspired by the typical separation and completion approach, there is a
procedure turningH0 into a full-fledged HilbertA-module, executed as follows. According to the first
inequality appearing in lemma 3.3.1, the subset L inH0 consisting of all vectors ξ fulfilling 〈ξ, ξ〉 = 0
becomes a closed involutive subspace therein. The second inequality of the lemma entails that L
determines a submodule of H0, so the pairing

H = H/L and 〈ξ + L, η + L〉H = 〈ξ, η〉H0

naturally forms a Hilbert C∗-module. Now, because of the mirror imaging features of Hilbert C∗-
modules, one may naively (and rightfully) address the concept of bounded operators acting on these
entities. Such a notion is indeed achievable and desired, however, one must tread carefully in order to
fully capture essentials from Hilbert space theory including the existence of an adjoint.

Definition. SupposeH andK are Hilbert C∗-modules defined over some common C∗-algebraA. Any
linear mapT : H −→ K for which there exists an additional linear mapT ∗ : K −→ H, called the adjoint
of T , satisfying the relation 〈Tξ, η〉K = 〈ξ, T ∗η〉H for all ξ, η ∈ H is called an adjointable operator.

We define B(H,K) to be the collection of all adjointable operators equipped with pointwise scalar
multiplication and addition, adopting the convention B(H,H) = B(H) wherein a multiplicative
structure defined via ordinary composition of maps is implicitly imposed.

A priori, the notion may appear flawed, for no boundedness conditions are imposed. The reason
behind this is somewhat elusive at first glance. Luckily, the good old magical theorem due to Banach-
Steinhaus comes to our aid in the following manner. Let H and K be Hilbert C∗-modules over a
common C∗-algebra A. Let T be some adjointable operator, ξ, η ∈ H and fix a ∈ A. Then

〈η, a(Tξ)− T (aξ)〉 = 〈η, Tξ〉a− 〈T ∗η, ξ〉a = 0

proving A-linearity. Concerning boundedness, let σξ(·) = 〈Tξ, ·〉 for every vector ξ in the unit ball of
H. The norm of σξ(·) is bounded by ||T ∗ · || on the merits of the Cauchy-Schwarz inequality, hence the
Banach-Steinhaus theorem applies to show that the set {||σξ(·)|| : ξ ∈ (H)1} must be bounded. This
clearly shows boundedness of any adjointable operator. Obviously, our main interest lies in B(H) for
this indeed becomes a C∗-algebra in a fashion almost identical to the ordinary case.

Unfortunately we will not dwell much further into the Hilbert C∗-module theory. The remaining
aspect we shall shed light upon is the module B(H) arising from adjointable operators acting on a
Hilbert C∗-module and elaborate further on the second example above.
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Let H be a Hilbert C∗-module over some C∗-algebra A. In a fashion entirely analogue to the
algebra of bounded operators on Hilbert spaces, B(H) defines an involutive normed algebra. Since
the A-valued inner product on H must be contractive in both variables due to lemma 3.3.1, B(H)
determines a closed subspace of the Banach algebra consisting of bounded operatorsH −→ H. Lastly,
the C∗-identity is easily deduced from lemma 3.3.1 so that B(H) becomes a C∗-algebra in a way com-
patible with the module structure as described below.

Lemma 3.3.2. Suppose H and K are Hilbert C∗-modules over a common C∗-algebra A. Let T be
an adjointable operator H −→ K. If so, one has ‖Tξ‖ ≤ ‖T‖ · ‖ξ‖ for every vector ξ inside H.

Proof. Let ω be some state onA. The induced map map ω(〈·, ·〉) : H×H −→ R+ defines a semi-inner
product (linear in the second variable) onH in the ordinary sense. This permits us to apply the usual
Cauchy-Schwarz inequality of inner product spaces repetitively to obtain

ω(〈T ∗Tξ, ξ〉) ≤ ω(〈T ∗Tξ, T ∗Tξ〉)1/2 · ω(〈ξ, ξ〉)1/2

= ω(〈T ∗T )2ξ, ξ〉)1/2 · ω(‖ξ‖2)1/2

...

≤ ω(〈(T ∗T )2nξ, ξ〉)2−n · ω(‖ξ‖2)1/2+1/4+...

= ω(〈(T ∗T )2nξ, ξ〉)2−n · ω(‖ξ‖2)1−2−n

≤ ‖ξ‖2
−n
· ‖T‖2 · ω(‖ξ‖2)1−2−n .

The latter converges to ‖T‖2 · ω(‖ξ‖2) whenever n → ∞. Due to the choice of state being arbitrary
and the state space separating points in A, the sought inequality follows.

Before ending the section, we ought to describe morphisms preserving the underlying structure of
Hilbert C∗-modules. Indeed we are poised to take both topological and algebraic aspects into account
for the matter.

Definition. Suppose H and K denote two left Hilbert C∗-module over A and B, respectively. A
morphism π : H −→ K is an A-linear bounded map, meaning

· π(a.ξ) = a.π(ξ) for all a ∈ A and ξ ∈ H;

· π(λξ + µη) = λπ(ξ) + µπ(η) for all λ, µ ∈ C and ξ, η ∈ H.

A similar notion concerns right Hilbert C∗-modules. If π maps surjectively onto K, we call π an
epimorphism of Hilbert C∗-modules, whereas we refer to π as being a monomorphism provided the
relation 〈π(ξ), π(η)〉K = 〈ξ, η〉H is valid for any pair of vectors ξ, η ∈ H. We call π an isomorphism,
if π is both monic and epic, whereof H and K are called isomorphic, symbolically writing H ∼= K or
perhaps H ∼=A K for emphasis on the ambient module structure.

Evidently, isomorphic Hilbert C∗-modules may be identified with one another, since the property
of being a monomorphism forcing the monomorphism in question to be an isometry with respect
to the norms induced via the C∗-valued inner products. This concludes the section, so we proceed
towards applying the Hilbert C∗-module framework into usage by constructing a whole new family
of C∗-algebras arising from groupoids.
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3.4 Groupoid C∗-Algebras

Groupoids generalize groups by great lengths, partly by relaxing certain conditions such as unique-
ness of a neutral element. The definition of a groupoid varies between the literature despite of these
being equivalent and in this project we adopt one primarily suitable for the C∗-algebraic framework.
Obstacles arise during the procedure of forming a C∗-algebra arguably due to the general nature of
groupoids. However, the Hilbert C∗-module theory established prior until now arrives to our rescue,
as we shall witness. We initiate the construction by understanding groupoids.

Definition. A groupoid is a small category in which every morphisms is invertible. Elaborating
further, a groupoid G consists of a distinguished set G0 of elements referred to as the units of G, a
set of morphisms between objects in G0, commonly denoted by G as well, and maps s, r : G −→ G0,
called the source and range, respectively. The involved maps must fulfill the following axioms.

· The set G2 of pairs g, h ∈ G fulfilling s(g) = r(h) admits an associative composition G2 −→ G
written multiplicatively. A pair g, h ∈ G determining an element in G2 is called composable.

· For every u ∈ G0, there is an identity morphism 1u meaning 1ug = g and g1u = g for all g ∈ G.

· Every morphism g admits an inverse morphism g−1 in G, that is, g−1g = s(g) and gg−1 = r(g).

· One has gs(g) = g = r(g)g and s(u) = u = r(u) for all g ∈ G and u ∈ G0.

· One has s(gh) = s(h) and r(gh) = r(g) for all (g, h) ∈ G2.

The third and fourth conditions may appear meaningless at first sight. However, the sheer existence
of an identity morphisms 1u for each unit u yields an injection G0 ↪→ G of sets merely via the
assignment u 7→ 1u, hence it is customary to regard G0 as an actual subset of G. To preemptively
purge computational confusion, we derive some minor rules.

Lemma 3.4.1. Suppose G denotes a groupoid. One has:

· For any two decomposable elements g, h ∈ G, one has (gh)−1 = h−1g−1;

· for every morphisms g ∈ G, one has s(g) = r(g−1) together with r(g) = s(g−1);

· for every unit u in G, one has u−1 = u;

· for any decomposable pair g, g0 ∈ G with gg0 = h for some suitable morphism h, one has g = hg−1
0

together with g0 = g−1h.

Proof. Each of these properties are borderline trivial, so we settle with proving the the second and
fourth rule. Let g be a morphism belonging to G. The axioms of the structure maps provide the
identity s(g−1) = s(gg−1) = s(r(g)) = r(g), and similarly one deduces the relation r(g−1) = s(g).
To verify the fourth rule, one simply notes that

g0 = r(g0)g0 = s(g)g0 = (g−1g)g0 = g−1h

due to s(g) = r(g0) by hypothesis. Voila.

Definition. A groupoid homomorphism is a map ϕ : G −→ H between groupoids such that the
inclusion (ϕ× ϕ)(G2) ⊆ H2 holds while being multiplicative, meaning

ϕ(gg0) = ϕ(g)ϕ(g0)

for every composable pair g, g0 ∈ G. Note that ϕ(g−1) = ϕ(g)−1 and ϕ(G0) ⊆ H0 automatically.
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Since we never require a groupoid to be discrete, we ought to impose some topological conditions. For
this purpose, recall that a local homeomorphisms σ : X −→ Y of topological spaces is a continuous
map such that given any point x in X there exists an open neighbourhood U around x for which the
image σ(U) is open in Y and the restriction σ|U is a homeomorphism onto its image.

Definition. A topological groupoid is a groupoid G endowed with a Hausdorff topology turning the
associated structure maps

s, r : G −→ G0, g 7→ g−1 and G2 −→ G

continuous, whereG2 inherits the induced subspace topology from the productG×G andG0 inherits
the subspace topology fromG. We call a topological groupG etalé provided that the range and source
maps are local homeomorphisms on G. We abbreviate locally compact second countable into LCSC
for brevity.

Examples.

· Any group G having G0 = {e} and G = G becomes a groupoid. The required map G × G −→ G
translates into the usual composition in G. If G is discrete, then G is an etalé LCSC groupoid.

· Any topological space X having X = G0 and G = {idx : x ∈ X} becomes a topoloigcal groupoid
having s(x) = x = r(x) for all x belonging to X.

· Suppose M is some set having an equivalence relation ∼ associated to it. Then G0 = M and we
declare that there exists a morphism n −→ m if and only if m ∼ n.

Proposition 3.4.2. The set of units G0 in an etalé LCSH groupoid G is open and closed.

Proof. The diagonal associated to any Hausdorff space is closed, hence to prove that G0 is closed we
seek to recognize G0 as the preimage thereof under some continuous map. To accomplish this, define
σ : G −→ G × G by g 7→ (s(g), r(g)), which is obviously continuous. Since s and r restrict to the
identity on G0, we deduce that G0 is the preimage of the diagonal on G under σ as desired.

To prove that G0 must be open, let u be some element therein and choose V ⊆ G to be an open
neighbourhood around u turning s|V into a homeomorphism. The intersection G0 ∩ V ⊆ G0 is open
within G whereupon W = V ∩ s−1(G0 ∩ V ) becomes a neighbourhood around u. The objective will
be to verify that W ⊆ G0. However, any element g in W is mapped into an element in V ∩G0. Hence
we may deduce that s(s(g)) = s(g) in V meaning g = s(g) ∈ G0 as s defines a homeomorphism on V ,
proving the claim.

Notation. LetG be an etalé locally compact groupoid. We hereon define the source and range fibers
associated to a unit u belonging to G by setting

Gu = {g ∈ G : s(g) = u} respectively, Gu = {g ∈ G : r(g) = u}

Alternatively, these are the preimages of units under the source and range maps, whence the name.
In particular, they must both be closed subspaces ofG. One of several reasons to tacitly demand that
G is etalé is following.

Proposition 3.4.3. The source - and range fibers associated to any unit in an etalé LCSC groupoid
G are always discrete subspaces of G.
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Proof. Choose some morphisms g inGu with u being any unit inG. Let U be an open neighbourhood
around g such that s restricts to a homeomorphisms hereon. From injectivity of the range map,
U ∩ Gu ∼= r(U ∩ Gu) = r(U) ∩ r(Gu) follows. The second factor in the former intersection is a
singleton and therefore U ∩ Gu = {g} for some morphism g. Upon G being second countable, Gu
becomes a countable union of singletons, hence must be discrete. Discreteness of Gu may be derived
analoguesly, upon replacing the source map with the range map throughout the argument.

We now associate to any etalé LCSC groupoid G a C∗-algebra. Consider the set Cc(G) consisting of
compactly supported functions ξ : G −→ C. It clearly defines a complex vector space with pointwise
operations. Endowing Cc(G) with the maps

(ξ ∗ η)(g) =
∑

h∈Gs(g)

ξ(gh−1)η(h) and ξ∗(g) = ξ(g−1),

defined for all g in G, forms an involutive algebraic structure on Cc(G) according to the following
reasoning. For two compactly supported functions ξ, η : G −→ C, the convolution (ξ ∗η)(g) evaluated
at g ∈ G is finite, since the sum above is indexed over Gs(g) intersected with the supports of ξ and
η, meaning an intersection of a discrete set with compact sets (hence finite). Thus ξ ∗ η belongs to
Cc(G). Associativity may be verified as follows. Let u be a morphism in G. Then

(ξ ∗ η) ∗ µ(u) =
∑

g∈Gs(g)

(ξ ∗ η)(ug−1)µ(g) =
∑

g,h∈Gs(g)

ξ(u(hg)−1)η(h)µ(g)

and

ξ ∗ (η ∗ µ)(u) =
∑

g∈Gs(g)

ξ(ug−1)(η ∗ µ)(g) =
∑

g,h∈Gs(g)

ξ(ug−1)η(gh−1)µ(h).

As such the substitution γ = hg will bring the sought equality. For the sake of convenience, we note
that for any pair ξ, η ∈ Cc(G) and element g ∈ G one has

(ξ∗ ∗ η)(g) =
∑

h∈Gs(g)

ξ(hg−1)η(h) =
∑

t∈Gr(g)

ξ(t)η(tg), (3.5)

(ξ ∗ η)∗(g) =
∑

h∈Gs(g)

ξ(hg−1)η(h−1) = (ξ∗ ∗ η∗)(g). (3.6)

In order to craft a norm onCc(G), we produce a C∗-algebra together with a faithful ∗-homomorphism
mapping into it. For this purpose, we define a left action C0(G0)×Cc(G) −→ Cc(G) together with a
C0(G0)-valued semi-inner product on Cc(G) by declaring that

(f.ξ)(t) = ξ(t)f(s(t)) respectively, 〈ξ, η〉(u) =
∑
t∈Gu

ξ(t)η(t)

for all t ∈ G, u ∈ G0 and f ∈ C0(G0). Collecting all these observations yield the following example of
a Hilbert C∗-module over C0(G0).

Definition. For every etalé LCSC groupoid G we define L2(G) to be the Hilbert space completion
of Cc(G) viewed as an involutive C0(G0)-module. In symbols,

L2(G) := Cc(G)/L〈·,·〉
‖·‖

where L〈·,·〉 = {ξ ∈ Cc(G) : 〈ξ, ξ〉 = 0} and the closure is taken via the induced norm.
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Remark. The shape of C0(G0)-valued inner product in L2(G) is inspired from the ordinary `2(G)
Hilbert space, whence the symbolic notation. Furthermore, one ought to compare the action with the
latter example on page 53. In particular, the induced norm ‖ · ‖L2(G) becomes the “2-norm” on G in
the sense that

〈ξ, ξ〉(u) =
∑
t∈Gu

|ξ(g)|2 (3.7)

for every unit u in G and compactly supported functions ξ : G −→ C, upon which

‖ξ‖2L2(G) = sup
u∈G0

∑
t∈Gu

|ξ(g)|2, x ∈ Cc(G).

Continuing our quest in discovering a C∗-norm toCc(G), we shall investigate the following left-regular
representation esque map of groupoids. We define λ : Cc(G) −→ B(L2(G)) by

λ(ξ)(η) = ξ ∗ η.

in terms of elements ξ, η ∈ Cc(G). Here B(L2(G)) reads the C∗-algebra of adjointable operators that
was addressed in the preceding section. We assert λ must be contractive map attaining values in
B(L2(G)). For every pair of compactly supported function ξ, η : G −→ C and unit u ∈ G,

〈η, λ(ξ∗)ζ〉(u) =
∑
w∈Gu

η(w)(ξ∗ ∗ ζ)(w)
(3.5)
=

∑
w∈Gv

∑
g∈Gs(w)

η(w)ξ(wg−1)ζ(w)

while

〈λ(ξ)η, ζ〉(u) =
∑
w∈Gu

(ξ ∗ η)(w)ζ(w) =
∑
w∈Gu

∑
g∈Gs(w)

ξ(wg−1)η(w)ζ(w)

Substituting w = u yields equality, so we infer that λ(ξ)∗ = λ(ξ∗), proving λ(ξ) be an adjointable op-
erator for each compact supported function ξ : G −→ C, hence well-defined. Extending λ by linearity
yields a ∗-representation of Cc(G). On the other hand, |(ξ ∗ η)(t)| <∞ for t ∈ G, hence

〈λ(ξ)η, λ(ξ)η〉(u) =
∑
t∈Gu

|(ξ ∗ η)(t)|2 =
∑
t∈Gu

∣∣∣∣ ∑
g∈Gs(t)

ξ(tg−1)η(g)

∣∣∣∣2 <∞
Upon the latter being finite for every unit u inside G, we have ‖λ(ξ)‖ < ∞. Thus λ extends to a
∗-homomorphism, which must be faithful on the merits of λ(ξ∗ ∗ ξ) = 0 forcing 〈λ(ξ)η, λ(ξ)η〉 = 0 for
all η in Cc(G) in conjunction with the above calculation entailing ξ = 0. The plethora of facts allows
us build our C∗-algebra.

Definition. Suppose G denotes a locally compact etalé groupoid. We define the reduced groupoid
C∗-algebra to be the norm closure of λ(Cc(G)) ↪→ B(L2(G)).

To us groupoids serve as a class of C∗-algebras wherein plenty of members belong to the UCT class.
The underlying theory behind this derives from Tu’s theorem, stating that the reduced groupoid
C∗-algebra associated to an etalé amenable LCSC groupoid belongs to the UCT class. To properly
understand his assertion, we must introduce the notion of amenability for groupoids.

Definition. An etalé LCSC groupoidG is said to be amenable if there exists a net (ξi)i∈J consisting
of compact supported nonnegative unctions ξi : G −→ C fulfilling∑

t∈Gr(g)

ξi(t) −→ 1 together with
∑

t∈Gr(g)

|ξi(g)− ξi(tg)| −→ 0

for all g belonging to G, uniformly on compact subsets in G.
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Once more we must confine ourselves with merely stating various classification results associated
to amenability modulo one variation using L2(G)-language. However, it is worthwhile noting that
amenable groupoids produce nuclear C∗-algebras while the full and reduced version coincide, similar
to its discrete group counterpart.

Proposition 3.4.4. An etalé LCSC groupoid G is amenable if and only if there exists a net (ηi)i∈J
of compactly supported functions ηi : G −→ C such that ‖ηi‖ ≤ 1 and (η∗i ∗ ηi)(g) → 1 for all g
belonging to G, uniformly on compact subsets in G.

Proof. We omit verifying each component in the proof, due to the tedious nature of the computations.
Assume at first the G were amenable with respect to the net (ξi)i∈J . Define accordingly

µi(·) = max
{
〈ξ1/2
i , ξ

1/2
i

〉
(·), 1} and ηi(·) = ξi(·)1/2µi(s(·))−1/2

for each index i in J . If u ∈ G0 fulfills that 〈ξ1/2
i , ξ

1/2
i 〉(u) exceeds the constant map u 7→ 1, then

〈ηi, ηi〉(u) =
∑
t∈Gu |ηi(t)|

2 → 1 according to (3.7) for every unit u in G, whereof we infer ‖ηi‖ ≤ 1.
The remaining part is verified through similar computations. Conversely, given a net (ηi)i∈J described
in the statement, one merely defines ξi(·) = |ηi(·)|2 for all indices i. Thus,∑

t∈Gr(g)

|ξi(t)− ξi(tg)| ≤
∑

t∈Gr(g)

| |ηi(t)| − |ηi(tg)| |2

=
∑

t∈Gr(g)

|ηi(t)|2 + |ηi(tg)|2 − 2|ηi(t)| · |ηi(tg)|

(3.5)
=

∑
t∈Gr(g)

|ηi(t)|2 +
∑

t∈Gr(g)

|ηi(tg)|2 − 2(η∗i ∗ ηi)(g)

→ 1 + 1− 2 = 0

for every morphism g in G. We omit calculating further and consider our work done.

In conjunction with Tu’s theorem, we shall apply a rather curious identification occurring for trans-
formation groupoids. We collect the observation into a single swoop for the sake of reference together
with a product property of the reduced groupoid C∗, proofs being omitted. Afterwards we state Tu’s
theorem and the nuclearity-amenability correspondence.

Proposition 3.4.5. Suppose G denotes a discrete group acting continuously on a locally compact
topological space X via homeomorphisms. Let α : G −→ Aut(X) be the action in play and write

X oG =
{

(x, t, y) ∈ X ×G×X : x = αt(y)
}
.

Under these premises, XoG determines a groupoud having X as unit set, the formula s(x, t, y) = y
as source map, the formula r(x, t, y) = x as range map and having, for decomposable elements, the
rule (x, s, y)(y, t, z) = (x, st, z) as composition. The resulting groupoid XoG is called “the transfor-
mation groupoid” of the pairing (X,G) and it carries an isomorphism C∗λ(X oG) ∼= C(X) oα,r G

Theorem 3.4.6. An etalé LCSC groupoid G is amenable if and only if C∗λ(G) is nuclear.

Proof. See [2, theorem 5.6.18] for a rigorous proof.

Theorem 3.4.7 (Tu). The reduced groupoid C∗-algebra, hence the full, associated to any amenable
etalé locally compact second countable groupoid belongs to UN .

Proof. We refer to [14] for a rigorous proof.



Chapter 4

Elementary Amenable Groups and
Quasidiagonality

Rosenberg proved a remarkable theorem concerning the reduced group C∗-algebra and quasidiago-
nality, revealing that a discrete countable group must be amenable whenever its associated reduced
group C∗-algebra is quasidiagonal. The validity of the converse, which Rosenberg himself conjec-
tured to be true, remained unanswered prior to recent discoveries with an affirmative being provided
by Tikuisis, White and Winter. However, a partial converse due to Ozawa, Rørdam and Sato was
established in 2014. The aforementioned result specifically treats the case of elementary amenable
groups and the proof is based on a, so-called, “bootstrap” argument using a C∗-algebra arising from
a dynamical system encoding quasidiagonality. The chapter seeks to pursue the proof of Sato, Ozawa
and Rørdam. Unfortunately, certain classification results concerning AT-algebras of real-rank zero
are merely stated and regarded as divine intervention. To begin with, we thoroughly the investigate
the dynamical system.

4.1 The Bernoulli Crossed Product

Let β : G y S be a group action onto some set S written as g 7→ g.s for every s ∈ X and g ∈ G.
The groups in play will be discrete, so topological aspects are set aside even though one may prove
various assertions in the continuous case as well. Suppose A denotes any unital C∗-algebra and define
the induced non-commutative Bernoulli shift action σβ : Gy

⊗
S A by

σβg

(⊗
s∈S

as

)
=
⊗
s∈S

ag−1.s

on elementary tensors, for all g inG. Extend hereafterσβ C-linearly to an action defined on the entirety
of
⊗

S A. Intuitively speaking, σβ encodes the “permutation” that the actionGy S creates onto the
infinite tensor product

⊗
S A by permuting the tensor indexes via the formula provided by β. Due to

the involutive and algebraic structure on infinite tensor product C∗-algebras occurring factorwise, any
discrete group G hereby acts on

⊗
GA by ∗-automorphisms σ : G −→ Aut (

⊗
GA) via the Bernoulli

shift arising from the left-translation on G, hence determines a unital discrete C∗-dynamical system
(
⊗

GA, σ,G). This forms the following dynamical unital C∗-algebra.

Definition. For any discrete group G acting on itself by left-translation, the corresponding reduced
crossed product B(G) = (

⊗
GM2∞) oσ,r G arising from the unital discrete C∗-dynamical system

(
⊗

GM2∞ , σ,G) is called the Bernoulli shift crossed product associated to G.

60
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Notation. Throughout the entire chapter, the C∗-algebra M2∞ will emerge in a plethora of disguises.
To emphasize on its appearances, we abbreviate M(I) =

⊗
I M2∞ for any countable indexing set I.

We simplify whenever the indexing set consists of a single element, writing M(g) = M({g}) instead
for every element g in G. As such, we have M(I) ∼= M(J) ∼= M2∞ for any two not necessarily distinct
countable sets I and J due to M2∞ being self-absorbing; see for instance proposition 1.4.9.

In the countable case,B(G) inherits powerful invariants from M(G). In fact, our first objective will be
to derive these properties, for we shall require it when applying classification theorems. The sought
invariants ofB(G) inherited from M(G) are the existence of a unique tracial state and simplicity. The
proof of simplicity relies heavily on a theorem due to Kishimoto. We state the theorem independently
below, referring to [1] for the original proof. Recall that an action α : G −→ Aut(A) on a unital C∗-
algebra is inner if and only if for every g in G there exists some unitary us in A fulfilling αs = Adus .
The obtained normal subgroup in Aut(A) consisting of inner ∗-automorphism is commonly denoted
Inn(A) and elements the quotient Aut(A)/Inn(A) are called outer.

Theorem 4.1.1 (Kishimoto [1]). Suppose (A,α,G) denotes a unital discrete C∗-dynamical system,
where A denotes a simple C∗-algebra. Then Aoα,r G is simple if and only if α is outer.

The proof establishing the monotracial property of B(G) exploits a more general observation, which
we independently prove because of its independent intriguing features. For those still slightly unac-
quainted with crossed products and conditional expectations, please read or skim section 1.7.

Proposition 4.1.2. Suppose (A,α,G) denotes some discrete unital C∗-dynamical system admitting
a tracial state τ which is α-invariant, meaning τ ◦αg = τ for all g in G. Under these premises, the
C∗-algebra Aoα,r G admits a tracial state given by the composition τ ◦E : Aoα,r G −→ C, where
E denotes the canonical conditional expectation on Aoα,r G.

Proof. Consider the canonical faithful conditional expectationE : Aoα,rG −→ Adefined on the dense
involutive subalgebraCc(G,A) ↪→ Aoα,rG byE(

∑
s∈G asus) = ae and extended via continuity onto

the norm closure. The obtained composed positive linear functional τ ◦E onAoα,rG becomes a tracial
state hereon due to the following reasoning. Let {us}s∈G be the collection of unitaries implementing
the action α. Suppose one has elements a =

∑
s∈G asus and b =

∑
t∈G btut in Cc(G,A) ↪→ Aoα,r G

and note that t = s−1 whenever st = e. One hereof computes:

(τ ◦ E)(ab) = (τ ◦ E)

( ∑
s,t∈G

asαs(bt)ust

)
= τ

(∑
s∈G

asusbs−1u∗sue

)
=
∑
s∈G

τ(αs−1(as)bs−1ue)

=
∑
s∈G

τ(bs−1αs−1(as)ue)

=
∑
s∈G

τ(bsαs(as−1)ue)

= (τ ◦ E)(ba).

The second equality stems from the definitions of E and α being implemented via the unitaries
{us}s∈G, the third equality from the α-invariance property of τ combined with αs−1 = Adu∗s , the fifth
is based on the trace property of τ whereas the sixth follows from substituting swith s−1. This verifies
the trace property of τ ◦ E, hence τ ◦ E becomes a trace acting on a dense subalgebra in A oα,r G,
so normalizing yields a tracial state. Continuity of the maps involved entails that τ ◦ E extends to a
tracial state on Aoα,r G, proving the claim.
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Proposition 4.1.3. The Bernoulli shift crossed product associated to a countable discrete group is
unital, separable, monotracial and simple.

Proof. Suppose G is some discrete countable group. Let us tackle the easy parts first. The algebra
M2∞ is a UHF-algebra having

⋃∞
n=1 M2n as dense subset. Due to the latter being a countable union

of separable spaces, it becomes separable itself. If A is any unital separable C∗-algebra admitting an
action Gy A, the involutive algebra Cc(G,A) becomes separable. Indeed it consists of formal sums∑
s∈G ass with as ∈ A0 being zero for all save finitely many s ∈ G, where A0 denotes some countable

dense subset of A. Upon the involutive algebra Cc(G,A) being dense in Aoα,r G, the latter contains
a dense countable subset. Since Cc(G,A) is generated by A and a collection of unitaries {us}s∈G
implementing the action G y A via inner ∗-automorphisms, wherein 1Aue acts as the identity, the
reduced crossed productAoαG becomes unital in addition. ThusB(G) becomes unital and separable
due to M2∞ being both unital and separable.

In order to prove simplicity of B(G), we shall verify that the induced Bernoulli shift action arising
from the left-translation on G, i.e., σ : G −→ Aut(M(G)) must be outer1. To achieve this, let some
nontrivial element s in G be fixed a projection (pn)n≥1 inside the product `∞(M2,N), meaning pn
defines a projection for every positive integer n. We may arrange the sequence (pn)n≥1 in a manner
that it becomes central, that is, one has ‖[pn, a]‖ → 0 as n → ∞ for every a in M2. For instance,
a sequence of diagonal 2 × 2-matrices having the value 1 along the diagonal will work. The natural
embedding M2

∼=
⊗
{e}M2 ↪→

⊗
N M2 permits us to regard the projections pn as projections inside

M2∞ . Letting qn be the point-image of pn under the embedding, one obtains a new central sequence
(qn)n≥1 of projections in M2∞ , as opposed to M2, because∥∥∥∥qn(⊗

s∈G
as

)
−
(⊗
s∈G

as

)
qn

∥∥∥∥ =

∥∥∥∥(pnas − aspn)⊗
⊗

s∈G\{e}

as

∥∥∥∥ = ‖[pnas]‖ ·
∥∥∥∥ ⊗
s∈G\{e}

as

∥∥∥∥→ 0

for all elementary tensors
⊗

s∈G as, hence everywhere by linearity. Adapting the same argument,
wherein one exploits the natural embedding M2∞

∼=
⊗

eM2∞ ↪→ M(G) instead, allows us to regard
(qn)n≥1 as being a central sequence in M(G). The non-triviality assumption s 6= e ensures that
σs(qn) 6= qn while a straightforward computation reveals that σs(qn) commutes with qn. Due to
any pair consisting of two distinct commuting projections p and q in a C∗-algebra being of distance
1 apart2, one has ||σs(qn) − qn|| = 1. If σ were inner, say with respect to unitaries {ut}t∈G, then
σs = Adus holds for all n in N, whereupon we infer

1 = ||σs(qn)− qn|| = ||usqnu∗s − qn|| = ||usqn − qnus|| → 0

becomes valid. We hereby arrive at a contradiction when n becomes sufficiently large. This shows that
σ must be outer and invoking Kishimoto’s theorem guarantees simplicity of B(G).

We proceed to proving that B(G) must be monotracial, starting with existence by applying the
previous proposition. In our specific scenario, the C∗-algebra in play is the UHF-algebra M2∞ and
therefore admits a unique tracial state τ . Let now E denote the conditional expectation on B(G).
Verifying that the functional τ ◦ E on B(G) determines a tracial state thus amounts to establishing
invariance of τ under the Bernoulli shift. The sought invariance in fact follows immediately from a
more general observations: If A denotes a unital monotracial C∗-algebra admitting a group action
α : G y A by ∗-automorphisms, then τs := τ ◦ Adus with {us}s∈G being the canonical unitaries
implementing the action α, defines a tracial state on A for each s ∈ G. Uniqueness of trace entails
τs = τ for every s ∈ G, which is precisely α-invariance of the trace τ .

1Kishimoto’s theorem applies due to UHF-algebras being simply via proposition 1.4.3
2In case you have not seen this: the spectrum of the difference p− q must necessarily be contained inside the set

{−1, 0, 1} according to the spectral mapping theorem, whereof one has ||p− q|| = rσ(p− q) = 1 with rσ(p− q) being
the spectral radius of p− q.
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To achieve uniqueness of τ , suppose % : B(G) −→ C is another tracial state. If τ ◦ E = τ occurs
for any tracial state τ on B(G), one may infer that

%(E(a)) = (%|M2∞ ◦ E)(a) = (τ|M2∞ ◦ E)(a) = τ(a)

for all a in M(G) by uniqueness of trace on M(G) ∼= M2∞ . Hence proving that τ ◦E = τ for all tracial
states on B(G) suffices, so suppose τ denotes some tracial state on B(G). To ease the notation, let
M be the dense subalgebra

⋃
n(
⊗n

k=1 M2k) of the M2∞ . Due to the involutive algebra generated by⊗
F M and {us}s∈G, with F ⊆ G finite, being dense in B(G), we are only required to prove that

τ(aus) = 0 for any s 6= e in G together with a belonging to
⊗

F M holds to prove that τ ◦ E = τ .
Certainly, having accomplished this permits us to deduce that

τ

(∑
s∈G

asus

)
= τ(aeue) = (τ ◦ E)

(∑
s∈G

asus

)
becomes valid for any element

∑
s∈G asus on a dense subalgebra in B(G), whence onto B(G) by

continuity of τ . As such, we seek to verify that τ(aus) = 0 for all s 6= e in G.
For any positive integer n, one may find an isomorphic copy B of M2n inside M(e) commuting

with a via the induced ∗-monomorphism M2n ↪→ B ∼=
⊗

eM2∞ ↪→ M(G). Consider the collection
p1, p2, . . . , p2n consisting of the rank one projections pk in M2n attaining the value 1 on the k’th
diagonal entry with zeroes elsewhere. Let hereafter τ0 : B −→ C be the trace

τ0(·) = τ(· σs(pn))

for some fixed nontrivial s ∈ G and n ∈ N. Due to σs(pn) being a projection commuting with M2n ,
the spectrum of aσs(pn) belongs to the positive reals so aσs(pn) ≥ 0. Therefore τ0 must necessarily
be a positive trace on B. Uniqueness of trace on M2∞ implies τ0 = λτ for some λ in R. Observing
that τ(σs(pn)) = τ0(1B) = λτ(1B) hereby permits one to deduce that λ = τ(σs(pn)). Formulated
differently, one has τ(aσs(pn)) = τ(a)τ(σs(pn)) for all a ∈ B. Now, the projections p1, p2, . . . , p2n evi-
dently sum to the identity on M2n and since the unique tracial state τ2n on M2n applied to projections
counts the amount of eigenvalues equal to 1 divided by 2n, one has

τ(pnσs(pn)) = τ(pn)τ(σs(pn)) = 2−n2−n = 2−2n

wherein the second equality stems from the aforementioned multiplicative property of τ (σs permutes
the entry e to the entry s by definition). Combining our observations yields

|τ(aus)| =
∣∣∣∣τ( 2n∑

k=1

p2
kaus

)∣∣∣∣ ≤ 2n∑
k=1

|τ(pkauspk)|

=

2n∑
k=1

|τ(usapk)|

=

2n∑
k=1

|τ(usapkσs(pk)σs−1(pk))|

≤
2n∑
k=1

‖usa‖ · |τ(pkσs(pk))|

≤ ‖a‖ · 2−n.

The first equality is based on
∑2n

k=1 pk = 1, the third stemming from M2n commuting with the
element a implying that τ(pkauspk) = τ(uspka) = τ(usapk) and the fifth arising from σ being a
∗-automorphism entailing σs−1(pk) = σs(p

∗
k) = σs(pk). The latter expressions tends to zero as n

tends to infinite, whence τ(aus) = 0 follows, completing the proof in view of our initial remarks.
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Definition. The class of countable discrete groups G whose associated reduced crossed product⊗
GM2 oσ G determines a quasidiagonal C∗-algebra is represented by P.

Proposition 4.1.4. The inclusions P ⊆ GQ ⊆ A of classes are all valid, where A denotes the
class of discrete amenable groups and GQ the class of discrete groups whose associated reduced group
C∗-algebra is quasidiagonal. Furthermore, a countable discrete group G belongs to the class P if
and only if the Bernoulli crossed product B(G) defines a quasidiagonal C∗-algebra.

Proof. Only the first inclusion together with the equivalent formulation of the class P requires
justification thanks to Rosenberg’s theorem. To each discrete unital C∗ dynamical system (A,α,G)
one has a ∗-monomorphism C∗λ(G) ↪→ Aoα G based on the following observation. Fix some faithful
separable representation π : A −→ B(H) of A and let πα × λ be associated integrated form of π
extended to Aoα G. Since the right-hand side of

(πα × λ)(aus)(ξ ⊗ δt) = π(αs(a))ξ ⊗ λsδt = (π(αs(a))⊗ λs)(ξ ⊗ δt)

determines an element in A⊗ C∗λ(G) for all s, t ∈ G and a ∈ A, we may infer that Aoα,r G contains
an isomorphic copy of C∗λ(G) (the representation 1 ⊗ λ is faithful being the tensor product map of
faithful representations). Therefore,C∗λ(G) embeds into

⊗
GM2oαG and thus P becomes a subclass

of GQ due to quasidiagonality passing to subalgebras, proving the former inclusion.

In order to verify the remaining assertion, the equivalence, letGbe a countable discrete group such that
B(G) is quasidiagonal. The canonical embedding ι : M2 ↪→

⊗
GM2

∼= M2∞ induces a G-equivariant
∗-monomorphism % :

⊗
GM2 ↪→

⊗
GM2∞ by making G-many copies of ι tensorially. Upon the

functor (·)oα,rG assigning equivariant ∗-monomorphisms to embeddings, one obtains an embedding⊗
GM2 oσ,rG ⊆M(G)oσ,rG in the C∗-algebraic framework. The latter B(G), hence quasidiagonal

by hypothesis, whereof the former inherits quasidiagonality.
Conversely, suppose G denotes a group in the class P. Let δ : Gy G×G be the diagonal action

associated to the left-translation, i.e., δs(g, h) = (s−1g, s−1h) for all s, g, h ∈ G. Letting V denote
the subset of all diagonal elements (s, s) ∈ G×G for s ∈ G ensures that the induced Bernoulli shift
action σδ agrees with the product action σ × σ on V . As such one may deduce that⊗

G2

M2 oσδ G =
⊗
G2

M2 o(σ×σ)|V G
2 ↪→

⊗
G2

M2 o(σ×σ) G
2

via the embeddings on the corresponding dense subalgebras, again the functorial properties of the
reduced crossed product being exploited. Now,

⊗
G(
⊗

GA) of any unital C∗ algebra is obviously
∗-isomorphic to theG2-fold ofA, that is,

⊗
G2 A. Hence selecting an appropriate bijectionG2 −→ G2

permits one to identify the Bernoulli shift action Gy
⊗

G2 A induced by δ with the usual Bernoulli
shift σ : Gy

⊗
G(
⊗

GA). Altogether, one has(⊗
G

⊗
G

M2

)
oσ G ∼=

⊗
G2

M2 oσδ G ↪→
⊗
G2

M2 o(σ×σ) G
2 ∼=

(⊗
G

M2 oσ G
)
⊗
(⊗

G

M2 oσ G
)
.

The last isomorphism may be justified in the following manner. The assignment⊗
(s,t)∈G2

a(s,t) 7→
⊗
(s,e)

a(s,e) ⊗
⊗
(e,t)

a(e,t)

extends to an isomorphism
⊗

G2 M2
∼= (
⊗

GM2) ⊗ (
⊗

GM2) of C∗-algebras and the tensor-action
σ⊗σ meaning (σ⊗σ)(s,t) = σs⊗σt for each pair s, t ∈ G, is readily seen to correspond to the product
action σ × σ : G2 y

⊗
G2 M2 under the appropriate identifications. Regarding

⊗
G2 M2 oσ×σ G2 in

this fashion allows us to invoke proposition 1.6.2 to obtain the desired.
The C∗-algebra on the right-hand side above is a spatial tensor product of quasidiagonal C∗-

algebras by hypothesis, hence quasidiagonal itself. TheC∗-algebra on the left-hand side is isomorphic
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to M(G)oσG in the event ofG having infinite order. In the finite case,B(G) embeds into M2∞⊗M|G|
according to the corollary below (stated in a more general setting). The latter algebra is quasidiagonal
being the spatial tensor product of a matrix algebra and an UHF-algebra. Regardless of the outcome,
B(G) embeds into a quasidiagonal C∗-algebra, hence it inherits quasidiagonality from the ambient
algebras and voila.

Lemma 4.1.5. Suppose H ⊆ G is a finite index inclusion of discrete groups with N = |G : H| and
let (A,α,G) be a unital C∗-dynamical system. Then Aoα G ↪→ (Aoα H)⊗MN

Proof. Let π : A −→ B(H) be a faithful representation. The map π induces a faithful representation of
Cc(G,A) onH⊗`2(G), namely the integrated formπα×λwith respect to the left regular representation
λ of G. Similarly, the restrictions λ|H together with β = α|H induce a faithful representation of
Cc(H,A) via the integrated form πβ × λ. By hypothesis, one may choose finitely many suitable
elements s1, s2, . . . , sN in G partitioning G via the left cosets siG, so one obains

`2(G) ∼=
N⊕
i=1

`2(siH) and H⊗ `2(G) ∼=
N⊕
i=1

H⊗ `2(siH).

To ease the notation, let K = H⊗ `2(G) and Ki = H⊗ `2(siG). Since `2(siH) determines a subspace
of `2(G), it admits an orthogonal projection pi : K −→ Ki. Recall that Cc(G,A) is the involutive
algebra generated by A and the unitaries ug = 1Ag for every g in G. Therefore, one may define a
family of unitaries vi on H ⊗ `2(G) by vi = (πα × λ)(usi) for all indices 1 ≤ i ≤ N . Expanding the
expressions reveals that these unitaries necessarily must be of the form vi = (πα×λ)(usi) = 1H⊗λsi
for every 1 ≤ i ≤ N .

As such vi maps an elementary tensor ξ ⊗ δt, with t being an element of H into K. We deduce
the identity vi(K0) = Ki follows when setting K0 = H⊗ `2(H). Based on the preceding, one readily
verifies that the ∗-homomorphism % : B(K) −→ B(K0)⊗MN defined via the assignment

a
%7−→

N∑
i,j=1

v∗i piapjvj ⊗ eij ,

where eij denotes the canonical basis elements in MN , becomes an isomorphism. Moreover,

(v∗i pi(πα × λ)(aus)pjvj)(ξ ⊗ δt) =

{
u∗i pi(πα(a)⊗ λs)(ξ ⊗ δsjt), if sjt ∈ sjH
0, otherwise

=

{
π(α(tsj)−1(a))ξ ⊗ δs−1

i ssjt
, if s−1

i ssj ∈ H
0, otherwise

=

{
(πα × λ)(αs−1

j
(a)us−1

i ssj
)(ξ ⊗ δt), if s−1

i ssj ∈ H
0, otherwise

for any choice of indices 1 ≤ i, j ≤ N , ξ ∈ H and s, t ∈ G. The last expression belongs to the image
of Aoα H under π × λ, so % maps (πα × λ)(Aoα H) onto (πα × λ)(Aoα H)⊗MN which grants us
the desired embedding when restricting % accordingly.

Corollary 4.1.6. There exists a ∗-monomorphism of B(H) into B(G)⊗M|G:H| whenever H ⊆ G
is a finite index inclusion of discrete groups.
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Proof. Let N denote the index of the subgroup H in G. Since H ×G/H may be identified with G as
sets, we have

⊗
H M(G/H) ∼= M(G) while M(G/H) ∼= M2∞ . Hence invoking the lemma,

M(G) oσ G ↪→ (M(G) oσ′ H)⊗MN
∼= (
⊗
H

M(G/H) oσ′ H)⊗MN
∼= M(H) oσ′ H)⊗MN

The right-hand side is precisely B(H)⊗MN whereas the left-hand side is B(G).

4.2 Elementary Amenable Groups

Proposition 4.1.4 leans towards the salient feature of the Bernoulli shift crossed product algebra along
with certain permanence properties; it shall be revealed that it is stable under basic group operations
such as direct limits. In order to aptly capture the essence, we state various definitions and results
required to describe a theorem due to Chou, which was improved upon significantly by Osin. We
initially briefly introduce elementary amenable groups despite of the terminology appearing being
described afterwards.

Definition. Define EG as the smallest subclass of discrete amenable groups containing the finite
and abelian groups while being stable under taking direct limits, subgroups, quotients and group
extensions in EG. The subclass of these restricted to countable groups is denoted EGc.

The aforementioned mathematicians succeeded in weakening the minimality condition imposed on
elementary amenable groups: The theorem of Osin and Chou asserts that the conditions of being
closed under taking quotients and passing to subgroups are superfluous. For the proof, we shall adopt
an approach inspired by both of these participants to the theory.

Definition. Let A denote any class of groups. Another class B of groups is said to be

· closed under passing to subgroups if every subgroup H of some G in B must belong to B;

· closed under taking quotients if every quotient G/N of groups within B remains inside B;

· closed under taking direct limits if every direct limit of groups within B remains inside B.

· closed under A extensions if, for every short exact sequence

1 // N // G // G/N // 1,

wherein N,G/N ∈ A one has G ∈ B.

The corresponding operations are commonly referred to as being the elementary operations.

Definition. Given any class B, we define the elementary class E(B) associated to B to be the
minimal class of groups containing the class B such that E(B) is closed under passing to subgroups,
taking quotients, taking direct limits and B extensions. We call B the base class of E(B).

Remark. The notion of elementary classes of course applies to the elementary amenable ones. In this
case, the class EG merely equals E(Z) with Z denoting the class consisting of all finite and abelian
groups. Therefore, statements concerning the general properties of elementary classes pass to the
elementary amenable case as well.



4.2. ELEMENTARY AMENABLE GROUPS 67

Terminology. Suppose B and A be any pair of classes. We refer to A as being closed under B0

extensions if for every short exact sequence

1 // N // G // G/N // 1

wherein N belongs to A and G/N lies in B, the group G must belong to B.

Remark. The principle behind B0 extensions is slightly mysterious at first glance. However, we shall
use techniques concerning these now and towards the end of the chapter. Essentially, working with
B0 extensions becomes easier to deal with should the underlying class B be relatively small; this is
the desired reduction we seek from Osin’s/Chou’s theorem.

The proof of Chou and Osin exploits transfinite induction. Those unfamiliar with ordinals and the
transfinite induction principle are encouraged to take a detour and read the corresponding part in the
first section. Chou and Osin’s theorem succeeds in reformulating the elementary classes inductively
by successively performing elementary operations to the elements in the preceding class. We specify
the corresponding procedure further.

The construction of elementary classes. Let B be any class of groups and write E0(B) := B
with 0 being the zero-ordinal. Assume hereafter that classes Eβ(B) have been prescribed for every
ordinal β < α, where α denotes some nonzero ordinal. We recursively define

· if α is a successor ordinal, then Eα(B) is defined to consists of all groups arising as either a direct
limit of groups in Eα−1(B) or as an Eα−1(B)0 extension;

· Eα(B) =
⋃
β<α Eβ(B) whenever α is a limit ordinal.

Without further ado, we prove Osin’s theorem.

Theorem 4.2.1 (Chou, Osin). Suppose B denotes any class of groups closed under passing to
subgroups and taking quotients. Under these premises, the following hold.

(i) For every ordinal α, Eα(B) is closed under passing to subgroups and taking quotients.

(ii) We have E(B) =
⋃
α Eα(B) with the union being indexed over all ordinals α.

(iii) E(B) is the minimal class containing B while simultaneously being closed under B0 exten-
sions and taking direct limits.

Proof. (i): The proof revolves around an application of the transfinite induction principle, the case
α = 0 trivially being true by the hypothesis imposed upon B. Therefore, we assume that the assertion
is valid for every ordinal β < α for some fixed nonzero ordinal α. Before proceeding, we settle some
setup. Let in the followingH be a normal subgroup of some groupG belonging to the class Eα(B) and
let ϕ : G −→ G/H be the canonical quotient homomorphism. We must verify that Eα(B) contains
both H and ϕ(G).

Step 1. Suppose at first α is some limit ordinal, meaning Eα(B) =
⋃
β<α Eβ(B), so that G must

belong to Eβ(B) for some ordinal β < α. According to the induction hypothesis, Eβ(B) is closed
under restricting to subgroups and taking quotients, hence H together with ϕ(G) must be members
of Eβ(B) ⊆ Eα(B) as desired.

Step 2(a). The case wherein α is a successor ordinal requires more meticulous care. Suppose at first
G = lim−→Gλ denotes a direct limit of groups Gλ indexed over some set I, where each occurring group
Gλ is a member of the preceding class Eα−1(B). The induction hypothesis enables us to deduce that
Hλ = H ∩Gλ must belong Eα−1(B) for every such λ. The same argument reveals that ϕ(Gλ) belongs
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to Eα−1(B) for all λ in I. It is apparent that the inclusions Gλ −→ G restricted to H ∩ Gλ yield
morphisms σλ : Hλ −→ H such that the directed system (Hλ, σλ)λ∈I becomes a model for H. In
symbols, we have H = lim−→Hλ whereas a parallel observation yields ϕ(G) = lim−→ϕ(Gλ). Thus, H and
ϕ(G) define direct limits of members in Eα−1(B) ⊆ Eα(B).

Step 2(b). The scenario in which G is an extension of groups in Eα−1(B) remains to be tackled. To
achieve the sought conclusion, let

1 // N // G // E // 1

be a short-exact sequence wherein N ∈ Eα−1(B) and E ∈ Eα−1(B). Due to N being normal in
G, the intersection N ∩H becomes a normal subgroup of H belonging to the class Eα−1(B) whose
associated quotient H/(N ∩H) must likewise be a member of Eα−1(B) by the induction hypothesis.
Exactness of the corresponding sequence

1 // N ∩H // H // H/(N ∩H) // 1

thus implies H ∈ Eα(B). Concerning quotients, notice that ϕ(N) must be the kernel of the quotient
homomorphism ϕ(G) −→ ϕ(E) meaning ϕ(G) is an extension of ϕ(E) by ϕ(N). Since ϕ(N), ϕ(E) ∈
Eα−1(B), we may infer that ϕ(G) lies inside Eα(B). This finalizes the proof of (i) when invoking the
principle of transfinite induction.

(ii)+(iii): The property (iii) is an obvious consequence of (ii). The inclusion ⊇ in (ii) is immediate.
Indeed, any member G of either of the classes Eα(B) will eventually belong to some elementary class
Eβ(B) for some successor ordinal β. Therefore, G arises as either an extension or direct limit of
groups in the preceding elementary class Eβ−1(B), which E(B) contains by definition. Ergo, to prove
equality it suffices to show that

⋃
α Eα(B) is closed under restricting to subgroups, taking quotients,

direct limits and B extensions by minimality. Part (i) establishes the first two conditions, from which
the proof amounts to deriving the claims below.

Claim 1. Given any collection of groups Gλ in
⋃
α Eα(B) indexed over some directed set I, the di-

rected limit G = lim−→Gλ remains in the union
⋃
α Eα(B).

Proof of claim 1. By hypothesis, for any index λ ∈ I there exists some ordinal αλ satisfying
Gλ ∈ Eαλ(B). Set hereof α =

∑
λ∈I aλ. From the very construction we must have Gλ ∈ Eα(B)

for every index λ. Therefore G must be an inductive limit of groups in the elementary class Eα(B),
meaning G has to lie in the class Eα+1(B) ⊆

⋃
β Eβ(B), proving the the first claim.

Claim 2. Suppose N , G and E are groups for which the sequence

1 // N // G
ϕ // H // 1

becomes exact. If N belongs to Eα(B) and H belong to Eβ(B) for some ordinal α and β, then there
exists another ordinal γ fulfilling G ∈ Eγ(B).

Proof of claim 2. We will argue by transfinite induction on the ordinal β, the case β = 0 being trivial.
Let β > 0 be some fixed ordinal and suppose the claim has been verified for all lesser ordinals. If β
defines a limit ordinal, the argument presented during part (i) in the limit ordinal case may be copied
without hindrances. Now, suppose β defines a successor ordinal meaning the group H arises as either
a B0 extension or a direct limit of groups within the class Eβ−1(B). Consider initially the case where
the sequence

1 // E // H // F // 1
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is exact, having the containments E ∈ Eβ−1(B) together with F ∈ B granted. The preimage
ϕ−1(E) obviously defines a normal subgroup belonging to G such that ϕ restricts to en epimor-
phism ϕ−1(E) −→ E, whose kernel M determines some subgroup of N . Due to M being a subgroup
of some member in Eα(B), we deduce that M lies therein. Exactness of the sequence

1 // M // ϕ−1(E) // E // 1

hereby entails the containment ϕ−1(E) ∈ Eµ(B) for some ordinal µ according to the induction
hypothesis. Consider hereafter the group homomorphism ψ : G/ϕ−1(E) −→ H/E defined by

ψ(g + ϕ−1(E)) := ϕ(g) + ϕ(ϕ−1(E)) = ϕ(g) + E.

The kernel of ψ coincides with the preimage ϕ−1(E), hence ψ must be an isomorphism. Through
the containment H/E ∼= F ∈ B we infer that G/ϕ−1(E) belongs to B. As such, G becomes a B0

extension in Eµ(B), hence G must belong to Eµ+1(B).
We still need to handle the direct limit case, however, we omit including a plethora of details since

the proof mimics the one in (i). SupposeH is a direct limit of groupsHλ in Eβ−1 with respect to some
directed set I. Write H0

λ = ϕ−1(Hλ) for every index λ ∈ I and consider the extensions

1 // Nλ // H0
λ

// Hλ
// 1

wherein Nλ is some subgroup of N , i.e., a member of Eα(B) due to (i). The induction hypothesis
yields the containment H0

λ ∈ Eλµ(B) for some ordinal λµ and every λ ∈ I. Letting µ =
∑
λ∈I λµ

guarantees that H0
λ ∈ Eµ(B) for each λ. Due to the inclusions (we assume injectivity without loss

of generality) Hλ ↪→ Hλ′ inducing inclusions H0
λ ↪→ H0

λ′ , the identifications lim−→H0
λ = ϕ−1(H) = G

reveals that G is the direct limit of groups in Eµ(B), whereof G ∈ Eµ+1(B) as desired.

We supply the theorem of Osin with some added attention to the countable case, including an explicit
construction. We emphasize on the fact that certain constructions occurring in the upcoming dis-
cussion actually form sets as opposed to general classes, however, proving these assertion have been
omitted as they deter from the overall theme of the chapter.

The countable elementary amenable groups class. Here we construct the class EGc and
afterwards prove certain permanence property required towards the end of the chapter. Let Gc denote
the set of all countable groups and let D = {Dα : α ∈ J} be an exhausting list of subsets Dα in Gc
subject to the constraints below:

· the subset Dα contains all countable abelian - and finite groups for all α ∈ J ;

· the subset Dα is closed under restricting to subgroups, passing to quotients, taking direct limits
and group extensions for every index α ∈ J .

We define EG0
c =

⋂
α∈J Dα. Note that the intersection is nonempty by the first condition.

Proposition 4.2.2. The class EGc exists in the sense that EGc = EG0
c.

Proof. We must verify that EG0
c defines the minimal class consisting of countable groups, which is

closed under performing either of the elementary operations. Fortunately, accomplishing this almost
follows automatically. Indeed, suppose G is a group arising as either a direct limit, quotient or a
subgroup of some member inside EG0

c . Regardless of the disguiseG chooses, it arises from elementary
operations in each of the sets Dα, each of these being stable under performing the elementary oper-
ations so that G belongs in some Dα ⊆ EG0

c . Minimality is easy; if A denotes a class of countable
groups closed under the elementary operations, then A would coincide with Dα for some indix α,
hence in EG0

c ⊆ A . Voila.
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Proposition 4.2.3. The following are equivalent for a group G.

(i) G is elementary amenable.

(ii) Every countable subgroup of G is elementary amenable, hence belong to EGc.

(iii) There exists a directed system (Gj , j ∈ J) consisting of countable elementary amenable sub-
group in G whose direct limit equals G.

Proof. (i)⇒ (ii) stems from EG being closed under restricting to subgroups, whereas (iii)⇒ (i) follows
from EG being closed under taking direct limits. It remains to be shown that the second condition
implies the third. For this, let J be the directed set consisting of all finite subsets in G ordered by
inclusion. Any finite subset F ⊆ G generates a countable subgroup GF = 〈F 〉 such that an inclusion
of finite subsets F ⊆ F0 in G induce a group monomorphism F ↪→ F0. Write hereof G as the directed
limit of the groupsGF having the iaforementioned embeddings as connecting morphisms. This turnsG
into a directed limit of countable subgroups, each being elementary amenable by hypothesis, proving
the claim.

4.3 A Partial Answer to Rosenberg’s Conjecture

Osin’s theorem provides us with a strategy to answer Rosenberg’s conjecture for elementary amenable
groups; it reduces the task, in this specific class, into verifying that P is closed under direct limits,
subgroups and extensions by countable elementary amenable groups. Certainly, we may conclude that
P must contain the class EGc through minimality, thereby ensuring the inclusion EGc ⊆ GQ. In view
of our previous results, providing an affirmative answer to this amounts to investigating functorial
properties of the Bernoulli shift crossed product, so we are inclined to start here.

Proposition 4.3.1 (Ozawa, Rørdam, Sato). The functor G 7→ B(G) from the category of countable
discrete groups into the category of C∗-algebras satisfies the following properties.

(i) If H is a subgroup of G, then B(H) is a subalgebra of B(G). In particular, the class P is
closed under restrictions to subgroups.

(ii) Given a chain of subgroups G1 ⊆ G2 ⊆ . . . one has B (
⋃
nGn) =

⋃
nB(Gn). Consequently,

the class P is closed under taking countable direct limits.

(iii) Suppose H acts on G by group automorphisms. If so, the action H y G extends to an action
τ of ∗-automorphisms H y B(G) such that B(G) oτ H ∼= B(GoH).

Proof. (i) The Bernoulli shift crossed product B(G) is the closure of the involutive algebra generated
by M(G) and a collection of unitaries {us}s∈G under the left-regular representation. Thus, for any
subgroup inclusion H ⊆ G of discrete countable groups, the dense subalgebra of B(H) must nec-
essarily be an involutive subalgebra of B(G), since the generating sets are identical, except for the
generating collection {ug}g∈H of unitaries which is a subcollection of the generating ones in B(G).
The remaining part is due to quasidiagonality passing to subalgebras.

(ii) Write G =
⋃∞
n=1Gn to simplify the notation. The algebra

⋃
nB(Gn) consists of a union of C∗-

algebras generated by M(Gn) and unitaries {us}s∈Gn implementing the action whereas B(
⋃
nGn) is

generated by M(G) and unitaries {us}s∈G. Consider the following identity concerning the assignment
H 7→M(H) from the category of discrete groups to the category of C∗-algebras:

M(G) =
⊗

⋃
nGn

M2∞
∼=
∞⋃
n=1

⊗
Gn

M2∞ =

∞⋃
n=1

M(Gn).
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The identification in the middle is not difficult to convince oneself to be true, granted one ought to
expand the definitions to do so. The observation permits us to regard any element inM(Gn) as precisely
one element in M(G). The obtained inclusion extends to a ∗-isomorphism on the union

⋃
nM(Gn).

Since the generating sets of unitaries on the norm-closure of
⋃
nB(Gn) and B(G) coincide, we may

deduce that they are identical.
In order to justify the second assertion in (ii), note that the previous part forces B(

⋃
nGn) to be

the norm closure
⋃
nB(Gn), where the latter may be regarded as an inductive limit of quasidiago-

nal C∗-algebras in, which the connecting morphisms are inclusions, whenever each Gn lies in the P
class. Due to inductive limits of quasidiagonal C∗-algebras with monic connecting morphisms being
quasidiagonal, P must be closed under taking countable inductive limits of groups.

(iii) Now, for the difficult aspect. By hypothesis, we have a homomorphism α : H −→ Aut(G) of
groups and the action becomes inner in G o H when regarding the respective groups as subgroups
of G o H, meaning αg(·) = g(·)g−1 for all g belonging to G ↪→ G o H3. The group G acts on the
semidirect product GoH via the homomorphism β : G −→ Aut(GoH) defined by

βs(t, g) := (s−1, 1G) · (t, g) = (s−1ϕ1G(t), g1G) = (s−1t, g)

for all s, t ∈ G and each g ∈ H. The action β thus acts on GoH by translating elements in the copy
of G while ignoring the copy of H. As such, the Bernoulli action σ induced from the left translation
G y G coincides with σβ when regarding these as maps on G ↪→ G o H. The preceding allows
one to infer B(G) ∼= M(G o H) oσβ G as their dense involutive subalgebras are isomorphic. For
the sake of avoiding confusion we shall abbreviate the latter isomorphic version of B(G) as Bβ(G).
The identification B(G) ∼= Bβ(G) reduces the task into producing an action H y Bβ(G). For this
purpose, consider the action γ : G −→ Aut(GoH) given by

γg(s, h) = (αg(s), g) · (1G, h) = (αg(s), gh)

for every g, h ∈ H and s ∈ G. By faithfully representing M(G oH) into some Hilbert space H and
exploiting independence of choice of faithful representation for the reduced crossed product, we may
identify M(G o G) with its image herein. We proceed towards extending the action H y G to an
action on Bβ(G). For each t in H, let πt : M(GoH) −→M(GoH) be the ∗-endomomorphism given
by πt(·) = σγt (·). If {us}s∈G denotes the collection of unitaries implementing the action α, then set
νt(·) = uαt(·) for each t in H to obtain a unitary representation ν : G −→ U(H). Due to

νg(t)(πg(a))ν∗g (t) = uαg(t)σ
γ
g (a)u∗αg(t) = σγαg(t)σ

γ
g (a) = σγgtg−1g(a) = πg(σ

γ
t (a))

being valid for every a ∈ M(G oH), g ∈ H and t ∈ G, the triple (πt, νt,H) determines a covariant
representation of Bβ(G) for every t ∈ H. In the calculations, the second equality stems from the
action σγ being inner whereas the third is based on αg corresponding to conjugation by g in GoH.
Since the triple defines a covariants representation ofBβ(G), the map τ : H −→ Aut(Bβ(H)) defined
on a generic element aus in Cc(G oH,M(G oH)) via τt(aus) = πt(a)νt(s) is an action. According
to proposition 1.6.3,

B(G) oτ H ∼= Bβ(G) oτ H = (M(GoH) oσβ G) oτ H ∼= M(GoH) oσ (GoH) = B(GoH).

This finalizes the proof.

Perhaps the reader may find the last property slightly unrelated to the section. The precise reasoning
will be postponed for now, so we merely promise that it permits us to invoke powerful classification
theorems concerning AT-algebras of real rank zero. For the convenience of the reader, we remind
them that a unital C∗-algebra is referred to as being of real rank zero provided that any self-adjoint
element may be norm-approximated by self-adjoint invertible elements within any tolerance, i.e., the

3see appendix A.1.
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collection of self-adjoint invertible elements is dense in the collection of the self-adjoint ones. For a
proof of Matui’s theorem, see [?, theorem 2].

Definition. A C∗-algebraA is anAT-algebra if there exists a direct sequence (Fn, ϕn)n≥1 consisting
of finite dimensional C∗-algebras Fn fulfilling A ∼= lim−→(C(T)⊗ Fn, 1⊗ ϕn).

Theorem 4.3.2 (Matui). Suppose A denotes a unital separable simple AT-algebra of real rank
zero. Under these premises, any C∗-dynamical system (A,α,Z) with integer action admits a crossed
product Aoα Z which is AF-embeddable. In particular, it becomes quasidiagonal.

How does Matui’s theorem come to our aid? Assuming one may arrange the wealth of assumptions,
then combining Matui’s theorem with the classification theorem below provides us with a fruitful
result. A proof may be recovered in the original article [7]. For the record, Q denotes the universal
UHF-algebra meaning the UHF-algebra whose associated supernatural number is the one wherein
each exponent is infinite. After presenting the theorem, we adapt it to our scenario.

Theorem 4.3.3 (Niu, Winter). Any unital separable simple nuclear monotracial quasidiagonal C∗-
algebra in the UCT class turns the spatial tensor product A ⊗ Q into an AT-algebra of real rank
zero. In particular, A becomes AF-embeddable, hence quasidiagonal.

Corollary 4.3.4. The crossed product A oα Z associated to any C∗-dynamical system (A,α,Z)
consisting of a unital separable simple nuclear monotracial quasidiagonal C∗-algebra A in the UCT
class is AF-embeddable. In particular, Aoα Z must be quasidiagonal.

Proof. According to theorem 4.3.3, the spatial tensor product (AoαZ)⊗Q becomes AF-embeddable.
However, the crossed product Aoα Z lies therein due to Aoα Z ↪→ Q⊗ (Aoα Z) ∼= (A⊗Q)oα⊗id Z
with the identification being verified in the following manner. Suppose τ = α ⊗ id is the natural
induced action Z y A ⊗ Q. Let (a ⊗ b)us be a generating element Cc(Z, A ⊗ Q). Fix some faithful
representation % = π ⊗ πQ of A⊗Q onto of Hilbert spaces H⊗K. Upon

[%τ × λ]((b⊗ a)us)(η ⊗ ξ ⊗ δt) = πU (b)η ⊗ π(αt−1(a))ξ ⊗ δst
= [πQ ⊗ (π ⊗ λ)](b⊗ aus)(η ⊗ ξ ⊗ δt)

being valid for every pair of vectors ξ, η ∈ H, b ∈ Q, a ∈ A and t ∈ Z, independence of the choice of
faithful representation permits us to deduce that U ⊗ (Aoα Z) ∼= (A⊗Q)oα⊗id Z by continuity and
density of the maps involved. Since A⊗Qoτ Z is AF-embeddable on the merits of Matui’s theorem,
the subalgebra Aoα Z becomes AF-embeddable, thereof quasidiagonal as quasidiagonality passes to
subalgebras and AF-algebras are quasidiagonal. This completes the proof.

The plethora of terminology occurring in the previous classification theorems may seem intimidat-
ing, especially the mysterious UCT-class condition. We settle this particular matter swiftly using the
paramount work of Tu.

Proposition 4.3.5. the Bernoulli-crossed product B(G) associated to any discrete amenable group
G is nuclear and belong to the UCT-class.

Proof. It is a well-established fact that the reduced crossed product of a nuclear C∗-algebra by an
amenable group must be nuclear. Indeed, the result applies to our scenario since UHF-algebras are
nuclear being direct limits of nuclear C∗-algebras with monic connecting morphisms.

To verify the last assertion, we shall recognize B(G) as the C∗-algebra associated to an amenable
etalé locally compact groupoid, thereby invoking Tu’s theorem. Let X =

∏
G×N Z2 be the countable



4.3. A PARTIAL ANSWER TO ROSENBERG’S CONJECTURE 73

product of the compact space Z2 with itself. Then X must be compact due to Tychonoff’s theorem
and the discrete subgroup H =

⊕
G×N Z2 herein acts on X by left-multiplication entrywise. Suppose

γ denotes this particular action H y X. The group G acts on both X and H by permuting the
indicies occurring as elements in G× N, leaving the N unaffected while translating the G factor. We
shall refer to these actions as α and β, respectively. Since G acts on H, we may form the semidirect
product H o G thereby. The group H o G acts on X through the composition σ : (h, g) 7→ γh ◦ αg
meaning H oG acts on X by letting G act on X and thereafter on H. Applying proposition 3.4.5 in
conjunction with ?? repetitively yields

C(X) or H ∼= C∗λ(X oH) = C∗λ

( ∏
G×N

Z2 o
⊕
G×N

Z2

)
∼=
⊗
G×N

C∗λ(Z2 o Z2) ∼=
⊗
G×N

C(Z2) o Z2
∼= M2∞ .

Exploiting that the action σ is compatible with the actions γ and α, proposition 3.4.5 grants

C(X) or (H oG) ∼= (C(X) or H) or G ∼= M2∞ oG ∼= B(G).

We arrive at the sought conclusion due to the left-hand side being the reduced C∗-algebra associated
to the etalé locally compact groupoid X o (H oG), viewing the group as being discrete.

Having set the stage, we arrive at the grand finale. The strategy will be to use a bootstrap argument
on the class EG, the class of elementary amenable discrete groups, using Osin/Chou’s theorem by
verifying the closure properties therein for the class P. We declare that a discrete countable amenable
group H belongs to the GQQ class if and only if whenever

1 // N // G // H // 1

is a short exact sequence such thatN belongs to P, thenG belongs to P as well. The class P contains
all members of GQQ due to the trivial group being a member in P in conjunction with exactness of
the sequence above for N = {1} and G = H forcing H to belong in P.

Theorem 4.3.6 (Ozawa, Rørdam, Sato). The following are valid.

(i) The class P is closed under performing the following operations: subgroups, direct limits and
extensions by countable elementary amenable groups.

(ii) The class of countable amenable discrete groups EGc determines a subclass of P and C∗λ(G)
is AF-embeddable for any member G of P. In particular, C∗λ(G) is quasidiagonal provided
G is elementary amenable.

Proof. (i) Initially, we will prove that GQQ is closed under countable direct limits and Z extensions
in order to invoke Osin’s theorem. Having established this, we may conclude that EGc ⊆ GQQ ⊆ P
according to our previous remark. For this purpose, suppose

1 // N // G
ψ // H // 1 (4.1)

denotes a short exact sequence of discrete groups. Assume that H decomposes into the countable
direct limit

⋃
nHn of discrete groups Hn in GQQ. We must verify that H belongs to the class GQQ,

which amounts to establishing the containment G ∈ P class whenever one has N = kerψ ∈ GQQ.
For this, define Gn to be the preimage of Hn under ψ for every positive integer n. Then Gn becomes
a subgroup in G for which

1 // kerψ|Gn
// Gn

ψ // Hn
// 1
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becomes exact. SinceHn belongs to GQQ while kerψ|Gn belongs to P by hypothesis, we haveGn ∈P,
whereupon G =

⋃
nGn determines a countable direct limit of groups whose associated Bernoulli

crossed product is quasidiagonal. However, the second functoriality property in proposition 4.3.1
ensures that B(G) must be quasidiagonal, yielding H ∈ P on the merits of the final statement in
proposition 4.1.4. Therefore, GQQ must be closed under taking countable direct limits.

Proceeding towards verifying that GQQ is closed under Z extensions, letH0 be some normal finite
index subgroup in H satisfying H0 ∈ GQQ. The subgroup G0 = ψ−1(H0) in G has finite index once
more and from kerψ|G0

∈P combined with exactness of the corresponding sequence

1 // kerψ|G0
// G0

ψ // H0
// 1 (4.2)

it follows thatG0 must be a member of P. As the groups in play are all discrete, corollary 4.1.6 grants
us an embeddingB(G) ↪→ B(G0)⊗MN whereN denotes the index ofG0 inG. The latter C∗-algebra
is quasidiagonal being the spatial tensor product of quasidiagonal C∗-algebras. Hence B(G) inherits
quasidiagonality, proving that H lies in GQQ whenever it contains a finite index subgroup therein. If
H is some finite discrete group, then the trivial group clearly determines a finite index subgroup ofH
subject to the containment {1} ∈ GQQ. Thus GQQ becomes closed under extensions by finite groups,
leaving only the integer scenario to be tackled.

Suppose H denotes a discrete group having a normal subgroup H0 in the GQQ class fulfilling
H/H0

∼= Z. We must show that H belongs to the GQQ class, i.e., the sequence (4.1) with N belonging
to P yields G ∈P. To this end, consider the short exact sequence

1 // H0
// H

q // H/H0
// 1

Define G0 to be the preimage of H0 under ψ, which determines a subgroup inside G. Exactness of the
preceding sequence implies exactness of the sequence

1 // G0
// G

qψ // Z // 1

Due to Z being a free group, the set-map ω : {1} −→ ψ−1({1}) sending the generator 1 of Z into some
fixed element a in the fiber ψ−1({1}) induces a homomorphism ϕ : Z −→ G agreeing with ω on the
generator 1 via the universal property of free groups. Since these maps agree on the generator, the
induced homomorphism ϕ satisfies ψϕ = idZ, meaning the short exact sequence

1 // G0
// G

qψ // Z // 1

splits, whereuponGmust be isomorphic to the semidirect produtG0oZ. According to the third func-
toriality property ofB(G) in proposition 4.3.1, so Z admits an action onB(G0) fulfillingB(G0)oZ ∼=
B(G0 o Z) ∼= B(G). The former C∗-algebra is quasidiagonal due to the containment G0 ∈ P (an
argument similar to the one exploiting exactness of (4.2) verifies this) in conjunction with Z being
amenable permitting us to invoke corollary 4.3.4. This entails that B(H) must be quasidiagonal as
well, so GQQ must be a class closed under performing Z extensions.

(ii) Concerning the second statement, the inclusion EGc ⊆ GQQ ⊆P are immediate consequences
of P being closed under the required group operations in EGc and minimality of EGc. The following
statement stems B(H) having an isomorphic copy of the reduced group C∗-algebra implying that
C∗λ(H) becomes AF-embeddable in the event of B(H) being AF-embeddable. However, B(H) is AF-
embeddable whenever H is a member of P according to Matui’s theorem, which evidently verifies
the second statement.

For the final statment, note that C∗λ(H) is quasidiagonal if H denotes a member in EGc on the
merits of the two preceding observations. In the uncountable case, H may be written as a directed
union of all its countable elementary amenable subgroupsHn according to proposition 4.2.3. However,
any direct limit of quasidiagonal C∗-algebras remains quasidiagonal, whence the desired stems from
section 2.2, completing the proof.





Chapter 5

Ingredients in the Theorem of
White, Winter and Tikusis

An incredible amount of C∗-algebraic theory is applied to confirm Rosenberg’s conjecture. The proof
was established by Tikuisis, White, and Winter, in accordance with the statement: Every faithful
trace defined on a separable nuclear C∗-algebra in the UCT-class is automatically quasidiagonal.
This final chapter attempts to unravel a portion of the essential ingredients used in the proof. The
proof thereof requires KK-theoretic properties, due to Dardalat and Eilers, in conjunction with the
apparatus of order zero maps. The current objective will be to deduce the necessary tools of order
zero maps and unveiling the intriguing features of quasidiagonal traces.

Quasidiagonal traces form a notion aptly build to restate Rosenberg’s conjecture in terms of traces.
Consider any discrete group G and its associated reduced group C∗-algebra C∗λ(G). If G is countable,
then C∗λ(G) becomes separable, amenability will grant us nuclearity and Tu’s theorem supplies the
UCT-criterion. Therefore we may invoke the theorem of White, Winter and Tikuisis to conclude that
the canonical faithful trace on C∗λ(G) must be quasidiagonal. As such Rosenberg’s conjecture follows
provided that existing faithful quasidiagonal trace imply quasidiagonality.

5.1 A Lifting Theorem

Our initial objective will be to introduce the notion of quasidiagonal traces and supply the reader with
a characterization that Tikuisis, White and Winter use a technical variation of. The characterization
originates from the Chou/Effros lifting theorem, which we prove for the sake of completeness and
since the author never saw the proof prior to writing this project, plus it encapsulates a potent lifting
property for nuclear C∗-algebras.

Definition. Suppose A and B are unital C∗-algebras with B unital. Let I be a ∗-ideal in B and let
% : B −→ B/I be the canonical quotient map. A contractive completely positive map ϕ : A −→ B/I
is said to be liftable via ψ if there exists a contractive completely positive map ψ : A −→ B such that
the diagram

B

%

��
A

ψ

==

ϕ
// B/I

commutes, i.e., %ψ = ϕ. We call ψ a c.c.p (resp. u.c.p) lift should it fulfill these constraints.

76
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Lemma 5.1.1. Every liftable contractive completely positive map between unital C∗-algebras admits
a unital completely positive lift.

Proof. Suppose ψ : A −→ B denotes the c.c.p lift of some c.c.p map ϕ : A −→ B/I between C∗-
algebras. Define accordingly ψu : A −→ B via the formula

ψu(·) = ψ(·) + (1B − ψ(1A))ω(·)

for any chosen state ω acting on B. Plainly, that ψu remains completely positive due to ψ(1A) ≤ 1B
stemming from ψ being c.c.p and ψu(1A) = 1B , proving the claim.

Lemma 5.1.2. Suppose ϕ : A −→ B/I is a contractive completely positive map admitting a com-
pletely positive lift ψ : A −→ B. If so, ϕ becomes liftable in the c.c.p sense.

Proof. For the sake of avoiding unnecessary technical adjustments, we assume that both A andB are
unital C∗-algebras. Choose some approximate unit (eα)α∈Λ in I and define for each α ∈ Λ a linear
map ψα : A −→ B by a 7→ (1B − eα)ψ(a)(1B − eα). The map ψα must be completely positive being
the conjugation of one by bounded elements1. Moreover, one has %ψα = ψ for every index α ∈ λ due
to %(eα) = 0, while limα∈Λ ‖ψα‖ = 1. We deduce that limα∈Λ ψα is the sought contractive completely
lift of ϕ, proving the claim.

The lifting theorem is separated into two parts: Remove any topological hindrances, then exploit the
correspondence of completely positive maps and positive elements in matrix algebras. The first part
is achieved through Arveson’s lemma, which we proceed to immediately.

Proposition 5.1.3 (Arveson’s Lemma). Suppose I denotes a closed two-sided ∗-ideal in a unital
C∗-algebra B and let A be a separable C∗-algebra. Under these premises, the collection of all liftable
c.c.p maps A −→ B/I is closed in the point-norm topology.

Proof. Assume ω : A −→ B/I arises as the point-norm limit of c.c.p maps ωn : A −→ B/I, each
admitting a c.c.p lift ϕn : A −→ B. Throughout the entire proof, % : B −→ B/I will be the canonical
quotient map. By separability ofA, we may assume that there exists some dense sequence {an}n≥1 ⊆
A. Passing to a suitable sequence if necessary, we may further arrange that

‖%ωn(ak)− ω(ak)‖ < 1

2n
, k ≤ n. (5.1)

It suffices to verify the existence of c.c.p maps ψn : A −→ B fulfilling the constraints

‖%ψn(ak)− ω(ak)‖ < 1

2n
, k ≤ n; (5.2)

‖ψn+1(ak)− ψn(ak)‖ < 1

2n−1
, k ≤ n. (5.3)

Indeed, (5.3) shows that the net (ψn(ak))n≥1 converges for every positive integer k, hence over all of
A through density and continuity, to some c.c.p map ψ : A −→ B. On the other hand, (5.1) combined
with (5.2) entails that ‖%ψ − ω‖ → 0 on a dense subset, hence on the ambient space A via continuity
of the maps involved. To produce such a sequence of c.c.p maps, we proceed by induction where the
initial step is obviously achieved by setting ψ1 = ϕn. Suppose the maps ψ1, ψ2, . . . , ψn subject to (5.1)
- (5.2) have been constructed and let {eα}α∈Λ be an approximate unit in I. Passing to the convex hull

1Perhaps the reader has only seen that conjugation of a ∗-homomorphism by a bounded operator defines a c.p.
However, this version may be verified by applying Stinespring’s dilation theorem to ψ after having representing the
C∗-algebras faithfully into B(H).
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of the approximate unit, we may extract a quasicentral approximate unit hereof, so we simply assume
it to be quasicentral instead. An application of [2,proposition 1.2.2] yields

lim
α∈Λ
‖(1− eα)1/2ψn(ak)(1− eα)1/2 + e1/2

α ψn(ak)e1/2
α − ψn(ak)‖ = 0

for all k ≤ n. Abbreviate next bk = ωn+1(ak)− ψn(ak) for every integer k ≤ n. Moreover, for each b
belonging to B we have the estimate

lim
α∈Λ
‖(1− eα)1/2bk(1− eα)1/2‖ = ‖%ϕn+1(ak)± ω(ak)− %ψn(ak)‖

(5.2),(5.3)

≤ ‖%ωn+1(ak)− ω(ak)‖+ ‖ω(ak)− %ψn(ak)‖ =
3

2n+1
.

The estimate on the second term stems from the induction hypothesis imposed on ψn; more precisely
the induction hypothesis (1). Therefore, there must exist some α in Λ such that

‖(1− eα)1/2ψn(ak)(1− eα)1/2 + e1/2
α ψn(ak)e1/2

α − ψn(ak)‖ < 1

2(n+1)
,

together with

‖(1− eα)1/2bk(1− eα)1/2‖ < 3

2(n+1)
.

Upon eα being trivial in the image of %, the linear map

ψn+1(·) = (1− eα)1/2ωn+1(·)(1− eα)1/2 + e1/2
α ψn(·)e1/2

α

clearly determines a contractive completely positive map subject to %ψn+1 = %ωn+1. Thus (5.2)
becomes valid. For the condition (5.3), notice that for all k ≤ n,

‖ψn+1(ak)− ψn(ak)‖ = ‖ψn+1(ak)± (1− eα)1/2bk(1− eα)1/2 − ψn(ak)‖

<
1

2(n+1)
+

3

2(n+1)
=

1

2n−1

wherein the two preceding estimates have been exploited. By the principle of induction, the sought
sequence (ψn)n≥1 consisting of c.c.p maps satisfying (5.2)-(5.3) exists, completing the proof.

Theorem 5.1.4 (Choi, Effros). Nuclear c.c.p maps from a separable C∗-algebra into a quotient are
liftable. In particular, c.c.p maps from a nuclear separable C∗-algebra are nuclearly liftable.

Proof. Suppose A denotes a separable C∗-algebra and let ω : A −→ B/I be a nuclear c.c.p map
between C∗-algebras. Nuclearity of ϕ amounts ϕ factoring through matrix algebras Mk(n) in the
point-norm limit via a c.c.p maps A −→ Mk(n) −→ B/I. Due to Arveson’s lemma, verifying that
every c.c.p map Mk(n) −→ B/I lifts to a c.c.p map Mk(n) −→ B suffices.

To acquire the lifts, let ϕ : Mn −→ B/I be any c.c.p map of C∗-algebras. Remember the corre-
spondence between completely positive maps Mn −→ A and positive elements in Mn(A) given by
assigning [ψ(eij)]

n
i,j=1 to each such completely positive map ψ : Mn −→ A, where eij denotes the

(i, j)’th unit matrix in Mn per usual. Let a be the corresponding positive element in Mn(B/I) stem-
ming from ϕ. Then due to the n’th amplification %n = %⊗ idn : Mn(B) −→ Mn(B/I) of the quotient
map being a ∗-epimorphism, one may infer that a lifts to some positive element b belonging to Mn(B).
The unique completely positive map ω : Mn −→ B corresponding to b therefore satisfies %ω = ϕ
under the appropriate identifications, proving the first assertion.

The second claim stems from the composition of any two c.c.p maps, with either one of them being
nuclear, becoming nuclear. By definition, the identity map of a nuclear C∗-algebraA −→ A is nuclear
so given a c.c.p map ϕ : A −→ B/I with A nuclear, the composition A −→ A −→ B/I coincides with
ϕ and must be nuclear. Voila.
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Having taken a smaller detour into the category of nuclear C∗-algebras we return to the quasidiagonal
framework. Throughout the remainder of the section, ω will be a fixed free ultrafilter on the N and
denote by Qω the ultrapower of the universal UHF-algebra associated to ω. Furthermore,

M∞ := `∞(Mn,N)/c0(Mn,N).

The intriguing features of the mysterious device Qw is its capability of witnessing quasdiagonality in
the nuclear framework. The information concerning quasidiagonality encoded herein is what Tikui-
sis, White and Winter exploit. Thus, we are inclined to discover the properties emerging fromQω. In
essence the characterization of quasidiagonality is described in terms of lifts, giving a more algebraic
description of quasidiagonality.

Theorem 5.1.5. Suppose A is a separable C∗-algebra. Under this premise, A is quasidiagonal if
and only if there exists a liftable ∗-monomorphism A ↪→M∞, meaning the diagram

A

((

// M∞

`∞(Mn,N)

%

OO

commutes with the diagonal map being some contractive completely positive map2.

Proof. Suppose initially A is quasidiagonal. By hypothesis, A admits a sequence (ϕk)k≥1 of asymp-
totically isometric - and multiplicative c.c.p maps ϕk : A −→ Mn(k). Let π be the induced c.c.p map
given by the compositionA −→ `∞(Mn(k),N)�M∞ withϕ being the mapping a 7→ (ϕk(a))k≥1. The
c.c.p map ϕ evidently lifts π, hence only the ∗-homomorphism and isometric property of π remains
to be justified. However, for every a ∈ A one has

‖π(a)‖ = ‖%ϕk(a)‖ = lim sup
k→∞

‖ϕk(a)‖ = ‖a‖,

verifying the isometric property, the third equality stemming from the asymptotic isometric property.
Multiplicativity stems from (ϕk)k≥1 being asymptotically multiplicative in a similar manner so that
π becomes a ∗-homomorphisms; completely positive maps are automatically involutive.

Conversely, suppose one has a commutative diagram as described in the theorem with ψ being
the c.c.p lift and A ↪→ M∞ being denoted by π for simplicity. Let σn be the n’th projection map
`∞(Mn,N) −→Mn. Using this notation, one obtains a diagram

A

ψ
((

π // M∞

`∞(Mn,N)

%

OO

σn
// Mn

in which the triangle commutes. Our prime candidate sequence (ψn)n≥1 consisting of asymptotically
multiplicative - and isometric c.c.p maps will be the compositions ψn = σnψ. Each ψn is clearly c.c.p
being the composition of such morphisms. It remains to be verified that the sequence satisfies the
sought asymptotic properties. To accomplish this, note that commutativity of the assumed diagram
entails

lim
n→∞

‖ψn(ab)− ψn(a)ψn(b)‖ = ‖%ψ(ab)− %ψ(a)%ψ(b)‖ = ‖π(ab)− π(a)π(b)‖ = 0

Furthermore,
lim
n→∞

‖ψn(a)‖ = lim sup
n→∞

‖σnψ(a)‖ = ‖π(a)‖ = ‖a‖

for every a ∈ A, since π is isometric. This completes the proof.
2Liftability may be omitted whenever A is nuclear and separable according to the Choi/Effros theorem.
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We proceed to deriving the version used by Tikuisis, White and Winter.

Theorem 5.1.6. Let A be a unital separable nuclear C∗-algebra. If so, A is quasidiagonal if and
only if there exists a unital ∗-monomorphism A ↪→ Qω.

Proof. We commence the proof with the “only if” part. Due to Q containing an isomorphic copy of
Mn for each n ∈ N, the induced map `∞(Mn) ↪→ `∞(Q) becomes a ∗-monomorphism. Under the
assumption that quasidiagonality of A is witnessed via c.c.p maps ϕk : A −→Mn(k), one selects

π : A
ϕ // `∞(Mn(k)) // `∞(Q)

% // Qω

Here ϕ denotes the infinite inflation map associated to the sequence (ϕk)k≥1. Let us prove that π is
isometric. Suppose a ∈ A and let σk be the k’th projection map. One hereof deduces that

‖π(a)‖ = ‖%ϕ(a)‖ = lim
k→ω
‖ϕk(a)‖ = ‖a‖.

Again the asymptotic isometric property comes into play. The verification of multiplicativity runs
completely parallel whereas the involution part stems from complete positivity.

The converse is also inspired by the previous proof, however, we must overcome some obstacles.
Suppose π : A −→ Qω denotes a unital ∗-monomorphism. The nuclearity hypothesis permits us to
invoke Choi-Effros’ theorem to produce a c.c.p lift ϕ : A −→ `∞(Q) of π. To construct the sequence
of c.c.p maps witnessing quasdiagonality, consider for each n ∈ N the diagram

A

ψ
''

π // Qω

`∞(Q)

%

OO

σn
// Q

En

// Mk(n)

ι

hh

Here σn and En are the canonical coordinate projection - and conditional expectation (we refer to
the one occurring in proposition 1.4.10; Q has each configuration of these, which is somewhat the
point here). Define accordingly c.c.p maps by ψn = σn ◦ ψ for each positive integer n. An argument
completely resembling the one in the preceding proof yields corresponding sequence (ψn)n≥1 to be
asymptotically multiplicative - and isometric. Define c.c.p maps ϕn by ϕn = En ◦ ψn. The induced
sequence (ϕn)n≥1 is readily checked to inherit the c.c.p property while maintaining the asymptotic
features of ψn according to the norm-observation in proposition 1.5.10. For instance,

lim
n→∞

‖ϕn(a)‖ = lim
n→ω
‖Enσnψ(a)‖ = ‖%(ψ(a))‖ = ‖a‖

for every a ∈ A, and so on. We consider our work finished.

5.2 Quasidiagonal Traces

The significance that Qω carries is staggering. More adequately, Q the algebra to study should one
seek to understand the converse of Rosenberg’s conjecture. This section continues the investigation
of Qω by adding traces into the mix, so lets start there.

Definition. Suppose A denotes a unital C∗-algebra. A tracial state τ on A is called quasidiagonal if
there exists a net consisting of asymptotically multiplicative u.c.p maps ϕα : A −→ Mn(α) fulfilling
τn(α) ◦ ϕα → τ weak∗-wise. We demand the net to be a sequence whenever A is separable.
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Remark. The unique tracial state on Q restricts to the ordinary tracial state τn on Mn, hence any
quasidiagonal trace τ on a unital C∗-algebra A witnessed by u.c.p maps ϕα admits a diagram

A

τ

''

ϕα // Mn(α)

τn(α)

��

// Q

τu

wwC

wherein the left-hand triangle commutes in the weak∗-limit and the right-hand commutes directly.

Our current purpose will be to establish that the existence of a faithful quasidiagonal trace implies
quasidiagonality in the unital separable case. The first vital observation is that Qω admits a tracial
state: for every a = %ω(a1, a2, . . .) in Qω, the sequence (τQ(an))n≥1 is bounded in C, hence in some
precompact set. Consequently, the sequence converges along ω by theorem 1.2.2, so we may set

τω(a) = lim
n→ω

τu(an)

It is routine to verify τω defines a tracial state on Qω. To some extend, the next proposition is the
reason why Qω intrigues us. In fact, having established it the remainder becomes plain sailing.

Proposition 5.2.1. Let A be a unital separable C∗-algebra admitting a tracial state τ . Under these
premises, if τ is quasidiagonal, then there exists a unital ∗-homomorphism π : A −→ Qω recovering
τ in the sense that τ = τω ◦ π or pictorially; the diagram

A
π //

τ

&&

Qω
τω

��
C

commutes. Conversely, with A nuclear, quasidiagonality is assured provided π exists

Proof. Suppose τ is a quasidiagonal trace on A witnessed via u.c.p maps ϕk : A −→ Mn(k) and let
ϕ be the infinite inflation of these, a 7→ (ϕk(a))k≥1, which remains u.c.p. Define another u.c.p map
π : A −→ Qω by π = % ◦ ϕ, where % denotes the ordinary quotient map `∞(Q) � Qω. Maintaining
the notation established till now, our situation may be captured in the following diagram 3:

A

τ

88

ϕk

22

π

**

ϕ // `∞(Mk(n)) // `∞(Q)

%

��

σk(n) // Q

τQ
}}

Qω
τω // C

Mk(n)

OO

τn

aa

The arrows without a symbol attached are inclusions and the lower triangle commutes on the merits of
the preceding remark. In other words, π is defined as the map making the upper-left triangle commute.
The c.c.p map π becomes multiplicative; if a, b ∈ A then ‖π(ab)‖ = limn→ω ‖ϕ(ab)‖, for (ϕk)k≥1 is
asymptotically multiplicative. Thus π becomes a ∗-homomorphisms and from

(τω ◦ π)(a) = τω[%ϕ(a)] = lim
n→ω

τQ[σnϕ(a)] = lim
n→ω

τk(n)ϕn(a) = τ(a)

3Please appreciate the diagram, it took a while to tex.
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we infer that τ is quasidiagonal with respect to the sequence (ϕn)n≥1 and that π recovers τ . The first
equality is based on the definition of π, the second on the definition of τω, the third on σn(ϕ(a)) =
ϕn(a) ∈Mk(n) in conjunction with commutativity of the right-hand triangle and the fourth from the
lowest triangle being commutative when passing to the limit.

Conversely, if such a unital ∗-homomorphism π exists with A nuclear, then the Choi-Effros’ the-
orem applies to yield a u.c.p lift ϕ : A −→ `∞(Q) of π. Composing with the projections together
with conditional expectations `∞(Q) −→ Q −→ Mn will grant us an asymptotically multiplicative
sequence of u.c.p maps ϕn : A −→ Mn. Hence we need only verify that the sequences witnesses qua-
sidiagonality. However, this is apparent since τu coincides with τn on the image of the ϕn and we omit
the details. This finalizes the proof.

Theorem 5.2.2. Every unital nuclear separable C∗-algebra admitting a faithful quasidiagonal tra-
cial state must be quasidiagonal. In particular, the Rosenberg conjecture has an affirmative answer
provided that the canonical faithful trace on the reduced group C∗-algebra of an amenable countable
discrete group is quasidiagonal.

Proof. The first statement almost trivially follows from proposition 5.2.2. Let τ be any faithful tracial
state on A and apply the proposition to produce a unital ∗-homomorphism π : A −→ Qω satisfying
τ = τω ◦ π. Due to τ being faithful, π must be faithful as well, implying that π determines a ∗-
monomorphism. Quasidiagonality of A therefore stems from the second lifting criterion. The second
assertion was previously mentioned: the reduced group C∗-algebra associated to a discrete count-
able group defines a separable unital C∗-algebra admitting a faithful tracial state, so the first part
immediately entails the second. Voila.

Corollary 5.2.3. Simple separable unital C∗-algebra with a quasidiagonal trace are quasidiagonal.

Proof. Suppose A denotes a separable unital simple C∗-algebra admitting a quasidiagonal trace τ .
The ∗-ideal Lτ = {a ∈ A : τ(a∗a) = 0} ⊆ A must be zero or all of A, the latter being false as τ 6= 0.
The sought thus conclusion stems from theorem 5.2.2.

5.3 Order Zero Maps

Order zero maps are the apparatus to be discussed in this final section of the project. In essence,
the applied property of order zero maps is their alternate characterization as ∗-homomorphism when
tensoring with C0(0, 1]. We here present a thorough survey concerning order zero maps including
a Stinespring dilation theorem esque version, a functional calculus and the ∗-homomorphism corre-
spondence of these. However, we rely on the paramount work in [16], which are merely stated. We
begin the survey with a discussion concerning orthogonality.

Definition. Suppose A denotes a C∗-algebra. Two elements a, b ∈ A are said to be orthogonal,
symbolically represented by a ⊥ b, whenever ab = ba = a∗b = ab∗ = 0.

The reader should convince themselves that a ⊥ b inside some C∗-algebra, say A, if and only if one
has the relations a∗a ⊥ b∗b, a∗a ⊥ bb∗, aa∗ ⊥ b∗b and aa∗ ⊥ bb∗. Order zero maps are precisely those
completely positive maps preserving orthogonality.

Definition. A completely positive map ϕ : A −→ B between C∗-algebra is of order zero provided
that a ⊥ b implies ϕ(a) ⊥ ϕ(b) for all a, b ∈ A.
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Lemma 5.3.1. Suppose A and B denotes C∗-algebras.

(i) A completely positive map ϕ : A −→ B is of order zero if and only if a ⊥ b implies ϕ(a) ⊥ ϕ(b)
for any two positive elements a, b ∈ A.

(ii) Let π : A −→ B be a ∗-homomorphisms and fix some element b ≥ 0 in the commutant of
π(A). Then the map a 7→ bπ(a) defines an order zero map.

Proof. (i) The only if part trivially holds. For the converse, let a and b be two elements in A. The
hypothesis imposed on ϕ forces ϕ(a∗a) ⊥ ϕ(b∗b), ϕ(a∗a) ⊥ ϕ(bb∗), ϕ(aa∗) ⊥ ϕ(bb∗) together with
ϕ(aa∗) ⊥ ϕ(b∗b). Due to ϕ being involutive, one may infer that 0 ≤ ϕ(c∗)ϕ(c) ≤ ϕ(c∗c) by positivity
for every element c inside A, whereupon orthogonality preservation grants

ϕ(a∗)ϕ(a)ϕ(b∗)ϕ(b) ≤ ϕ(a∗a)ϕ(b∗b) = 0, ϕ(a∗)ϕ(a)ϕ(b)ϕ(b∗) ≤ 0, . . . etc.

One may therefore conclude that ϕ(a∗)ϕ(a) ⊥ ϕ(b∗)ϕ(b). In a completely similar fashion, one obtains
the remaining relations required to deduce ϕ(a) ⊥ ϕ(b).

(ii) Due to π being a ∗-homomorphism and b ≥ 0, the assignment clearly becomes completely
positive. Concerning orthgonality, let a ⊥ a0 inside A. Since b lies in the commutant of π(A), we have
bπ(a)bπ(a0) = bπ(aa0)b = 0 and likewise for the remaining products, proving the assertion.

We shall witness that every order zero map arises in this disguise. We will require the aid of Jordan
homomorphism or, more adequately formulated, the aforementioned result due to Wolf. The upcom-
ing statements are proven in [16], and have been omitted here for the sake of brevity.

Definition. A linear involutive map π : A −→ B of C∗-algebras is called a Jordan homomorphism
ifπ preserves squares, meaning one has π(a2) = π(a)2 whenever 0 ≤ a ≤ 1.

To understand Wolf’s theorem, we emphasize on the semi-obvious notion of orthogonaliy preserving
maps. A map ϕ : A −→ B between C∗-algebras is said to be orthogonal preserving provided that any
pair of self-adjoint orthogonal elements are mapped into self-adjoint orthogonal elements.

Theorem 5.3.2 (Wolff). Suppose A and B are unital C∗-algebras, ϕ : A −→ B is some orthogo-
nality preserving linear map and write eϕ = ϕ(1A). Under these premises, one has:

(i) eϕ belongs to the center of the C∗-algebra generated by ϕ(A).

(ii) If ϕ is involutive and unital, then ϕ becomes a Jordan homomorphism.

In order to prove the classification statement of order zero maps, we isolate an intermediate step at
first. Wolff’s theorem depends highly on the units and the preservation of these, so we ought to tackle
nonunital obstructions (to fully build a new subcategory in C∗ with morphisms having advantages
over c.c.p maps, we need to regardless). Throughout the entire remainder of the section, given any
linear involutive map ϕ : A −→ B of C∗-algebras we shall denote by Bϕ the C∗-algebra generated by
the image of ϕ and abbreviate M ∼= B∗∗ϕ viewed a von Neumann algebra.

Proposition 5.3.3. Let ϕ : A −→ B be an order zero c.c.p map with B lacking a unit. If so, ϕ
extends to a c.c.p order zero map ϕ+ : A+ −→M .

Proof. Suppose Bϕ is represented non-degenerately on a Hilbert space H, identifying Bϕ with its
image therein. Choose an approxmate unit (eα)α∈Λ for A and let e be the strong-operator limit of
ϕ(eα), whose existence stems from ϕ being involutive and order preserving implying that the net
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(ϕ(eα))α∈Λ determines an increasing net consisting of self-adjoint bounded operators. We define
ϕ+ : A+ −→M via the formula

ϕ+(a+ λ1A+) = ϕ(a) + λe

for all a belonging to A and every complex number λ. We assert that ϕ+ becomes a c.c.p order
zero map attaining values in M , starting with the c.c.p property. Let (σ, v,K) be the Stinespring
dilation associated to the c.c.p map ϕ meaning v∗v ≤ 1H and ϕ(·) = v∗σ(·)v, where v : H −→ K is
some bounded operator and σ : A −→ B(K) is some non-degenerate ∗-representation of A. Due to
multiplication by a bounded operator being strong-operator continuous, one may infer that

e = sot- lim
α∈Λ

ϕ(eα) = sot- lim
α∈Λ

v∗σ(eα)v

= v∗(sot- lim
α∈Λ

σ(eα))v

= v∗1Hv

= v∗v.

During the third inequality, we exploited the fact that σ is non-degenerate. The ∗-homomorphism
extension σ+ : A+ −→ B(H) defined by a+ λ1A+ 7→ σ(a) + λ1H satisfies

v∗σ+(a+ λ1A+)v = v∗σ(a)v + λv∗v

= ϕ(a) + λe

= ϕ+(a+ λ1A+)

due to the previous computation, revealing that ϕ+ is c.c.p being the conjugation of a representation
via bounded operators. We proceed to proving that ϕ+ must be of order zero. For this purpose,
suppose x = a+ λ1A+ and y = b+ µ1A+ are two positive orthogonal elements in the unitalization of
A. Since xy = 0 forces that either λ or µ must be zero, we may assume without loss of generality that
µ = 0. This in turn implies b ≥ 0 as y ≥ 0 and one easily deduces from the products 0 = x∗y = xy∗

that a has to be self-adjoint and λ ≥ 0. Consider now the rewriting

x = a+ λ1A+ = (a+ λ1A+)1/2(1A+ − eα)(a+ λ1A+)1/2 + (a+ λ1A+)1/2eα(a+ λ1A+)1/2.

Let z0 denote the first term and z the second term on the right-hand side. The element z ≤ x lies in
A. Hence we have z ⊥ b from which we deduce that ϕ+(b)ϕ+(z) = 0. Exploiting continuity of ϕ+ in
conjunction with 1A+ − eα being central in A+, one obtains

0 ≤ sot- lim
α∈Λ

ϕ+(z0) = sot- lim
α∈Λ

ϕ+((1A+ − eα)x)

= sot- lim
α∈Λ

ϕ+(λ(1A+ − eα))

= λ · sot- lim
α∈Λ

[ϕ+(1A+)− ϕ+(eα)] = 0

Altogether, we have ϕ+(b)ϕ+(x) = ϕ+(b)ϕ+(z0) → 0 in the strong-operator sense, so we obtain
ϕ+(b)ϕ+(x) = 0 and thereby ϕ+(y)ϕ+(x) = 0. The remaining few orthogonality properties are
verified in parallel manners. Thus ϕ+ determines an order zero c.c.p map extending ϕ.

As promised, the Stinespring dilation theorem for order zero maps.

Theorem 5.3.4 (Winter, Zacharias). Let ϕ : A −→ B be a c.p order zero map between C∗-algebras.
Under this premise, there exists a positive element eϕ in the C∗-algebra M(Bϕ) ∩ B′ϕ of norm
‖e‖ = ‖ϕ‖ together with a ∗-homomorphism πϕ : A −→ M(Bϕ) ∩ {eϕ}′ fulfilling πϕ(·)e = ϕ(·).
Moreover, in the scenario where A admits a unit one may choose eϕ = ϕ(1A).
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Proof. The strategy revolves around building a c.c.p Jordan homomorphism πϕ, then derive that πϕ
must be a bone-fide ∗-homomorphism. Establishing this requires us to assume that A admits a unit,
however, the merits of the preceding proposition is the tool to extend any c.c.p order zero map to
the unitalization, in which the unital case applies. Therefore, suppose A admits a unit 1A and write
eϕ = ϕ(1A). Passing to the universal representation if needed, we may assume that Bϕ determines
a nondegenerate C∗-subalgebra in B(K) for some Hilbert space K. According to part (i) in Wolff’s
theorem, the elementϕ(1A) ≥ 0 belongs to the center ofBϕ, from which the setN = eϕBϕeϕ coincides
with the subspace {ϕ(a)e2

ϕ : a ∈ A} ⊆ Bϕ. As eϕ is positive, it admits a positive square root in Bϕ,
hence

ϕ(b) = ϕ(b)e1/2
ϕ e1/2

ϕ ∈ N

becomes valid for every b belonging to A. This entails that the norm closure of N equals A or,
formulated differently, eϕ is strictly positive. Regarded as an operator acting on K, the orthogonal
projection ηϕ onto the range of eϕ must be the identity due to strict positivity and Bϕ ⊆ B(K)
non-degenerately. On the other hand, the strong operator limit

ηϕ = sot- lim
α∈Λ

(eϕ + n−11H)−1eϕ

coincides with 1H = 1M . The limit exists because the element eϕ + n−11H decreases as n tends to
infinity, whereupon its inverse must be increasing; some routine functional calculus applied to eϕ
guarantees this. Define accordingly a linear map πϕ : A −→M by the expression

πϕ(·) = sot- lim
α∈Λ

(eϕ + n−11H)−1eϕ · ϕ(·).

Due to ηϕ being monotone increasing and self-adjoint, based on ϕ being c.p, the strong-operator limit
exists. We assert that πϕ must be completely positive. However, it is apparent the strong operator limit
in the product B(H⊗K) ∼= B(H)⊗B(K) is defined in terms of the seminorms S ⊗ T 7→ ‖Tξ‖ · ‖Sη‖
indexed over all elementary tensors ξ ⊗ η inH⊗K, so strong-operator convergence in Mn(A) occurs
entrywise. In particular, strong-operator limits of c.c.p maps are c.c.p. As such πϕ defines a completely
positive map and we claim it must be of order zero. Indeed, if a ⊥ b in A then due to eϕ commuting
with Bϕ we may deduce that

πϕ(a)πϕ(b) = sot- lim
α∈Λ

(eϕ + n−11H)−1ϕ(a) sot- lim
α∈Λ

(eϕ + n−11H)−1ϕ(b)

= sot- lim
α∈Λ

(eϕ + n−11H)−1ϕ(a)ϕ(b) sot- lim
α∈Λ

(eϕ + n−11H)−1 = 0

with the latter equality stemming from ϕ being of order zero. Moreover, πϕ(1A) = 1M so Wolf’s theo-
rem part (ii) applies to ensure that πϕ must be Jordan. In fact, πϕ becomes an actual ∗-homomorphism
according to the following reasoning. Let (σ, V,H) be the Stinespring dilation with respect to πϕ. Due
to πϕ being unital, we may replace the operator V by the unit in 1M to obtain πϕ = Ad1M ◦ %. Using
this in conjunction with πϕ preserving squares in A, we obtain

‖1M − %(a)− 1M%(a)1M‖2 = ‖1M%(a)(1H − 1M )%(a)1M‖
= ‖πϕ(a2)− πϕ(a)2‖ = 0

whenever 0 ≤ a ≤ 1. Thus πϕ(ab) = 1M%(a)1M%(b)1M = πϕ(a)πϕ(b) for all positive elements
a, b ∈ A. By linearity and the fact that element in C∗-algebras are linear combinations of at most four
positive elements, πϕ becomes a ∗-homomorphism. It remains to be shown that πϕ attains values in
M(Bϕ)∩{eϕ}′. To this end, consider the calculation ϕ(a)−πϕ(a)eϕ = ϕ(a)−ϕ(a)ηϕ = 0 stemming
from ηϕ = 1H. Thus, ϕ(a) = πϕ(a)eϕ = eϕπϕ(a) holds for all a belonging to A, so in particular the
image of πϕ commutes with eϕ. The preceding provides us with the containment

πϕ(a)ϕ(b) = πϕ(a)πϕ(b)eϕ = πϕ(ab)eϕ = ϕ(ab) ∈ Bϕ
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and similarly ϕ(b)πϕ(a) = ϕ(ba) ∈ Bϕ for all a, b ∈ A. Remembering that the multiplier algebra of
Bϕ is isomorphic toM(Bϕ) = {a ∈ B(H) : ab ∈ Bϕ, ba ∈ Bϕ, b ∈ Bϕ}4. The two containments
prove that πϕ(A) ⊆M(Bϕ). This tackles the unital case A.

In the absence of a unit in A, apply proposition 5.3.4 to extend ϕ to a completely positive order
zero map ϕ+ : A+ −→M . The unital case produces a ∗-homomorphism πϕ+

together with a positive
element (eϕ)+ fulfilling the identity ϕ+(·) = πϕ+(·)(eϕ)+. For every positive b ∈ B+,

eϕ+
ϕ(b) = eϕ+

ϕ+(b) = eϕ+
πϕ+

(b1/2)2eϕ+
= ϕ+(b1/2)2 ∈ Bϕ.

Again, linearity yields the general sought property and a similar computations yields eϕ+ϕ(b) ∈ Bϕ
whereupon its image lies in the multiplier algebra. This completes the proof.

Notation. Suppose ϕ : A −→ B denotes an order zero c.c.p map. The corresponding image C∗-
algebra Bϕ, positive element eϕ and ∗-homomorphism πϕ : A −→ M(Bϕ) ∩ {eϕ}′ recovering ϕ will
be represented by these symbols and we shall collect these into triples, written as (πϕ, eϕ, Bϕ). The
notation is inspired from the Stinespring dilation triple or GNS triples due to the resemblance.

In spite of the characterization describing the failure of being a ∗-homomorphism of an order zero
map, one seeks, whenever possible, to have an analogue of order zero maps defined completely in
terms of full-fledged ∗-homomorphism having some configurations attached to them. Certainly, this
was provided for quasihomomorphism using free products of C∗-algebras. The sought correspondence
is precisely the properties exploited by Tikuisis, White and Winter to derive the so-called patching
lemma. We abbreviate (0, 1] by I0 and recall that C0(I0) is canonically generated by id(0,1].

Corollary 5.3.5. For every pair of C∗-algebras A and B, there exists a one-to-one correspondence
of sets between the collection of contractive order zero maps ϕ : A −→ B and ∗-homomorphisms
C0(I0)⊗A −→ B. The correspondence is explicitly expressed via the set maps

ϕ : A −→ B c.c.p order zero
Φ7−→ %ϕ : C0(I0)⊗A −→ B; %ϕ(id⊗ a) = ϕ(a)

% : C0(I0)⊗A −→ B ∗-homomorphism
Ψ7−→ ϕ% : A −→; ϕ%(a) = %(id⊗ a)

meaning Φ and Ψ are mutual inverses of one another.

Proof. Suppose ϕ : A −→ B denotes a c.c.p order zero map and let (πϕ, eϕ, Bϕ) be the corresponding
triple. Define accordingly a ∗-homomorphism σ : C0(I0) −→M(Bϕ) by assigning id 7→ eϕ. Upon eϕ
commuting with the image of πϕ, the induced tensor-product ∗-homomorphism %ϕ = σ⊗πϕ : C0(I0)⊗
A −→M(Bϕ) defined by right-multiplication of πϕ, i.e.,

%ϕ(id⊗ a) = eϕπϕ(a), a ∈ A,

becomes a ∗-homomorphism attaining values in Bϕ since eϕπϕ(·) = ϕ(·) ∈ Bϕ ⊆ B.
Conversely, given a ∗-homomorphism % : C0(I0)⊗A −→ B, one setsϕ%(·) := %◦(id⊗·) and checks

that the sought conditions are fulfilled: Let a ⊥ b occur within A, then observe that ϕ%(a)ϕ%(b) =
%(id ⊗ ab) = 0 whereupon orthogonality preservation follows. Due to ϕ% being the composition of
c.c.p maps5, it must be c.c.p itself hence an order zero c.c.p map. Therefore, the assignments Φ and
Ψ are well-defined whereas verifying that these are mutual inverse of one another is easily deduced
from the relation eϕπϕ = ϕ. For instance, one has for every a in A that

ϕ%ϕ(a) = %ϕ(id⊗ a) = eϕπϕ(a) = ϕ(a)

The remaining one is proven similarly, finalizing the proof.
4see the proof of existence in the appendix A.2 if memory fails.
5the spatial tensor product of c.c.p maps remains c.c.p, see for instance [2, theorem 3.5.3].
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Remark. As a courtesy towards having a keen eye on categorical points of views; the corollary above
may be described in a concise manner. Suppose CO(A,B) denote the collection of c.c.p order zero
maps - and and O(A,B) be the collection of all order zero maps from A −→ B. Using this notation,
the corollary reads CO(A,B) ∼= Hom(C0(I0)⊗A,B) in the category of sets.

For the sake of exhibiting the flexibility of order zero maps, we finalize the project by deriving a
functional calculus unique to order zero maps and produce traces via order zero maps.

Proposition 5.3.6. Suppose ϕ : A −→ B is an order zero c.c.p map having (πϕ, eϕ, Bϕ) as asso-
ciated triple. Under these premises, the assignment ∆ϕ : C0(I0)+ −→ CO(A,B) given by

∆ϕ(f)(a) = f(eϕ)πϕ(a)

satisfies the following properties:

· ∆ϕ(f) attains values in Bϕ;

· [f(eϕ), πϕ(A)] = 0 for every element f in C0(I0)+;

· If f is some contractive element in C0(I0), then ∆ϕ(f) becomes contractive.

Proof. Let us maintain the notation occurring in the statement. Due to πϕ attaining values in the
commutant of {eϕ}′, we infer that [f(eϕ)πϕ(a)] = 0 for all a belonging to A due to the continuous
functional calculus preserving commutativity. Let eij be the (i, j)’th unit matrix in Mn. Exploiting
this yields that for every a = [aij ] in Mn(A) one has

(∆ϕ(f)⊗ 1n)(a∗a) =

n∑
i,j=1

∆ϕ(f)(a∗ijaij)⊗ eij

=

n∑
i,j=1

f(eϕ)πϕ(aij)
∗πϕ(aij)⊗ eij

=

n∑
i,j=1

πϕ(aij)
∗f(eϕ)πϕ(aij)⊗ eij ≥ 0

because f(eϕ) ≥ 0 as eϕ ≥ 0. Therefore the map ∆ϕ(f) must be completely positive, proving well-
definedness in conjunction with the second property. The fact that ∆ϕ(f) attains values in Bϕ stems
from eπϕ(a) lying within Bϕ for any element a ∈ A. Lastly, if f : I0 −→ [0,∞), then

‖∆ϕ(f)‖ ≤ ‖f(eϕ)‖ · ‖πϕ‖ ≤ 1

proving the assertion.

Corollary 5.3.7. Let ϕ : A −→ B be a c.c.p order zero map and suppose B admits a trace. If so,
A admits a trace via the composition τ ◦ ϕ.

Proof. We solely consider the tracial property. Let f : I0 −→ [0,∞) be the function t 7→ t1/2. Denote
by (πϕ, eϕ, Bϕ) be the triple associated to ϕ. We will abbreviate ∆ϕ(f) = ϕ1/2 for simplicity. Using
the calculus of order zero maps, we obtain

ϕ1/2(b)ϕ1/2(a) = f(eϕ)2πϕ(a)πϕ(b) = eϕπϕ(ab) = ϕ(ab)

for all a, b ∈ A, due to eϕ commuting with the image of πϕ and the continuous functional calculus
applied to eϕl. According to the above, for any such pair of elements a, b ∈ A we have

τϕ(ab) = τ(ϕ1/2(a)ϕ1/2(b)) = τ(ϕ1/2(b)ϕ1/2(a)) = τϕ(ba)

for all a, b ∈ A, completing the proof.



Appendix A

Group Extensions and Multiplier
Algebras of C∗-Algebras

A.1 Group Extensions and Semi-Direct Products

This minute appendix seeks to settle some terminology concerning extensions of groups, which appear
during the chapters concerning elementary amenable groups and the universal coefficient theorem.
We initiate the survey with basic notions, thereafter considering the special case of semi-direct prod-
ucts whose appearance are constant in the project. We refer to [12] for proofs.

Definition. Suppose G denotes any group. We call G an extension of H by N if

1 // N // G // H // 1

is short-exact. Warning: in the literature, some call G and extension of N by H instead.

One commonly wishes to count the amount of distinct extensions via a group, called the Ext-group.
We define the abelian group Ext(G,H) associated toG andH is defined in the upcoming fashion. We
declare that two group extensions

0 // N
ι // G

ϕ // H // 0

0 // N
j // G′

ψ // H // 0

in the category of abelian groups are equivalent provided the existence of a commutative diagram

0 // N

∼=
��

// G

∼=
��

// H

∼=
��

// 0

0 // N // G′ // H // 0

is guaranteed. We define the sum of any such pair of extensions to be the extension

0 // N // Γ // H // 0

where Γ is the quotient of the additive group {(g, g′) ∈ G ⊕ G′ : ϕ(g) = ψ(g′)} by the additive
subgroup wherein we identify (ι(n) + g, g′) ∼ (g, j(n) + g′) for all n ∈ N . We define Ext(G,H) to be
the additive group consisting of all equivalence classes having the above addition of extensions.

88
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A reoccurring construction of groups in this project is the semidirect product of groups. For the sake of
having some standards, we review the structure. SupposeH were a group acting by automorphism on
an additional group via ϕ : H −→ Aut(G). The semidirect product of G by H, symbolically written
as G oH, is the group whose underlying set is the cartesian product G oH with the composition,
neutral element and inversions defined in terms of the formulas

(g, h)(s, t) = (gϕh(s), ht), (g, h)−1 = (ϕ−1
h (g−1), h−1) and 1 = (1G, 1H).

for all g, s ∈ G and t, h ∈ H. The groups G and H become subgroups in G o H, where G becomes
normal, via the embeddings g 7→ (g, 1H) and h 7→ (1G, h), respectively. On the merits of these
embeddings, one typically write a product of elements in (g, h) ∈ G×H in the semidirect product as
gh to shorten the notation. Under these identifications, the action ϕ transforms into conjugation,

ϕh(·) = h−1(·)h

for every h ∈ H. Indeed note that

hgh−1 = (1G, h
−1)(g, 1H)(1G, h) = (ϕh(g), h−1)(1G, h) = (ϕh(g), 1H).

which translates into the above under the appropriate identifications. An alternative and highly fruit-
ful characterization of a semidirect product may be phrased in the following manner. A proof may be
recovered in practically any book mentioning semidirect products.

Proposition A.1.1. A group G is isomorphic to the semidirect product N oH of two additional
groups N and G if and only if there exists a split short exact sequence

1 // N // G
ϕ // H // 1

meaning there exists a group homomorphism ψ : H −→ G such that ψϕ = idH .

A.2 The Multiplier Algebra

During the study of KK-theory and order zero maps, multiplier algebras tend to make an appearance.
The author had prior to this project only heard of multiplier algebras, hence this appendix was in-
cluded. The existence of multiplier algebras may be derived in several ways and herein we adopt one
using representation theory. First, some preliminary notions.

Definition. An ideal I in a C∗-algebra A is essential provided that its orthogonal complement

I⊥ = {a ∈ A : aI = Ia = 0}

is trivial, meaning it only contains the 0. This is equivalent to I intersecting any ideal in A.

Definition. A multiplier algebra of some C∗-algebra A is a maximal unital C∗-algebraM(A) con-
taining A as an essential ideal and fulfilling the following universal property: For any additional
C∗-algebra B containing A as an essential ideal, there is a unique ∗-monomorphism Ψ: B −→M(A)
restricting to the identity on A.

Evidently, one desires two properties of multiplier algebras: We wish to establish uniqueness up to
isomorphism and existence. The first part is almost immediate from the universal property whereas
existence is more tricky. To prove existence, we derive a minor extension result from representation
theory of C∗-algebras. Since the write was unable to find a reference, here is a slightly concise proof.
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Lemma A.2.1. Suppose A is some C∗-algebras containing an ideal I. Then any non-degenerate
representation of I extends uniquely to a representation on A.

Proof. Suppose π : I −→ B(H) is a non-degenerate representation. Choose an approximate unit
(eα)α∈Λ of I and define accordingly π0 : A −→ B(H) by setting

π0(a)(π(b)ξ) = π(ab)ξ

for all b ∈ I and ξ ∈ H. This is well-defined due to π(B)H being dense in H via non-degeneracy in
conjunction with I being an ideal. Furthermore, the net (π0(a)π(eα)ξ)α∈Λ must be Cauchy for all
fixed elements a in A on the merits of

‖π0(a)(π(b)ξ)− π0(a)(π(b′)ξ)‖ = ‖π(ab− ab′)ξ‖
= lim
α∈Λ
‖π(aeα)π(b− b′)ξ‖

≤ ‖a‖ · ‖π(b− b′)ξ‖

being true for every pair b, b′ ∈ I. Completeness thus guarantees the existence of a limit point,
whereupon the map % : A −→ B(H) defined by

%(a)ξ = lim
α∈Λ

π0(a)π(eα)ξ = lim
α∈Λ

π(aeα)

becomes well-defined. One readily verifies that % is a representation extending π, so only uniqueness
remains to be justified. However, if σ : A −→ B(H) were another representation extending π, then
one obtains the identity σ(a)(π(b)ξ) = σ(ab)ξ = π(ab)ξ for all a ∈ A, b ∈ I and ξ ∈ H. By density
and continuity of the maps involved, the representation σ must equal %, completing the proof.

Theorem A.2.2. Every C∗-algebra A admits a multiplier algebra M(A) uniquely determined up
to isomorphism. Furthermore, in the event of A being unital one has A =M(A).

Proof. Let π : A −→ B(H) be any faithful non-degenerate representation of a C∗-algebra A. Define
M(A) to be the idealizer1 of A under π, i.e.,

M(A) = {b ∈ B(H) : bπ(a), π(a)b ∈ A for all a ∈ A}.

Identifying A with its isomorphic image in B(H) under π permits one to deduce that A must be an
ideal insideM(A) by construction. In fact, A is essential herein, for if an element b in B(H) satisfies
π(a)b = bπ(a) = 0 for every a in A, then one has bπ(a)ξ = 0 for every vector ξ inside H. By non-
degeneracy of π, the set π(A)H is dense inH so that bH = {0} whereupon b = 0 follows immediately.
It is apparent thatM(A) contains the unit of B(H).

To verify maximality together with the universal property, we invoke the previous lemma. Suppose
B is another C∗-algebra containingA as an essential ideal. According to the lemma, the representation
π extends uniquely to a representation % : B −→ B(H) via the formula

%(b) = lim
α∈Λ

π(beα)

for some fixed choice of approximate unit {eα}α∈Λ in A. In general, one may always extract a qua-
sicentral approximate unit from the convex hull of the net {eα}α∈Λ and we shall therefore assume
that our chosen approximate unit is quasicentral. Remembering this until later, observe that any
b in the kernel of % must satisfy limα∈Λ beα = 0 due to π being faithful. By multiplying the latter
expression with any a ∈ A yields ba = 0 so the kernel of % must belong to the orthogonal complement

1that is, the largest C∗-algebra containing A as a ∗-ideal.



A.3. STRICTLY POSITIVE ELEMENTS 91

of A. Since A⊥ = {0}, the representation % must be faithful. Now, due to the approximate unit being
quasicentral, one has

%(b)π(a) = lim
α∈Λ

(π(beα))π(a) = lim
α∈Λ

π(b)π(eαa) = π(ba) ∈ π(A)

for all a ∈ A and b ∈ B. Hence we have a unique inclusion B ∼= %(B) ⊆M(A), which clearly restricts
to the identity on B, and thereforeM(A) determines a multiplier algebra of A. This establishes the
existence part, whereas uniqueness may be verified as follows.

Let M be another multiplier algebra of A. According to the universal property, there are unique
∗-homomorphisms ϕ : M −→ M(A) and ψ : M −→ M(A) restricting to the identity on A, so
ψϕ : M(A) −→M(A) and ϕψ : M −→ M must be ∗-homomorphisms restricting to the identity on
A. However, the universal property applied once more demands that any ∗-homomorphismM −→M
restricting to the identity on A must be the identity on M by uniqueness. Since the same argument
applies toM(A), the maps ϕ and ψ must be mutual inverses, whereof M ∼=M(A).

Concerning the remaining statement, assumeA has a unit and regardA as being an essential ideal
in its multiplier algebraM(A). Then (1A − 1M(A))A = {0}must be valid and thus 1M(A) = 1A ∈ A
due to A being an essential ideal, which entails that A =M(A). Voila.

A.3 Strictly Positive Elements

This little minor section describes σ-unital C∗-algebras, which occur occasionally in the project al-
though perhaps without the use of this particular terminology. Moreover, the equivalence of being
σ-unital and existence of a strictly positive is being exploited.

Definition. A positive element a in a C∗-algebraA is called strictly positive, written a > 0, whenever
aAa determines a norm-dense subalgebra in A.

Note that for A unital, a positive element a therein is strictly positive if and only if a is invertible.
Indeed, invertibility yields aAa = A event without taking the closure and conversely a > 0 entails
that there exists some b ∈ A fulfilling ‖aba− 1A‖ < 1 from which aba becomes invertible in A, hence
a must be invertible.

Proposition A.3.1. For a positive element a in some C∗-algebra A, the following are equivalent.

(i) A is σ-unital.

(ii) a is strictly positive.

(iii) ω(a) > 0 for every state ω on A.

Proof. The implication (i)⇒ (ii) is obvious. For (i)⇒ (iii), let {en}n≥1 be an approximate unit in
A and define accordingly a =

∑∞
n=1 2−nen. Suppose ω denotes a state subject to ω(a) = 0. Then

ω(en) = 0 for all n ∈ N, so for every element b ≥ 0 in A one has

ω(b) = lim
n→∞

ω(e1/2
n e1/2

n b) ≤ ω(en)ω(b∗enb) = 0.

Since every element in A is the sum of at most four positive elements, linearity of ω yields ω = 0.
Therefore ω(en) > 0 for at least one positive integer n, hence ω(a) > 0. In order to prove (iii)⇒ (i),
define at first en = a(n−11A+ + a)−1 in the unitalization A+. Since a > 0 regarded as an element in
A+, it must be invertible therein, meaning σ(a) cannot contain zero. Thus some functional calculus
yields en → 0 proving that {en}n≥1 determines a countable approximate unit of A. (i)⇒ (iii): Due
to each ω being non-trivial, a positive nonzero element b such that ω(aba) > 0 exists. However,
0 < ω(aba) ≤ ‖a‖2 · ‖b‖ thus forces a 6= 0 as desired.
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