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Abstract

We present a recently developed theory by Pere Ara and Ruy Exel on universal algebras and dy-
namical systems associated with so-called separated graphs. To each such graph (E,C) and field K
with involution, we define the Leavitt path algebra LK(E,C) and the graph C∗-algebra C∗(E,C),
generalizing the definitions for ordinary graphs. We also define “abelianized” versions Lab

K (E,C) and
O(E,C) of these algebras, which exhibit crossed product descriptions

Lab
K (E,C) ∼= CK(Ω(E,C)) oθ∗ F and O(E,C) ∼= C(Ω(E,C)) oθ∗ F,

where θ : F y Ω(E,C) is a canonical partial action of the free group with generating set E1 on a
zero-dimensional compact metrizable space Ω(E,C). The main construction associates a sequence of
finite bipartite separated graphs (En, C

n) to each finite bipartite graph (E,C), such that

Lab
K (E,C) = lim−→LK(En, C

n) and O(E,C) = lim−→C∗(En, C
n)

for appropriate transit maps. As a byproduct of this, we are able to construct global actions of finitely

generated free groups on Cantor spaces whose type semigroups lack almost unperforation. Finally,

we obtain an alternative description of the canonical partial action F y Ω(E,C) that enables us to

characterize the graphs, for which this action is topologically free.

Resumé

Vi præsenterer en nyere teori om algebraer og dynamiske systemer hørende til s̊akaldt separerede
grafer, der primært er udviklet af Pere Ara og Ruy Exel. For enhver s̊adan graf (E,C) og for
ethvert legeme med involution K, definerer vi Leavitt path-algebraen LK(E,C) og graf-C∗-algebraen
C∗(E,C) hørende til (E,C), som begge generaliserer de tilsvarende objekter for sædvanlige grafer.
Vi definerer ogs̊a kanoniske kvotienter Lab

K (E,C) og O(E,C) af disse algebraer og viser at

Lab
K (E,C) ∼= CK(Ω(E,C)) oθ∗ F samt O(E,C) ∼= C(Ω(E,C)) oθ∗ F

for en kanonisk partiel virkning θ : F y Ω(E,C) af den frie gruppe over E1 p̊a et nuldimensionelt,
kompakt og metriserbart rum. For enhver endelig, todelt graf (E,C) giver hovedkonstruktionen en
følge af endelige, todelte grafer (En, C

n), s̊a

Lab
K (E,C) = lim−→LK(En, C

n) og O(E,C) = lim−→C∗(En, C
n)

for passende ∗-homomorfier. Som et biprodukt heraf er vi i stand til at vise, at der findes virkninger

af endeligt genererede frie grupper p̊a Cantorrum, hvis typesemigrupper ikke er næsten uperforerede.

Endeligt giver vi en alternativ beskrivelse af den kanoniske virkning F y Ω(E,C), som gør os i stand

til at karakterisere de separerede grafer (E,C), for hvilken den kanoniske virkning er topologisk fri.
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Introduction

In order to comprehend this thesis, the reader really only needs a basic understanding of al-
gebra and topology, although knowledge of C∗-algebras might also be beneficial. In case the
reader is not acquainted with C∗-algebras, a minor appendix has been added to cover the
relevant definitions and results. In the following we will motivate and describe the contents of
the thesis.

Over the last two decades much progress has been made in the field of universal algebras
and C∗-algebras associated to directed graphs. Not only do the graph C∗-algebras provide a
fairly rich and diverse class, but at the same time they are very well understood in terms of
ideal structure and K-theory, which can be computed directly from the graph. As they are
always nuclear and separable, and the simple graph C∗-algebras are either purely infinite or
AF, they can be classified using either Elliott’s classification theorem or the celebrated the-
orem by Eberhard Kirchberg and N. Christopher Phillips. These properties and many more
make the class of graph C∗-algebras a natural test object for all sorts of conjectures, and in
some cases a place to look for counterexamples.

In a number of recent articles (see [3],[4],[6],[5]), a considerably larger class of algebras and
C∗-algebras associated to so-called separated graphs have been studied by Pere Ara, Ruy Exel,
Ken R. Goodearl, and Takeshi Katsura. The hope is not at all that one can extend the results
that hold for ordinary graphs, but rather to obtain algebras that behave wildly different from
classical graph algebras. In this thesis we mainly present the results of [3].

Chapter 1 contains the relevant theory on partial actions and crossed products, including
a globalization result for partial actions on topological space. We also give concrete realiza-
tions of universal C∗-algebras for partial representations of a group satisfying certain relations.
In Chapter 2, we introduce the category of finitely separated graphs and the various algebras
associated to such a graph. Specifically, we define Leavitt path algebras LK(E,C) and graph
C∗-algebras C∗(E,C) along with canonical quotients Lab

K (E,C) and O(E,C) for each sep-
arated graph (E,C). We investigate the basic properties of these algebras and are able to
determine the monoid V(LK(E,C)) of idempotents over LK(E,C) in terms of graph-theoretic
data. We also produce a canonical partial action θ : F y Ω(E,C) of the free group with the
edges of E as generators on a zero-dimensional compact metrizable space, such that

Lab
K (E,C) ∼= CK(Ω(E,C)) oθ∗ F and O(E,C) ∼= C(Ω(E,C)) oθ∗ F,

where CK(Ω(E,C)) denotes the ∗-algebra of continuous function Ω(E,C) → K, when K is
endowed with the discrete topology. The main point of the thesis is to gain an understand-
ing of these partial actions and their associated crossed products, and to a large extend, we
are able to carry out our investigations in both the purely algebraic and the analytic setting
at once. Surely, many questions about the C∗-algebras C∗(E,C) and O(E,C) can only be
answered through an analytical investigation, but we shall not be bothered with such questions.

Chapter 3 contains the main construction. To every finite and bipartite graph (E,C), we
construct a sequence of finite bipartite graphs (En, C

n) along with transit maps

LK(En, C
n)→ LK(En+1, C

n+1) and C∗(En, C
n)→ C∗(En+1, C

n+1),

such that
Lab
K (E,C) ∼= lim−→LK(En, C

n) and O(E,C) ∼= lim−→C∗(En, C
n).



2 Introduction

This description of Lab
K (E,C) allows us to prove that the quotient map induces a refinement

V(LK(E,C)) → V(Lab
K (E,C)). We also apply this description of Lab

K (E,C) in Chapter 4 to
prove that the type semigroup S(Ω(E,C),F,K) is canonically isomorphic to V(Lab

K (E,C)).
Since we can realize arbitrary finitely generated conical monoids as V(LK(E,C)) for an ap-
propriate finite bipartite graph (E,C), in particular any such monoid can be order embedded
into a type semigroup S(Ω(E,C),F,K) for an appropriate graph. As a consequence, we are
able to produce global actions of finitely generated free groups on Cantor spaces whose type
semigroups lack almost unperforation.

In Chapter 5, we apply the techniques of Section 1.5 to obtain another description of the
action F y Ω(E,C). Using the concept of so-called E-functions, we are able to characterize
the graphs for which the canonical partial action is topologically free. This is of particular
importance, since a reduced crossed product C(X)or,θ∗F is simple whenever the partial action
is minimal and topologically free. One might hope that topologically free minimal orbits with
respect to the canonical partial action F y Ω(E,C) will produce simple C∗-algebras with
exotic properties.

We end the main part of the thesis with a minor chapter of examples. Then follow appendices
that cover the relevant theory on abelian monoids, rings, algebras, and C∗-algebras. Chapters
1 and 2 are based on various sources, while the results of Chapters 3–6 are almost exclusively
based on [3].

Notation and terminology

The following table illustrates the standard notation throughout the thesis:

Object type Objects Elements

Abelian monoids M or N a or b

Groups G s or t

Algebras A or B a or b

C∗-algebras A or B a or b

Topological spaces X or Y x or y

Graphs E = (E0, E1, r, s) Vertices: u, v or w

or F = (F 0, F 1, r, s) Edges: e or f

Separated graphs (E,C) or (F,D) Colors: X or Y

We always use Greek letters for homomorphisms, and if a, b are elements of a ring, we denote
their commutator by [a, b]. Whenever we place a hat on some object, i.e. if we write x̂, it
means that the reader should disregard that particular object. If, for instance, we are given
an n-tuple (x1, . . . , xn), we will write

(x1, . . . , x̂k, . . . xn) = (x1, . . . , xk−1, xk+1, . . . , xn).

Every abelian monoid M will be equipped with the algebraic preorder ≤, i.e. we will write
a ≤ b for a, b ∈M if there is some c ∈M , such that a+ c = b.
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Chapter 1

Partial actions and crossed products

This chapter establishes the basics of partial actions on algebras, topological spaces and C∗-
algebras. Throughout the section, G will denote an arbitrary discrete group with neutral
element 1. Roughly speaking, a partial action of G on some kind of object is an assignment
s 7→ αs, where each αs is an isomorphism of sufficiently nice subobjects, such that αs ◦ αt
equals αst on elements for which the composition is meaningful.

1.1 Partial actions on sets

While the definition of a partial action may vary greatly from category to category, the objects
in question always have underlying sets. Rather than proving the same thing within a number
of different categories, we shall therefore first prove what can be proved in the context of sets.

Definition 1.1.1. A partial action α : Gy X on a set is a collection of subsets {Xs | s ∈ G}
and bijections αs : Xs−1 → Xs such that

(a) αs(Xs−1 ∩Xt) ⊂ Xst

(b) αst(x) = αs(αt(x)) for x ∈ Xt−1 ∩Xt−1s−1

(c) X1 = X

for all s, t ∈ G. Condition (a) might look slightly odd at first sight, but the point is just to
make sure that (b) makes sense, i.e. that αt maps Xt−1 ∩Xt−1s−1 into Xs−1 . Given two partial
actions α : Gy X and α′ : Gy X ′, a map ϕ : X → X ′ will be called equivariant if

(a) ϕ(Xs) ⊂ X ′s

(b) α′s ◦ ϕ(x) = ϕ ◦ αs(x) for all x ∈ Xs−1

for all s ∈ G. If ϕ has an equivariant inverse, then the partial actions are called equivalent.
Finally, a subset Y ⊂ X is called α-invariant (or simply invariant) if αs(Y ∩Xs−1) ⊂ Y for all
s ∈ G. Note that α restricts to a partial action Gy Y for such a subset Y .

From the above definition we immediately obtain a few basic properties:
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Proposition 1.1.2. If α : Gy X is a partial action, then

(a) α1 = IdX and αs−1 = α−1
s

(b) αs(Xs−1 ∩Xs−1t) = Xs ∩Xt

for all s, t ∈ G.

Proof. From α1 ◦ α1 = α1 and α1(X) = X we get α1 = IdX . We also note that

αs(αs−1(x)) = α1(x) = x and αs−1(αs(y)) = α1(y) = y

for all x ∈ Xs ∩Xss−1 = Xs and y ∈ Xs−1 ∩Xs−1s = Xs−1 , hence αs−1 = α−1
s . For (b) we use

the fact that
αs(Xs−1 ∩Xs−1t) ⊂ Xs ∩Xss−1t = Xs ∩Xt

with s replaced by s−1 and t replaced by s−1t to get

αs−1(Xs ∩Xt) ⊂ Xs−1 ∩Xs−1t

as well. We conclude that Xs ∩Xt = αs(Xs−1 ∩Xs−1t).

Definition 1.1.3. Given a set X, a partial bijection on X is a bijective map α : Y → Z with
Y, Z ⊂ X. Given two partial bijections α : Y1 → Z1 and β : Y2 → Z2, we can define a partial
composition

α · β : β−1(Y1 ∩ Z2)→ α(Y1 ∩ Z2) given by α · β(x) = α(β(x)),

and clearly α · β is another partial bijection.

Lemma 1.1.4. The composition · is associative. In particular

αn :=


α · · ·α︸ ︷︷ ︸
n times

if n > 0

α−1 · · ·α−1︸ ︷︷ ︸
−n times

if n < 0

is well-defined for a partial bijection α.

Proof. Given partial bijections α : Y1 → Z1, β : Y2 → Z2 and γ : Y3 → Z3, we simply need to
check that the domains of α · (β · γ) and (α · β) · γ agree. To that end, just note that

Dom
(
α · (β · γ)

)
= (β · γ)−1(Y1 ∩ β(Y2 ∩ Z3)) = γ−1

(
β−1(Y1 ∩ β(Y2 ∩ Z3))

)
= γ−1

(
β−1(Y1 ∩ Z2) ∩ Z3

)
= Dom

(
(α · β) · γ

)
.

Now we can construct partial actions from partial bijections.

Lemma 1.1.5. If α1 : Y → Z is a partial bijection on X, then αn := (α1)n for n 6= 0 and
α0 = IdX defines a partial action α : Z y X.
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Proof. We should check that αm(X−m ∩Xn) ⊂ Xm+n for all m,n ∈ Z, but it suffices to prove
this inclusion for only m ≥ 0, as the case m < 0 then follows by the same argument applied
to the the partial bijection α−1

1 . If m = 0 or n = 0 the claim is trivial, and if n > 0 we have

Xm+n = Ran(αm+n) = Ran(αm · αn) = αm(X−m ∩Xn).

In case −m ≤ n < 0 we have m+n ≥ 0 and therefore αm(X−m∩Xn) ⊂ Xm ⊂ Xm+n. Finally,
if n < −m we have

Xn = Ran(αn) = Ran(α−m · αm+n) = α−m(Xm ∩Xm+n),

hence
αm(X−m ∩Xn) = αm(Xn) = Xm ∩Xm+n ⊂ Xm+n

as requested.

When given two actions on the same set, we can form a combined action of the free product
of the groups.

Lemma 1.1.6. Given two partial actions α : G1 y X and β : G2 y X. Then

(α ∗ β)s1t1···sntn = αs1 · βt1 · · ·αsn · βtn

for a reduced word s1t1 · · · sntn ∈ G1 ∗ G2 with si ∈ G1 and ti ∈ G2, where we allow s1 = 1
and tn = 1, defines a partial action G1 ∗G2 y X.

Proof. In order to ease the notation, we will simply write γ = α ∗ β. By construction we have

Xw1w2 = γw1(Xw−1
1
∩Xw2) and γw1w2(x) = γw1 ◦ γw2(x)

for x ∈ Xw−1
2
∩ Xw−1

2 w−1
1

= Xw−1
2 w−1

1
, whenever the last letter of w1 and the first letter of w2

belong to different groups. Therefore we shall assume that w1 ends and w2 starts with letters
from the same group, say G1. Thus we can write w1 = w′1s1 and w2 = s2w

′
2, and for now we

shall assume that s1 6= s−1
2 . In this case

αs1(Xw−1
1
∩Xw2) = αs1

(
αs−1

1
(Xs1 ∩Xw′−1

1
) ∩ αs2(Xs−1

2
∩Xw′2

)
)

⊂ Xw′−1
1
∩ αs1

(
Xs−1

1
∩ αs2(Xs−1

2
∩Xw′2

)
)

⊂ Xw′−1
1
∩ αs1s2

(
X(s1s2)−1 ∩Xw′2

)
= Xw′−1

1
∩Xs1s2w′2

,

hence

γw1(Xw−1
1
∩Xw2) ⊂ γw′1

(
Xw′−1

1
∩Xs1s2w′2

)
= Xw′1s1s2w

′
2

= Xw1w2 .

Also
γw′2(Xw−1

2
∩Xw−1

2 w−1
1

) ⊂ γw′2(γ
−1
w′2

(Xw2 ∩Xs−1
2

)) ⊂ Xs−1
2
,

so

γw1w2(x) = γw′1 ◦ αs1s2 ◦ γw2(x) = γw′1 ◦ αs1 ◦ αs2 ◦ γw2(x) = γw1 ◦ γw2(x)
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for all x ∈ Xw−1
2
∩ Xw−1

2 w−1
1

. If, on the other hand, s1 = s−1
2 , we may write w1 = w3w and

w2 = w−1w4 such that the last letter of w3 is not the inverse of the first letter of w4. Then

γw1(Xw−1
1
∩Xw2) = γw3 ◦ γw

(
γw−1(Xw ∩Xw−1

3
) ∩ γw−1(Xw ∩Xw4)

)
= γw3(Xw ∩Xw−1

3
∩Xw4) ⊂ γw3(Xw−1

3
∩Xw4)

⊂ Xw3w4 = Xw1w2 ,

where the last inclusion follows from the first case. Also

Xw−1
2
∩Xw−1

2 w−1
1
⊂ Xw−1

4
∩Xw−1

4 w−1
3

and
γw4(Xw−1

2
∩Xw−1

2 w−1
1

) ⊂ γw4(γw−1
4

(Xw4 ∩Xw)) ⊂ Xw,

hence

γw1w2(x) = γw3w4(x) = γw3 ◦ γw4(x) = γw3 ◦ γw ◦ γw−1 ◦ γw4(x) = γw1 ◦ γw2(x)

for all x ∈ Xw−1
2
∩Xw−1

2 w−1
1

. This completes the proof.

Combining the above observations, we obtain a way to produce partial actions of free groups.

Corollary 1.1.7. Given a set S and partial bijections αs : Ys → Zs on X for s ∈ S, we let F
denote the free group on the set S. Then

αsn11 s
n2
2 ···s

nk
k

= αn1
s1
· αn2

s2
· · ·αnksk ,

where si 6= si+1 for each i = 1, . . . , k − 1 and ni ∈ Z \ {0} for i = 1, . . . , k, defines a partial
action F y X.

Proof. In case S is finite, the claim follows from Lemma 1.1.5 and Lemma 1.1.6 since

Fm = Fm−1 ∗ Z.

In case S is infinite, we still only need to check the requirements of Definition 1.1.1 on finite
words s, t ∈ F, hence the claim follows from the finite case.
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1.2 Partial actions on algebras

In this section we introduce the crossed product of a partial action on an algebra and investigate
the basic relationship between partial representations and partial actions. The results are
mostly taken from [8].

Definition 1.2.1. A partial action α : Gy A on an algebra is a set partial action

{αs : Ds−1 → Ds},

where each Ds is a two-sided ideal and αs is an isomorphism. If A is a ∗-algebra, we will also
assume that the ideals are self-adjoint. Finally, α will be called unital if each of the ideals Ds

is unital.

Note that everything we proved in the context of partial actions on sets carries through to
partial actions on algebras.

Definition 1.2.2 (The crossed product A oα G). Given a partial action α : G y A, we let
Aoα G denote the set of formal sums

∑
s∈G asδs on symbols {δs}s∈G, such that as ∈ Ds and

as = 0 for all but finitely s ∈ G. Then we equip Aoα G with the obvious addition and scalar
multiplication, whereas the multiplication is given by(∑

s∈G

asδs

)(∑
t∈G

btδt

)
=
∑
s∈G

(∑
t∈G

αs(αs−1(as)bt)

)
δst.

We shall refer to A oα G as the crossed product of A and G by α. While one might expect
this to be an algebra in itself, this is not always the case, for there is nothing guaranteeing
associativity of the multiplication. Therefore our first challenge is to establish sufficient con-
ditions for the multiplication to be associative.

If the reader is not acquainted with double centralizers, see Definition A.2.8.

Lemma 1.2.3. Let α : G y A denote a partial action on an algebra, such that Ds is (L,R)-
associative for all s ∈ G (see Definition A.2.9). Then the multiplication on A oα G is asso-
ciative.

Proof. We must show that(
(aδr) · (bδs)

)
· (cδt) = (aδr) ·

(
(bδs) · (cδt)

)
(1.1)

for all r, s, t ∈ G, a ∈ Dr, b ∈ Ds and c ∈ Dt. The left-hand side equals

αrs

(
αs−1r−1(αr(αr−1(a)b))c

)
δrst = αrs

(
αs−1(αr−1(a)b)c

)
δrst.

Since αr−1(a)b ∈ Dr−1 ∩Ds we have αs−1(αr−1(a)b)c ∈ Ds−1 ∩Ds−1r−1 , hence(
(aδr) · (bδs)

)
· (cδt) = αr

(
αs

(
αs−1(αr−1(a)b)c

))
δrst.

The right-hand side of equation (1.1) equals

αr

(
αr−1(a)αs(αs−1(b)c)

)
δrst,
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so the claim holds if and only if

αs

(
αs−1(αr−1(a)b)c

)
= αr−1(a)αs(αs−1(b)c)

for all r, s, t ∈ G, a ∈ Dr, b ∈ Ds and c ∈ Dt. Equivalently, since αr−1 is an isomorphism, the
claim holds if and only if

αs

(
αs−1(ab)c

)
= aαs(αs−1(b)c)

for all r, s, t ∈ G, a ∈ Dr−1 , b ∈ Ds and c ∈ Dt. Now, considering La as a left multiplier on
Ds and Rc as a right multiplier on Ds−1 , αs ◦ Rc ◦ αs−1 is a right multiplier on Ds. Since Ds

is assumed to be (L,R)-associative it follows that

αs

(
αs−1(ab)c

)
= (αs ◦Rc ◦ αs−1 ◦ La)(b) = (La ◦ αs ◦Rc ◦ αs−1)(b) = aαs(αs−1(b)c)

as desired.

Corollary 1.2.4. Suppose that α : Gy A is a partial action, where each Ds is non-degenerate
or idempotent (see Definition A.2.9). Then the multiplication on Aoα G is associative.

Proof. This follows immediately from Proposition A.2.10 and Lemma 1.2.3.

Throughout the rest of this section we shall assume that the crossed products are associative.

Proposition 1.2.5. If α is a partial action on a ∗-algebra A, then(∑
s∈G

asδs

)∗
=
∑
s∈G

αs(a
∗
s−1)δs

defines an involution on Aoα G.

Proof. Clearly, ∗ is a conjugate linear map of order two, so the only work lies in checking
antimultiplicativity. To this end, it suffices to consider elements of the form aδs and bδt with
a ∈ Ds, b ∈ Dt. The claim now follows from the computation(

(aδs) · (bδt)
)∗

=
(
αs(αs−1(a)b)δst

)∗
= αt−1s−1

(
αs(αs−1(a)b)∗

)
δt−1s−1

= αt−1(b∗αs−1(a∗))δt−1s−1 = αt−1

(
αt(αt−1(b∗))αs−1(a∗)

)
δt−1s−1

= (αt−1(b∗)δt−1) · (αs−1(a∗)δs−1) = (bδt)
∗ · (aδs)∗.

Let us consider a few examples.

Example 1.2.6. Given a field K, we claim that there is a decomposition Mn(K) ∼= Knoα Z.
Write α1 for the partial isomorphism of ideals I = Kn−1 ⊕ 0 and J = 0 ⊕ Kn−1 given by
shifting a tuple one to the right. Applying the notation of Lemma 1.1.5, we have

Dm =


Kn+m ⊕ 0⊕ · · · ⊕ 0 if − n+ 1 ≤ m < 0

0⊕ · · · ⊕ 0⊕Kn−m if 0 ≤ m ≤ n− 1

0 if |m| ≥ n
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Then we can define matrix units
ei,j = eiδi−j

for 1 ≤ i, j ≤ n, where ei is the i’th element of the standard basis on Kn. Indeed, the ei,j’s
form a basis of Kn oα Z and

ei,jek,l = (eiδi−j) · (ekδk−l) = αi−j(αj−i(ei)ek)δi+k−j−l = αi−j(ejek)δi+k−j−l

= δj,k · αi−j(ej)δi−l = δj,k · eiδi−l = δj,kei,l.

Thus Kn oα Z is isomorphic to Mn(K).

Example 1.2.7. Given partial actions α : Gy A and β : Gy B, there is a combined action
α⊕ β : Gy A⊕B given by (α⊕ β)s = αs ⊕ βs. Surely we have an isomorphism

(A⊕B) oα⊕β G ∼= (Aoα G)⊕ (B oβ G),

and applying this observation to Example 1.2.6 we obtain a crossed product structure

Mn1(K)⊕Mn2(K)⊕ · · · ⊕Mnr(K) ∼= KN oα Z

with N = n1+n2+. . .+nr and α = α1⊕. . .⊕αr, where αi is the partial action of Example 1.2.6
with n = ni.

Crossed products allow extensions of equivariant homomorphisms.

Proposition 1.2.8. Given partial actions α : G y A and β : G y B on ∗-algebras. If
ϕ : A → B is equivariant, then it extends to a ∗-homomorphism ϕ̃ : Aoα G → B oβ G given
by ϕ̃(aδs) = ϕ(a)δs.

Proof. Using equivariance, we have

ϕ̃((aδs) · (bδt)) = ϕ̃(aαs(b)δst) = ϕ(a)ϕ(αs(b))δst = ϕ(a)βs(ϕ(b))δst

= (ϕ(a)δs) · (ϕ(b)δt) = ϕ̃(aδs)ϕ̃(bδt)

and

ϕ̃((aδs)
∗) = ϕ̃(αs−1(a∗)δs−1) = ϕ(αs−1(a∗))δs−1 = βs−1(ϕ(a)∗)δs−1 = (ϕ(a)δs)

∗ = ϕ̃(aδs)
∗

for all s, t ∈ G, a ∈ Ds−1 and a′ ∈ Dt−1 .

Definition 1.2.9. A length function | · | on G is a map G → R+ such that |1| = 0 and
|st| ≤ |s|+ |t| for all s, t ∈ G.

Example 1.2.10 (The free group F on a set). Given a set S, there is a canonical length
function on the free group F of reduced words in S: For a reduced word t = t1t2 · · · tn with
ti ∈ S ∪ S−1, we define |t| := n.

Definition 1.2.11. Let A denote a unital ∗-algebra. A partial representation of G on A is a
map σ : G→ A such that

(a) σ(s)σ(t)σ(t−1) = σ(st)σ(t−1)

(b) σ(s)∗ = σ(s−1)

(c) σ(1) = 1
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for all s, t ∈ G. If G is equipped with a length function, then σ is called semi-saturated if

σ(st) = σ(s)σ(t)

whenever |st| = |s| + |t|. Finally, whenever σ : G → A is a partial representation, we define
εσ(s) = σ(s)σ(s)∗ for s ∈ G. Sometimes there will be multiple partial representations in play
at once, but otherwise we will usually skip the subscript and simply write ε = εσ.

Here are some immediate observations:

Proposition 1.2.12. If σ : G→ A is a partial representation, then the following holds:

(a) σ(s−1)σ(s)σ(t) = σ(s−1)σ(st) for all s, t ∈ G.

(b) For every s ∈ G, σ(s) is a partial isometry.

(c) We have σ(t)ε(s) = ε(ts)σ(t) for all s, t ∈ G.

(d) The final projections ε(s) and ε(t) commute for all s, t ∈ G.

Proof. For (a) we simply note that

σ(s−1)σ(s)σ(t) =
(
σ(t−1)σ(s−1)σ(s)

)∗
=
(
σ(t−1s−1)σ(s)

)∗
= σ(s−1)σ(st).

(b) is seen by

σ(s)σ(s)∗σ(s) = σ(s)σ(s−1)σ(s) = σ(s)σ(s−1s) = σ(s),

and (c) follows from

σ(t)ε(s) = σ(t)σ(s)σ(s−1) = σ(ts)σ(s−1) = σ(ts)σ
(

(ts)−1
)
σ(t) = ε(ts)σ(t).

As a consequence, we have

ε(s)ε(t) = σ(s)σ(s−1)ε(t) = σ(s)ε(s−1t)σ(t−1) = ε(ss−1t)σ(s)σ(s−1) = ε(t)ε(s).

We shall shortly consider the case, where G is a free group.

Proposition 1.2.13. Suppose that A is a unital ∗-algebra. For a set S, denote by F the free
group on S and consider a set of partial isometries X = {xs | s ∈ S} in A. Then the following
are equivalent:

(a) There exists a semi-saturated partial representation σ : F→ A such that σ(s) = xs
for all s ∈ S.

(b) There exists a partial representation σ : F→ A such that σ(s) = xs for all s ∈ S.

(c) X is tame (see Definition A.2.2).

(d) For any x, y ∈ 〈X ∪X∗〉 we have [xx∗, yy∗] = 0.
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Proof. (a)⇒ (b): This is trivial.

(b) ⇒ (c): We first show that any element in the multiplicative semigroup generated by
X ∪ X∗ is a partial isometry, and writing x = x1x2 · · · xn for xi ∈ X ∪ X∗, we proceed by
induction over n. The case n = 1 is vacuously true. Assuming the claim holds for n − 1
and taking si ∈ S ∪ S−1 such that σ(si) = xi, we have x = σ(s1)σ(s2) · · ·σ(sn). Now by
Proposition 1.2.12c and the induction hypothesis, we obtain

xx∗x = σ(s1) · · ·σ(sn−1)ε(sn)σ(s∗n−1) · · ·σ(s1)∗σ(s1) · · ·σ(sn)

= ε(s1 · · · sn)σ(s1) · · ·σ(sn−1)σ(sn−1)∗ · · · σ(s1)∗σ(s1) · · ·σ(sn−1)∗σ(sn)

= ε(s1 · · · sn)σ(s1) · · ·σ(sn) = x.

We move on to proving that the final projections xx∗ and yy∗ commute for x, y ∈ U . Writing
y = y1y2 · · · ym with yi = σ(ti) and ti ∈ S ∪ S−1, we proceed by induction over max{m,n}.
In case m = 0 or n = 0 the claim is trivial, and if m = n = 1 it follows from Proposi-
tion 1.2.12d. Thus we may assume that m,n ≥ 1 and that the claim holds for products of at
most max{m,n} − 1 generators. Writing x̄ = σ(s1) · · ·σ(sn−1) and ȳ = σ(t1) · · ·σ(tm−1), we
now deduce that

xx∗yy∗ = x̄ε(sn)x̄∗ȳε(tm)ȳ∗ = ε(t1 · · · tm)x̄x̄∗ȳȳ∗ε(s1 · · · sn)

= ε(t1 · · · tm)ȳȳ∗x̄x̄∗ε(s1 · · · sn) = yy∗xx∗

using Proposition 1.2.12c,d multiple times.

(c)⇒ (d): Trivial

(d) ⇒ (a): Define σ(s) = xs and σ(s−1) = x∗s for s ∈ S along with σ(1) = 1. For gen-
eral reduced s = s1s2 · · · sn with si ∈ S ∪ S−1, we let

σ(s) = σ(s1)σ(s2) · · ·σ(sn).

Taking another reduced word t = t1 · · · tm, we have |st| = |s|+ |t| if and only if st has reduced
form st = s1 · · · smt1 · · · tn, in which case σ(s)σ(t) = σ(st). It remains to show that σ is indeed a
partial representation, i.e. that σ(s)σ(t)σ(t−1) = σ(st)σ(t−1) for all s, t ∈ F. We shall proceed
by induction over max{|s|, |t|}, noting that the claim is trivial in case |s| = 0 or |t| = 0.
Therefore we may write s = s̃s0 and t = t0t̃ with s0, t0 ∈ S∪S−1, |s| = |s̃|+ 1 and |t| = |t̃|+ 1.
In case s0 6= t−1

0 we have |st| = |s|+ |t|, so in particular σ(s)σ(t)σ(t−1) = σ(st)σ(t−1). Finally
in case s0 = t0

−1, we obtain

σ(s)σ(t)σ(t−1) = σ(s̃s0)σ(s0
−1t̃)σ(t̃−1s0) = σ(s̃)σ(s0)σ(s0

−1)σ(t̃)σ(t̃−1)σ(s0)

= σ(s̃)σ(t̃)σ(t̃−1)σ(s0)σ(s0
−1)σ(s0) = σ(s̃t̃)σ(t̃−1)σ(s0)

= σ(st)σ(t̃−1t0
−1) = σ(st)σ(t−1).

by the induction hypothesis.

Partial actions give rise to partial representations.

Lemma 1.2.14. Given a partial action α : Gy A on a ∗-algebra such that each Ds is unital
with unity 1s. Then σα : G→ Aoα G given by σα(s) = 1sδs defines a partial representation.
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Proof. Obviously, σα maps the neutral element to the unit and

σα(s)∗ = (1sδs)
∗ = αs−1(1∗s)δs−1 = σα(s−1).

Noting that
(1sδs) · (1tδr) = αs(1s−11t)δsr = 1s1stδsr,

where we have applied Proposition 1.1.2b, the multiplicativity condition follows from

σα(s)σα(t)σα(t−1) = (1sδs) · (1tδt) · (1t−1δt−1) = (1sδs) · (1tδ1)

= 1s1stδs = (1stδst) · (1t−1δt−1) = σα(st)σα(t−1).

On the other hand, partial representations also give rise to partial actions.

Proposition 1.2.15. Given a partial representation σ : G→ A, let B denote the commutative
subalgebra of A generated by the ε(s)’s and set Ds = ε(s)B. Then ασs : Ds−1 → Ds given by

ασs (a) = σ(s)aσ(s−1)

defines a partial action ασ : Gy B. Moreover, if σ is semi-saturated, then

ασst = ασs · ασt

for all s, t ∈ G with |st| = |s|+ |t|.

Proof. In order to ease the notation (and the TeX’ing) we write α = ασ. Note that by
commutativity of B, Ds is indeed a two-sided, self-adjoint ideal of B and clearly D1 = B.
We first check that the map a 7→ σ(s)aσ(s−1) is in fact invariant on B. Clearly, it suffices to
consider elements of the form a = ε(s1) · · · ε(sk) ∈ B, and then we even have

σ(s)aσ(s−1) = σ(s)ε(s1) · · · ε(sk)σ(s−1) = ε(s)ε(ss1)ε(ss2) · · · ε(ssk) ∈ Ds ⊂ A

from Proposition 1.2.12c. Obviously αs is linear and involutive, and for multiplicativity we
note that

αs(a)αs(b) = σ(s)aσ(s−1)σ(s)bσ(s−1) = σ(s)aε(s−1)bσ(s−1) = σ(s)abσ(s−1) = αs(ab)

for all a, b ∈ Ds−1 . Also, αs−1 is clearly an inverse of αs, hence each αs is an isomorphism of
ideals. Noting that

αs(ε(s
−1)ε(t)) = σ(s)ε(s−1)ε(t)σ(s−1) = ε(s)ε(st),

it follows that αs(Ds−1 ∩Dt) ⊂ Dst and, since

σ(s)σ(t)aσ(t−1)σ(s−1) = σ(st)aσ(t−1s−1)

for all a ∈ Dt−1 , we have αs(αt(a)) = αst(a) for all a ∈ Dt−1 ∩Dt−1s−1 . We conclude that ασ

is indeed a partial action. Now, assuming that σ is semi-saturated and picking s, t ∈ G with
|st| = |s|+ |t|, we have

Dom(ασs · ασt ) = ασt−1(Dt ∩Ds−1) = Dt−1 ∩Dt−1s−1 = ε(t−1)ε(t−1s−1)B

= ε(t−1s−1)B = D(st)−1 ,

hence ασst = ασs · ασt .
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Lemma 1.2.16. Consider a partial action α : Gy A, where each ideal Ds has unity 1s, and
write B for the commutative ∗-subalgebra of A generated by 1s’s. Then

αs(b)δ1 = ασαs (bδ1)

for each b ∈ 1s−1B.

Proof. Simply note that

ασαs (bδ1) = σα(s) · (bδ1) · σα(s)∗ = (1sδs) · (bδ1) · (1s−1δs−1) = (1sδs) · (bδs−1) = αs(b)δ1.

We end this section with a universal property for crossed products of unital partial actions.

Proposition 1.2.17. Given a partial action α : G y A on a ∗-algebra, a ∗-homomorphism
ϕ : A→ B and a partial representation σ : G→ B. If the image of ϕ commutes with ε(s) for
all s ∈ G, and

ϕ(αs(a)) = σ(s)ϕ(a)σ(s−1)

for all a ∈ Ds−1 and s ∈ G, then there is a unique ∗-homomorphism ϕ×σ : AoαG→ B given
by

ϕ× σ
(∑

s∈G

asδs

)
=
∑
s∈G

ϕ(as)σ(s).

Proof. Clearly, ϕ× σ is a well-defined linear map. Multiplicativity follows from the computa-
tion

ϕ× σ
(

(aδs) · (bδt)
)

= ϕ× σ
(
αs(αs−1(a)b)δst

)
= ϕ(αs(αs−1(a)b))σ(st)

= ε(s)ϕ(a)σ(s)ϕ(b)σ(s−1)σ(st) = ε(s)ϕ(a)σ(s)ϕ(b)ε(s)σ(t)

= ϕ(a)σ(s)ϕ(b)σ(t) = (ϕ× σ)(aδs) · (ϕ× σ)(bδt),

and it is involutive by

(ϕ× σ)(aδs)
∗ = σ(s−1)ϕ(a∗) = σ(s−1)ε(s)ϕ(a∗) = σ(s−1)ϕ(a)σ(s)σ(s−1)

= ϕ(αs−1(a∗))σ(s−1) = ϕ× σ(αs−1(a∗)δs−1) = ϕ× σ
(
(aδs)

∗) .
Corollary 1.2.18. Given a partial representation σ : G → A, define B ⊂ A and ασ as
in Proposition 1.2.15, and let ι denote the inclusion B ↪→ A. Then there is a unique ∗-
homomorphism ι× σ : B oασ G→ A such that

(ι× σ)

(∑
s∈G

bsδs

)
=
∑
s∈G

bsσ(s).

Moreover we have (ι× σ) ◦ σασ = σ.

Proof. The first part of the claim follows immediately from Proposition 1.2.17. For the second
part, we simply note that

(ι× σ) ◦ σασ(s) = ι× σ(ε(s)δs) = ε(s)σ(s) = σ(s).



16 CHAPTER 1. PARTIAL ACTIONS AND CROSSED PRODUCTS

1.3 Partial actions on topological spaces

The proper definition in the topological case is the following:

Definition 1.3.1. A partial action θ : Gy X on a topological space X is a set partial action
{θs : Xs−1 → Xs}, where each θs is a homeomorphism of open subsets of X. If all the sets Xs

are also closed or compact, we shall simply refer to θ as a closed or compact partial action,
respectively. Also, θ is called minimal if there are no non-trivial θ-invariant open subsets of
X, and it is called topologically free if the set

Fs = {x ∈ Xs−1 | θs(x) = x}

has empty interior for all 1 6= s ∈ G.

Definition 1.3.2. For a topological partial action θ : Gy X, we can define an induced partial
action on the ∗-algebra Cc,K(X) (denoted CK(X) if X is compact) of compactly supported
continuous function X → K, when K is endowed with the discrete topology. Specifically, we
set

Ds = {f ∈ Cc,K(X) | f(x) = 0 for all x /∈ Xs}

and define αs : Ds−1 → Ds by αs(f) = f ◦ θs−1 . Usually we will write α = θ∗.

Example 1.3.3. Given a global action β : Gy Y and an open subset X ⊂ Y , we can define
a partial action θ : Gy X by Xs = X ∩ βs(X) and θs(x) = βs(x) for all x ∈ Xs−1 and s ∈ G.
Indeed X1 = X ∩ β1(X) = X,

θs(Xs−1 ∩Xt) = θs(βs−1(X) ∩ βt(X) ∩X) = βs(βs−1(X) ∩ βt(X) ∩X)

⊂ X ∩ βst(X) = Xst

and θs(θt(x)) = βs(βt(x)) = βst(x) = θst(x) for all x ∈ Xt−1 ∩Xt−1s−1 . We shall refer to θ as
the restriction of β to X and write θ = β|X . We are led to the following definition.

Definition 1.3.4. Suppose that θ : G y X is a partial action. A globalization of θ is a
global action β : G y Y along with an equivariant injective open map ι : X → Y , such that
Y =

⋃
s∈G βs(ι(X)) and θ is equivalent to β|ι(X) via ι. A globalization will be called universal,

if for any global action G y Z and any equivariant map ψ : X → Z, there is a unique
equivariant map ψ̃ : Y → Z such that ψ̃ ◦ ι = ψ.

Remark 1.3.5. If β : G y Y is a globalization of θ : G y X, then Y has the same lo-
cal properties as X, since Y =

⋃
s∈G βs(ι(X)) and ι is an open map. For instance, locally

compactness and totally disconnectivity both pass to the globalization, but in general the
Hausdorff property does not.

Globalizations have been studied by Fernando Abadie in [1], and the following results are due
to him.

Theorem 1.3.6. Suppose that θ : Gy X is a partial action of a discrete group on a topological
space. Then θ has a (up to canonical equivariant isomorphism) unique universal globalization

ι : X → Xe and θe : Gy Xe .
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Proof. Define a global action γ : G y G × X by γs(t, x) = (st, x), and note that it respects
the equivalence relation

(s, x) ∼ (t, y)
def⇐⇒ x ∈ Xs−1t and θt−1s(x) = y.

Letting Xe denote the quotient G×X
∼ with quotient map q : G×X → Xe , γ drops to an action

θe : Gy Xe satisfying θe
s (q(t, x)) = q(st, x). Now define ι(x) = q(1, x) and note that

ι(θs(x)) = q(1, θs(x)) = q(s, x) = θe
s (ι(x))

for all x ∈ Xs−1 , thereby verifying equivariance of ι. Also q(s, x) = θe
s (ι(x)) holds for any

x ∈ X, hence Xe is indeed the θe -orbit of ι(X). Injectivity of ι is trivial since

q(1, x) = ι(x) = ι(y) = q(1, y)

holds exactly if (1, x) ∼ (1, y), and this precisely means that x = y. It is also clear that θ is
equivalent to θe |X via ι. For θe to be a globalization, it now only remains to check openness.
To this end, assume that U ⊂ X is open — then by definition of the quotient topology, we
should show that q−1(ι(U)) is open in G×X. But since

q−1(ι(U)) = {(s, x) ∈ G×X | (s, x) ∼ (1, y) for some y ∈ U} =
⋃
s∈G

{s} × θs−1(U ∩Xs),

this is clearly the case. We move on to proving universality of (θe , ι), so let β : Gy Y denote
a global action and assume that ψ : X → Y is equivariant. Then we define ψ′ : G × X → Y
by ψ′(s, x) = βs(ψ(x)) and note that

ψ′(γs(t, x)) = ψ′(st, x) = βst(ψ(x)) = βs(βt(ψ(x))) = βs(ψ
′(t, x)),

i.e. ψ′ is equivariant. If (s, x) ∼ (t, y) we have

βt−1(ψ′(s, x)) = βt−1s(ψ(x)) = ψ(θt−1s(x)) = ψ(y),

hence ψ′(s, x) = βt(ψ(y)) = ψ′(t, y). Thus ψ′ drops to an equivariant map ψe : Xe → Y
satisfying ψe (q(s, x)) = βs(ψ(x)), so in particular

ψe (ι(x)) = ψe (q(e, x)) = β1(ψ(x)) = ψ(x).

Uniqueness of ψe is immediate from equivariance, ψe ◦ ι = ψ and the identity

Xe =
⋃
s∈G

θe
s (ι(X)),

while uniqueness of (θe , ι) up to canonical equivariant isomorphism follows as usual.

Having proved the existence and uniqueness of universal globalizations, we turn to the question
of when the Hausdorff property is preserved.

Proposition 1.3.7. Given a partial action θ : G y X on a Hausdorff space. Then Xe

is Hausdorff if the graph of θs is closed in X × X for all s ∈ Γ. Moreover, the converse
implication holds as well if θ is closed.
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Proof. Regard X as an open subspace of Xe , such that θ is the restriction of θe to X. Suppose
that the graph of each θs is closed and take xe , ye ∈ Xe . We shall prove that if any pair of
open neighbourhoods of these two points intersect, then in fact xe = ye . Since each αe

s is a
homeomorphism of Xe and Xe =

⋃
s∈G θ

e
s (X), we may assume that xe = x ∈ X. Take y ∈ X

and s ∈ G such that αe
s(y) = ye . Now, for any pair of open neighbourhoods (U, V ) of x and y

respectively, by assumption there is some xU,V ∈ U ∩αs(V ), and we write xU,V = αe
s(yU,V ) for

yU,V ∈ V . Then the net (yU,V , xU,V ) converges to (y, x), so by closedness of the graph Gr(θs)
we have ye = αs(y) = x as promised.

Assuming that θ is closed and Xe is Hausdorff, the graph Gr(θs) is clearly closed for all
s ∈ G.

We end this investigation of globalizations with a crucial observation. It turns out that for
sufficiently nice partial actions, on the level of algebras, the universal globalization does not
affect the Morita equivalence class.

Proposition 1.3.8. Given a closed partial action θ : G y X on a compact Hausdorff space.
Then the crossed products

CK(X) oθ∗ G and Cc,K(Xe ) o(θe )∗ G

are Morita equivalent (see Definition A.2.3).

Proof. Regard X as a subset of Xe . Since X is assumed to be compact, so is Gr(θs) inside
X×X for all s ∈ G, and from the Hausdorff assumption on X, we deduce that Gr(θs) is closed
in X×X. It now follows from Proposition 1.3.7 that Xe is Hausdorff as well. In particular X
is clopen in Xe , hence so is θe

s (X) for any s ∈ G. We claim that p = 1Xδ1 is a full projection
in Cc,K(Xe ) oθe G. To see this, assume that I is an ideal in Cc,K(Xe ) oθe G containing p
— then we must prove that fδt ∈ I for all t ∈ G and f ∈ Cc,K(Xe ). Since f is compactly
supported and Xe =

⋃
s∈G θ

e
s (X) is an open covering, there is some finite subset F ⊂ G such

that supp(f) ⊂ Z :=
⋃
s∈F θ

e
s (X). Now observe that for all s ∈ G we have

1θes (X)δ1 = (1θes (X)δs) · (1Xδ1) · (1Xδs−1) ∈ I

from which it easily follows that 1Zδ1 ∈ I as well. Thus we may conclude that

(1Zδ1) · (fδt) = fδt ∈ I,

which proves that I = Cc,K(Xe )o(θe )∗ G. Since θ is the restriction of θe , we have an inclusion
CK(X) oθ∗ G ↪→ Cc,K(Xe ) o(θe )∗ G and we claim that

p(Cc,K(Xe ) o(θe )∗ G)p = CK(X) oθ∗ G.

This simply follows from the observation that

p(fδt)p = (1Xδ1) · (fδt) · (1Xδ1) = f1X∩θet (X)δt = f1Xtδt ∈ CK(X) oθ∗ G.

We conclude that CK(X) oθ∗ G sits as a full corner inside Cc,K(Xe ) o(θe )∗ G, hence they are
Morita equivalent.
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1.4 Partial actions on C∗-algebras

Definition 1.4.1. A partial action α : Gy A on a C∗-algebra A is an algebraic partial action,
such that each ideal Ds is closed.

Note that this definition coincides with the topological one for locally compact Hausdorff
spaces. Indeed, if θ : G y X is such an action, then one can define a C∗-algebraic partial
action on C0(X) exactly as in the purely algebraic case.

Crossed products by partial actions of arbitrary discrete groups were first studied by K. Mc-
Clanahan in [12], and most of the constructions in this section are due to him. As for tensor
products, we can equip the algebraic crossed product A oalg,α G with both a minimal and
maximal norm — and possibly even some intermediate norm. As is the standard for group
C∗-algebras and classical crossed products, we refer to the minimal, respectively, maximal
crossed product as the reduced, respectively, the universal crossed product. First, we shall
define with the universal one.

Definition 1.4.2. Consider a partial action α : Gy A on a C∗-algebra. The crossed product
A oα G is the universal enveloping C∗-algebra of the algebraic crossed product A oalg,α G,
which is easily seen to exist.

Strictly speaking, we shall never need any properties of the C∗-algebraic crossed product that
cannot be derived in the purely algebraic setting, but for the sake of overview we include
some basic results on representations of C∗-crossed products and crossed products coming
from topologically free actions. As for proper actions we have the concept of a covariant
representation.

Definition 1.4.3. A covariant representation of (A, G, α) is a pair (π, σ) consisting of a non-
degenerate representation π : A → B(H) and a partial representation σ : G → B(H), such
that εσ(s) is the projection onto span(π(Ds)H) and

σ(s)π(a)σ(s)∗ = π(αs(a))

for all s ∈ G and a ∈ Ds−1 .

It is not hard to see that any covariant representation satisfies the conditions of Proposi-
tion 1.2.17 and induces a non-degenerate representation π× σ : AoαG→ B(H). In fact, any
non-degenerate representation is of this form.

Proposition 1.4.4. The map (π, σ) 7→ π × σ defines a bijective correspondence between the
covariant representations of (A, G, α) and the non-degenerate representations of Aoα G.

Proof. See [9, Theorem 1.4].

As for crossed products of global actions, there is a canonical way of constructing represen-
tations of A oalg,α G from representations of A. Given a representation π : A → B(H) one
defines a twisted representation πs : Ds → B(H) by πs = π ◦ αs−1 . Then there is a unique
extension π′s : A → B(H) which annihilates (πs(Ds)H)⊥, and one defines π̃ : A → B(`2(G,H))
by

π̃(a)(ξ)(s) = π′s(a)(ξ(s)).

Now let Ps ∈ B(`2(G,H)) denote the projection onto span{π̃(Ds)(`
2(G,H))} and define a

partial representation λ̃ : G → B(`2(G,H)) by λ̃s = λsPs−1 , where λ denotes the left regular
representation. Then (π̃, λ̃) is a covariant representation, and one can prove the following
rather difficult proposition.
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Proposition 1.4.5. If π : A → B(H) is faithful, then so is π̃ × λ̃. Thus the expression

‖a‖r = sup{‖π̃ × λ̃(a)‖ | π : A → B(H) is a representation}

defines a norm on Aoalg,α G.

Proof. See [12, Proposition 3.4].

This allows the following unambiguous definition of the reduced crossed product.

Definition 1.4.6. Given a partial action α : G y A. The reduced crossed product Aor,α G
is the completion of Aoalg,α G with respect to ‖ · ‖r.

In the last chapter of this thesis, we will pay a particular interest to topologically free actions.
The following theorem provides the motivation for this endeavour.

Theorem 1.4.7. Suppose that θ : G y X is a topologically free partial action of a discrete
group on a locally compact Hausdorff space. If I is an ideal in C0(X) or,θ∗ G and

I ∩ C0(X) = {0},

then I = {0}. In particular, a representation of C0(X) or,θ∗ G is faithful if and only if, it is
faithful on C0(X).

Proof. See [9, Theorem 2.6].

Assuming minimality, one obtains simplicity of the reduced crossed product.

Corollary 1.4.8. Suppose that θ : G y X is a topologically free and minimal partial action
on a locally compact Hausdorff space. Then the crossed product C0(X) or,θ∗ G is simple.

Proof. See [9, Corollary 2.9].

Finally, one can often expect the reduced crossed product to be exact.

Theorem 1.4.9. If α : G y A is a partial action of an exact discrete group on an exact
C∗-algebra, then the reduced crossed product Aor,α G is exact.

Proof. See [4, Corollary 5.3].
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1.5 Universal C∗-algebras for partial representations

In this section, we shall construct concrete realizations of universal C∗-algebras for partial
representations of G subject to relations R. Later on, this will allow us to obtain a rather nice
description of the partial action F y Ω(E,C), which we will associate to the graph (E,C).
The results here are taken from [9].

Definition 1.5.1. The universal C∗-algebra for partial representations of G is a C∗-algebra
C∗p(G) and a partial representation σ : G→ C∗p(G), such that for every partial representation
τ : G → A into a C∗-algebra, there exists a unique ∗-homomorphism ϕ : C∗p(G) → A making
the diagram

G A

C∗p(G)

τ

σ ϕ

commute. It is easily seen that this characterizes C∗p(G) up to canonical isomorphism.

In order to construct a realization of C∗p(G), we shall consider the space

XG = {ω ∈ P(G) | 1 ∈ ω}

given the topology that identifies it with a subspace of {0, 1}G. Define clopen subsets of XG

by
Xs = {ω ∈ XG | s ∈ ω}

and equip XG with a partial action θu given by θus (ω) = sω. For s ∈ G, we let 1s denote the
characteristic function on Xs, and for any finite H ⊂ G \ {1} we define

1H =
∏
s∈H

1s.

Letting αu = (θu)∗, we note that αus (1H1s−1) = 1sH1s.

Proposition 1.5.2. C(XG) oαu G is universal for partial representations of G.

Proof. Due to Lemma 1.2.14, there is a canonical partial representation

σ : G→ C(XG) oθu∗ G

given by σ(s) = 1sδs. Considering any partial representation τ : G → A, one easily checks
that ρτ (1s) = ετ (s) defines a ∗-homomorphism ρτ : C(XG)→ A. Then

τ(s)ρτ (1s−1 · 1H)τ(s)∗ = τ(s) ·
(∏
t∈H

ετ (t)
)
· τ(s)∗ = ετ (s) ·

∏
t∈H

ετ (st)

= ρτ (1s1sH) = ρτ (α
u
s (1s−11H)),

for any finite H ⊂ G \ {1}, hence τ(s)ρτ (g)τ(s)∗ = ρτ (α
u
s (g)) for all g ∈ C(XG). From

Proposition 1.2.17 we deduce that there is an induced ∗-homomorphism

ρτ × τ : C(XG) oαu G→ A.
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Observe that

ρτ × τ(σ(s)) = ρτ × τ(1sδs) = ετ (s)τ(s) = τ(s)

for all s ∈ G, and since the σ(s)’s generate all of C(XG) oαu G as a C∗-algebra, ρτ × τ is the
unique ∗-homomorphism with this property.

Now we shall start invoking relations:

Definition 1.5.3. A set of relations on C(XG) is a subset of R ⊂ C(XG). A partial repre-
sentation τ : G → A is said to satisfy R, if ρτ (R) = {0}. A universal C∗-algebra for partial
relations satisfying R is a C∗-algebra C∗p(G;R) and a partial representation σ : G→ C∗p(G;R)
satisfying R, such that for every partial representation τ : G → A satisfying R, there is a
unique ∗-homomorphism ϕ : C∗p(G;R)→ A making the diagram

G A

C∗p(G;R)

τ

σ ϕ

commute.

Proposition 1.5.4. Let R be a set of relations. Then the smallest αu-invariant ideal of
C(XG) containing R, denoted I, is generated by the set

{αus (g1s−1) | s ∈ G, g ∈ R}

as an ideal. Moreover,

ΩR = {ω ∈ XG | g(s−1ω) = 0 for all s ∈ ω, g ∈ R}

is a compact invariant subset of XG, such that I = C0(XG \ ΩR), and the quotient C(XG)/I
is canonically isomorphic to C(ΩR) by restriction.

Proof. Temporalily denote the ideal generated by the αus (g1s−1)’s by J . First we shall see that
J is truly invariant. By definition, J is the closure of linear combinations of elements of the
form αus (g1s−1)h for s ∈ G, g ∈ R and h ∈ C(XG), so it suffices to show that

αut (αus (g1s−1)h1t−1) ∈ J

for any t ∈ G. This follows from the calculation

αut (αus (g1s−1)h1t−1) = αut

(
αus (gαus−1(h1t−11s))

)
= αuts

(
gαus−1(h1t−11s)

)
= αuts(g1(ts)−1)h′ ∈ J

with h′ = αut (h1t−11s). Now, note that I ⊂ J simply because αu1(11−1g) = g. On the other
hand J ⊂ I, for we must certainly have αus (g1s−1) ∈ I for any s ∈ G and g ∈ R.

Being an invariant ideal, there is some open θu-invariant U ⊂ XG, such that I = C0(U) and
C(XG)/I ∼= C(XG\U) canonically — so we need only show that XG\U = ΩR. But by duality
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and the above observations, XG \ U is the set of ω ∈ XG such that αus (g1s−1)(ω) = 0 for all
g ∈ R and s ∈ G, and since

αus (g1s−1)(ω) =

 g(s−1ω) if t ∈ ω

0 if t /∈ ω
,

it follows that XG \ U = ΩR. Being the complement of an invariant open subspace, ΩR is a
compact invariant subspace.

Definition 1.5.5. For s ∈ G we define Ωs = ΩR ∩ Xs and let 1s denote the characteristic
function on Ωs. We will say that ω ∈ XG satisfies R, if g(s−1ω) = 0 for all s ∈ ω and g ∈ R.

Since ΩR is invariant, θu drops to a partial action Gy ΩR, which we shall also just denote by
θu. Likewise, we shall not distinguish notationally between αu and its restriction to C(ΩR).
Now we can we give a concrete realization of C∗(G;R).

Proposition 1.5.6. The crossed product C(ΩR)oαu G is the universal C∗-algebra for partial
representations satisfying R.

Proof. By Lemma 1.2.14, there is a partial representation σ : G → C(ΩR) oαu G given by
σ(s) = 1sδs. The induced ∗-homomorphism ρσ : C(XG)→ C(ΩR)oαu G is simply the compo-
sition of the restriction map with the inclusion C(ΩR) ↪→ C(ΩR) oαu G, hence it vanishes on
I. In particular ρσ(R) = {0}. Now let τ : G→ A denote any partial representation satisfying
R. Then ρτ vanishes on I, hence it drops to a ∗-homomorphism πτ : C(ΩR) → A. The pair
(πτ , τ) satisfies the requirements of Proposition 1.2.17, because (ρτ , τ) does so, hence there is
an induced ∗-homomorphism πτ × τ : C(ΩR) oαu G→ A. We note that

(πτ × τ) ◦ σ(s) = πτ (1s)τ(s) = τ(s)

for all s ∈ G, and since the σ(s)’s generate C(ΩR)oαu G as a C∗-algebra, πτ × τ is the unique
∗-homomorphism with this property.





Chapter 2

Finitely separated graphs and graph
algebras

In this chapter we introduce the the category of finitely separated graphs along with the
algebras associated to such graphs. Sections 2.1–2.3 are based on both [5] and [3], while the
results of Section 2.4 are exclusively based on [3].

2.1 Finitely separated graphs

A directed graph E is a tuple (E0, E1, r, s) consisting of two sets E0 6= ∅ and E1 along with
functions r, s : E1 → E0. The elements of E0 are called vertices and will usually be denoted
by v, while the elements of E1 are called edges and are most commonly denoted by e or
f . For e ∈ E1 we call r(e) the range of e and s(e) the source of e. A vertex v is called a
source if r−1(v) = ∅. If both E0 and E1 are finite, we shall refer to E as a finite graph. A
homomorphism of graphs ϕ : E → F is a pair of maps ϕ0 : E0 → F 0 and ϕ1 : E1 → F 1, such
that rF (ϕ1(e)) = ϕ0(rE(e)) and sF (ϕ1(e)) = ϕ0(sE(e)). Here, we have added subscripts to
indicate, in which graph we are applying the range/source map, but usually this will not be
the case, and we will simply write r or s. A finitely separated graph is a pair (E,C) consisting
of a graph E and a collection

C =
⊔
v∈E0

Cv,

where each Cv is a partition of r−1(v) into non-empty finite subsets. However, we will usually
just write separated when we really mean finitely separated. We shall refer to X ∈ C as a
color, and for an edge e we denote by [e] its color, i.e. the set X ∈ C such that e ∈ X. Finally,
if Cv = {r−1(v)} for each v, then we will call (E,C) trivially separated.

We shall be working inside the following category:

Definition 2.1.1 (The category FSGr). The objects of FSGr are the finitely separated
graphs, and a morphism ϕ : (E,C)→ (F,D) is a graph homomorphism E → F such that

(a) ϕ0 : E0 → F 0 is injective.

(b) for each v ∈ E0 and each X ∈ Cv there is Y ∈ Dϕ0(v) such that ϕ1 restricts to a
bijection X → Y . The associated map X 7→ Y will be denoted ϕ̃.
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A complete subobject of (E,C) is an object (F,D), where F is a subgraph of E and

D = {X ∈ C | X ∩ F 1 6= ∅}.
That is, a complete subobject is precisely the kind of subgraph for which the inclusion is a
morphism in FSGr. Finally, an object (E,C) is finite if E is finite.

Proposition 2.1.2. Direct limits always exist in FSGr. Moreover, the underlying graph of
a direct limit of finitely separated graphs is just the limit in the category of directed graphs.

Proof. Given a directed system {ϕi,j : (Ei, Ci)→ (Ej, Cj)}i,j∈I in FSGr, we define

E0 := lim−→E0
i and E1 := lim−→E1

i

as direct limits in the category of sets. From the diagrams

E1
i E1

E0
i E0

λ1
i

λ0
i

ri r

E1
i E1

E0
i E0

λ1
i

λ0
i

si s

we obtain range and source maps, and we can define E = (E0, E1, r, s). By definition of r and
s, the λi’s become graph homomorphisms. Before making E into a separated graph, let us
see that E is a direct limit of the Ei’s in the category of graphs and graph homomorphisms.
Taking graph homomorphisms ψi : Ei → F such that ψj = ψi ◦ ϕi,j for each i ≤ j (and briefly
assuming that the transit morphisms are regular graph homomorphisms), we have limit maps
ψ0 : E0 → F 0 and ψ1 : E1 → F 1 such that ψ0 ◦ λ0

i = ψ0
i and ψ1 ◦ λ1

i = ψ1
i for all i. For e ∈ E0

we pick e′ ∈ E0
i such that λ0

i (e
′) = e and note that

r(ψ1(e)) = r(ψ1(λ1
i (e
′))) = r(ψ1

i (e
′)) = ψ0

i (ri(e
′)) = ψ0(λ0

i (ri(e
′)))

= ψ0(r(λ1
i (e
′))) = ψ0(r(e)).

Similarly we of course have s(ψ1(e)) = ψ0(r(e)), hence ψ = (ψ0, ψ1) defines a graph homo-
morphism such that ψ ◦ λi = ψi for all i, and clearly it is unique with this property. Now we
shall separate E as follows: For every i ≤ j we have a diagram of the form

E1
i E1

j

Ci Cj

ϕ1
i,j

ϕ̃i,j ,

where the vertical maps are simply the quotient maps. Letting C := lim−→Ci by the above maps,
we gain an induced surjective map E1 → C as in

E1
i E1

j E1

Ci Cj C

ϕ1
i,j λ1

j

ϕ̃i,j λ̃j ,
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and separate E by this map. Taking e, f ∈ E1 such that r(e) 6= r(f), we should have [e] 6= [f ].
This holds if and only if [e′] 6= [f ′] for all e′, f ′ ∈ E1

i and all i ∈ I such that [e] = [λ1
i (e
′)] and

[f ] = [λ1
i (f
′)]. And for such e′, f ′ we would indeed have

λ0
i (r(e

′)) = r(λ1
i (e
′)) = r(e) 6= r(f) = r(λ1

i (f
′)) = λ0

i (r(f
′)),

hence r(e′) 6= r(f ′) and thus [e′] 6= [f ′]. Note that the λ̃i(X) = lim−→j
ϕi,j(X), since the fiber

of a map of direct limits is the limit of the fibers. In particular each X ∈ C is finite. We
conclude that C is a separation of E, and we need to check that the λi’s are morphisms in
FSGr. Injectivity of λ0

i is immediate by injectivity of the transit maps (and was already used

above), and for every X ∈ Ci, λ1
i restricts to a map X → λ̃i(X) in view of the above diagram.

Since every transit map ϕj,k restricts to a bijection ϕi,j(X)→ ϕi,k(X), so does the limit maps,
hence λi is indeed a morphism. We move on to proving that ψ is a morphism in FSGr, if
the ψi’s are morphisms of FSGr. Injectivity of ψ0 is immediate from injectivity of the ψ0

i ’s.
Furthermore, for any i ∈ I we have the commutative diagram

E1
i F 1

Ci D

ψ1
i

,

which gives the commutative diagram

E1 F 1

C D

ψ1

of limits. We conclude that for any X ∈ Cv there is ψ̃(X) ∈ Dψ0(v) such that ψ1 restricts to

a map X → ψ̃(X). However, we should also prove that this restriction is a bijection. Taking

Xk ∈ Ck such that λ̃k(Xk) = X and letting Xi = ϕk,i(Xk) for i ≥ k, the directed system
{ϕ1

i,j : Xi → Xj} for i, j ≥ k has limit (X, {λi}i≥j). From the diagram

Xi Xj X

ψ̃(X)

ϕ1
i,j λ1

j

ψ1
i

ψ1
j

ψ1

it then follows that ψ1 is a bijection X → ψ̃(X), since all the ψi’s restrict to bijections.

We shall study a number of functors out of FSGr, and as they will all be continuous, the
following observation essentially allows us to consider only finite graphs.

Proposition 2.1.3. Every object (E,C) of FSGr admits arbitrarily large finite complete
subobjects (F,D). In particular, the finite complete subobjects form a directed system with
(E,C) as direct limit.



28 CHAPTER 2. FINITELY SEPARATED GRAPHS AND GRAPH ALGEBRAS

Proof. Take any finite A ⊂ E0 ∪E1; then we will construct a finite complete subobject (F,D)
such that A ⊂ F 0 ∪ F 1. To this end, let E1 be the subgraph of E generated by A, i.e set
E1

1 = A ∩ E1 and E0
1 = (A ∩ E0) ∪ s(E1

1) ∪ r(E1
1). For v ∈ E0

1 we then define

Fv = r−1
E1(v) ∪

⋃
X∈Cv ,X∩A 6=∅

X,

and let F be the subgraph of E generated by E0
1 ∪
⋃
v∈E0

1
Fv. Since E1 is finite and X ∩A 6= ∅

for only finitely many X ∈ C, we observe that Fv is finite, and thus so is F . By construction
we have r−1

F (v) = Fv for v ∈ E0
1 and r−1

F (v) = ∅ for v ∈ F 0 \ E0
1 . For any v ∈ F 0 we put

Dv = {Y ∩ F 1 | Y ∈ Cv, Y ∩ F 1 6= ∅}

as required. Setting D = tv∈F 0Dv, (F,D) is clearly a finite complete subobject of (E,C) with
A ⊂ F 0 ∪ F 1. Thus the finite complete subgraphs with morphisms induced by inclusion form
a directed system, and in view of Proposition 2.1.2, (E,C) is the limit.

Definition 2.1.4 (The functor M). For each finitely separated graph (E,C), we define an
abelian monoid M(E,C) as the free abelian monoid on E0 modulo the relations

v = s(X) :=
∑
e∈X

s(e)

for all v ∈ E0 and X ∈ Cv. Given a morphism ϕ : (E,C) → (F,D) we can define a monoid
homomorphism M(ϕ) : M(E,C)→M(F,D) by M(ϕ)(v) = ϕ0(v). This is well defined since

M(ϕ)(s(X)) =
∑
e∈X

ϕ0(s(e)) =
∑
e∈X

s(ϕ1(e)) =
∑

e∈ϕ̃(X)

s(e) = s(ϕ̃(X)),

which is equivalent to ϕ0(v). Obviously, M now defines a functor from the category of finitely
separated graphs to the category of abelian monoids, and it is easily seen to be continuous.
Observe that M(E,C) is always non-zero and conical, i.e. a+ b = 0 implies a = b = 0. As for
any other monoid throughout this thesis, M(E,C) is equipped with the algebraic preorder.
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2.2 Leavitt path algebras

Throughout this section K will denote an arbitrary field with involution, possibly the trivial
involution.

Definition 2.2.1. The Leavitt path algebra of the separated graph (E,C) with coefficients in
K is the ∗-algebra LK(E,C) with generators {v, e : v ∈ E0, e ∈ E1} subject to relations

(V) vv′ = δv,v′v and v = v∗ for all v, v′ ∈ E0

(E) r(e)e = es(e) = e for all e ∈ E1

(SCK1) e∗e′ = δe,e′s(e) for all e, e′ ∈ X and X ∈ C

(SCK2) v =
∑

e∈X ee
∗ for every X ∈ Cv.

Thus, we do not distinguish notationally between the edges or vertices of the graph and the
corresponding elements in the Leavitt path algebra. In case K = C is equipped with the usual
involution, we shall just write LK(E,C) = L(E,C), and we use the notation LK(E) if E is
trivially separated.

For clarity we explicitly mention the basic algebraic consequences that can be derived from
these axioms.

Proposition 2.2.2. If (E,C) is a separated graph, then

(a) e, e∗ are partial isometries, while ee∗, e∗e and v are projections

(b) ve = e∗v = 0 if v 6= r(e)

(c) ev = ve∗ = 0 if v 6= s(e)

(d) ef = 0 and f ∗e∗ = 0 if r(f) 6= s(e)

(e) ef ∗ = 0 if s(e) 6= s(f)

(f) ee∗ ≤ v if r(e) = v

for all v ∈ E0 and e, f ∈ E1.

Proof. For (a) we note that e = es(e) = ee∗e, hence e is a partial isometry and thus ee∗ and
e∗e are projections. v is clearly a projection, being both idempotent and self adjoint by (V).
(b) and (c) follows from

ve = vr(e)e = 0 for v 6= r(e) and ev = es(e)v = 0 for v 6= s(e),

while (d) is seen by

ef = es(e)r(f)f = 0

if r(f) 6= s(e). (e) is due to

ef ∗ = es(e)s(f)f ∗ = 0

and (f) follows from vee∗ = r(e)ee∗ = ee∗.
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Proposition 2.2.3. The assignment (E,C) 7→ LK(E,C) extends to a continuous functor
FSGr→ K-alg, such that

LK(ϕ)(v) = ϕ0(v) and LK(ϕ)(e) = ϕ1(e)

for all morphisms ϕ : (E,C) → (F,D), v ∈ E0 and e ∈ E1. In particular, LK(E,C) is the
direct limit of LK(F,D) over all finite complete subobjects (F,D).

Proof. First, we need check that LK(ϕ) is well defined — also this will bring meaning to the
definition of FSGr. Formally one first defines LK(ϕ) to be the ∗-homomorphism on the free
∗-algebra generated by E0 ∪ E1 acting as specified above, and then we must check that it
respects the defining relations of LK(E,C). For (V) we note that

LK(ϕ)(vv′) = ϕ0(v)ϕ0(v′) = δϕ0(v),ϕ0(v′)ϕ
0(v) = δv,v′ϕ

0(v) = LK(ϕ)(δv,v′v)

by injectivity of ϕ0. LK(ϕ) respects (E) simply because ϕ is a graph homomorphism, and for
(SCK1) we take e, e′ ∈ X ∈ Cv for some v ∈ E0. Then

LK(ϕ)(e∗e′) = ϕ1(e)∗ϕ1(e′) = δϕ1(e),ϕ1(e′)s(ϕ
1(e)) = δe,e′ϕ

0(s(e)) = LK(ϕ)(δe,e′s(e)),

where we have used injectivity of ϕ1 on X. Finally for (SCK2) we have

LK(ϕ)
(∑
e∈X

ee∗
)

=
∑
e∈X

ϕ1(e)ϕ1(e)∗ =
∑

e∈ϕ̃(X)

ee∗ = ϕ0(v)

for each X ∈ Cv, since ϕ1 is a bijection X → ϕ̃(X) and ϕ̃(X) ∈ Dϕ0(v). Having checked
that LK(ϕ) respects all the defining relations of LK(E,C), it drops to a ∗-homomorphism
LK(E,C) → LK(F,D). Functoriality is now perfectly clear, and it remains only to check
continuity.

Given a directed system

ϕi,j : (Ei, Ci)→ (Ej, Cj) , i ≤ j with i, j ∈ I

in FSGr with limit (E,C) and limit morphisms λi : (Ei, Ci) → (E,C), we shall prove that
LK(E,C) has the universal property of the limit of the directed system

LK(ϕi,j) : LK(Ei, Ci)→ LK(Ej, Cj) , i ≤ j with i, j ∈ I.

So for any i ∈ I, let µi : LK(Ei, C
i)→ A denote ∗-homomorphism such that µj = µi◦ϕi,j for all

i ≤ j. Then for any v ∈ E0, there is some i ∈ I and v′ ∈ E0
i such that LK(λi)(v

′) = λ0
i (v
′) = v.

Then we simply define µ(v) = µi(λi(v
′)) — clearly this is independent by the choice of i and

v′. We define µ similarly on element e, e∗ for e ∈ E1, and it straightforward to verify that µ
satisfies the defining relations of LK(E,C). Thus µ defines a ∗-homomorphism LK(E,C)→ A
such that µ ◦ λi = µi for all i ∈ I, and clearly µ is unique with this property. This finishes the
proof.

It turns out that the monoid V of idempotents over a Leavitt path algebra is very well under-
stood in terms of graph-theoretic data.

Theorem 2.2.4. There is a natural isomorphism of functors Γ: M ⇒ V ◦ LK.
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Proof. Given a finitely separated graph (E,C), we define Γ(E,C) : M(E,C)→ V(LK(E,C))
in the slightly ambiguous way Γ(E,C)(v) = [v] for v ∈ E0. This is well defined since

[v] =
∑
e∈X

[ee∗] =
∑
e∈X

[e∗e] =
∑
e∈X

[s(e)] = [s(X)]

for any X ∈ Cv. Γ is clearly a natural transformation, and since V is continuous, so is
V ◦ LK . Furthermore, since any object (E,C) of FSGr is a direct limit of its finite complete
subobjects, it suffices to prove that Γ(E,C) is an isomorphism for finite objects, and we
shall do this by induction over |C|. If |C| = 0 then E1 = ∅, and so M(E,C) = Z+(E0).
On the other hand, LK(E,C) = KE0

and V(KE0
) ∼= Z+(E0) by the isomorphism [v] 7→ v,

hence Γ(E,C) is indeed an isomorphism in this case. For the induction step, assume that
(E,C) is finite, take any X ∈ Cv for some v ∈ E0 and define F 0 = E0, F 1 = E1 \ X,
rF = r|F 1 , sF = s|F 1 and D = C \ {X}. Then (F,D) is a complete subobject of (E,C) with
|D| = |C| − 1, so by the induction hypothesis Γ(F,D) is an isomorphism. By definition of

M we have M(E,C) = M(F,D)
v∼s(X)

, which is mapped isomorphically onto V(LK(F,D))
[v]∼[s(X)]

by Γ(F,D).

Thus it remains only to prove that V(LK(E,C)) = V(LK(F,D))
[v]∼[s(X)]

. Letting A = LK(F,D),

P = Av and Q = ⊕e∈XAs(e)

are finitely generated projective left A-modules, and we claim that the Bergman algebra of A
with an isomorphism adjoint between P and Q is simply B = LK(E,C) (see Definition A.2.6).
In that case, the proof is complete by Theorem A.2.7. Surely B has an A-module structure
coming from the inclusion A ↪→ B, and we have canonical isomorphisms

B ⊗A P ∼= Bv and B ⊗A Q ∼=
⊕
e∈X

Bs(e).

We can define an isomorphism of B-modules µ : Bv →
⊕

e∈X Bs(e) by µ(b) = (be)e∈X , indeed
the homomorphism (be)e∈X 7→

∑
e∈X bee

∗ defines an inverse. Suppose that C is a unital K-
algebra with an A-module structure coming from a unital K-algebra homomorphism Φ: A→
C, and note that we have canonical isomorphisms of C-modules

C ⊗A P = C ⊗A Av ∼= CΦ(v) and C ⊗A Q = C ⊗A
(⊕

e∈X

As(e)

)
∼=
⊕
e∈X

CΦ(s(e)).

So rather than assuming we have an isomorphism of C-modules C⊗AP → C⊗AQ, we consider
an isomorphism of C-modules ϕ : CΦ(v)→

⊕
e∈X CΦ(s(e)). Our job is therefore to construct

a unital K-algebra homomorphism Ψ: B → C giving C a B-module structure, such that the
diagram

C ⊗B Bv C ⊗B
(⊕

e∈X Bs(e)
)

CΦ(v)
⊕

e∈X CΦ(s(e))

IdC ⊗ µ

ϕ

∼= ∼=

commutes. Since C is not involutive, we need to define elements Ψ(v),Ψ(e) and Ψ(e∗) for all
v ∈ E0 and e ∈ E1. Write ϕ = (ϕe)e∈X and

ϕ−1
e : CΦ(s(e)) ↪→

⊕
f∈X

CΦ(s(f))
ϕ−1

−−→ CΦ(v).
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Then we set

Ψ(v) = Φ(v), Ψ(e) =

 Φ(e) e /∈ X

ϕe(Φ(v)) e ∈ X
and Ψ(e∗) =

 Φ(e∗) e /∈ X

ϕ−1
e (Φ(s(e))) e ∈ X

.

We must check that these elements satisfy the defining relations of LK(E,C). (V) is trivial,
and so is (E) for element e and e∗ with e /∈ X. When e ∈ X we have

Ψ(r(e))Ψ(e) = Φ(r(e))ϕe(Φ(v)) = ϕe(Φ(v)) = Ψ(e),

and Ψ(e)Ψ(s(e)) = Ψ(e) is trivial. Likewise we have

Ψ(s(e))Ψ(e∗) = Φ(s(e))ϕ−1
e (Φ(s(e)) = ϕ−1

e (Φ(s(e))) = Ψ(e),

and Ψ(e∗)Ψ(r(e)) = Ψ(e∗) is trivial. (SCK1) and (SCK2) are trivial for Y ∈ C with Y 6= X,
and in case e, f ∈ X we have

Ψ(e∗)Ψ(f) = ϕ−1
e

(
Φ(s(e))

)
ϕf (Φ(v)) = ϕf

(
ϕ−1
e (Φ(s(e)))Φ(v)

)
= ϕf

(
ϕ−1
e (Φ(s(e)))

)
= δe,fΦ(s(e)) = δe,fΨ(s(e)),

thereby verifying (SCK1). Finally∑
e∈X

Ψ(e)Ψ(e∗) =
∑
e∈X

ϕe(Φ(v))ϕ−1
e (Φ(s(e))) =

∑
e∈X

ϕ−1
e

(
ϕe(Φ(v))Φ(s(e))

)
= ϕ−1

(
⊕e∈X ϕe(Φ(v))

)
= Φ(v) = Ψ(v),

which verifies (SCK2). Thus Ψ defines a K-algebra homomorphism, and it remains only to
check that the above diagram commutes. Take c ∈ C and b ∈ Bv. Going around the above
diagram clockwise, c ⊗ b is mapped to (cΨ(b)Ψ(e))e∈X , and going around counter-clockwise,
c⊗ b is mapped to cϕ(Ψ(b)). Thus we should verify that ϕe(Ψ(b)) = Ψ(b)Ψ(e) for e ∈ X. But
this is clearly the case as Ψ(b) = Ψ(bv) = Ψ(b)Ψ(v) and ϕe(Ψ(v)) = Ψ(e).

Excluding graphs with isolated vertices, we can translate the defining relations of the Leavitt
path algebra into relations only imposed on the final projections. In the following we use the
notation p(s) = ss∗.

Proposition 2.2.5. Given a finitely separated graph (E,C) without isolated vertices. Then
LK(E,C) is the universal ∗-algebra generated by a set of partial isometries e ∈ E1 satisfying
the following:

(PI1) p(e)p(f) = δe,fp(e) for all e, f ∈ X ∈ C.

(PI2) p(e∗) = p(f ∗) for all e, f ∈ E1 such that s(e) = s(f).

(PI3)
∑

e∈X p(e) =
∑

e∈Y p(e) for all X, Y ∈ Cv and v ∈ E0.

(PI4) Identify each vertex v ∈ E0 with a projection in LK(E,C) by the formulas

s(e) := p(e∗) and r(e) :=
∑
f∈[e]

p(f)

for e ∈ E1, and note that this is well-defined by (PI1)-(PI3). Then vw = 0 for
distinct v, w ∈ E0.
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Proof. One simply applies universality to obtain mutually inverse ∗-homomorphisms. The
assumption on isolated vertices is necessary, as such a vertex is not generated by any set of
edges.

It is not hard to see that E1 ⊂ LK(E,C) is not a tame set of partial isometries in general (see
for instance Example 6.1.4). So rather than attacking the full Leavitt path algebra, we will
actually be studying a certain quotient in which we force E1 to be tame.

Definition 2.2.6. Denote by U = U(E,C) the multiplicative semigroup of LK(E,C) gener-
ated by E1 ∪ (E1)∗ and write p(s) = ss∗ for s ∈ U . Then the abelianized Leavitt path algebra
associated with a separated graph (E,C) is the quotient

Lab
K (E,C) = LK(E,C)/J,

where J = J(E,C) is the ideal generated by all the commutators [p(s), p(t)] for s, t ∈ U . For
an element a ∈ LK(E,C) we denote by a the associated element in the quotient, and in case
K = C with the usual involution, we just write Lab

K (E,C) = Lab(E,C).

Proposition 2.2.7. The assignment (E,C) 7→ Lab
K (E,C) extends to a continuous functor

FSGr→ K-alg such that

Lab
K (ϕ)(v) = ϕ0(v) and Lab

K (ϕ)(e) = ϕ1(e)

for all morphisms ϕ : (E,C) → (F,D), v ∈ E0 and e ∈ E1. In particular, Lab
K (E,C) is the

direct limit of Lab
K (F,D) over all finite complete subobjects (F,D).

Proof. We start by checking that Lab
K (ϕ) is well-defined. Note that for s, t ∈ U(E,C) we have

LK(ϕ)(s) = s̃ ∈ U(F,D) and LK(ϕ)(t) = t̃ ∈ U(F,D), hence

LK(ϕ)([p(s), p(t)]) = [p(s̃), p(t̃)].

Thus LK(ϕ) drops to a ∗-homomorphism Lab
K (E,C) → Lab

K (F,D) acting as specified above.
It is clear from the definition, that the assignment is functorial. For continuity we consider a
directed system

ϕi,j : (Ei, Ci)→ (Ej, Cj) , i ≤ j with i, j ∈ I

in FSGr with limit (E,C) and limit morphisms λi : (Ei, Ci)→ (E,C). Suppose that for any
i ∈ I we have a ∗-homomorphism µi : LK(Ei, C

i) → A such that µj = µi ◦ ϕi,j for all i ≤ j.
Then from continuity of LK , there is a unique ∗-homomorphism µ′ : LK(E,C) → A making
the diagram

LK(Ei, Ci) Lab
K (Ei, Ci)

LK(E,C) Lab
K (E,C) A

LK(λi) Lab
K (λi)

µi

µ′
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commute for each i ∈ I, and we should simply check that it vanishes on the ideal J . Taking
s, t ∈ U(E,C) there are s̃, t̃ ∈ U(Ei, Ci) such that LK(λi)(s̃) = s and LK(λi)(t̃) = t for
sufficiently large i, and

µ′([p(s), p(t)]) = µ′ ◦ LK(λi)([p(s̃), p(t̃)]) = µi([p(s̃), p(t̃)]) = 0.

Thus we obtain a unique ∗-homomorphism µ : Lab
K (E,C) → A such that µ ◦ Lab

K (λi) = µi for
all i ∈ I.

Definition 2.2.8. Denote by F the free group on E1. A partial representation σ : F→ A on
a unital ∗-algebra is said to satisfy (PI1)-(PI4), if the partial isometries σ(e), e ∈ E1, satisfy
(PI1)-(PI4).

For finite graphs (E,C), we can give an alternative definition of Lab
K (E,C) in terms of universal

properties concerning partial representations satisfying certain relations.

Proposition 2.2.9. If (E,C) is a finite graph without isolated vertices, then Lab
K (E,C) is the

universal ∗-algebra for semi-saturated partial representations of F satisfying (PI1)-(PI4). That
is, there is a semi-saturated partial representation τ : F → Lab

K (E,C) satisfying (PI1)-(PI4),
and for any other semi-saturated partial representation σ : F→ A satisfying (PI1)-(PI4), there
is a unique ∗-homomorphism ϕ : Lab

K (E,C)→ A such that ϕ ◦ τ = σ.

Proof. By construction, [p(s), p(t)] = 0 for all s, t ∈ 〈E1 ∪ E1∗〉, so from Proposition 1.2.13
we obtain a semi-saturated partial representation τ : F → Lab

K (E,C) satisfying τ(e) = e for
all e ∈ E1. Now, given a semi-saturated partial representation τ : F → A satisfying (PI1)-
(PI4), we obtain a ∗-homomorphism ϕ : LK(E,C) → A with ϕ(e) = σ(e) for all e ∈ E1 by
Proposition 2.2.5. Using Proposition 1.2.13, we observe that

ϕ([p(s), p(t)]) = 0

for all s, t ∈ 〈E1 ∪ (E1)∗〉, hence ϕ drops to a ∗-homomorphism Lab
K (E,C) → A satisfying

ϕ(τ(e)) = ϕ(e) = σ(e) for all e ∈ E1. Since the τ(e)’s generate Lab
K (E,C), ϕ is unique with

this property. Moreover, since both ϕ ◦ τ and σ are semi-saturated, and they agree on E1, we
must in fact have ϕ ◦ τ = σ. This finishes the proof.
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2.3 Graph C∗-algebras

Definition 2.3.1. The graph C∗-algebra C∗(E,C) associated with a separated graph (E,C)
is the universal C∗-algebra generated by elements {v, e | v ∈ E0, e ∈ E1} satisfying (V),(E),
(SCK1) and (SCK2). That is, C∗(E,C) is the universal enveloping C∗-algebra of L(E,C), so
for any ∗-homomorphism L(E,C)→ A into a C∗-algebraA, there is a unique ∗-homomorphism
C∗(E,C)→ A making the diagram

L(E,C) C∗(E,C)

A

commute.

In particular, we obtain the following corollaries from the prior results on Leavitt path algebras.

Corollary 2.3.2. The assignment (E,C) 7→ C∗(E,C) extends to a continuous functor

C∗ : FSGr→ C∗-alg.

In particular, C∗(E,C) is the direct limit of C∗(F,D) over all finite complete subobjects (F,D)
of (E,C).

Proof. This is immediate by Proposition 2.2.3 with K = C and universality of C∗(E,C).

Corollary 2.3.3. Given a finitely separated graph without isolated vertices. Then C∗(E,C) is
the universal C∗-algebra generated by a set of partial isometries e ∈ E1 satisfying (PI1)-(PI4).

Proof. This is immediate by Proposition 2.2.5 with K = C and universality of C∗(E,C).

The following theorem provides deep information about the involved algebras and should be
mentioned, even though we will never make any real use of it. Indeed, we shall only apply it
once in the main construction, and in that case a much weaker result would also do the trick.
The proof is fairly comprehensive and is skipped in order to maintain focus.

Theorem 2.3.4. Suppose that (E,C) is a finitely separated graph. Then the canonical ∗-
homomorphism L(E,C)→ C∗(E,C) is injective.

Proof. See [6, Theorem 3.8(1)].

As for the purely algebraic case, our primary interest is not the full graph C∗-algebra, but
rather the quotient where all the commutators [p(s), p(t)] have been annihilated.

Definition 2.3.5. Denote by U = U(E,C) the semigroup in C∗(E,C) generated by E1∪(E1)∗.
Then the abelianized graph C∗-algebra O(E,C) associated with the separated graph (E,C) is
the quotient

O(E,C) = C∗(E,C)/J ,

where J is the ideal generated by all the commutators [p(s), p(t)] for s, t ∈ U . Clearly, O(E,C)
is the universal enveloping C∗-algebra of Lab

C (E,C), and for a ∈ C∗(E,C) we denote by a the
associated element in O(E,C).
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Applying universality, we obtain the following corollaries from the results about Lab
K (E,C).

Corollary 2.3.6. The assignment (E,C) 7→ O(E,C) extends to a continuous functor

O : FSGr→ C∗-alg.

In particular, O(E,C) is the direct limit of O(F,D) over all finite complete subobjects (F,D).

Proof. This is immediate by Proposition 2.2.7 with K = C and universality of O(E,C).

Corollary 2.3.7. If (E,C) is a finite graph without isolated vertices, then O(E,C) is the
universal C∗-algebra for semi-saturated partial representations satisfying (PI1)-(PI4). That
is, there is a semi-saturated partial representation

τ : F→ O(E,C)

satisfying (PI1)-(PI4), such that for any semi-saturated partial representation σ : F→ A into
a C∗-algebra A satisfying (PI1)-(PI4), there is a unique ∗-homomorphism ϕ : O(E,C) → A
such that σ = ϕ ◦ τ .

Proof. This is immediate by Proposition 2.2.9 with K = C and universality of O(E,C).
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for all s, t ∈ G

2.4 A dynamical interpretation

In this section we shall obtain a description of Lab
K (E,C) and O(E,C) as crossed products of

commutative algebras with the free group F on E1.

Definition 2.4.1. A partial (E,C)-preaction α on a commutative, unital ∗-algebra A is a
set of projections {pα(s) | s ∈ E1 ∪ (E1)−1} satisfying (PI1)-(PI4) when pα(e∗) := pα(e−1),
along with isomorphisms αe : pα(e−1)A→ pα(e)A for e ∈ E1. Given partial (E,C)-preactions
α and β on unital, commutative ∗-algebras A and B, a ∗-homomorphism ϕ : A→ B is called
equivariant if ϕ(pα(s)) = pβ(s) for all s ∈ E1 ∪ (E1)−1, and the diagram

pα(e−1)A pβ(e−1)B

pα(e)A pβ(e)B

ϕ

ϕ

αe βe

commutes for all e ∈ E1. A commutative, unital ∗-algebra A with a partial (E,C)-preaction
is called universal for partial (E,C)-preactions, if given any partial (E,C)-preaction on a
unital, commutative ∗-algebra B, there is a unique equivariant ∗-homomorphism ϕ : A → B.
Finally, a partial (E,C)-action is the canonical extension of a partial (E,C)-preaction α on
A to a partial action F y A given by Lemma 1.1.7. Notationally, we shall not distinguish
between the partial preactions and their induced partial actions, and replacing ”∗-algebra”
with ”C∗-algebra” in the above definition, one obtains the C∗-algebraic analogue.

While the above definition might seem slightly artificial, the lemma below provides us with
some well known examples.

Lemma 2.4.2. If σ : F→ A is a semi-saturated partial representation satisfying (PI1)-(PI4),
then ασ is a partial (E,C)-action.

Proof. Clearly, ασ restricts to a partial (E,C)-preaction, and by Proposition 1.2.15 we observe
that ασ is the canonical extension to a partial (E,C)-action.

Definition 2.4.3 (The canonical partial (E,C)-action). Denote by τ the canonical semi-
saturated partial representation

F→ Lab
K (E,C) or F→ O(E,C).

From Stone duality there is a zero-dimensional compact metrizable space Ω(E,C), such that
the ∗-algebra, respectively, C∗-algebra generated by the final projections ετ (s) = τ(s)τ(s)∗ is
isomorphic to CK(Ω(E,C)), respectively, C(Ω(E,C)). Thus α = ατ defines partial (E,C)-
actions

F y CK(Ω(E,C)) and F y C(Ω(E,C)).

Each of these will be referred to as the canonical partial (E,C)-action.
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Lemma 2.4.4. Let α denote a partial (E,C)-action on a commutative, unital ∗-algebra A.
Then there are projections pα(s) in A such that Ds = pα(s)A for every s ∈ F, and the canonical
partial representation σ : F→ AoαF given by σ(s) = pα(s)δs is semi-saturated. Moreover, if β
is a partial (E,C)-action on B and ϕ : A→ B is equivariant in the sense of Definition 2.4.1,
then ϕ(pα(s)) = pβ(s) for all s ∈ F, and ϕ is equivariant in the usual sense. In particular, a
partial (E,C)-preaction is universal for partial (E,C)-preactions if and only if its extension
is universal for partial (E,C)-actions.

Proof. It is clear from the construction of α that each ideal Ds is unital. If |st| = |s| + |t|,
then obviously Dst ⊂ Ds, hence pα(st) ≤ pα(s). We deduce that

σ(s)σ(t) = (pα(s)δs) · (pα(t)δt) = pα(s)pα(st)δst = pα(st)δst = σ(st),

so σ is indeed semi-saturated. Now let

ϕ : (A,α)→ (B, β)

denote an equivariant ∗-homomorphism in the sense of Definition 2.4.1. Then we shall prove
that pα(s) = pβ(s) for any s ∈ F, and we proceed by induction over the length of s. The
induction start holds by assumption, so assume that the claim holds for words of length n.
Assuming that |s| = n+ 1, we write s = s1sn with |s1| = 1 and |sn| = n. Then

ϕ(pα(s)) = ϕ
(
αs1(pα(s−1

1 )pα(sn))
)

= βs1

(
ϕ(pα(s−1

1 )pα(sn))
)

= βs1(pβ(s−1
1 )pβ(sn)) = pβ(s1sn) = pβ(s).

Equivariance is now completely trivial.

Theorem 2.4.5. Given a finitely separated graph (E,C), denote by F the free group on E1.
If σ : F → A is universal for semi-saturated partial representations satisfying (PI1)-(PI4),
then ασ : F y B is a universal partial (E,C)-action on the commutative, unital ∗-algebra B
generated by the εσ(s)’s, and A ∼= Boασ F. Conversely, if A = Boα F where α is a universal
partial (E,C)-action on a commutative, unital ∗-algebra, then σα : F → A is universal for
semi-saturated partial representations satisfying (PI1)-(PI4).

Proof. Assume first that (A, σ) is universal with respect to semi-saturated partial representa-
tions satisfying (PI1)-(PI4), and let B denote the ∗-subalgebra generated by all the final pro-
jections ε(s) = σ(s)σ(s)∗. From Lemma 2.4.2 we obtain the partial (E,C)-action ασ : F y B,
and we claim that in fact A ∼= B oασ F. First of all, by Lemma 1.2.14 there is a partial
representation τ = σασ : F→ B oασ F, given by τ(s) = ε(s)δs for each s ∈ F. Obviously, τ is
semi-saturated and satisfies (PI1)-(PI4), because σ have these properties. From universality
of (A, σ), we obtain a ∗-homomorphism ϕ : A → B oασ F satisfying ϕ(σ(s)) = τ(s) = ε(s)δs.
On the other hand, from Corollary 1.2.18 we have a ∗-homomorphism ψ : B oασ F → A sat-
isfying ψ(ε(s)δs) = ε(s)σ(s) = σ(s). Now ψ ◦ ϕ(σ(s)) = σ(s), so ψ ◦ ϕ = Id by uniqueness.
Likewise, ϕ◦ψ(ε(s)δs) = ε(s)δs, and since the ε(s)δs’s generate Boασ F, ϕ◦ψ = Id as well. It
remains to prove that ασ is universal for partial (E,C)-actions, so let β denote another partial
(E,C)-action on a commutative, unital ∗-algebra B′. The canonical partial representation
ρ : F→ B′ oβ F is semi-saturated due to Lemma 2.4.4, so by the first part of the proof there
is a unique ∗-homomorphism ϕ : B oασ F→ B′oβ F such that ϕ(τ(s)) = ϕ(ε(s)δs) = pβ(s)δs.
We observe that

ϕ(ε(s)δ1) = ϕ(τ(s))ϕ(τ(s))∗ = (pβ(s)δs) · (pβ(s)δs)
∗ = pβ(s)δ1
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for all s ∈ F, so in particular it restricts to a ∗-homomorphism B → B′. Equivariance follows
from the calculation

ϕ(ασs (b)δ1) = ϕ(σ(s)bσ(s)∗δ1) = ϕ(τ(s) · (bδ1) · τ(s)∗)

= ρ(s)ϕ(bδ1)ρ(s)∗ = α
σβ
s (ϕ(b))δ1 = βs(ϕ(b))δ1

for all s ∈ F and b ∈ pασ(s−1)B, where we have made use of Lemma 1.2.16. Clearly, ϕ is
unique with these properties.

Now assume that A = BoαF for a universal partial (E,C)-action α on a unital, commutative
∗-algebra B and let σ = σα : F → B oα F denote the canonical partial representation, which
is semi-saturated due to Lemma 2.4.4. Obviously, σ satisfies (PI1)-(PI4) since α is a partial
(E,C)-action. Letting ρ : F→ A′ be a semi-saturated partial representation satisfying (PI1)-
(PI4), denote by B′ the commutative, unital ∗-algebra generated by all the final projections
ερ(s) and write β = αρ for the induced partial (E,C)-action on B′. Then by assumption, there
is a unique equivariant ∗-homomorphism ϕ : B → B′, and it extends to a ∗-homomorphism
ϕ̃ : B oα F → B′ oβ F by Proposition 1.2.8. Composing this with the ∗-homomorphism
ι× ρ : B′oβ F→ A′ of Corollary 1.2.18, we obtain a ∗-homomorphism ψ : Boα F→ A′ acting
by ψ(aδs) = ϕ(a)ρ(s) for a ∈ Ds−1 . In particular we have ψ(σ(s)) = ρ(s) for all s ∈ F, and as
the σ(s)’s generate A, ψ is unique with this property.

In a completely similar manner, we obtain the C∗-analogue.

Theorem 2.4.6. Given a finitely separated graph (E,C), denote by F the free group on E1.
If σ : F → A is universal for partial representations satisfying (PI1)-(PI4), then ασ : F y B
is a universal partial (E,C)-action on the commutative, unital C∗-algebra B generated by the
εσ(s)’s, and A ∼= B oασ F. Conversely, if A = B oα F where α is a universal partial (E,C)-
action on a commutative, unital C∗-algebra, then σα : F → A is universal for semi-saturated
partial representations satisfying (PI1)-(PI4).

From the above general facts, we now obtain the main results of this section:

Corollary 2.4.7. Assume that (E,C) is a finite graph without isolated vertices. Then the
canonical partial (E,C)-action α : F y CK(Ω(E,C)) is universal and

Lab
K (E,C) ∼= CK(Ω(E,C)) oα F.

Proof. This is immediate from Proposition 2.2.9 and Theorem 2.4.5.

Corollary 2.4.8. Assume that (E,C) is a finite graph without isolated vertices. Then the
canonical partial (E,C)-action α : F y C(Ω(E,C)) is universal and

O(E,C) ∼= C(Ω(E,C)) oα F.

Proof. This is immediate from Corollary 2.3.7 and Theorem 2.4.6.

In the C∗-case we can apply duality to obtain another description of a partial (E,C)-action.

Definition 2.4.9. A partial (E,C)-preaction θ on a compact Hausdorff space Ω is a family
of clopen subsets {Ωv | v ∈ E0} such that

Ω =
⊔
v∈E0

Ωv,
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and a family of clopen subsets {Ωe | e ∈ r−1(v)} for all v ∈ E0, such that

Ωv =
⊔
e∈X

Ωe

for all X ∈ Cv, together with homeomorphisms θe : Ωs(e) → Ωe for all e ∈ E1. If (Ω′, θ′) is
another such pair, a continuous map f : Ω′ → Ω is called equivariant if f(Ω′v) ⊂ Ωv for all
v ∈ E0, f(Ω′e) ⊂ Ωe for all e ∈ E1 and f(θ′e(x)) = θe(f(x)) for all x ∈ Ω′s(e). Also, θ is called

universal if, given another partial (E,C)-preaction θ′ on Ω′, there is a unique equivariant map
(Ω′, θ′) → (Ω, θ). Finally, a partial (E,C)-action is the canonical extension of the θe’s to a
partial action F y Ω, and we shall refer to the pair (Ω, θ) as an (E,C)-dynamical system.

It is easily seen that the above definitions correspond to the one for C∗-algebras under the con-
travariant equivalence of unital commutative C∗-algebras and compact Hausdorff spaces. In
particular, there is a canonical partial (E,C)-action θ : F y Ω(E,C). We obtain the following
corollaries.

Corollary 2.4.10. A continuous map of (E,C)-dynamical systems is equivariant in the sense
of Definition 2.4.9, if and only if it is equivariant in the usual sense.

Proof. This is immediate by Lemma 2.4.4.

Corollary 2.4.11. Assume that (E,C) is a finite graph without isolated vertices. Then the
canonical partial (E,C)-action on Ω(E,C) is universal.

Proof. This is immediate by Corollary 2.4.8.



Chapter 3

The main construction

In this chapter we shall introduce a sequence of finite bipartite graphs (En, C
n) to every

finite bipartite graph (E,C). On the level of algebras and C∗-algebras, they will provide an
important approximation result (Theorem 3.3.11 and Theorem 3.3.12) from which it will follow
that V(LK(E,C))→ V(Lab

K (E,C)) is a refinement. We also produce an explicit description of
the space Ω(E,C) associated to (E,C), which will be vital to us in Chapter 4.

3.1 Multiresolutions

In order to define the graphs (En, C
n), we first need to define and investigate the properties

of a graph-theoretic construction, which we will call a multiresolution.

Definition 3.1.1. Define a relation 1 on the free abelian monoid Z+(E0) as follows: a 1 b
if there are v1, . . . , vk ∈ E0 \ Source(E) and vk+1, . . . , vn ∈ E0 such that

a =
k∑
i=1

vi +
n∑

i=k+1

vi and b =
k∑
i=1

s(Xi) +
n∑

i=k+1

vi

for some Xi ∈ Cvi , where s(X) =
∑

e∈X s(e). Repetitions of the same vertices in the above
sums are of course allowed. Taking k = 0 it follows that a 1 a, and we obviously have

a1  1 b1 and a2  1 b2 ⇒ a1 + a2  1 b1 + b2.

However, besides these properties,  1 does not behave particularly well.

Definition 3.1.2 (Assumption (∗)). A separated graph (E,C) is said to satisfy Assumption
(∗) at v ∈ E0, if for any X, Y ∈ Cv there is some γ ∈ Z+(E0) such that s(X)  1 γ
and s(Y )  1 γ. Note that if |Cv| ≤ 1, then the assumption is vacuously satisfied at v.
Finally, if (E,C) satisfies Assumption (∗) at every vertex, then (E,C) is simply said to satisfy
Assumption (∗).

The importance of this property is witnessed by the lemma just below, which will provide the
main motivation for the multiresolution construction. However, we skip the fairly comprehen-
sive proof (see Remark 4.1.12 for a reason why).

Lemma 3.1.3. Let (E,C) be a finitely separated graph. If (E,C) satisfies Assumption (∗),
then M(E,C) is a refinement monoid (see Definition A.1.15).
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Proof. See [5, Theorem 5.15].

Definition 3.1.4. Given a separated graph (E,C) and a vertex v such that |r−1(v)| < ∞,
write Cv = {X1, . . . , Xk}. Then the multiresolution (Ev, C

v) of (E,C) at v is the separated
graph defined as follows: Set

E0
v = E0 t Λ0

v with Λ0
v := {v(x1, . . . , xk) | xi ∈ Xi, i = 1, . . . , k}

and
E1
v = E1 t Λ1

v with Λ1
v := {exi(x1, . . . , x̂i, . . . , xk) | xj ∈ Xj, i = 1, . . . , k}.

Now extend r, s to E1
v by

r
(
exi(x1, . . . , x̂i, . . . , xk)

)
= s(xi) and s

(
exi(x1, . . . , x̂i, . . . , xk)

)
= v(x1, . . . , xk),

and note that this makes the new vertices into sources. Finally, given any w ∈ E0 we extend
the separation by letting

X(xi) = {exi(x1, . . . , x̂i, . . . , xk) | xj ∈ Xj, j 6= i}

for xi ∈ Xi and

(Cv)w = Cw t {X(xi) | xi ∈ Xi, s(xi) = w, i = 1, . . . , k}.

Example 3.1.5. Given the graph

2

we can consider the multiresolution at the right vertex. Since the separation consists of two
subsets with 2 and 1 edges, we should add n = 2 · 1 = 2 vertices. Furthermore, for each of the
red edges we should add n/2 = 1 edge, and for the blue we should add n/1 = 2 edges. The
result is as follows

2

.

Definition 3.1.6. Given a separated graph (E,C) and a set of vertices V such that |r−1(v)| <
∞ for all v ∈ V , we can form a simultaneous multiresolution at all v ∈ V . To be more precise,
we set E0

V := E0 t
⊔
v∈V Λ0

v and E1
V := E1 t

⊔
v∈V Λ1

v and extend r and s to EV just as above.
As for the multiresolution at a single vertex, all the new vertices are sources. Finally, we
separate EV by letting

(CV )w = Cw t
⊔
v∈V

{X(xvi ) | xvi ∈ Xv
i , s(x

v
i ) = w, i = 1, . . . , kv}

for each w ∈ E0, thereby defining another separated graph (EV , C
V ) known as the multires-

olution at V . We shall only use the v-superscripts, when several vertices are in play at once.
Finally, note that the inclusion E ↪→ EV gives a morphism in FSGr.
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The multiresolution is constructed precisely such that the following proposition holds. The
reader should note that while the requirement s(r−1(V )) ∩ V = ∅ was not included in [3], it
certainly is necessary.

Proposition 3.1.7. Let V be a set of vertices such that s(r−1(V ))∩ V = ∅ and |r−1(v)| <∞
for all v ∈ V . Then the multiresolution (EV , C

V ) satisfies Assumption (∗) at all v ∈ V .

Proof. Note that the assumption s(r−1(V ))∩V = ∅ implies that (CV )v = Cv for every v ∈ V .
Now let v ∈ V and write Cv = {X1, . . . , Xkv}. Then we have

s(xi) 1 s(X(xi)) =
∑
xj∈Xj
j 6=i

v(x1, . . . , xkv)

for any xi ∈ Xi, hence

s(Xi) 1

∑
xi∈Xi

s(X(xi)) =
∑
xj∈Xj

j=1,...,kv

v(x1, . . . , xkv) =: γ

for any i = 1, . . . , kv. We thus obtain Assumption (∗) at v ∈ V .

Finally, we prove that multiresolutions act nicely on the level of monoids.

Lemma 3.1.8. Let (E,C) be a separated graph with a set of vertices V such that |r−1(v)| <∞
for all v ∈ V , and let ι denote the inclusion (E,C)→ (EV , C

V ). Then

M(ι) : M(E,C)→M(EV , C
V )

is a unitary embedding (see Definition A.1.10).

Proof. For v ∈ V we write Cv = {Xv
1 , . . . , X

v
kv
} and let M denote the quotient of the free

abelian monoid on generators⊔
v∈V

i=1,...,kv

Xv
i by relations

∑
xvi ∈Xv

i

xvi =
∑
xvj∈Xv

j

xvj

for every v ∈ V and 1 ≤ i, j ≤ kv. Note that M is canonically isomorphic to
⊕

v∈V Mv, where
Mv is the monoid on generators⊔

v∈V
i=1,...,kv

Xv
i by relations

∑
xvi ∈Xv

i

xvi =
∑
xvj∈Xv

j

xvj

for 1 ≤ i, j ≤ kv and a particular v ∈ V . Letting Sv =
∏kv

i=1X
v
i , Svi = Xv

1× . . .×X̂v
i × . . .×Xv

kv

and S =
⊔
v∈V S

v, there is a canonical isomorphism of monoids Z+(S) ∼=
⊕

v∈V Z+(Sv). Now
it follows by Lemma A.1.13 that there are unitary embeddings ψv : Mv → Z+(Sv) given by

ψv(x
v
i ) =

∑
(x1,...,x̂vi ,...,x

v
kv

)∈Svi

(xv1, . . . , x
v
kv)

for all xvi ∈ Xv
i . Thus

⊕
v∈V ψv defines a unitary embedding

⊕
v∈V Mv →

⊕
v∈V Z+(Sv), and

under the canonical isomorphisms, this corresponds to a unitary embedding ψ : M → Z+(S)
acting on xvi as specified above. Also consider the homomorphisms

η : M →M(E,C) and ν : Z+(S)→M(EV , C
V )
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acting by
η(xvi ) = s(xvi ) and ν(xu1 , . . . , x

u
ku) = v(xu1 , . . . , x

u
ku),

and note that η is well defined by definition of M(E,C). It is straightforward to verify that
the diagram

M Z+(S)

M(E,C) M(EV , C
V )

ψ

M(ι)

η ν

commutes — in fact, we claim that it is a pushout diagram in the category of abelian monoids.
To see this, assume that α and β are homomorphisms making the diagram

M Z+(S)

M(E,C) M(EV , C
V )

N

ψ

M(ι)

η ν

α

β

commute, and define a homomorphism ρ : M(EV , C
V )→ N by

ρ(v) =

 α(v) if v ∈ E0

β(xu1 , . . . , x
u
ku

) if v = v(xu1 , . . . , x
u
ku

)
.

Since the vertices in E0
V \ E0 are all sources, we only need to check that ρ is well defined on

v ∈ E0. But for any X ∈ Cv, we simply have α(v) = α(s(X)) by definition of M(E,C).
Evidently ρ ◦M(ι) = α as well as ρ ◦ ν = β, and clearly ρ is the unique homomorphism with
this property. It finally follows from Lemma A.1.14 that M(ι) is a unitary embedding.

We shall record a consequence of the above proof for future references:

Corollary 3.1.9. Let (E,C) be a separated graph with a set of vertices V , such that |r−1(v)| <
∞ for all v ∈ V . If ϕ : M(E,C) → N is a homomorphism, and for all u ∈ V there is a
refinement {a(xu1 , . . . , x

u
ku

) | xui ∈ Xu
i } of the equation system (see Definition A.1.15)∑

xu1∈Xu
1

ϕ(s(xu1)) =
∑
xu2∈Xu

2

ϕ(s(xu2)) = . . . =
∑

xuku∈X
u
ku

ϕ(s(xuku)),

then there is a unique homomorphism ϕ̃ : M(EV , C
V )→ N such that

ϕ̃(v) = ϕ(v) for v ∈ E0 and ϕ̃(v(xu1 , . . . , x
u
ku)) = a(xu1 , . . . , x

u
ku).

In particular, ϕ̃ ◦M(ι) = ϕ.
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Proof. Apply the same notation as in the proof of Lemma 3.1.8, and define a homomorphism
β : Z+(S)→ N by

β(xu1 , . . . , x
u
ku) = a(xu1 , . . . , x

u
ku)

for all u ∈ V and xui ∈ Xu
i . Then by the refinement property we have

ϕ ◦ η(xui ) = ϕ(s(xui )) =
∑
j 6=i

∑
xuj ∈Xu

j

a(xu1 , . . . , x
u
ku) = β ◦ ψ(xui ),

hence there is a unique homomorphism ϕ̃ : M(EV , C
v)→ N satisfying ϕ̃(v) = ϕ(v) for v ∈ E0

and
ϕ̃(v(xu1 , . . . , x

u
ku)) = ϕ̃(ν(xu1 , . . . , x

u
ku)) = β(xu1 , . . . , x

u
ku) = a(xu1 , . . . , x

u
ku).
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3.2 Bipartite graphs

Definition 3.2.1. A separated graph (E,C) is called bipartite if E0 = E0,0 t E0,1 with
s(E1) ⊂ E0,1 and r(E1) ⊂ E0,0. However, in order to avoid trivialities we shall always assume
that s(E1) = E0,1 and r(E1) = E0,0, i.e. that E does not have any isolated vertices.

The following two propositions show that bipartiteness is not a very restrictive assumption.

Proposition 3.2.2. Let (E,C) denote a separated graph. Then there is a bipartite separated
graph (Ẽ, C̃) such that

LK(Ẽ, C̃) ∼= M2(LK(E,C)) , C∗(Ẽ, C̃) ∼= M2(C∗(E,C))

and

Lab
K (Ẽ, C̃) ∼= M2(Lab

K (E,C)) , O(Ẽ, C̃) ∼= M2(O(E,C)).

Moreover, if (E,C) is finite, then so is (Ẽ, C̃).

Proof. We start by proving the claim for LK(E,C). The graph (Ẽ, C̃) will be obtained by
doubling up the vertices of E and adding some appropriate new edges. Specifically, define
Ẽ0 = Ẽ0,0 t Ẽ0,1, where

Ẽ0,0 = {v0 | v ∈ E0} and Ẽ0,1 = {v1 | v ∈ E0},

and set

Ẽ1 = {fv | v ∈ E0} ∪ {e0 | e ∈ E1}

with

r̃(fv) = v0, s̃(fv) = v1, r̃(e0) = r(e)0 and s̃(e0) = s(e)1.

For X ∈ Cv we define X0 = {e0 | e ∈ X} and then separate Ẽ by

C̃v0 = {X0, {fv} | X ∈ Cv}.

Note that for a finite complete subobject(F,D) of (E,C), (F̃ , D̃) is a finite complete subobject
of (Ẽ, C̃). Moreover, we can obtain arbitrarily big finite complete subobjects in this way. Thus,
assuming the claim holds for finite graphs (and the appropriate diagram commutes), for any
graph (E,C) we have

M2(LK(E,C)) ∼= M2(lim−→LK(F,D)) ∼= lim−→M2(LK(F,D)) ∼= lim−→LK(F̃ , D̃) ∼= LK(Ẽ, C̃),

where the direct limit is taken over all finite complete subobject (F,D) of (E,C). We may
therefore assume that (E,C) is finite. Now write ei,j with 1 ≤ i, j ≤ 2 for the (i, j)’th standard
matrix unit in M2(K) and define ϕ : LK(Ẽ, C̃)→M2(LK(E,C)) by

ϕ(vi) = v ⊗ ei+1,i+1, ϕ(fv) = v ⊗ e1,2 and ϕ(e0) = e⊗ e1,2

for v ∈ E0, e ∈ E1 and i = 0, 1. It is straightforward to check that ϕ respects the defining
relations of LK(Ẽ, C̃). In order to construct an inverse, we define ψ1 : M2(K)→ LK(Ẽ, C̃) by

ψ1(e1,2) =
∑
v∈E0

fv, ψ1(e2,1) =
∑
v∈E0

f ∗v , ψ1(e1,1) =
∑
v∈E0

v0 and ψ(e2,2) =
∑
v∈E0

v1.
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It is clear that these elements form matrix units, hence ψ1 is a well defined ∗-homomorphism.
Now define ψ2 : LK(E,C)→ LK(Ẽ, C̃) by

ψ2(v) = v0 + v1 and ψ2(e) = e0f
∗
s(e) + f ∗r(e)e0.

It is not hard to check that ψ2 respects the defining relations of LK(E,C), and that the images
of ψ1 and ψ2 commute. Now we obtain a ∗-homomorphism

ψ = ψ1 × ψ2 : M2(LK(E,C))→ LK(Ẽ, C̃)

given by ψ(a⊗ b) = ψ1(a)ψ2(b). Surely, ψ provides us with an inverse of ϕ, thereby finishing
the proof for LK(E,C). For finite (E,C), universality now proves the claim for C∗(E,C), and
the general case follows by taking limits.

In order to prove the claim for Lab
K (E,C), we may once again assume that (E,C) is finite.

Define U and J as in Definition 2.2.6, and also write Ũ = U(Ẽ, C̃) and J̃ = J(Ẽ, C̃). Then
we need to show that ϕ(J̃) = M2(J). Surely ϕ(p(s̃)) is of the formp(s) 0

0 0

 or

0 0

0 p(s)


for some s ∈ U , hence ϕ(J̃) ⊂M2(J). On the other hand, since ψ(e⊗ e1,1) = e0f

∗
s(e) for every

e ∈ E1, we see that ψ([p(s), p(t)]⊗ e1,1) ∈ J̃ for each s, t ∈ U . We deduce that ψ(M2(J)) ⊂ J̃ ,
hence M2(J) = ϕ(J̃) and therefore

Lab
K (Ẽ, C̃) = LK(Ẽ, C̃)/J̃ ∼= M2(LK(E,C))/M2(J) ∼= M2(Lab

K (E,C)).

The claim finally follows for O(E,C) as well by universality.

Proposition 3.2.3. If M is any finitely generated, conical abelian monoid, then there is a
finite bipartite separated graph (E,C), such that M ∼= M(E,C).

Proof. By Corollary A.1.9 we have a finite presentation 〈X | {rj}j∈J〉 with

rj :
∑
x∈X

mx,jx =
∑
x∈X

nx,jx,

such that
∑

x∈X mx,j,
∑

x∈X nx,j > 0 for all j ∈ J and
∑

j∈J mx,j + nx,j > 0 for all x ∈ X.
Now, define a finite bipartite graph (E,C) by

• E0 = E0,0 t E0,1 with E0,0 = {uj}j∈J and E0,1 = {vx}x∈X ,

• E1 =
⊔
x∈X,j∈J{eix,j | i = 1, . . . ,mx,j + nx,j},

• r(eix,j) = uj and s(eix,j) = vx for all x ∈ X, j ∈ J and i = 1, . . . ,mx,j + nx,j,

• Cuj =
{⊔

x∈X
⊔mx,j
i=1 {eix,j},

⊔
x∈X

⊔mx,j+nx,j
i=mx,j+1 {eix,j}

}
for all j ∈ J .

Then M ∼= M(E,C) is immediate from the assumption that
∑

x∈X mx,j,
∑

x∈X nx,j > 0 for all
j ∈ J . Finally, note that the condition

∑n
j=1mx,j + nx,j > 0 precisely implies r(E1) = E0,0

and s(E1) = E0,1.
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Construction 3.2.4. Given a finite bipartite separated graph (E,C), we shall construct an
increasing sequence of finite separated graphs (Fi, D

i) by first setting (F0, D
0) = (E,C) and

then defining the others inductively. Assume that

(F0, D
0) ⊂ (F1, D

1) ⊂ . . . ⊂ (Fn, D
n)

is an increasing sequence of finite bipartite graphs such that

• F 0
i =

⊔i+1
j=0 F

0,j for all 0 ≤ i ≤ n,

• F 1
i =

⊔i
j=0 F

1,j for all 0 ≤ i ≤ n,

• r(F 1,j) = F 0,j and s(F 1,j) = F 0,j+1 for all 0 ≤ j ≤ n,

• (Fi, D
i) satisfies Assumption (∗) at all v ∈

⊔i−1
j=0 F

0,j.

Then we define Vn = F 0,n and let (Fn+1, D
n+1) be the multiresolution of (Fn, D

n) at Vn. Denote
by F 0,n+2 and F 1,n+1 the added vertices and the added edges, respectively. By definition of
the multiresolution we have r(F 1,n+1) = s(r−1(Vn)) = F 0,n+1 and s(F 1,n+1) = F 0,n+2. Since
no edges into

⊔n−1
j=0 F

0,j have been added, (Fn+1, D
n+1) still satisfies Assumption (∗) at these

vertices. Finally, since s(r−1(Vn))∩Vn = ∅, it follows from Proposition 3.1.7 that (Fn+1, D
n+1)

also satisfies Assumption (∗) at Vn. This finishes the inductive construction. We can visualize
the construction as below

F 0,0
F 1,0

F 0,1
F 1,1

F 0,2
F 1,2

· · ·
.

Finally, define finite bipartite separated graphs (En, C
n) by

• E0
n = E0,0

n t E0,1
n with E0,0

n = F 0,n and E0,1
n = F 0,n+1

• E1
n = F 1,n

• range and source maps are restrictions of the range and source maps of Fn

• Cn
v = Dn

v for all v ∈ E0,0
n .

The graph En can be depicted as

F 0,n
F 1,n

F 0,n+1

and we shall refer to {(En, Cn)}n as the canonical sequence of finite bipartite graphs associated
to (E,C).

Corollary 3.2.5. Consider the separated graph (F∞, D
∞) := lim−→n

(Fn, D
n) = (

⋃
n Fn,

⋃
nD

n)
and let ι : (E,C) → (F∞, D

∞) denote the inclusion. Then M(ι) : M(E,C) → M(F∞, D
∞) is

a refinement (see Definition A.1.19).
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Proof. It is clear from Construction 3.2.4 that (F∞, D∞) satisfies Assumption (∗) at all ver-
tices, hence M(F∞, D

∞) is a refinement monoid by Lemma 3.1.3. Moreover,

M(F∞, D
∞) ∼= lim−→M(Fn, D

n)

by continuity of M , and each of the homomorphisms M(Fn, D
n) → M(Fn+1, D

n+1) is uni-
tary by Lemma 3.1.8, so M(ι) is unitary as well by Lemma A.1.11. Finally, given a re-
finement monoid P and a homomorphism ϕ : M(E,C) → P , it follows from Corollary 3.1.9
and Lemma A.1.18 that there are homomorphisms ϕn : M(Fn, D

n) → P making each of the
diagrams

M(Fn, D
n) M(Fn+1, D

n+1)

P

ϕn
ϕn+1

commute. We thus obtain a homomorphism of the limit ϕ̃ : M(F∞, D
∞) → P such that

ϕ̃ ◦M(ι) = ϕ. This concludes the proof.

Lemma 3.2.6. Given a finite bipartite separated graph (E,C), define (En, C
n), Vn, and

(F∞, D
∞) as in Construction 3.2.4. Then

(a) The inclusion in : (En+1, C
n+1)→ ((En)Vn , (C

n)Vn) induces an isomorphism

M(in) : M(En+1, C
n+1)→M((En)Vn , (C

n)Vn).

(b) There is a canonical unitary embedding ιn : M(En, C
n)→M(En+1, C

n+1).

(c) The inclusion jn : (En, C
n)→ (Fn, D

n) induces an isomorphism

M(jn) : M(En, C
n)→M(Fn, D

n).

(d) There is an isomorphism of abelian monoids M(F∞, D
∞) ∼= lim−→(M(En, C

n), ιn).
Consequently, the limit homomorphism M(E,C)→ lim−→M(En, C

n) is a refinement.

Proof. (a): For simplicity we write EVn = (En)Vn and CVn = (Cn)Vn . We can depict EVn as
follows:

F 0,n
F 1,n

F 0,n+1
F 1,n+1

F 0,n+2

In order to construct an inverse of M(in), define ψn : Z+(E0
Vn

)→M(En+1, C
n+1) by

ψn(v) =

 v if v ∈ E0
n+1 = F 0,n+1 ∪ F 0,n+2

s(X) for some X ∈ (Cn)v if v ∈ E0,0
n = F 0,n

.

It is not a priori clear that ψn is well defined at vertices v ∈ E0,0
n , i.e. that s(X) is independent

of the choice of X ∈ (Cn)v. However, writing (Cn)v = {X1, . . . , Xkv} we have

s(Xi) =
∑
xi∈Xi

s(xi) =
∑
xi∈Xi

∑
j 6=i

xj∈Xj

v(x1, . . . , xkv) =
∑

(x1,...,xkv )∈
∏kv
j=1Xj

v(x1, . . . , xkv)
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in M(En+1, C
n+1), hence s(X) does not depend on the choice of X. Now, we claim that ψn

respects the relations in M(EVn , C
Vn) and thus drops to a homomorphism

M(EVn , C
Vn)→M(En+1, C

n+1).

For v ∈ E0,1
n+1, there is nothing to check, as these v are sources in EVn , and for v ∈ E0,0

n+1

it simply follows from (Cn+1)v = (CVn)v. Finally, taking v ∈ E0,0
n we should check that

ψn(v) = ψn(s(X)) for any X ∈ (CVn)v, and by definition

ψn(v) = s(X) = ψn(s(X)).

Clearly, ψn is an inverse of M(in), so M(in) is indeed an isomorphism.

(b): Let ιVn denote the inclusion (En, C
n) ↪→ (EVn , C

Vn) and define ιn as the composition

M(En, C
n)

M(ιVn )−−−−→M(EVn , C
Vn)

M(in)−1

−−−−−→M(En+1, C
n+1).

By Lemma 3.1.8, M(ιVn) is a unitary embedding, hence so is ιn.

(c): We shall argue by induction over n. In case n = 0 the claim is trivial, since (E0, C
0) =

(F0, C
0). Now, assuming the claim holds for some n, we recall that

(Fn+1, C
n+1) = ((Fn)Vn , (C

n)V
n

).

From the inclusion (En, C
n) ↪→ (Fn, D

n) inducing an isomorphism, it follows that the inclusion

(EVn , C
Vn) ↪→ ((Fn)Vn , (C

n)V
n

) = (Fn+1, D
n+1)

induces an isomorphism as well: Surjectivity is trivial and injectivity is ensured from the fact
that all the new vertices are sources and thus have no relations. Now consider the diagram

M(En, C
n) M(EVn , C

Vn) M(En+1, C
n+1)

M(Fn, D
n) M(Fn+1, D

n+1) M(Fn+1, D
n+1)

M(ιVn) M(in)

Id

M(jn) ∼= M(jn+1)

,

where all the homomorphisms are induced from inclusions, hence it commutes by functoriality
of M . By (a) and the above argument, every homomorphism except M(jn+1) in the right
square is an isomorphism, hence so is M(jn+1).

(d): From the outer rectangle in the above diagram, we get the commutative diagram

M(En, C
n) M(En+1, C

n+1)

M(Fn, D
n) M(Fn+1, D

n+1)

ιn

M(jn) M(jn+1)

with vertical isomorphisms for every n. Thus there is an induced isomorphism of limits
lim−→M(En, C

n) → M(F∞, D
∞). In particular, the limit map M(E,C) → lim−→M(En, C

n) is
a refinement by Corollary 3.2.5.



3.3. ALGEBRAS OF BIPARTITE GRAPHS 51

3.3 Algebras of bipartite graphs

In this highly technical section, we shall relate the algebras associated to the canonical sequence
of bipartite graphs (En, C

n) with each other. As one might expect, this requires a fair amount
of bookkeeping.

Theorem 3.3.1. Given a finite bipartite separated graph (E,C), we let Bn denote the finite
dimensional commutative ∗-algebra of LK(En, C

n) generated by E0
n. Then there is a surjective

∗-homomorphism

φn : LK(En, C
n)→ LK(En+1, C

n+1)

such that

(a) ker(φn) is the ideal In of L(En, C
n) generated by all the commutators [ee∗, ff ∗] with

e, f ∈ E1
n. In particular L(En+1, C

n+1) ∼= L(En, C
n)/In.

(b) φn restricts to an injection Bn → Bn+1.

(c) The diagram

M(En, C
n) M(En+1, C

n+1)

V(LK(En, C
n)) V(LK(En+1, C

n+1))

ιn

V(φn)

∼= ∼=

,

where the vertical isomorphisms are due to Theorem 2.2.4, commutes.

Proof. Taking u ∈ E0
n with (Cn)u = {X1, . . . , Xku} we define

φn(u) =


∑

(x1,...,xku )∈
∏ku
i=1Xi

v(x1, . . . , xku) if u ∈ E0,0
n

u if u ∈ E0,1
n

along with

φn(xi) =
∑
j 6=i

∑
xj∈Xj

exi(x1, . . . , x̂i, . . . , xku)∗ =
∑

e∈X(xi)

e∗

for xi ∈ Xi. We should check that it respects the defining relations of LK(En, C
n). While (V)

is trivially satisfied, for (E) we pick xi ∈ Xi. Then

φn(u)φn(xi) =

( ∑
(x1,...,xku )∈

∏ku
i=1Xi

v(x1, . . . , xku)

)(∑
j 6=i

∑
xj∈Xj

exi(x1, . . . , x̂i, . . . , xku)∗
)

=
∑
j 6=i

∑
xj∈Xj

exi(x1, . . . , x̂i, . . . , xku)∗ = φn(xi),

since

s(exi(x1, . . . , x̂i, . . . , xku)) = v(x1, . . . , xi, . . . , xku),
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and

φn(xi)φn(s(xi)) =
∑
j 6=i

∑
xj∈Xj

exi(x1, . . . , x̂i, . . . , xku)∗s(xi)

=
∑
j 6=i

∑
xj∈Xj

exi(x1, . . . , x̂i, . . . , xku)∗ = φn(xi)

since r
(
exi(x1, . . . , x̂i, . . . , xku)

)
= s(xi). Moving on to (SCK1), we take xi, x̃i ∈ Xi and note

that (
exi(x1, . . . , x̂i, . . . , xku)

)(
ex̃i(y1, . . . , ̂̃xi, . . . , yku)

)∗
= 0

unless (x1, . . . , xi, . . . , xku) = (y1, . . . , x̃i, . . . , yku). In particular

φn(xi)
∗φn(x̃i) =

(∑
j 6=i

∑
xj∈Xj

exi(x1, . . . , x̂i, . . . , xku)

)(∑
j 6=i

∑
yj∈Xj

ex̃i(y1, . . . , ̂̃xi, . . . , yku)∗
)

= 0

if xi 6= x̃i. On the other hand, if xi = x̃i, then

φn(xi)
∗φn(x̃i) =

(∑
j 6=i

∑
xj∈Xj

exi(x1, . . . , x̂i, . . . , xku)

)(∑
j 6=i

∑
yj∈Xj

exi(y1, . . . , x̂i, . . . , yku)∗
)

=
∑
j 6=i

∑
xj∈Xj

exi(x1, . . . , x̂i, . . . , xku)exi(x1, . . . , x̂i, . . . , xku)∗

=
∑

e∈X(xi)

ee∗ = s(xi) = φn(s(xi)).

It remains only to check (SCK2), so take u ∈ E0,0
n and note that∑

xi∈Xi

φn(xi)φn(xi)
∗ =

∑
xi∈Xi

( ∑
j 6=i

xj∈Xj

exi(x1, . . . , x̂i, . . . , xku)∗
)( ∑

j 6=i
xj∈Xj

exi(x1, . . . , x̂i, . . . , xku)

)

=
∑
xi∈Xi

∑
j 6=i

xj∈Xj

s
(
exi(x1, . . . , x̂i, . . . , xku)

)
=

∑
(x1,...,xku )∈

∏ku
j=1Xj

v(x1, . . . , xku) = φn(u).

We finally conclude that φn drops to a well defined ∗-homomorphism

LK(En, C
n)→ LK(En+1, C

n+1).

In order to prove surjectivity of φn, we need only check that it hits every canonical generator
of LK(En+1, C

n+1), and this is trivially true for all u ∈ E0,0
n+1. As in the above calculation we

have
φn(xix

∗
i ) =

∑
j 6=i

xj∈Xj

v(x1, . . . , xku) (3.1)

for any xi ∈ Xi, so given v(x1, . . . , xku) ∈ E0,1
n+1 we note that

φn

( ku∏
i=1

xix
∗
i

)
=

ku∏
i=1

∑
j 6=i

yj∈Xj

v(y1, . . . , yi−1, xi, yi+1, . . . , yku) = v(x1, . . . , xku). (3.2)
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Finally exi(x1, . . . , x̂i, . . . , xku) ∈ φn(LK(En, C
n)) since

exi(x1, . . . , x̂i, . . . , xku)∗ = v(x1, . . . , xku)φn(xi) ∈ φn(LK(En, C
n)) (3.3)

for all (x1, . . . , xku). This finishes the proof of surjectivity.

(a): It follows from equation 3.1 that φn(ee∗) and φn(ff ∗) are commuting projections for e, f ∈
E1
n, so we indeed have In ⊂ ker(φn). For the converse inclusion we define a ∗-homomorphism

γn : LK(En+1, C
n+1)→ LK(En, C

n)/In by

γn(v) =

 [v] if v ∈ E0,0
n+1[∏ku

i=1 xix
∗
i

]
if v = v(x1, . . . , xku)

and

γn
(
exi(x1, . . . , x̂i, . . . , xku)

)
=

[
x∗i ·

ku∏
j=1

xjx
∗
j

]
.

Using commutativity of the [xix
∗
i ]’s, it is straightforward to verify that γn respects the defining

relations of LK(En+1, C
n+1). Furthermore, it follows immediately from the above proof of

surjectivity of φn, that γn is an inverse of the induced map

φn : LK(En, C
n)/In → LK(En+1, C

n+1),

so we may conclude that ker(φn) = In.

(b): This is immediate by definition of φn.

(c): Recall that ιn = ψn ◦M(ιVn) with the notation as in the proof of Lemma 3.2.6. Now,
commutativity is clear on vertices v ∈ E0,1

n , as they are simply mapped as illustrated in the
following diagram of elements

v v

[v] [v]

ιn

V(φn)

Γ(En, C
n) Γ(En+1, C

n+1)

.

Moving on to the case of v ∈ E0,1
n , write (Cn)v = {Xv

1 , . . . , X
v
kv
} and take X ∈ (Cn)v. Then

the situation is as follows

v s(X)

[v]
∑

(x1,...,xkv )∈
∏kv
i=1X

v
i
[v(x1, . . . , xkv)]

ιn

V(φn)

Γ(En, C
n) Γ(En+1, C

n+1)

,

since we even have
s(X) =

∑
(x1,...,xkv )∈

∏kv
i=1X

v
i

v(x1, . . . , xkv)

in M(En+1, C
n+1). This concludes the proof.
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The C∗-algebra case now follows easily:

Corollary 3.3.2. Given a finite bipartite separated graph (E,C), we let Bn denote the finite
dimensional commutative C∗-algebra of C∗(En, C

n) generated by E0
n. Then there is a surjective

∗-homomorphism

φn : C∗(En, C
n)→ C∗(En+1, C

n+1)

such that

1. ker(φn) is the ideal In of C∗(En, C
n) generated by all the commutators [ee∗, ff ∗]

with e, f ∈ E1
n. In particular C∗(En+1, C

n+1) ∼= C∗(En, C
n)/In.

2. φn restricts to an injection Bn → Bn+1.

Proof. Applying Theorem 3.3.1 in the case K = C, φn extends to a ∗-homomorphism of C∗-
algebras by universality. Surjectivity is preserved due to the closedness of the image.

(a): We obtain an induced ∗-homomorphism φn : C∗(En, C
n)/In → C∗(En+1, C

n+1), and the
extension to C∗-algebras γn : C∗(En+1, C

n+1) → C∗(En, C
n)/In is an inverse on the dense

∗-subalgebras, hence it is a global inverse. We conclude that ker(φn) = In.

(b): As each Bn is finite dimensional, this follows from Theorem 3.3.1 and Theorem 2.3.4.

Definition 3.3.3. Recall that Vn = F 0,n. For n ≥ 2 and u ∈ Vn, write Cu = {X1, . . . , Xku}.
Then we can define a map rn : Vn → Vn−2 by rn(v(x1, . . . , xku)) = u. In particular, for each
n ≥ 1 we gain maps r2n : V2n → V0 and r2n+1 → V1 given by

r2n = r2n ◦ r2n−2 ◦ . . . ◦ r2 and r2n+1 = r2n+1 ◦ r2n−1 ◦ . . . ◦ r3.

Assembling all of these into a single map, we simply write r for
⊔∞
n=2 rn :

⊔∞
n=2 Vn → V0 t V1.

We will refer to r(v) as the root of v.

Lemma 3.3.4. For n ≥ 2 and v ∈ Vn, there are canonical bijections

D∞r(v) ↔ s−1(v)↔ D∞v .

Proof. It suffices to prove that there are canonical bijections D∞rn(v) ↔ s−1(v) for each n ≥ 2

and a canonical bijection s−1(v)↔ D∞v . For the first part let u = rn(v), write

D∞u = {X1, . . . , Xku}

and v = v(x1, . . . , xku). Then we can define a map by

Xi 7→ exi(x1, . . . , x̂i, . . . , xku),

and as s−1(v) = {exi(x1, . . . , x̂i, . . . , xku) | 1 ≤ i ≤ ku}, this is indeed a bijection. For the
second part we simply note that

D∞v = {X(e) | e ∈ s−1(v)},

so the bijection is plainly given by e 7→ X(e).
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Definition 3.3.5 (The canonical enumeration). Fix an enumeration

Cu = {Xu
1 , . . . , X

u
ku}

for all u ∈ V0 = E0,0. Then by the above lemma, there is a canonical enumeration of the
elements of D∞v for all v ∈ r−1(u) by simply making the canonical bijections order preserv-
ing (considering the enumeration as an ordering). We shall refer to this as the canonical
enumeration.

Definition 3.3.6. In both the purely algebraic and in the C∗-algebra context, we define

Φn = φn−1 ◦ φn−2 ◦ . . . ◦ φ0.

Thus Φn is a surjective ∗-homomorphism LK(E,C)→ LK(En, C
n) or C∗(E,C)→ C∗(En, C

n).

The next few technical lemmas will provide a better understanding of the structural maps Φn.

Lemma 3.3.7. Fix u ∈ E0,0 = V0 and an enumeration Cu = {Xu
1 , . . . , X

u
ku
}. Given v ∈

r−1
2n (u), we equip D∞v with the canonical enumeration and write D∞v = {Xv

1 , . . . , X
v
kv
}. Then

for every 1 ≤ i ≤ ku there is a partition

r−1
2n (u) =

⊔
xi∈Xu

i

Z2n(xi)

such that

Φ2n(xi) =
∑

v∈Z2n(xi)

∑
x∈Xv

i

x

for xi ∈ Xu
i .

Proof. We argue by induction over n. For n = 1, we define

Z2(xi) = {s(y) | y ∈ X(xi)} = s(X(xi))

for every xi ∈ Xu
i and i = 1, . . . , ku. Clearly r−1

2 (u) =
⊔
xi∈Xu

i
Z2(xi) for every i, and we note

that s(y) 6= s(y′) for y, y′ ∈ X(xi) with y 6= y′. It follows that

Φ2(xi) =
∑

y∈X(xi)

φ1(y)∗ =
∑

y∈X(xi)

∑
x∈X(y)

x =
∑
j 6=i

xj∈Xu
j

∑
x∈X(exi (x1,...,x̂i,...,xku ))

x

=
∑
j 6=i

xj∈Xu
j

∑
x∈X

v(x1,...,xku
)

i

x =
∑

v∈Z2(xi)

∑
x∈Xv

i

x

as desired. For the induction step, let n ≥ 1 and assume that the claim holds for n. Setting

Z2n+2(xi) = r−1
2n+2(Z2n(xi))

for xi ∈ Xu
i we indeed have

r−1
2n+2(u) = r−1

2n+2(r−1
2n (u)) =

⊔
xi∈Xu

i

Z2n+2(xi)



56 CHAPTER 3. THE MAIN CONSTRUCTION

for each i = 1, . . . , ku. Furthermore,

r−1
2n+2(v) =

⊔
x′i∈Xv

i

{s(y) | y ∈ X(x′i)}

and s(y) 6= s(y′) for y, y′ ∈ X(x′i) with y 6= y′, hence

Φ2n+2(xi) = φ2n+1(φ2n(Φ2n(xi))) =
∑

v∈Z2n(xi)

∑
x′i∈Xv

i

φ2n+1(φ2n(x′i))

=
∑

v∈Z2n(xi)

∑
x′i∈Xv

i

∑
y∈X(x′i)

∑
x∈X(y)

x =
∑

v∈Z2n(xi)

∑
x′i∈Xv

i

∑
w∈s(X(x′i))

∑
x∈Xw

i

x

=
∑

v∈Z2n(xi)

∑
w∈r−1

2n+2(v)

∑
x∈Xw

i

x =
∑

w∈Z2n+2(xi)

∑
x∈Xw

i

x,

thereby finishing the proof.

Lemma 3.3.8. For x ∈ E1, n ≥ 0, and b ∈ Bn we have

Φn+1(x)φn(b)Φn+1(x)∗ ∈ Bn+1 and Φn+1(x)∗φn(b)Φn+1(x) ∈ Bn+1.

Moreover, if b is a projection, then so are both of the above products.

Proof. Note that for the first part of the claim, it suffices to consider the case b = v for v ∈ E0
n.

We shall argue separately for n = 0, n = 1, even n ≥ 2 and odd n ≥ 2. In case n = 0 we have

Φ1(xi)φ0(v)Φ1(x∗i ) =

 φ0(xix
∗
i ) =

∑
j 6=i
∑

xj∈Xu
j
v(x1, . . . , xku) if s(xi) = v

0 if s(xi) 6= v

and

Φ1(x∗i )φ0(v)Φ1(xi) = φ0(x∗i vxi) =

 φ0(x∗ixi) = s(xi) if v = u

0 if v 6= u
,

so in either case the result is a projection in B1, and by the above identities the second part
of the claim is trivial. In case n = 1 we have

Φ1(xi)vΦ1(xi)
∗ = φ0(xi)vφ0(xi)

∗ =

 φ0(xix
∗
i ) if v = s(xi)

0 if v 6= s(xi)

and

Φ1(xi)
∗vΦ1(xi) = φ0(xi)

∗vφ0(xi)

=

 exi(x1, . . . , x̂i, . . . , xku)exi(x1, . . . , x̂i, . . . , xku)∗ if v = v(x1, . . . , xku)

0 otherwise

for some xj ∈ Xu
j for j 6= i. Due to equation (3.1), we conclude that

Φ2(xi)φ1(v)Φ2(xi)
∗ = φ1(Φ1(xi)vΦ(xi)

∗) and Φ2(xi)
∗φ1(v)Φ2(xi) = φ1(Φ1(xi)

∗vΦ(xi))
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are both projections in B2. Varying v ∈ E0
1 results in mutually orthogonal projections, which

verifies the second part of the claim. Now we shall assume that n = 2m for some m ≥ 1, so
from Lemma 3.3.7 we obtain

Φ2m(xi)vΦ2m(xi)
∗ =

( ∑
w∈Z2m(xi)

∑
x∈Xw

i

x

)
v

( ∑
w∈Z2m(xi)

∑
x∈Xw

i

x∗
)
.

Note that s(x) 6= s(y) for different x, y ∈
⋃
w∈Z2m(xi)

Xw
i . Therefore the above term either

vanishes or reduces to a single xx∗ for some x such that s(x) = v. Either way

Φn+1(xi)φn(v)Φn+1(xi)
∗ = φn+1(Φ2m(xi)vΦ2m(xi)

∗)

is a projection in Bn+1 by equation (3.2), and the second part of the claim follows as above.
Similarly

Φ2m(xi)
∗vΦ2m(xi) =

( ∑
w∈Z2m(xi)

∑
x∈Xw

i

x∗
)
v

( ∑
w∈Z2m(xi)

∑
x∈Xw

i

x

)
vanishes unless v ∈ Z2m(xi), and in that case

Φ2m(xi)
∗vΦ2m(xi) =

( ∑
x∈Xv

i

x∗
)( ∑

x∈Xv
i

x

)
=
∑
x∈Xv

i

s(x) (3.4)

is a projection in Bn. As we noted earlier in this proof, s(x) 6= s(y) for different x, y ∈⋃
w∈Z2m(xi)

Xw
i , hence the second part of the claim is verified in this case as well. Finally, we

consider the case n = 2m+1 for some m ≥ 1. The part about Φ2(m+1)(xi)
∗φ2m+1(v)Φ2(m+1)(xi)

follows immediately from the observations right above, since φ2m+1(v) ∈ B2(m+1) is a projec-
tion. For the part about Φ2(m+1)(xi)φ2m+1(v)Φ2(m+1)(xi)

∗ we have

Φ2m+1(xi)vΦ2m+1(xi)
∗ =

( ∑
w∈Z2m(xi)

∑
x′i∈Xw

i

∑
y∈X(x′i)

y∗
)
v

( ∑
w∈Z2m(xi)

∑
x′i∈Xw

i

∑
y∈X(x′i)

y

)

due to Lemma 3.3.7. Since r(y) = s(x′i) for y ∈ X(x′i), the above term will either vanish
entirely or reduce to ( ∑

y∈X(x′i)

y∗
)( ∑

y∈X(x′i)

y

)
=

∑
y∈X(x′i)

s(y)

for some particular w ∈ Z2m(xi) and x′i ∈ Xw
i such that s(x′i) = v. Either way the result is

once again a projection in Bn, hence Φ2(m+1)(xi)φ2m+1(v)Φ2(m+1)(xi)
∗ is a projection in Bn+1.

Once more varying v obviously gives mutually orthogonal projections, so the second claim also
follows in this last case.

Definition 3.3.9. Recall that U denotes the multiplicative semigroup of LK(E,C) generated
by {e, e∗ | e ∈ E1} and write Un for the subset of U consisting of products of less than n
generators. Also recall that p(s) = ss∗ for s ∈ U and let Jn, respectively, Jn be the ideal of
LK(E,C), respectively, C∗(E,C) generated by the commutators [p(s), p(t)] for s, t ∈ Un.
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Lemma 3.3.10. The following holds:

(a) Φn(p(s)) is a projection in Bn for all s ∈ Un and n ≥ 1.

(b) If n ≥ 0 and e ∈ E1
2n, then there exist f ∈ E1 and s1, . . . , sk ∈ U2n such that

e = Φ2n(p(s1)p(s2) · · · p(sk)f).

(c) If n ≥ 0 and e ∈ E1
2n+1, then there exist f ∈ E1 and s1, . . . , sk ∈ U2n+1 such that

e = Φ2n+1(p(s1)p(s2) · · · p(sk)f ∗).

Proof. (a): We shall argue by induction. The case n = 1 follows directly from Lemma 3.3.8
since Φ1(p(s)) = Φ1(s)ϕ0(1)Φ1(s∗). For the induction step, assume that the claim holds for
some n ≥ 1 and take s ∈ Un+1. Then writing s = s1sn with s1 ∈ U1 and sn ∈ Un,

Φn+1(s)Φn+1(s)∗ = Φn+1(s1)φn(Φn(sns
∗
n))Φn+1(s1)∗

is a projection in Bn+1 by Lemma 3.3.8.

(b) and (c): First observe that by part (a) we have

Φn(s1p(sn)) = Φn(s1s
∗
1s1p(sn)) = Φn(s1p(sn)s∗1s1) = Φn(p(s1sn)s1)

for all s1 ∈ Un, sn ∈ Un and n ≥ 1. For the problem at hand, we argue by induction once
more: To be more precise, we shall show that (b) holds when n = 0 and that, for a given n,
(b) implies (c), while (c) implies (b) for n + 1. Note that (b) holds trivially in case n = 0 by
simply taking f = e. Now assume that (b) holds for some n ≥ 0 and take e ∈ E1

2n+1. We may
write e = exi(x1, . . . , x̂i, . . . , xku) for some u ∈ V2n, hence

e = φ2n(x∗i )v(x1, . . . , xku)

by equation (3.3). From the inductive assumption there are fj ∈ E1 and sj1, . . . , s
j
kj
∈ U2n

such that

xj = Φ2n(p(sj1)p(sj2) · · · p(sjkj)fj)

for all j = 1, . . . , ku. In particular

φ2n(xjx
∗
j) = Φ2n+1(p(sj1) · · · p(sjkj)p(fj))

for all j = 1, . . . , ku, hence

v(x1, . . . , xku) =
ku∏
j=1

Φ2n+1(p(sj1) · · · p(sjkj)p(fj)) (3.5)

by equation (3.2). Finally, letting f = fi and applying the above observation, we get

e = Φ2n+1(f ∗p(si1) · · · p(siki)) ·
ku∏
j=1

Φ2n+1(p(sj1) · · · p(sjkj)p(fj))

= Φ2n+1

(
p(f ∗si1) · · · p(f ∗siki) ·

( ku∏
j=1

p(f ∗sj1) · · · p(f ∗sjkj)p(f
∗fj)

)
f ∗
)
,

thereby proving (c) for n. A completely similar argument shows that if (c) holds for n, then
(b) holds for n+ 1, completing the induction step.
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We are finally able to prove the main theorem of this chapter in the algebraic setting.

Theorem 3.3.11. Suppose that (E,C) is a finite bipartite separated graph and define

Φn : LK(E,C)→ LK(En, C
n)

as in Definition 3.3.6 for all n ≥ 1. Then ker(Φn) = Jn with Jn as in Definition 3.3.9. In
particular, Lab

K (E,C) is the direct limit of the LK(En, C
n)’s.

Proof. The case n = 1 is precisely the content of Theorem 3.3.1a. For general n ≥ 1, the
inclusion Jn ⊂ ker(Φn) follows immediately from Lemma 3.3.10a. Indeed Φn([p(s), p(t)]) = 0
for every s, t ∈ Un, since Bn is commutative, hence Jn ⊂ ker(Φn). We argue by induction over
n for the reverse inclusion, so assume that ker(Φn) = Jn for some n. Note that by surjectivity
of Φn, it drops to an isomorphism

ker(Φn+1)

Jn
=

ker(Φn+1)

ker(Φn)
→ ker(φn),

and since Jn ⊂ Jn+1 ⊂ ker(Φn+1), it suffices to prove that Φn(Jn+1) = ker(φn). By Theo-
rem 3.3.1a, ker(φn) is the ideal in LK(En, C

n) generated by the commutators [e1e
∗
1, e2e

∗
2] for

e1, e2 ∈ E1
n, and since Jn+1 is an ideal of ker(Φn+1), it is enough to check that

[e1e
∗
1, e2e

∗
2] ∈ Φn(Jn+1)

for all e1, e2 ∈ E1
n. Assuming first that n = 2m, we can apply Lemma 3.3.10b to obtain

f1, f2 ∈ E1 and s1, . . . , sk, t1, . . . , tl ∈ U2m+1 such that

e1 = Φ2m(p(s1) · · · p(sk)f1) and e2 = Φ2m(p(t1) · · · p(tl)f ∗2 ).

Then

[e1e
∗
1, e2e

∗
2] = Φ2m

(
[p(s1) · · · p(sk)p(f1)p(sk) · · · p(s1), p(t1) · · · p(tl)p(f ∗2 )p(tl) · · · p(s1)]

)
,

so the claim follows from Lemma A.2.11. A completely similar argument using Lemma 3.3.10c
does the job for odd n. This finishes the proof of the first statement.

For the second statement, we note note that Lab
K (E,C) = lim−→L(E,C)/Jn with respect to

the quotient maps. Then, from the above proof, we have isomorphisms on each level of the
sequences below, thereby inducing an isomorphism of the direct limits

LK(E,C) LK(E1, C
1) LK(E2, C

2) · · · lim−→LK(En, C
n)

LK(E,C) LK(E,C)/J1 LK(E,C)/J2 · · · Lab
K (E,C)

φ0 φ1 φ2

∼= ∼= ∼=

.

Theorem 3.3.12. Suppose that (E,C) is a finite bipartite separated graph and define

Φn : C∗(E,C)→ C∗(En, C
n)

as in Definition 3.3.6 for all n ≥ 1. Then ker(Φn) = Jn with Jn as in Definition 3.3.9. In
particular, O(E,C) is the direct limit of the C∗(En, C

n)’s.
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Proof. Referring to Corollary 3.3.2 rather than Theorem 3.3.1, the proof of the first statement
is identical to that of Theorem 3.3.11. For the second statement, we note that

O(E,C) = lim−→C∗(E,C)/Jn
with respect to the quotient maps due to Lemma A.3.5. Arguing as above, we then obtain an
isomorphism lim−→C∗(En, C

n) ∼= O(E,C).

We obtain some immediate corollaries.

Corollary 3.3.13. The canonical ∗-homomorphism Lab(E,C)→ O(E,C) is injective.

Proof. The canonical ∗-homomorphism L(En, C
n)→ C∗(En, C

n) is injective for all n by The-
orem 2.3.4. In particular, the induced ∗-homomorphism of the limits is injective — but this
is simply the canonical ∗-homomorphism Lab(E,C)→ O(E,C).

Corollary 3.3.14. The quotient map LK(E,C)→ Lab
K (E,C) induces a refinement

V(LK(E,C))→ V(Lab
K (E,C)).

Proof. This follows directly from Lemma 3.2.6d and Theorem 3.3.1c.

Definition 3.3.15. Define a ∗-subalgebra of Lab
K (E,C) by B∞ = lim−→Bn. In case K = C, B∞

embeds into O(E,C) by the above corollary, and we define B0 to be the completion of B∞
inside O(E,C).

While it might not be apparent at first, B∞ and B0 are well known algebras.

Proposition 3.3.16. Denote by τ the canonical semi-saturated partial representation

F→ Lab
K (E,C) or F→ O(E,C),

and write ε(s) = τ(s)τ(s)∗ = p(s) for s ∈ F. Then B∞ is the ∗-subalgebra of Lab
K (E,C)

generated by the ε(s)’s, and B0 is the C∗-subalgebra of O(E,C) generated by the ε(s)’s.

Proof. Note that ε(s) is indeed an element of B∞ by Lemma 3.3.10a. We should to check that
each v ∈ Vn is a sum of products of elements of the form Φn(p(s)) for s ∈ U . In case n = 0
this is clear by (SCK2), and for n = 1 it follows from (SCK1). Taking v ∈ Vn for n ≥ 2, we
have v = v(x1, . . . , xku) for some u ∈ Vn−2. Arguing as in the proof of Lemma 3.3.10b,c, the
claim follows for v by an analogue of equation (3.5).

This gives a description of the space Ω(E,C) in terms of graph-theoretic data.

Proposition 3.3.17. Defining maps

νn = Id t rn+1 : E0
n = Vn t Vn+1 → Vn t Vn−1 = E0

n−1,

there is a homeomorphism Ω(E,C) ∼= lim←−(E0
n, νn). In particular, there is a basis of clopen

subsets {Ω(E,C)v | v ∈ F 0
∞}, such that any clopen subset of Ω(E,C) is a finite disjoint union

of such basis elements.

Proof. Taking K = C, we may regard Bn as the C∗-algebra C(E0
n) of continuous functions on

the finite set E0
n, equipped with the discrete topology. Then by Proposition 3.3.16, we have

C(Ω(E,C)) ∼= lim−→(C(E0
n), φn),

and since φn is induced from νn+1, Ω(E,C) is homeomorphic to lim←−(E0
n, νn). By definition

of the limit topology, any vertex v ∈ F 0
∞ corresponds in a canonical way to a clopen set

Ω(E,C)v ⊂ Ω(E,C), and {Ω(E,C)v | v ∈ F 0
∞} forms a basis of the topology. Furthermore,

by compactness any clopen subset of Ω(E,C) is a finite union of basis elements, and clearly
they can be chosen as disjoint.



Chapter 4

The type semigroup

In this chapter we shall apply the previous results in a somewhat surprising way, enabling us
to answer a question raised by several authors. Fix a set X and a collection D of subsets of X,
which contains the empty set and is closed under finite unions and finite intersections. The
elements of D will be referred to as admissible. Then we shall consider an admissible partial
action θ : Gy X, i.e. a partial action with Xs ∈ D and θs(A) ∈ D for all s ∈ G and A ⊂ Xs−1

such that A ∈ D.

Definition 4.1.1. Two subsets A,B ⊂ X are called equidecomposable, if there are disjoint
admissible unions

A =
n⊔
i=1

Ai and B =
n⊔
i=1

Bi

along with group elements s1, . . . , sn ∈ G, such that Ai ⊂ Xs−1
i

and Bi = θsi(Ai) for each
i. That is, if A can be made into B by decomposing it into admissible pieces and applying
the partial action on these pieces. A subset E ⊂ X is then called paradoxical, if it has
disjoint admissible subsets A,B ⊂ E that are both equidecomposable with E, i.e. if E can
be decomposed into admissible pieces from which one can obtain two copies of E by applying
the partial action.

We can investigate these concepts in a systematic way by forming the so-called type semigroup.

Definition 4.1.2. We define the (relative) type semigroup S(X,G,D) as the set{ n⋃
i=1

Ai × {i} | Ai ∈ D, n ∈ Z+

}
modulo the following equivalence relation: We write A ∼S B if there are l ∈ Z+, Ck ∈ D,
sk ∈ G and (not necessarily distinct) nk,mk ∈ N such that Ck ⊂ Xs−1

k
for all k = 1, . . . , l, and

A =
l⊔

k=1

Ck × {nk}, B =
l⊔

k=1

θsk(Ck)× {mk}.

Before we move on, we should check that ∼S is indeed an equivalence relation.

Lemma 4.1.3. The relation ∼S is indeed an equivalence relation, and S(X,G,D) forms an
abelian conical refinement monoid with neutral element [∅], when equipped with the binary
relation [ n⋃

i=1

Ai × {i}
]

+

[ m⋃
j=1

Bj × {j}
]

=

[( n⋃
i=1

Ai × {i}
)
∪
( m⋃
j=1

Bj × {n+ j}
)]
.
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Proof. Reflexivity and symmetry of ∼S are trivial. For transitivity we assume that A ∼S B
and B ∼S C, i.e.

A =
l⊔

k=1

Ck × {nk} , C =

q⊔
p=1

θtp(Dp)× {m′p}

and

B =
l⊔

k=1

θsk(Ck)× {mk} =

q⊔
p=1

Dp × {n′p}

for l, p ∈ Z+, Ck ⊂ Xs−1
k

, Dp ⊂ Xt−1
p

and nk,mk, n
′
p,m

′
p ∈ Z+. Define

Ek,p = θs−1
k

(θsk(Ck) ∩Dp) ∈ D

for k = 1, . . . , l and p = 1, . . . , q. Then we have

q⊔
p=1

Ek,p = θs−1
k

( q⊔
p=1

θsk(Ck) ∩Dp

)
= Ck

and
l⊔

k=1

θtpsk(Ek,p) = θtp

( l⊔
k=1

θsk(Ck) ∩Dp

)
= θtp(Dp),

hence

A =
l⊔

k=1

q⊔
p=1

Ek,p × {nk} and C =
l⊔

k=1

q⊔
p=1

θtpsk(Ek,p)× {m′p},

from which we conclude that A ∼S C. The addition is easily seen to be well-defined, abelian
with [∅] as a neutral element, and it is evident that this makes S(X,G,D) into a conical abelian
monoid. The refinement property is less obvious, so take A =

⋃n
i=1 Ai×{i}, B =

⋃m
j=1 Bj×{j},

A′ =
⋃n′

i=1A
′
i × {i} and B′ =

⋃m′

j=1 B
′
j × {j}, and assume that

[( n⋃
i=1

Ai × {i}
)
∪
( m⋃
j=1

Bj × {n+ j}
)]

=

[( n′⋃
i=1

A′i × {i}
)
∪
( m′⋃
j=1

B′j × {n′ + j}
)]
.

Then there are l ∈ Z, Ck ∈ D, sk ∈ G and nk,mk ∈ N such that Ck ⊂ Xs−1
k

for all k = 1, . . . , l,

( n⋃
i=1

Ai × {i}
)
∪
( m⋃
j=1

Bj × {n+ j}
)

=
l⊔

k=1

Ck × {nk}

and ( n′⋃
i=1

A′i × {i}
)
∪
( m′⋃
j=1

B′j × {n′ + j}
)

=
l⊔

k=1

θsk(Ck)× {mk}.

Now define

A1 =
l⊔

k=1
1≤nk≤n

1≤mk≤n′

Ck × {nk} and A2 =
l⊔

k=1
1≤nk≤n

n′+1≤mk≤n′+m′

Ck × {nk}
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along with

B1 =
l⊔

k=1
n+1≤nk≤n+m

1≤mk≤n′

Ck × {nk} and B2 =
l⊔

k=1
n+1≤nk≤n+m
n′+1≤mk≤m′+n′

Ck × {nk}.

Then clearly [A] = [A1] + [A2], [B] = [B1] + [B2], [A′] = [A1] + [B1] and [B′] = [A2] + [B2],
hence S(X,G,D) is indeed a refinement monoid.

We are now able to restate the definition of paradoxicality.

Definition 4.1.4. For an admissible subset E ⊂ X, we write [E] := [E × {1}]. Then E is
called paradoxical if [E] is properly infinite in S(X,G,D), i.e. if 2[E] ≤ [E] with respect to
the algebraic preorder.

Remark 4.1.5. Note that if the collection D is in fact an algebra, i.e. if X ∈ D and D is
closed under complements, then the monoid homomorphisms µ : S(X,G,D)→ [0,∞] exactly
correspond to the finitely additive θ-invariant measures D→ [0,∞].

Several authors (see for instance [13, Theorem 5.4 and page 13] and [11, Question 3.10]) have
raised a particular question regarding the type semigroup.

Question 4.1.6. Suppose that θ : G y X is a global action on a Cantor space and denote
by K the collection of compact-open subsets of X. Is the type semigroup S(X,G,K) almost
unperforated, i.e. does it satisfy(

∃n ∈ N : (n+ 1) · a ≤ n · b
)
⇒ a ≤ b

for any a, b ∈ S(X,G,K) with respect to the algebraic preorder?

Example 4.1.7. There are two canonical classes of examples of abelian monoids lacking almost
unperforation with respect to the algebraic preorder. First, let 2 ≤ m < n and consider the
monoid

M = 〈a | m · a = n · a〉.

Then M = {0, a, . . . , (n − 1) · a}, so we clearly have 2a 6≤ a. On the other hand, it is easily
seen that (m+ 1) · (2a) ≤ m · a, hence M does indeed not have almost unperforation.

Secondly, consider positive integers m < n such that m - n, and let M denote the submonoid
of Z+ generated by m and n. Clearly m 6≤ n in M for otherwise n−m ∈M , and then n−m
would be a multiple of m, hence so would n. Nonetheless we have (m+ 1) ·m ≤ m ·n, so once
again M is not almost unperforated.

While almost unperforation may seem like a fairly peculiar property at first sight, it has some
important consequences. Here follows one of them.

Theorem 4.1.8. Suppose that M is an almost unperforated abelian monoid, or that it satisfies
the following two conditions:

• Antisymmetry: If a ≤ b and b ≤ a, then a = b.

• n-cancellation: If na = nb, then a = b for all n ≥ 2.
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Then the following are equivalent for all a ∈M :

• a is not properly infinite, i.e. 2a 6≤ a.

• There is a monoid homomorphism µ : M → [0,∞] satisfying µ(a) = 1.

Proof. See [13, Theorem 5.4 (v) ⇒ (i)] and [14, Theorem 9.1]

For global actions θ : G y X on a set with D = P(X), it turns out that the type semigroup
S(X,G,P(X)) has antisymmetry and n-cancellation. From Remark 4.1.5 and Theorem 4.1.8
we thus obtain the famous result known as Tarski’s theorem

Theorem 4.1.9. Given a global action θ : G y X on a set X. A subset E ⊂ X is non-
paradoxical (with respect to P(X)) if and only if there exists a finitely additive θ-invariant
measure µ : P(X)→ [0,∞] such that µ(E) = 1.

Proof. For the proofs of antisymmetry and n-cancellation, see [14, Theorem 3.5, Theorem
8.7].

Hopefully the above discussion has motivated the study of cancellation and order-cancellation
properties of the type semigroup. In the following we will basically show that arbitrary can-
cellation properties can fail in S(X,G,D), using the machinery we have developed over the
past chapters. We shall also consider a particular partial action θ : F y Ω(E,C) for which the
analogue of Tarski’s theorem fails.

The first step is to establish a homomorphism between the type semigroup for an action and
the associated crossed product.

Lemma 4.1.10. Given a compact partial action θ : G y X on a locally compact Hausdorff
space, let K(X) denote the algebra of compact-open subsets of X. Then there is a canonical
monoid homomorphism Φ: S(X,G,K(X))→ V(Cc,K(X) oθ∗ G) given by

Φ([A]) = [1Aδ1]

for every A ∈ K(X).

Proof. We only need to check that Φ is indeed well-defined, i.e. we should check that

1Aδ1 = 1θs(A)δ1

whenever A ∈ K(X) with A ⊂ Xs−1 . To this end, let x = 1Aδs−1 . Then

xx∗ = 1Aδ1 and x∗x = 1θs(A)δ1

as promised.

In our particular case, we can actually prove that the above map is an isomorphism.

Theorem 4.1.11. Let (E,C) denote a finite bipartite finitely separated graph, denote by θ the
canonical partial (E,C)-action on Ω(E,C) and set K = K(Ω(E,C)). Then the map

Φ: S(Ω(E,C),F,K)→ V(CK(Ω(E,C)) oθ∗ F)

is an isomorphism.
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Proof. We have a series of isomorphisms

V(CK(Ω(E,C)) oθ∗ F) ∼= V(Lab
K (E,C)) ∼= lim−→

n

V(LK(En, C
n))

∼= lim−→
n

M(En, C
n) ∼= M(F∞, D∞),

and composing Φ with the above composition, we obtain a monoid homomorphism

Φ′ : S(Ω(E,C),F,K)→M(F∞, D
∞)

given by Φ′([Ω(E,C)v]) = v for v ∈ F 0
∞. Since any clopen subset of Ω(E,C) is a finite disjoint

union of basis elements Ω(E,C)v, this completely describes Φ′. Rather than directly proving
that Φ is an isomorphism, we shall prove that Φ′ is an isomorphism, and we do this by building
an inverse. To this end, define a monoid homomorphism

Ψ: M(F∞, D
∞)→ S(Ω(E,C),F,K)

by Ψ(v) = [Ω(E,C)v]. In order for Ψ to be well-defined, we should check that it respects the
relation v = s(X) for each X ∈ Cv and v ∈ Vn, i.e. that [Ω(E,C)v] =

∑
e∈X [Ω(E,C)s(e)].

Assuming n is even, for each e ∈ X there are s1, . . . , sk ∈ Un and f ∈ E1 such that

e = Φn(p(s1) · · · p(sk)f)

due to Lemma 3.3.10b. Then

ee∗ = Φn(p(f)p(s1) · · · p(sk))

since Φn(p(s)) ∈ Bn for all s ∈ Un and

e∗e = Φn(f)∗
(
Φn(p(f)p(s1) · · · p(sk))

)
Φn(f) = Φn(f)∗(ee∗)Φn(f),

hence
e∗e = f ∗ee∗ f = αf−1(ee∗) ∈ Lab

K (E,C).

We conclude that [Ω(E,C)s(e)] = [Ω(E,C)e], where Ω(E,C)e denotes the clopen subset of
Ω(E,C) corresponding to p(e). Now, since v =

∑
e∈X ee

∗ in LK(En, C
n) we have

[Ω(E,C)v] =
∑
e∈X

[Ω(E,C)e] =
∑
e∈X

[Ω(E,C)s(e)]

as desired. Clearly, one can argue completely similarly in the odd case using Lemma 3.3.10c.
Since Ψ is an inverse of Φ′, it follows that Φ is an isomorphism.

Remark 4.1.12. Note that Theorem 4.1.11 provides another proof of the fact that the
monoids

M(F∞, D
∞) ∼= lim−→

n

M(En, C
n) ∼= V(Lab

K (E,C)) ∼= V(CK(Ω(E,C)) oθ∗ F)

have refinement, since the type semigroup always has refinement. As this has been our only
application of Lemma 3.1.3, it doesn’t really matter that we skipped the proof of it.

Now we have all the ingredients needed to prove the main theorem in the case of a partial
action.
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Theorem 4.1.13. Let M denote any finitely generated, conical abelian monoid. Then there
exists a partial action F y X of a finitely generated free group on a zero-dimensional, metriz-
able compact space and a refinement

ι : M → S(X,F,K(X)).

Proof. By Proposition 3.2.3, there is a finite bipartite graph (E,C) such that M ∼= M(E,C),
and the limit morphism M(E,C) → lim−→n

M(En, C
n) is a refinement by Lemma 3.2.6. The

result then follows, since we have isomorphisms

lim−→
n

M(En, C
n) ∼= V(Lab

K (E,C)) ∼= V(CK(Ω(E,C)) oα F) ∼= S(Ω(E,C),F,K(Ω(E,C))).

In particular we obtain a (strong) falsification of Tarski’s theorem for partial actions.

Corollary 4.1.14. There exists a partial action θ : F y Z of a finitely generated free group
on a Cantor space and a non-paradoxical (w.r.t. K) clopen subset A ⊂ Z, such that µ(A) =∞
for every finitely additive, θ-invariant and non-zero measure µ : K→ [0,∞].

Proof. Let 2 ≤ m < n and consider the graph (E,C) := (E(m,n), C(m,n)) defined as follows:
Set

E0 = {u, v}, E1 = {ei, fj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, r(e) = v, and s(e) = u

for all e ∈ E1 along with Cv = {X, Y }, where X = {e1, . . . , em} and Y = {f1, . . . , fn}. Or
represented graphically, (E,C) is the following graph

u v

m

n .

Then define Z = Ω(E,C) and let θ denote the canonical action F y Z. From Theorem 4.1.13
we have a unitary embedding

ι : M(E,C) = 〈u | m · u = n · u〉 → S(Z,F,K),

and we define A := Ω(E,C)u. Then 2u 6≤ u and ι(u) = [A], hence A is not paradoxical. Note
that [A] is an order unit of S(Z,F,K), meaning that for any a ∈ S(Z,F,K) there is some
k ∈ N such that a ≤ k · [A], since [Ω(E,C)v] = m[A]. Thus, if µ is a non-zero measure we
must have µ(A) > 0. On the other hand, since m · [A] = n · [A] we also have

m · µ(A) = n · µ(A),

and so we conclude that µ(A) = ∞. It will follow from Proposition 5.3.6 that Ω(E,C) is a
Cantor space.

In the following we shall extend the above results to the case of a global action. Suppose that
θ : G y X is a partial action on a set X and that β : G y Y is a globalization, i.e. θ is the
restriction of β to X and Y =

⋃
s∈G βs(X). Consider an algebra D of admissible subsets of Y ,

such that β is an admissible action and X is an admissible subset. Then we define an algebra
of admissible subsets of X by

D|X = {A ∩X | A ∈ D}.
Note that θ becomes admissible, so we can consider the relationship between the associated
type semigroups S(X,G,D|X) and S(Y,G,D). In general, the former embeds into the latter:
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Proposition 4.1.15. The canonical homomorphism S(X,G,D|X)→ S(Y,G,D) given by[ n⋃
i=1

Ai × {i}
]
X

7→
[ n⋃
i=1

Ai × {i}
]
Y

is injective.

Proof. The map is clearly well-defined since θ is the restriction of β, and any admissible subset
of X is admissible in Y as well. For injectivity assume that[ n⋃

i=1

Ai × {i}
]
Y

=

[ m⋃
j=1

Bj × {j}
]
Y

.

By definition there is l ∈ Z+, Ck ∈ D, sk ∈ G and nk,mk ∈ N for all k = 1, . . . , l such that

n⋃
i=1

Ai × {i} =
l⊔

k=1

Ck × {nk} and
m⋃
j=1

Bj × {j} =
l⊔

k=1

βsk(Ck)× {mk}.

Since Ai ⊂ X for each i, we must have Ck ⊂ X for all k, hence Ck ∈ D|X . Likewise we have

βsk(Ck) ⊂ Bmk ∩ βsk(X) ⊂ X ∩ βsk(X) = Xsk ,

hence Ck ⊂ Xs−1
k

. It follows that

m⋃
j=1

Bj × {j} =
l⊔

k=1

θsk(Ck)× {mk},

and so [ n⋃
i=1

Ai × {i}
]
X

=

[ m⋃
j=1

Bj × {j}
]
X

as required.

With very mild additional assumptions we also gain surjectivity in the case D = K.

Proposition 4.1.16. Assume that Y is a Hausdorff space, and X is a compact-open sub-
set. Then K(Y )|X = K(X), and the canonical map S(X,G,K(X)) → S(Y,G,K(Y )) is an
isomorphism.

Proof. Since Y is assumed to be Hausdorff, the intersection of two compact subspaces is com-
pact, and therefore K(X) = K(Y )|X . We have already seen that the canonical homomorphism
is injective, so we must only check surjectivity. Now, the classes [B]Y for B ∈ K(Y ) generate
S(Y,G,K(Y )), so it suffices to prove that there are A1, . . . , An ∈ K(X) such that

n∑
i=1

[Ai]Y = [B]Y .

By assumption Y =
⋃
s∈G βs(X), so there are s1, . . . , sn ∈ G such that B ⊂

⋃n
i=1 βsi(X) due

to compactness of B. Now define admissible subsets

B1 = B ∩ βs1(X)

B2 = (B ∩ βs2(X)) \B1

B3 = (B ∩ βs3(X)) \ (B1 ∪B2)

...

Bn = (B ∩ βsn(X)) \ (B1 ∪ . . . ∪Bn−1)
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of Y such that B =
⊔n
i=1Bi. By construction Bi ⊂ βsi(X), hence Ai = βs−1

i
(Bi) defines an

admissible subset of X. Moreover, the canonical homomorphism maps [Ai]X to [Bi]Y , so it
maps

∑n
i=1[Ai]X to [B]Y .

Now we only need a minor ingredient in order to obtain our main result on the type semigroup
for global actions.

Lemma 4.1.17. If θ : Gy X is a global action on a locally compact Hausdorff space, then it
extends to a global action θ• : Gy X• on the one-point compactification X• of X. Moreover,
there is a canonical order embedding

S(X,G,K(X))→ S(X•, G,K(X•)).

Proof. Write X• = X ∪ {•} and extend each θs by θ•s(•) = •. Then θs is a homeomor-
phism of X•, and clearly the assignment s 7→ θ•s is an action. Arguing as in the proof of
Proposition 4.1.15, there is a canonical injective homomorphism

S(X,G,K(X))→ S(X•, G,K(X•)),

and it is straightforward to verify that it is an order embedding.

Theorem 4.1.18. Let M denote any finitely generated, conical abelian monoid. Then there
exists a global action F y X of a finitely generated free group on a zero-dimensional, metrizable
compact space along with an order embedding M → S(X,F,K(X)).

Proof. From Theorem 4.1.13 there is a finite bipartite separated graph (E,C) and a unitary
embedding M → S(Ω(E,C),F,K). Then Ω(E,C)e is a zero-dimensional locally compact
Hausdorff space due to Remark 1.3.5 and Proposition 1.3.7, and by Proposition 4.1.16 there
is an isomorphism

S(Ω(E,C),F,K)→ S(Ω(E,C)e ,F,K).

Finally S(Ω(E,C)e ,F,K) order embeds into S((Ω(E,C)e )•,F,K) by Lemma 4.1.17, and

X = (Ω(E,C)e )•

is a zero-dimensional compact Hausdorff space. Such a space is always metrizable due to the
Urysohn Metrization Lemma.

We can almost extend Corollary 4.1.14 to the case of a global action:

Corollary 4.1.19. There exists a global action θ : F y Z of a finitely generated free group on
a Cantor space Z and a non-paradoxical (w.r.t. K) clopen subset A ⊂ Z, such that µ(A) =∞
for every finitely additive θ-invariant measure µ : K→ [0,∞] satisfying µ(A) > 0.

Proof. Let 2 ≤ m < n and consider the graph (E,C) := (E(m,n), C(m,n)) as defined in
Corollary 4.1.14. Then the statement holds for the action

(θe )• : F y (Ω(E,C)e )•

with A = Ω(E,C)u precisely as in the proof of Corollary 4.1.9. Note that Ω(E,C)e contains
no isolated points, since this is the case for Ω(E,C), and hence neither does (Ω(E,C)e )•.

Note that the above proof establishes a definite negative answer to Question 4.1.6. Before we
close this chapter we also extend Theorem 4.1.11 to the global setting.
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Corollary 4.1.20. Denote by (E,C) a finite bipartite separated graph. Then the map

Φ: S(Ω(E,C)e ,F,K)→ V(Cc,K(Ω(E,C)e ) o(θe )∗ F)

is an isomorphism.

Proof. Write X = Ω(E,C) and Y = Ω(E,C)e . We observed in Proposition 1.3.8 that the
inclusion

CK(X) oθ∗ F ↪→ Cc,K(Y ) o(θe )∗ F

maps onto a full corner of the codomain, hence the induced homomorphism of V-monoids is
an isomorphism. Noting that the diagram

S(X,F,K(X)) V(CK(X) oθ∗ F)

S(Y,F,K(Y )) V(Cc,K(Y ) o(θe )∗ F)

ΦX

ΦY

V(ι)

commutes, that the left map is an isomorphism by Theorem 4.1.16 and the upper map is an
isomorphism by Proposition 4.1.11, it follows that ΦY is an isomorphism as well.





Chapter 5

Descriptions of F y Ω(E,C)

In this chapter, we will provide descriptions of the canonical partial (E,C)-action in terms of
data from the graph (E,C). This will allow us to characterize the graphs, for which the action
is topologically free. We shall continue to work under the assumption that (E,C) is a finite
bipartite graph.

5.1 Ω(E,C) as a subspace of 2F

As we have seen, O(E,C) is the universal C∗-algebra for semi-saturated partial representations
satisfying the relations (PI1)-(PI4), see Proposition 2.2.9 and Corollary 2.3.7. These relations
are expressed solely by the final projections of the partial representation, hence they can be
translated into relations R on C(XF) using the machinery of Section 1.5. For this, we need
the following minor lemma:

Lemma 5.1.1. Assume that G has a length function | · |, let σ : G → A denote a partial
representation and write ε(s) = σ(s)σ(s)∗. Then σ is semi-saturated if and only if ε(st) ≤ ε(s)
for every s, t ∈ G such that |st| = |s|+ |t|.

Proof. If |st| = |s|+ |t|, then by the identity ‖xx∗‖ = ‖x‖2 and Proposition 1.2.12

‖σ(s)σ(t)− σ(st)‖2 = ‖ε(st)− σ(s)ε(t)σ(s−1)‖ = ‖ε(st)− ε(st)ε(s)‖,

hence σ is semi-saturated if and only if ε(st) = ε(st)ε(s) for all such s, t. But this exactly
means that ε(st) ≤ ε(s).

Apply the notation of Section 1.5. With the above lemma in mind, we can translate the
defining relations of O(E,C) into the following set of relations on C(XF):

(F1) g1
e,f = 1e1f − δe,f1e for all e, f ∈ X ∈ C.

(F2) g2
e,f = 1e−1 − 1f−1 for all e, f ∈ E1 such that s(e) = s(f).

(F3) g3
X,Y =

∑
e∈X 1e −

∑
e∈Y 1e for all X, Y ∈ Cv and v ∈ E0,0.

(F4) g4 = −1 +
∑

v∈E0,0

∑
e∈Xv 1e +

∑
v∈E0,1 1e−1

v
for a choice Xv ∈ Cv for each v ∈ E0,0,

and a choice ev ∈ s−1(v) for v ∈ E0,1.

(SS) g5
s,t = 1s1st − 1st for all s, t ∈ F such that |st| = |s|+ |t|.
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Denote by R the above set of functions and write Ω = ΩR. Then by Proposition 1.5.6 and
Proposition 2.3.7, we have an isomorphism

Ψ: C(Ω) oαu F→ C(Ω(E,C)) oα F

satisfying Ψ(τ(s)) = σ(s) for all s ∈ F, with τ and σ being the canonical partial representa-
tions. Since C(Ω) is generated by the ετ (s)’s and C(Ω(E,C)) is generated by the εσ(s)’s, Ψ
restricts to an isomorphism C(Ω)→ C(Ω(E,C)). Moreover

Ψ(αus (g)δ1) = Ψ(τ(s) · (gδ1) · τ(s)) = σ(s)Ψ(gδ1)σ(s)∗ = αs(Ψ(gδ1))

for all s ∈ F, so Ψ is an equivalence of the partial actions.

For the rest of this chapter, we will simply regard the partial action F y Ω(E,C) as the
one defined just above. In the following we shall give an explicit description of the points of
Ω(E,C) in this picture. We will need the following definitions.

Definition 5.1.2. A subset ω ⊂ F is called convex if

|t−1s| = |t−1r|+ |r−1s|

for s, t ∈ ω implies r ∈ ω. Intuitively, this means that ω contains the shortest path in the
Cayley graph of F connecting any two points s, t ∈ ω.

Definition 5.1.3. For ω ⊂ F and s ∈ ω, the local configuration ωs of ω at s is the set of
elements t ∈ E1 ∪ (E1)−1, such that st ∈ ω.

Lemma 5.1.4. ω ∈ P(F) is convex if and only if it satisfies (SS).

Proof. Let r, s ∈ F and assume that |sr| = |s|+ |r|. Then for t ∈ ω we have

g5
s,r(t

−1ω) = [sr ∈ t−1ω][s ∈ t−1ω]− [sr ∈ t−1ω] = [tsr ∈ ω]([ts ∈ ω]− 1)

= 1− [tsr ∈ ω](1− [ts ∈ ω]− 1) = [tsr ∈ ω ⇒ ts ∈ ω]− 1,

hence ω satisfies (SS), if and only if tsr ∈ ω implies ts ∈ ω for all t ∈ ω and all s, r with
|sr| = |s| + |r|. We claim that this is equivalent to being convex. Assuming first that ω is
convex, take t ∈ ω and s, r ∈ F such that |sr| = |s| + |r| and tsr ∈ ω. Now put r′ = ts,
s′ = tsr and t′ = t. Then s′, t′ ∈ ω and

|t′−1s′| = |sr| = |s|+ |r| = |t′−1r′|+ |r′−1s′|,

hence ts = r′ ∈ ω as required. For the converse implication, assume that s, t ∈ ω and
|t−1s| = |t−1r|+ |r−1s| for some r ∈ F. Then put r′ = r−1s, s′ = t−1r and t′ = t and note that

|s′r′| = |t−1s| = |t−1r|+ |r−1s| = |s′|+ |r′|.

Furthermore, t′s′r′ = s ∈ ω and t′ ∈ ω, hence r = t′s′ ∈ ω.
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Now we have the following description of the configurations.

Proposition 5.1.5. An element ω ∈ P(F) belongs to Ω(E,C) if and only if

(a) 1 ∈ ω.

(b) ω is convex.

(c) For every s ∈ ω, there is some v ∈ E0 such that one of the following holds:

(c1) If v ∈ E0,1, then ωs = s−1(v)−1.

(c2) If v ∈ E0,0, there is a unique element eX ∈ X for each X ∈ Cv, such that

ωs = {eX | X ∈ Cv}.

Proof. In view of Lemma 5.1.4, it suffices to prove that ω ∈ P(F) satisfies (c) if and only if it
satisfies (F1)-(F4). Due to Proposition 1.5.4, (F1)-(F4) amounts precisely to the following for
each s ∈ ω:

• |X ∩ ωs| ≤ 1 for all X ∈ C.

• s−1(v)−1 ∩ ωs = s−1(v)−1 or s−1(v)−1 ∩ ωs = ∅ for all v ∈ E0,1.

• |X ∩ ωs| = |Y ∩ ωs| for all v ∈ E0,0 and X, Y ∈ Cv.

• For some choice Xv ∈ Cv with v ∈ E0,0 and ev ∈ s−1(v) with v ∈ E0,1, we have∣∣∣∣ωs ∩ ({e−1
v | v ∈ E0,1} ∪

⊔
v∈E0,0

Xv

)∣∣∣∣ = 1.

For instance, ω ∈ P(F) satisfies (F1) if and only if

[se ∈ ω] · [sf ∈ ω] = 1e(s
−1ω)1f (s

−1ω) = δe,f1e(s
−1ω) = δe,f · [se ∈ ω]

for all X ∈ C, e, f ∈ X and s ∈ ω, which holds if and only if |X ∩ ωs| ≤ 1 for all s ∈ ω.
Clearly the above conditions correspond to (c).

Remark 5.1.6. Note that ω ∈ Ω(E,C)v with v ∈ E0,0, if and only if ω satisfies (c2) at s = 1,
and ω ∈ Ω(E,C)v with v ∈ E0,1, if and only if ω satisfies (c1) at s = 1.
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5.2 E-functions

While the results of the previous section simplifies the description of the partial action greatly,
it does involve a rather intricate presentation of the configurations. In this section, we will
give a description of the configurations of type (c1) at 1 in terms of so-called E-functions that
provide a better understanding of the zig-zag nature. As we have disjoint unions

Ω(E,C)v =
⊔
e∈X

Ω(E,C)e

for all v ∈ E0,0 and X ∈ Cv along with homeomorphisms θe : Ω(E,C)s(e) → Ω(E,C)e for all
e ∈ E1, this provides a description of the entire space. We shall work under the following
assumption in order to avoid all sorts of trivialities.

Assumption 5.2.1. (E,C) is a finite bipartite separated graph satisfying |Cv| ≥ 2 for each
v ∈ E0,0.

This is justified by the following observation.

Proposition 5.2.2. If (E,C) is a finite bipartite graph, then there is a finite bipartite graph
(Ẽ, C̃) with |C̃v| ≥ 2 for all v ∈ Ẽ0,0 and a number n ≥ 0 such that

• LK(E,C) is Morita equivalent to LK(Ẽ, C̃)⊕Kn,

• Lab
K (E,C) is Morita equivalent to Lab

K (Ẽ, C̃)⊕Kn,

• C∗(E,C) is Morita equivalent to C∗(Ẽ, C̃)⊕ Cn,

• O(E,C) is Morita equivalent to O(Ẽ, C̃)⊕ Cn.

Proof. Let V = {v ∈ E0 | |Cv| = 1} and define a complete subobject of (E,C) with

Ē0 = E0 \ V and Ē1 = E1 \ r−1(V ).

Then we obtain the requested graph as a complete subobject of (Ē, C̄) by setting

Ẽ0,0 = Ē0,0, Ẽ0,1 = s̄(Ē1) and Ẽ1 = Ē1.

Note that q =
∑

v∈Ē0 v defines a full projection in LK(E,C). Indeed, if I / LK(E,C) contains
q, then e = eq ∈ I for all e ∈ E1 and thus v =

∑
e∈X ee

∗ ∈ I for all v ∈ V and X ∈ Cv.
Finally we note that

qLK(E,C)q = LK(Ē, C̄) = LK(Ẽ, C̃)⊕ 〈v | v ∈ Ē0 \ s(Ē1)〉 ∼= LK(Ẽ, C̃)⊕Kn

with n = |Ē0|−|s(Ē1)|. Denoting the J-ideals of (Ē, C̄) and (Ẽ, C̃) by J̄ and J̃ , we clearly have
J̄ = J̃ since Ē1 = Ẽ1, and the deleted vertices of Ē0 are isolated. It is also straightforward to
verify that J̄ = qJq, hence

qLab
K (E,C)q = Lab

K (Ē, C̄) = Lab
K (Ẽ, C̃)⊕ 〈v | v ∈ Ē0 \ s(Ē1)〉 ∼= Lab

K (Ẽ, C̃)⊕Kn

as desired, and q is full in Lab
K (E,C). The very same arguments apply to C∗(E,C) and

O(E,C).



5.2. E-FUNCTIONS 75

We shall give the rather technical definition of an E-function just below, but first we should
understand the motivation for this concept. Assume that ω ∈ Ω(E,C)v for some v ∈ E0,1, and
regard ω as a subset of the Cayley graph of F. Recall that ω1 = s−1(v)−1 by Remark 5.1.6,
and since the local configuration ωe−1 contains e for all e ∈ s−1(v), it must be of type (c2).
Thus ωe−1 involves a choice eX ∈ X for each [e] 6= X ∈ Cv, and different choices would have
determined another configuration. Now, the local configuration ωe−1eX contains e−1

X , hence it
must be of type (c1), i.e. ωe−1eX = s−1(s(eX)). Continuing this way, we can build up ω by
making “the right choices”, and the point of E-functions is precisely to formalize this descrip-
tion of the configurations in terms of choices.

For X ∈ Cv we define ZX =
∏

Y ∈Cv ,Y 6=X Y , and for a particular Y ′ ∈ Cv such that Y ′ 6= X,
we denote by πY ′ the projection ZX → Y ′.

Definition 5.2.3. A partial E-function for (E,C) is a finite sequence

(Ω1, g1), (Ω2, g2), . . . , (Ωn, gn),

where each gi is a function Ωi →
⋃
X∈C ZX satisfying

(a) Ω1 = s−1(v) ⊂ F for some v ∈ E0,1, and g1(e) ∈ Z[e] for all e ∈ s−1(v).

(b) For each i ≥ 2, Ωi ⊂ F is the set of elements

e2i−1e
−1
2i−2e2i−3 · · · e3e

−1
2 e1,

such that

• e2i−3 · · · e3e
−1
2 e1 ∈ Ωi−1,

• assuming gi−1(e2i−3 · · · e3e
−1
2 e1) ∈ ZX with X ∈ Cv, there is some X 6= Y ∈ Cv such

that
e2i−2 = (πY ◦ gi−1)(e2i−3 · e3e

−1
2 e1),

• s(e2i−1) = s(e2i−2) and e2i−1 6= e2i−2.

(c) The functions gi satisfy gi(e2i−1e
−1
2i−2e2i−3 · · · e3e

−1
2 e1) ∈ Z[e2i−1].

Finally, an E-function is an infinite sequence {(Ωi, gi)}i≥1 such that

(Ω1, g1), (Ω2, g2), . . . , (Ωn, gn)

is a partial E-function for each n ≥ 1. Note that a partial E-function can always be extended
to a proper E-function.

The following proposition will hopefully shed light upon the meaning of this definition.

Proposition 5.2.4. Let v ∈ E0,1. Then the points of Ω(E,C)v are in one-to-one corre-
spondence with the set of E-functions {(Ωi, gi)}i≥1 such that Ω1 = s−1(v). If ω ∈ Ω(E,C)v
corresponds to {(Ωi, gi)}i≥1, then the partial E-function

(Ω1, g1), . . . , (Ωn, gn)

corresponds to a clopen neighbourhood Un of ω, and if V is any open neighbourhood of ω, then
Un ⊂ V for some n ∈ N. Moreover, if ω′ ∈ Ω(E,C)v corresponds to {(Ω′i, g′i)}i≥1, then ω′ ∈ Un
if and only if Ωi = Ω′i and gi = g′i for all 1 ≤ i ≤ n.
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Proof. Given a point ω ∈ Ω(E,C)v, ω satisfies (c1) at 1 by Remark 5.1.6. Hence, for any
e ∈ s−1(v) we have e−1 ∈ ω, and ω satisfies (c2) at e−1. Therefore there is a unique element
g1(e) ∈ Z[e] such that e−1πX(g1(e)) ∈ ω for all X ∈ Cr(e) with X 6= [e], and in particular
(Ω1, g1) is a partial E-function. Now assume that we have extended this to a partial E-
function (Ω1, g1), . . . , (Ωn, gn) such that

e−1
1 e2e

−1
3 · · · e2n−2e

−1
2n−1πX(gn(e2n−1e

−1
2n−2 · · · e3e

−1
2 e1)) ∈ ω

for each t := e2n−1e
−1
2n−2 · · · e3e

−1
2 e1 ∈ Ωn and X ∈ Cr(e2n−1) with X 6= [e2n−1]. Then the local

configuration of ω at t−1πX(gn(t)) contains πX(gn(t))−1, hence it satisfies (c1) and

ωt−1πX(gn(t)) = s−1(s(e2n))−1.

Defining Ωn+1 to be the set of elements e2n+1e
−1
2n t such that

• t = e2n−1e
−1
2n−2 · · · e−1

2 e1 ∈ Ωn,

• e2n = πX(gn(t)) for some X ∈ Cr(e2n−1) with X 6= [e2n−1],

• e2n+1 ∈ s−1(s(e2n)) \ {e2n},

it therefore satisfies the conditions of Definition 5.2.3. Finally, the local configuration of ω
at r = t−1e2ne

−1
2n+1 satisfies (c2), hence there is a unique element gn+1(r) ∈ Z[e2n+1] such that

r−1πX(gn+1(r)) ∈ ω for all X ∈ Cr(e2n+1) with X 6= [e2n+1]. We conclude that

(Ω1, g1), . . . , (Ωn+1, gn+1)

is a partial E-function, hence ω determines a unique E-function.

Conversely, given an E-function {(Ωi, gi)}i≥1 such that Ω1 = s−1(v), we can define an ele-
ment ω ∈ Ω(E,C)v by

ω = {1} ∪
⊔
i≥1

Ω−1
i ∪ {t−1πX(gi(t)) | t = e2i−1e

−1
2i−2 · · · e−1

2 e1 ∈ Ωi, [e2i−1] 6= X ∈ Cr(e2i−1)}.

Surely these two constructions are mutual inverses. Now if ω corresponds to {(Ωi, gi)}i≥1, to
every partial E-function (Ω1, g1), . . . , (Ωn, gn) we associate the set

Un =
⋂

i=1,...,n

t=e2i−1···e1∈Ωi

⋂
[e2i−1]6=X∈Cr(e2i−1)

Ω(E,C)t−1πX(gi(t)).

Surely Un is a clopen neighbourhood of ω. If V is any open neighbourhood of ω, then by
definition of the topology on Ω(E,C), there are finitely many s1, . . . , sk ∈ ω such that

ω ∈
k⋂
i=1

Ω(E,C)si ⊂ V.

But clearly Un ⊂
⋂k
i=1 Ω(E,C)si for sufficiently large n, hence ω ∈ Un ⊂ V . If ω′ ∈ Ω(E,C)v

corresponds to {(Ω′i, g′i)}i≥1, then surely ω′ ∈ Un if and only if Ωi = Ω′i and gi = g′i for
i = 1, . . . , n.

Finally we give an explicit description of the action on E-functions.
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Lemma 5.2.5. Given a reduced word s ∈ F, we have Dom(θs) = ∅ unless

s = f−1
n enf

−1
n−1en−1 · · · f−1

1 e1 ∈ F,

with r(ei) = r(fi), [ei] 6= [fi] for all i = 1, . . . , n and s(fi) = s(ei+1) for all i = 1, . . . , n− 1. In
that case, regard θs as a map of E-functions. Then the domain of θs consists of the E-functions
g = {(Ωi, gi)}i≥1 such that Ω1 = s−1(s(e1)) and

fi = π[fi](gi(eif
−1
i−1ei−1 · · · f−1

1 e1))

for all i = 1, . . . , n. Likewise, the range of θs consists of the E-functions g′ = {(Ω′i, g′i)}i≥1

such that Ω′1 = s−1(s(fn)) and

ei = π[ei](g
′
i(fie

−1
i+1fi+1 · · · e−1

n fn))

for all i = 1, . . . , n. For g ∈ Dom(θs), write g′ = θs(g). If x2j−1x
−1
2j−2 · · · x3x

−1
2 x1 ∈ Ωj and

x1 6= e1, then

g′n+j(x2j−1x
−1
2m−2 · · ·x3x

−1
2 x1e

−1
1 f1 · · · e−1

n fn) = gn(x2j−1x
−1
2j−2 · · ·x3x

−1
2 x1).

Proof. The claims concerning the domain and range of θs follow directly from Proposition 5.1.5
and Proposition 5.2.4. Consider the other claims and write

ω ∈ Ω(E,C)s(e1) and ω′ ∈ Ω(E,C)s(fn)

for the elements corresponding to g and g′, respectively. Also write

t = x2j−1x
−1
2j−2 · · ·x3x

−1
2 x1.

From t−1 ∈ ω and ω′ = sω we get st−1 ∈ ω′, and since e1 6= x1 we must have ts−1 ∈ Ω′n+j. We
deduce that

{πX(gj(t)) | X ∈ Cr(x2j−1), X 6= [x2j−1]} = ωt−1 = ω′st−1

= {πX(gn+j(ts
−1) | X ∈ Cr(x2j−1), X 6= [x2j−1]},

hence gj(t) = gn+j(ts
−1).
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5.3 Topologically free actions

In the following we shall give a characterization of the graphs (E,C) (still satisfying Assump-
tion 5.2.1) for which the canonical partial action is topologically free (see Definition 1.3.1).
As we noted in Section 1.4, this is of particular importance when investigating the reduced
crossed products. We will be working with paths in the so-called double Ê of E, defined by
Ê0 = E0 and Ê1 = E1 ∪ (E1)∗ with extended range and source maps such that r(e∗) = s(e)
and s(e∗) = r(e). First, we need a couple of definitions.

Definition 5.3.1. A path γ in Ê is called admissible, if for any subpath e∗f we have [e] 6= [f ],
and for any subpath ef ∗ we have e 6= f , with e, f ∈ E1. A closed path in (E,C) is a non-trivial

admissible path γ = e∗2ne2n−1 · · · e3e
∗
2e1 in Ê, such that s(e1) = s(e2n), and a cycle in (E,C)

is a closed path γ, such that e1 6= e2n and s(e2i−1) 6= s(e2j) for all 1 ≤ i ≤ j < n. An entry
based at w ∈ E0,1 is a non-trivial admissible path f2m−1f

∗
2m−2 · · · f3f

∗
2 f1, such that s(f1) = w

and there is some X ∈ Cr(f2m−1) with X 6= [f2m−1] and |X| ≥ 2. Finally, given a closed path
γ in (E,C) with notation as above, an entry of γ is an entry based at s(e1).

Definition 5.3.2. The graph (E,C) is said to satisfy condition (L), if any cycle in (E,C) has
an entry.

Before we can examine topological freeness of the canonical partial action, we need a couple
of purely graph-theoretic lemmas.

Lemma 5.3.3. Denote by γ = e∗2ne2n−1 · · · e3e
∗
2e1 a closed path in (E,C), and assume that for

some 1 ≤ i < n there exists an admissible path

ν = f2m−1f
∗
2m−2 · · · f3f

∗
2 f1,

such that s(f1) = s(e2i) and |X| ≥ 2 for some X ∈ Cr(f2m−1) with X 6= [f2m−1]. Then γ has
an entry.

Proof. If f1 6= e2i, then surely νe∗2ie2i−1 · · · e3e
∗
2e1 is an admissible path and thus an entry of

γ, so we shall assume that f1 = e2i. We will divide the problem into a number of cases. If
m ≥ i+ 1 and

f1 = e2i, f2 = e2i−1, . . . , f2i = e1,

then f2m−1f
∗
2m−2 · · · f ∗2i+2f2i+1 is an entry for γ. If m ≤ i and

f1 = e2i, f2 = e2i−1, . . . , f2m−1 = e2i−2m+2,

then there is X ∈ Cr(f2m−1) = Cr(e2i−2m+2) = Cr(e2i−2m+1) such that |X| ≥ 2 and e2i−2m+2 /∈ X,
hence e2i−2m+2e

∗
2i−2m+3 · · · e∗2n−1e2n is an entry for γ. Also, if

f1 = e2i, f2 = e2i−1, . . . , f2k = e2i−2k+1

for some k < i but f2k+1 6= e2i−2k, then

f2m−1f
∗
2m−2 · · · f ∗2k+2f2k+1e

∗
2i−2ke2i−2k−1 · · · e3e

∗
2e1

is an entry for γ. Finally, we consider the case where

f1 = e2i, f2 = e2i−1, . . . , f2k+1 = e2i−2k
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for some k < i, but f2k+2 6= e2i−2k−1. Write ν = ν ′f ∗2k+2f2k+1 · · · f3f
∗
2 f1 with ν ′ a non-

trivial admissible path. If [f2k+2] = [e2i−2k−1], then |[e2i−2k−1]| ≥ 2 since e2i−2k−1 6= f2k+2 by
assumption, hence in that case e2i−2ke

∗
2i−2k+1 · · · e∗2n−1e2n is an entry for γ. If, on the other

hand, [f2k+2] 6= [e2i−2k−1], then

ν ′f ∗2k+2e2i−2k−1e
∗
2i−2k−2 · · · e3e

∗
2e1

is an entry for γ. This finishes the proof.

Lemma 5.3.4. Assume that (E,C) satisfies condition (L). Then every closed path in (E,C)
has an entry.

Proof. Given a closed path γ = e∗2ne2n−1 · · · e∗2e1, we can assume that s(e2i−1) 6= s(e2j) for all
1 ≤ i ≤ j < n. Indeed, if there are 1 ≤ i ≤ j < n such that s(e2i−1) = s(e2j), then choosing
(i, j) with j − i minimal, we have s(e2k−1) 6= s(e2l) for all i ≤ k ≤ l < j. We have thus
obtained a closed path e∗2je2j−1 · · · e∗2ie2i−1 with the required property, and by Lemma 5.3.3, it
suffices to prove that this path has an entry.

Now if e1 6= e2n, then γ is a cycle and therefore has an entry by assumption. Assuming
e1 = e2n, we must have n ≥ 2 and we claim that e2 6= e2n−1. For n = 2 this is trivial, and if
n ≥ 3, then

s(e2) = s(e3) 6= s(e2(n−1)) = s(e2n−1),

so in particular e2 6= e2n−1. We have r(e2n−1) = r(e2n) = r(e1) = r(e2), and we shall divide
the problem into the two cases [e2n−1] = [e2] and [e2n−1] 6= [e2]. Assuming the former, we must
have |[e2]| ≥ 2, and so e1 is an entry for γ. If, on the other hand, [e2n−1] 6= [e2], then

e∗2e2n−1e
∗
2n−2 · · · e5e

∗
4e3

is a cycle, hence it has an entry by condition (L). It follows from Lemma 5.3.3 that γ has an
entry as well.

Theorem 5.3.5. Suppose that (E,C) satisfies Assumption 5.2.1. Then the canonical partial
action is topologically free if and only if (E,C) satisfies condition (L).

Proof. First, assume that (E,C) does not satisfy condition (L) and denote by

γ = e∗2ne2n−1 · · · e3e
∗
2e1

a cycle in (E,C) with no entries. Also write s = e−1
2n e2n−1 · · · e3e

−1
2 e1 ∈ F. Then one can

easily see, proceeding inductively, that there is a unique E-function {(Ωi, gi)}i≥1 such that
Ω1 = s−1(s(e1)). Denote by ω the point in Ω(E,C)s(e1) corresponding to the unique E-
function. Then Ω(E,C)s−1 and Ω(E,C)s are both non-empty subsets of Ω(E,C)s(e1) since γ is
a cycle, hence they both equal {ω}. In particular {ω} is a s-invariant subset with non-empty
interior, so the action is not topologically free.

Now assume that (E,C) does in fact satisfy condition (L). Given any s ∈ F, we shall prove
that the set of fixed points of θs has empty interior. From Proposition 5.1.5 it follows that
that we need only consider words s ∈ F, where the letters oscillate between belonging to E1

and (E1)−1. We may also assume that the first and last letter in s do not both belong to E1

or (E1)−1, for then θs will have no fixed points at all. Indeed, if ω is a fixed point of θs with s
of this form, then both s ∈ ω and s−1 ∈ ω, so by convexity of ω, the local configuration of ω
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at 1 will contain both an element of E1 and (E1)−1, which is a contradiction. First, we shall
consider a non-trivial reduced word of the form

s = f−1
n en · · · f−1

1 e1,

and we may assume that Dom(θs) 6= ∅, for else the claim is trivial. From Lemma 5.2.5 it follows
that r(ei) = r(fi) with [ei] 6= [fi] for all i = 1, . . . , n and s(fi) = s(ei+1) for i = 1, . . . , n − 1,
i.e.

γ = f ∗nen · · · f ∗1 e1

is an admissible path. Surely we can also assume that there actually is some fixed point ω
of θs, and we denote by g = {(Ωi, gi)}i≥1 the corresponding E-function with Ω1 = s−1(s(e1)).
On the other hand, since θs(ω) = ω it follows from Lemma 5.2.5 that Ω1 = s−1(s(fn)), so
s(e1) = s(fn). We conclude that γ is a closed path in (E,C).

In the following we shall suppose that e1 6= fn and let V denote an open neighbourhood of
ω. Then by Proposition 5.2.4 there is an clopen neighbourhood Uk of ω corresponding to each
partial E-function (Ω1, g1), . . . , (Ωk, gk), and choosing k ≥ n to be sufficiently large we will
have Uk ⊂ V . We shall construct a point ω′ ∈ Uk such that θs(ω

′) 6= ω′. It follows from
Lemma 5.3.4 that γ has an entry

η = x2j−1x
∗
2j−2 · · · x3x

∗
2x1.

Being an entry, η is an admissible path with s(x1) = s(e1), having [x2j−1] 6= X ∈ Cr(x2j−1)

with |X| ≥ 2. Assuming that j is minimal with this property, we must have

t := x2j−1x
−1
2j−2 · · · x3x

−1
2 x1 ∈ Ωj.

Indeed x1 ∈ s−1(s(e1)) = Ω1, and assuming that x2i−1x
−1
2i−2 · · ·x3x

−1
2 x1 ∈ Ωi for some i < j we

should prove the identity

x2i = π[x2i](gi(x2i−1x2i−2 · · ·x3x
−1
2 x1)).

From η being admissible we have r(x2i−1) = r(x2i) but [x2i−1] 6= [x2i], and by minimality of j
it follows that |[x2i]| = 1. Thus x2i is the only possible choice in [x2i], and the identity holds.
Picking a positive integer m with mn+ j > k, we shall divide the argument into two cases.

Suppose first that e1 6= x1. Let ω′ denote the element corresponding to the E-function defined
as follows: For 1 ≤ l ≤ mn + j − 1 define Ω′l = Ωl, g

′
l = gl and take X ∈ Cr(x2j−1) with

X 6= [x2j−1] and |X| ≥ 2. Then there is some x ∈ X with x 6= πX(gj(t)), and we define

πX(g′mn+j(ts
−m)) = x.

Apart from this, we define g′mn+j arbitrarily and also extend the partial E-function

(Ω′1, g
′
1), (Ω′2, g

′
2), . . . , (Ω′mn+j, g

′
mn+j)

arbitrarily to an E-function {(Ω′i, g′i)}i≥1. Since k ≤ mn+ j − 1 we have (Ωi, gi) = (Ω′i, g
′
i) for

all 1 ≤ i ≤ k, hence ω′ ∈ V . Finally we need to check that ω′ is not fixed by θs. We have
ts−m ∈ Ωmn+j since e1 6= x1 by assumption, and in order to reach a contradiction we suppose
that ω′ is actually a fixed point. Then by Lemma 5.2.5 we have

x = πX(g′mn+j(ts
−m)) = πX(g′j(t)) = πX(gj(t)),
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contradicting the fact that πX(gj(t)) 6= x.

Now assuming that e1 = x1 we have x1 6= fn, since we are also assuming that e1 6= fn.
Proceeding as above with the element ts−m replaced by tsm, we obtain a non-fixed point
ω′ ∈ U .

We shall use what we have just proved to cover the rest of the cases. First suppose that s is
of the form

s = enf
−1
n−1 · · · f−1

1 e1f
−1
0

with en 6= f0 and n ≥ 1, and assume that V is a non-empty open set of fixed points of θs.
From Dom(θs) 6= ∅ we deduce that f ∗n−1en−1 · · · f ∗1 e1 is an admissible path, s(f0) = s(e1) with
f0 6= e1, and s(en) = s(fn−1) with en 6= fn−1. Moreover, since θs has a fixed point ω, we must
have both s ∈ ω and s−1 ∈ ω, hence en, f0 ∈ ω1. Since we have assumed that en 6= f0, we get
[en] 6= [f0]. Now define t = f−1

0 enf
−1
n−1en−1 · · · f−1

1 e1 and note that surely θf−1
0

(V ) ⊂ Dom(θt).
Since

θt(θf−1
0

(ω)) = θtf−1
0

(ω) = θf−1
0 s(ω) = θf−1

0
(ω)

for any ω ∈ V , we conclude that θz−1
0

(V ) is a non-empty open set of fixed points of θt,
contradicting the first part of the proof.

To deal with the remaining two cases, we consider the statements

(a) the set of fixed points for θs has empty interior if s is of the form

s = e−1
1 enf

−1
n−1en−1 · · · f−1

1 e1,

(b) the set of fixed points for θs has empty interior if s is of the form

s = f0f
−1
n en · · · f−1

1 e1f
−1
0 ,

for n ≥ 1. We shall prove that

(a) holds for n⇒ (b) holds for n⇒ (a) holds for n+ 1,

so first we assume that (a) holds for n. Consider an element s of the form

s = f0f
−1
n en · · · f−1

1 e1f
−1
0

and define t = f−1
n en · · · f−1

1 e1. Once again, let V denote a non-empty open set of fixed points
of θs. Then surely θf−1

0
(V ) ⊂ Dom(θt) and

θt(θf−1
0

(ω)) = θtf−1
0 s−1(ω) = θf−1

0
(ω)

for all ω ∈ V , hence θf−1
0

(V ) is a non-empty open set of fixed points for θt. However, this
contradicts either the first part of the proof or the inductive assumption. Now suppose that
(b) holds for some n ≥ 1. Given s = e−1

1 en+1f
−1
n en · · · f−1

1 e1, we assume that V is a non-empty
set of fixed points of θs and define t = en+1f

−1
n en · · · e2f

−1
1 . Then surely θe1(V ) ⊂ Dom(θt)

and
θt(θe1ω) = θt(θe1(θs−1(ω))) = θte1e−1

1 t−1e1
(ω) = θe1(ω)

for all ω ∈ V , so θe1(V ) is a non-empty open set of fixed points of θt. But depending on
whether en+1 = f1 or en+1 6= f1, this contradicts the induction assumption or what we have
just shown above. As (a) trivially holds for n = 1, this finishes the proof.
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Recall that a compact zero-dimensional and metrizable space is a Cantor space (of which there
is only one up to homeomorphism), if it contains no isolated points. We are also able to give
sufficient conditions for Ω(E,C) to be a Cantor space.

Proposition 5.3.6. Assume that for each w ∈ E0,1 there are entries

e2n−1e
∗
2n−2 · · · e3e

∗
2e1 and f2m−1f

∗
2m−2 · · · f3f

∗
2 f1

of w with e1 6= f1. Then Ω(E,C) is a Cantor space.

Proof. We first note that Ω(E,C) is a Cantor space, if and only if Ω(E,C)w is a Cantor space
for all w ∈ E0,1 — this is a direct consequence of Definition 2.4.9. Therefore we consider some
ω ∈ Ω(E,C)w with w ∈ E0,1 and denote by {(Ωi, gi)}i≥1 the E-function corresponding to ω.
Then given any n ∈ N, we should construct another E-function {(Ω′i, g′i)}i≥1 with Ωi = Ω′i
and gi = g′i for all i ≤ n. We of course define the partial E-function (Ω′1, g

′
1), . . . , (Ω′n, g

′
n)

accordingly, and we will automatically have Ω′n+1 = Ωn+1 as well. Now take any

e2n+1e
−1
2n e2n−1 · · · e3e

−1
2 e1 ∈ Ω′n+1.

Then by assumption, there is an entry

f2m−1f
∗
2m−2 · · · f3f

∗
2 f1

at s(e2n) with f1 6= e2n, and we can assume that m is chosen minimally. Setting Ω′i = Ωi and
g′i = gi for n+ 1 ≤ i ≤ m+ n− 1 as well, we have

f2m−1f
−1
2m−2 · · · f3f

−1
2 f1e

−1
2n e2n−1 · · · e3e

−1
2 e1 ∈ Ω′m+n.

Then there is some color [f2m−1] 6= X ∈ Cr(f2m−1) with |X| ≥ 2, and we simply define

πX

(
g′m+n(f2m−1f

−1
2m−2 · · · f3f

−1
2 f1e

−1
2n e2n−1 · · · e3e

−1
2 e1 ∈ Ω′m+n)

)
to be different from

πX

(
gm+n(f2m−1f

−1
2m−2 · · · f3f

−1
2 f1e

−1
2n e2n−1 · · · e3e

−1
2 e1 ∈ Ω′m+n)

)
.

Finishing off the definition of g′m+n arbitrarily and extending (Ω′1, g
′
1), . . . , (Ω′m+n, g

′
m+n) ar-

bitrarily to an E-function {(Ω′i, g′i)}i≥1, we have obtained an E-function with the desired
properties.

Likewise, we can give sufficient conditions for the existence of isolated points.

Proposition 5.3.7. Assume that there are no entries based at w ∈ E0,1. Then Ω(E,C)w is a
one-point space. In particular, Ω(E,C) contains an isolated point.

Proof. Simply note that there is only one E-function {(Ωi, gi)}i≥1 with Ω1 = s−1(w).

We continue the investigation of isolated points with a few examples in the final chapter.



Chapter 6

Examples and discussion

We close this thesis with a minor chapter of examples and discussions. The most obvious
example is that of a trivially separated graph.

Example 6.1.1. If E is a trivially separated finite graph, we have LK(E) = Lab
K (E) and

C∗(E) = O(E). In particular, we obtain a description of LK(E) and C∗(E) as crossed products

LK(E) ∼= CK(Ω(E)) oθ∗ F and C∗(E) ∼= C(Ω(E)) oθ∗ F

with a partial action. Changing (F1)-(F4) slightly to take into account the fact that E need
not be bipartite, one can obtain a description of the partial action similar to that of Proposi-
tion 5.1.5. However, it is clear that our theory does not offer a lot of new insights into classical
graph algebras.

Proposition 6.1.2. Given a separated graph (E,C) and any X ∈ C, we write EX for the
trivially separated graph given by

E0
X = E0 and E1

X = X.

Then there are isomorphisms

LK(E,C) ∼=∗
E0

LK(EX) and C∗(E,C) ∼=∗
E0

C∗(EX),

where the amalgamated free products run over all colors X ∈ C.

Proof. Note that a ∗-homomorphism LK(EX)→ A is the same thing as a set

{pv, se | v ∈ E0, e ∈ X} ⊂ A

satisfying

• pvpv′ = δv,v′pv for all v, v′ ∈ E0,

• pr(e)se = seps(e) = se for all e ∈ X,

• s∗ese′ = δe,e′ps(e) for all e, e′ ∈ X,

• pv =
∑

e∈X ses
∗
e if X ∈ Cv.
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From the universal property of the amalgamated free product, a ∗-homomorphism

∗
E0

LK(EX)→ A

is the same thing as ∗-homomorphisms LK(EX)→ A for each X ∈ C that agree on E0, i.e. a
set {pv, se | v ∈ E0, e ∈ E1} ⊂ A satisfying

• pvpv′ = δv,v′pv for all v, v′ ∈ E0,

• pr(e)se = seps(e) = se for all e ∈ E1,

• s∗ese′ = δe,e′ps(e) for all e, e′ ∈ X ∈ C,

• pv =
∑

e∈X ses
∗
e for all X ∈ Cv, v ∈ E0.

But this is the same thing as a ∗-homomorphism LK(E,C) → A. One argues similarly for
C∗(E,C).

Example 6.1.3. Note that in case (E,C) only has one vertex, the amalgamation is trivial.
For instance, we can consider the graph

m n

,

for which the graph C∗-algebra is simply the universal unital free product Om ∗ On of the
Cuntz-algebras.

Example 6.1.4. Consider the bipartite graph

v

e1

e2 f2

f1

.

Then it is easily seen that the full corner vLK(E,C)v is generated by the set of distinct
projections

{p(e1), p(e2), p(f1), p(f2)}
with the relation

p(e1) + p(e2) = p(f1) + p(f2).

This is the universal unital free product K2 ∗ K2. However, the corresponding full corner
vLab

K (E,C)v of the abelianized Leavitt path algebra is generated by four distinct and com-
muting projections {p(e1), p(e2), p(f1), p(f2)} such that

p(e1) + p(e2) = p(f1) + p(f2),

and this is simply isomorphic to K4. Passing from LK(E,C) to Lab
K (E,C) thus gives a drastic

change in complexity.
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The following example, which we have already encountered, is really the motivational example
of the entire theory.

Example 6.1.5. Let 1 ≤ m < n and consider the graph (E,C) := (E(m,n), C(m,n)) of
Corollary 4.1.14

u v

m

n .

Note that if m = 1, then (E,C) = (F̃ , D̃) as in Proposition 3.2.2, where F is the trivially
separated graph

n

,

hence the algebras associated to (E(1, n), C(1, n)) are simply the two-by-two matrices over
the Cuntz algebra On and its algebraic counterpart. The C∗-algebras

Om,n = O(E,C)

for m ≥ 2 were studied in detail in [4], and as one might expect, the behavior is very different
from the case m = 1. Indeed, it is proven that Om,n is not even exact (see [4, Theorem 7.2]),
while the reduced crossed product

Orm,n = C(Ω(E,C)) or,θ∗ F

is exact from Theorem 1.4.9. However, Orm,n is still not nuclear, because then we would in fact
have Om,n = Orm,n (see [4, Theorem 6.4]). In the purely algebraic context we have

V(LK(E,C)) = 〈u | m · u = n · u〉,

hence k · u is a finite if and only if k < m, and k · u is properly infinite if and only if k ≥ m.
Since V(LK(E,C))→ V(Lab

K (E,C)) is a refinement, the same holds in Lab
K (E,C).

The Leavitt path algebra LK(E,C) is closely related to the classical Leavitt algebra LK(m,n),
which is the ∗-algebra generated by elements ai,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n such that
the matrix a = [ai,j] is unitary, i.e. aa∗ = 1m and a∗a = 1n. In fact, we claim that there are
isomorphisms

(a) LK(E,C) ∼= Mm+1(LK(m,n)) ∼= Mn+1(LK(m,n))

(b) vLK(E,C)v ∼= Mm(LK(m,n)) ∼= Mn(LK(m,n))

(c) uLK(E,C)u ∼= LK(m,n).

Proof. Let ei,j denote the (i, j)’th standard matrix unit in Mm+1(K) and define a projection

p =
m∑
i=1

1⊗ ei,i

in Mm+1(LK(m,n)). Then we can define a ∗-homomorphism

ψ : LK(E,C)→Mm+1(LK(m,n))

by
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• ψ(u) = 1⊗ em+1,m+1 and ψ(v) = p,

• ψ(ei) = 1⊗ ei,m+1 for all 1 ≤ i ≤ m,

• ψ(fj) =
∑m

l=1 al,j ⊗ el,m+1 for all 1 ≤ j ≤ n.

Indeed it is straightforward to verify that ψ respects the defining relations of LK(E,C). In
order to build an inverse of ψ, we define

ϕ1 : LK(m,n)→ LK(E,C) and ϕ2 : Mm+1(K)→ LK(E,C)

by

ϕ1(ai,j) = e∗i fj +
m∑
l=1

ele
∗
i fje

∗
l

and

• ϕ2(ei,j) = eie
∗
j for 1 ≤ i, j ≤ m,

• ϕ2(ei,m+1) = ei for 1 ≤ i ≤ m,

• ϕ2(em+1,m+1) = u.

It is straightforward to check that the ϕ2(ei,j)’s form a set of matrix units, hence ϕ2 is well
defined. For ϕ1 to be well-defined, we need the matrix [ϕ1(ai,j)] to be unitary, and we will
simply verify that [ϕ1(ai,j)][ϕ1(ai,j)]

∗ = 1m, as the other identity can be checked in a similar
fashion. For this we simply observe that the (i, j)’th entry of the above product equals

n∑
k=1

ϕ1(ai,k)ϕ1(aj,k)
∗ =

n∑
k=1

(
e∗i fkf

∗
kej +

m∑
l=1

ele
∗
i fkf

∗
keje

∗
l

)
= δi,ju+ δi,jv = δi,j.

Finally, one checks that the images of ϕ1 and ϕ2 commute, hence there is a product homomor-
phism ϕ = ϕ1×ϕ2, and this is an inverse of ψ. The other isomorphism is essentially obtained
by interchanging the roles of the ei’s and fj’s.

For (b) and (c), we simply note that the isomorphisms restrict to isomorphisms

vLK(E,C)v ∼= pMm+1(LK(m,n))p ∼= Mm(LK(m,n))

and
vLK(E,C)v ∼= pMn+1(LK(m,n))p ∼= Mn(LK(m,n)),

as well as

uLK(E,C)u ∼= (1⊗ em+1,m+1)Mm+1(LK(m,n))(1⊗ em+1,m+1) ∼= LK(m,n).

Using universality, we of course have similar results in the C∗-algebraic context. Note that
uLK(E,C)u is a full corner of LK(E,C), so in particular V(LK(m,n)) ∼= V(LK(E,C)). We
conclude that LK(m,n) is a finite ∗-algebra (i.e. the identity is a finite projection), such that
Mm(LK(m,n)) ∼= Mn(LK(m,n)) is properly infinite (i.e. the identities in these ∗-algebras are
properly infinite projections).
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Now we shall consider two examples of graphs that neither satisfy the requirements of Propo-
sition 5.3.6 nor those of Proposition 5.3.7. They show that vertices v ∈ E0,1 with |s−1(v)| = 1
may produce isolated points, but need not do so.

Example 6.1.6. Note that even though all three vertices of E0,1 in the graph

have entries, the associated space contains a lot of isolated points. On the other hand, the
space associated to the graph

v

2

is indeed a Cantor space, even though |s−1(v)| = 1.

One might think that the requirements of Proposition 5.3.6 could be relaxed to just demanding
that v has an entry and |s−1(v)| ≥ 2 for every v ∈ E0,1, but as the following example shows,
this is not the case.

Example 6.1.7. Consider the graph

v

2 2

.

Clearly every w ∈ E0,1 has an entry and satisfies |s−1(w)| = 2. However, it is easily seen
Ω(E,C)v contains infinitely many isolated points.

Finally we shall see that the cardinality of the isolated points versus the cardinality of non-
isolated points of Ω(E,C) may vary greatly, although there is at most countably infinite many
isolated points.

Example 6.1.8. If Ω(E,C) contains isolated points and is infinite, usually there will be
infinitely many isolated points. However, it is fairly easy to see that the space associated to
the graph
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2 2

is uncountable and has precisely 3 isolated points. In a completely different direction, the
space associated to the graph

decomposes as Ω(E,C) = X t Y , where X ∼= Y are both homeomorphic to the one point
compactification N•. In particular, the space is countably infinite and has only two non-isolated
points.

We finally give a few remarks on the future of the subject.

Remark 6.1.9. It was conjectured in [2] that the canonical homomorphism

V(L(E,C))→ V(C∗(E,C))

is in fact an isomorphism, and this is surely the most important open problem in the theory
at the moment. If the conjecture holds, then many of the results in the purely algebraic
context presented in this thesis will hold in the C∗-context as well. First of all, the canonical
homomorphism V(Lab(E,C))→ V(O(E,C)) will be an isomorphism as well by Theorem 3.3.11
and Theorem 3.3.12, and for any finitely generated conical abelian monoid M , there will exist
a graph (E,C) along with a refinement

M → V(O(E,C)).

Thus the abelianized graph C∗-algebras O(E,C) will form a fairly accessible class of C∗-
algebras, considering the description as a crossed product, with wild V-monoids. The conjec-
ture is known to be true for trivially separated graphs.



Appendices

As we are working quite intensively with all sorts of algebraic objects, the relevant general
facts needed have been compiled in the following three appendices. Hopefully, this will allow
some focus on the things that really matter in the rest of the thesis.

A.1 Abelian Monoids

Definition A.1.1. An abelian monoid is a set M with an abelian and associative binary
relation, usually denoted +, with neutral element 0. Note that 0 is necessarily unique. A
homomorphism of abelian monoids ϕ : M → N is simply an additive map satisfying ϕ(0) = 0.

Definition A.1.2. M is called cancellative if a + b = a + c implies b = c, and it is called
conical if a+ b = 0 implies a = b = 0.

Definition A.1.3 (The algebraic preorder). Any abelian monoid can be equipped with a
relation ≤ defined as follows: We write a ≤ b if and only if there is some c ∈ M such that
a+ c = b. All preorderings of monoids will be of this type.

Obviously, ≤ is reflexive and transitive, but in general it is not antisymmetric. However, if M
is both conical and cancellative, then ≤ will be antisymmetric. Obviously any homomorphism
preserves the algebraic preorder. Finally, an element satisfying 2a ≤ a will be called properly
infinite.

Example A.1.4 (The free abelian monoid on a set). Given a set X, the free abelian monoid
on X is the set Z+(X) of formal sums

∑
x∈X nxx, where the nx’s are non-negative integers

with nx = 0 for all but finitely many x ∈ X. Equipped with the obvious addition, Z+(X)
becomes a cancellative and conical abelian monoid.

Example A.1.5 (The monoid 〈X | R〉). Given a set X and a relation R on Z+(X) we can
form an abelian monoid 〈X | R〉 ”generated by X with relations R” as follows: Let ∼ denote
the smallest equivalence relation on Z+(X) containing R such that a1 ∼ b1 and a2 ∼ b2 implies
a1 + a2 ∼ b1 + b2. Then the addition on Z+(X) drops to an addition on the set of equivalence

classes 〈X | R〉 := Z+(X)
∼ , hence the quotient defines a monoid. Clearly, this monoid enjoys the

following universal property: Given a homomorphism ϕ : Z+(X)→ N such that ϕ(a) = ϕ(a′)
for all (a, a′) ∈ R, there is a unique homomorphism ϕ : 〈X | R〉 → N such that ϕ([a]) = ϕ(a)
for all a ∈ Z+(X). Usually, we will omit the brackets when denoting elements of 〈X | R〉,
and shall simply write a = a′ whenever a ∼ a′. Abusing the notation in an obvious way, any
such relation ∼ is generated by a collection of relations R = {rj}j∈J , where each rj is simply
a relation of the form

rj :
∑
x∈X

mx,jx =
∑
x∈X

nx,jx.

89
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Note that any abelian monoid M can be presented as a monoid of the form 〈X | R〉, but in
general one desires that both X and R are as small as possible.

Definition A.1.6. An abelian monoid M is called finitely presented, if it is isomorphic to
〈X | R〉 for finite X and R = {rj}j∈J with finite J .

Lemma A.1.7. Every conical abelian monoid M has a presentation 〈X | {rj}j∈J〉 with

rj :
∑
x∈X

mx,jx =
∑
x∈X

nx,jx,

such that
∑

x∈X mx,j,
∑

x∈X nx,j > 0 for all j ∈ J and
∑

j∈J mx,j + nx,j > 0 for all x ∈ X.
Furthermore, if M is finitely presented, then this can be accomplished by a finite presentation.

Proof. As noted above, any abelian monoid has a presentation 〈X | {rj}j∈J〉. Now if∑
x∈X

mx,j = 0

(or analogously
∑

x∈X nx,j = 0) for some j, then rj reduces to

0 =
∑
x∈X

nx,jx.

If nx,j > 0 for some x ∈ X, we can conclude that x = 0 since our monoid is assumed to be
conical. Discarding all such x’s along with the entire relation rj, we obtain the same monoid.
Doing this for every j, our monoid will satisfy the first of the above inequalities. For the other
one, assume that

∑
j∈J mx,j + nx,j = 0 for some x. Then we may simply add the relation

rx : x = x.

Doing this for every such x, we obtain the same monoid but with a presentation satisfying
both the first and second of the above inequalities. Finally, note that if our initial presentation
is finite, then so is the one we have produced.

The following proposition is known as Redei’s Theorem, but the very elegant proof was given
by Peter Freyd in [10].

Proposition A.1.8. Every finitely generated abelian monoid is finitely presented.

Proof. Assume in order to reach a contradiction that M is not finitely presented. Then there
is a free abelian monoid F on finitely many generators and a chain of abelian monoids Mi

with non-injective, surjective homomorphisms

F →M1 →M2 →M3 → . . . .

Denoting by Z(N) the monoid ring on N , this gives a chain of non-injective, surjective ring
homomorphisms

Z[F ]→ Z[M1]→ Z[M2]→ Z[M3]→ . . . ,

so the kernels Ii of the compositions Z[F ]→ Z[Mi] form a strictly increasing chain of ideals

I1 ( I2 ( I3 ( . . . ( Z[F ].

Recall that a ring is called Noetherian, if it has no infinite strictly increasing chains of ideals.
But Z[F ] is a commutative polynomial ring over Z, and since Z is clearly Noetherian, so is
Z[F ] by Hilbert’s Basis Theorem. We have thus reached a contradiction.
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Corollary A.1.9. Every finitely generated, conical abelian monoid has a finite presentation
〈X | {rj}j∈J〉 with

rj :
∑
x∈X

mx,jx =
∑
x∈X

nx,jx,

such that
∑

x∈X mx,j,
∑

x∈X nx,j > 0 for all j ∈ J and
∑

j∈J mx,j + nx,j > 0 for all x ∈ X.

Proof. This is immediate by Lemma A.1.7 and Proposition A.1.8.

Unitary embeddings

Now we shall prove a few lemmas that allow us to construct so-called unitary embeddings.
This will be very handy in Chapter 3.

Definition A.1.10. A homomorphism of abelian monoids ϕ : M → N is called a unitary
embedding if the following holds:

(a) ϕ is injective.

(b) ϕ(M) is cofinal in N : For any b ∈ N there is some a ∈ A such that b ≤ ϕ(a).

(c) Whenever ϕ(a) + b ∈ ϕ(M) we have b ∈ ϕ(M).

Note that a unitary embedding is an order embedding.

Lemma A.1.11. If {ϕi,j : Mi → Mj | i, j ∈ I, i ≤ j} is a directed system of unitary embed-
dings, then the limit homomorphisms Mi → lim−→Mj are unitary embeddings as well.

Proof. Abusing the notation in the usual way, recall that the direct limit of a directed system

of modules may be constructed as M :=
⊕
i∈IMi

∼ where ∼ is the equivalence relation generated
by a ∼ ϕi,j(a) for all a ∈ Mi, and i, j ∈ I with i ≤ j, and the limit maps λi : Mi → M are
simply the inclusions into the sum followed by the quotient map associated to the equivalence
relation. Thus injectivity of the limit maps follows as usual by injectivity of the ϕi,j’s. To see
that each λi(Mi) is cofinal in M , pick b ∈ M . Then b = λj(a

′) for some j ∈ I and a′ ∈ Mj.
Picking k ≥ i, j we define b′ = ϕj,k(a

′). Then since ϕi,k(Mi) is cofinal in Mk, there is some
a ∈Mi such that b′ ≤ ϕi,k(a). We conclude that

b = λj(a
′) = λk(ϕj,k(a

′)) = λk(b
′) ≤ λk(ϕi,k(a)) = λi(a).

It remains only to check the third condition, so take a, a′ ∈Mi and assume that

λi(a) + b = λi(a
′)

for some b ∈M . Then there is some i ≤ j and b′ ∈Mj such that λj(b
′) = b, hence

λj(ϕi,j(a)) + λj(b
′) = λj(ϕi,j(a

′)).

By injectivity of λj, we infer that ϕi,j(a)+b′ = ϕi,j(a
′), so from ϕi,j being a unitary embedding

we deduce that b′ ∈ ϕi,j(Mi). In particular

b = λj(b
′) ∈ λj(ϕi,j(Mi)) = λi(Mi).
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The following lemma may come across as slightly odd, but it will be a crucial ingredient in
the proof of Lemma A.1.13

Lemma A.1.12. Given finite sets X1, . . . , Xk and a function µ :
⊔k
i=1Xi → Z such that

k∑
i=1

µ(xi) ≥ 0

for all (x1, . . . , xk) ∈ X1 × . . .×Xk. Then there is a function ν :
⊔k
i=1 Xk → Z+ such that

k∑
i=1

ν(xi) =
k∑
i=1

µ(xi)

for all (x1, . . . , xk) ∈ X1 × . . .×Xk.

Proof. We argue by induction over k. In case k = 1 the claim is vacuously satisfied, so let k ≥ 2
by arbitrary and assume it holds for k − 1. Clearly, there is some j such that

∑
i 6=j µ(xi) ≥ 0

for all (x1, . . . , x̂j, . . . , xk) ∈ X1×. . . X̂j×. . .×Xk — we shall assume without loss of generality

that j = k. By the induction hypothesis there is some µ′ :
⊔k−1
i=1 Xi → Z+ such that

k−1∑
i=1

µ′(xi) =
k−1∑
i=1

µ(xi)

for all (x1, . . . , xk−1) ∈ X1 × . . .×Xk−1. If µ(xk) ≥ 0 for all xk ∈ Xk, then µ′ t µ|Xk satisfies
the required properties, so we shall assume that µ′(xk) < 0 for some xk ∈ Xk. Fix xk ∈ Xk

such that µ(xk) ≤ µ(xk) for all xk ∈ Xk and take (x1, . . . , xk−1) ∈ X1 × . . .×Xk−1 such that

k−1∑
i=1

µ′(xi) ≤
k−1∑
i=1

µ′(xi)

for all (x1, . . . , xk−1) ∈ X1 × . . .×Xk−1. We havek−1∑
i=1

µ′(xi)

+ µ(xk) =
k∑
i=1

µ(xi) ≥ 0,

allowing us to define ν inductively in the following way: For any x1 ∈ X1, set

ν(x1) =

 µ′(x1) + µ(xk) if −µ(xk) < µ′(x1)

µ′(x1)− µ′(x1) if −µ(xk) ≥ µ′(x1)

and assuming that ν(x) has been defined for x ∈
⊔n−1
i=1 Xi with n < k, we set

ν(xn) =


µ′(xn) + µ(xk) +

∑n−1
i=1 µ

′(xi) if
∑n−1

i=1 µ
′(xi) < −µ(xk) <

∑n
i=1 µ

′(xi)

µ′(xn)− µ′(xn) if −µ(xk) ≥
∑n

i=1 µ
′(xi)

µ′(xn) if
∑n−1

i=1 µ
′(xi) ≥ −µ(xk)

.
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Finally, for xk ∈ Xk we define ν(xk) = µ(xk) − µ(xk). It is clear that ν maps into Z+, so it
remains only to check the summing up condition. By definition there is some 1 ≤ n ≤ k − 1
such that

n−1∑
i=1

µ′(xi) < −µ(xk) ≤
n∑
i=1

µ′(xi),

so for arbitrary (x1, . . . , xk) we have

ν(xi) =



µ′(xi)− µ′(xi) if i ≤ n− 1

µ′(xn) + µ(xk) +
∑n−1

j=1 µ
′(xj) if i = n

µ′(xi) if n < i < k

µ(xk)− µ(xk) if i = k

.

We deduce that

k∑
i=1

ν(xi) =

n−1∑
i=1

µ′(xi)− µ′(xi)

+ µ′(xn) + µ(xk) +

n−1∑
j=1

µ′(xj)


+

 k−1∑
i=n+1

µ′(xi)

+ µ(xk)− µ(xk) =
k∑
i=1

µ(xi).

Lemma A.1.13. Given finite sets X1, . . . , Xk, write T =
⊔k
i=1Xi, S =

∏k
i=1Xi and

Si = X1 × . . .× X̂i × . . .×Xk.

Define M = 〈T | {ri,j}〉 with

ri,j :
∑
x∈Xi

x =
∑
x∈Xj

x

for all 1 ≤ i, j ≤ k, and consider any function f : S → N. Then there is a well defined unitary
embedding ψ : M → Z+(S) given by

ψ(xi) =
∑

(x1,...,x̂i,...,xk)∈Si

f(x1, . . . , xk) · (x1, . . . , xk)

for xi ∈ Xi.

Proof. First of all, let us see that ψ is in fact well-defined. Formally, we first define ψ on
Z+(T ) as above. Then

ψ

∑
x∈Xi

x

 =
∑
y∈S

f(y)y

for any 1 ≤ i ≤ k, so ψ drops to a homomorphism M → Z+(S). Note ψ(M) is cofinal in
Z+(S) for the simple reason that (x1, . . . , xk) ≤ ψ(xi) for every i = 1, . . . , k. Now, assume
that ψ(a) + b = ψ(a′) for a, a′ ∈M . Writing

a =
k∑
i=1

∑
xi∈Xi

λxixi and a′ =
k∑
i=1

∑
xi∈Xi

λ′xixi,
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we have

ψ(a) =
∑

(x1,...,xk)∈S

 k∑
i=1

λxi

 f(x1, . . . , xk) · (x1, . . . , xk)

ψ(a′) =
∑

(x1,...,xk)∈S

 k∑
i=1

λ′xi

 f(x1, . . . , xk) · (x1, . . . , xk),

hence
∑k

i=1 λxi ≤
∑k

i=1 λ
′
xi

for all (x1, . . . , xk) ∈ S. Defining a function µ : T → Z by

µ(xi) = λ′xi − λxi

for xi ∈ Xi, we have
∑k

i=1 µ(xi) ≥ 0 for all (x1, . . . , xk). Then by Lemma A.1.12, there is a

function ν : T → Z such that
∑k

i=1 ν(xi) =
∑k

i=1 µ(xi) for all (x1, . . . , xk). This allows us to
set

a′′ =
k∑
i=1

∑
xi∈Xi

ν(xi)xi ∈M

and then ψ(a) + ψ(a′′) = ψ(a′), hence b = ψ(a′′). Now it remains only to prove that ψ is
injective. Writing a, a′ ∈ M as above, we can assume that for each 2 ≤ i ≤ k there are
xi, x

1
i ∈ Xi such that λxi = λx1i = 0, by simply imposing the relation in M . Assuming

ψ(a) = ψ(a′) exactly means that
k∑
i=1

λxi =
k∑
i=1

λ′xi

for all (x1, . . . , xk). We claim that λ′xi = λx1i = 0 for all 2 ≤ i ≤ k. Indeed taking any x1 ∈ X1

we have

λx1 =
k∑
i=1

λxi =
k∑
i=1

λ′xi =
k∑
i=1

λ′xi +
k∑
i=2

λ′x1i
= λx1 +

k∑
i=2

(λ′xi + λx1i ).

It follows that

λx1 = λx1 +
k∑
i=2

λxi = λ′x1 +
k∑
i=2

λ′xi = λ′x1

for all x1 ∈ X1. Similarly we deduce that λx = λ′x for all x ∈ T . This finishes the proof.

Lemma A.1.14. If

M N

P Q

ψ

ψ

µ µ

is a pushout in the category of abelian monoids and ψ is a unitary embedding, then ψ is a
unitary embedding as well.
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Proof. Given a diagram

M N

P

ψ

µ

as above, we define a relation → on N ⊕ P by (n + ψ(m), p) → (n, p + µ(m)) for all m ∈
M,n ∈ N and p ∈ P . We note that → respects the addition on N ⊕ P , hence so does the
smallest equivalence relation ∼ containing →. Now define Q = N⊕P

∼ and write [n, p] for the

equivalence class of (n, p). Setting ψ(p) = [0, p] and µ(n) = [n, 0], it is easily seen that

M N

P Q

ψ

ψ

µ µ

is a pushout diagram. By uniqueness of pushouts, it suffices to prove the claim for a pushout
of this form. We start by proving that ψ(P ) is cofinal in Q: Given [n, p] ∈ Q we can take
m ∈M such that n ≤ ψ(m). Then

[n, p] ≤ [ψ(m), p] = [0, p+ µ(m)] = ψ(p+ µ(m))

as required. For the other parts, we need the following claim.

Claim: Assume that [ψ(m), p] = [n, p′]. Then there is some m′ ∈M such that n = ψ(m′) and

µ(m) + p = µ(m′) + p′.

Proof of claim: Since → is both reflexive and transitive, we either have

(ψ(m), p)→ (n, p′) or (n, p′)→ (ψ(m), p).

In the former case there is some m′′ ∈ M such that ψ(m) = n + ψ(m′′), hence n = ψ(m′) for
some m′ ∈ M since ψ is a unitary embedding — by injectivity we even have m = m′ + m′′.
Now we get

p′ + µ(m′) = p+ µ(m′′) + µ(m′) = p+ µ(m)

as promised. In the latter case n = ψ(m)+µ(m′′) for some m′′ ∈M , and we set m′ = m+m′′.
Then n = ψ(m′) and

p+ µ(m) = p′ + µ(m′′) + µ(m) = p′ + µ(m′),

finishing the proof of the claim.

Now assuming that [0, p] = ψ(p) = ψ(p′) = [0, p′], the claim immediately implies p = p′, hence
ψ in injective. Finally, assuming that

[n, p+ p′′] = ψ(p) + [n, p′′] = ψ(p′) = [0, p′],

there is some m ∈M such that n = ψ(m). But then

[n, p′′] = [ψ(m), p′′] = [0, p′′ + µ(m)] = ψ(p′′ + µ(m)) ∈ ψ(P ),

hence ψ is indeed a unitary embedding.
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Refinement monoids

In the following we shall prove a multidimensional Soduko-like result on refinement properties
in abelian monoids.

Definition A.1.15. M is said to be a refinement monoid if whenever a+ b = c+ d, there are
x, y, z, w ∈M such that

a = x+ y , b = z + w , c = x+ z and d = y + w.

This is most easily understood visually as the ability to fill out a diagram as follows

+ c d
a x y

b z w

Definition A.1.16. Consider an abelian monoid M and finite subsets X1, . . . , Xk of M such
that ∑

xi∈Xi

xi =
∑
xj∈Xj

xj for all 1 ≤ i, j ≤ k. (A.1)

Then a refinement of the system of equations (A.1) is a set of elements

{a(x1, . . . , xk) | xi ∈ Xi, i = 1, . . . , k}

such that
xi =

∑
j 6=i

∑
xj∈Xj

a(x1, . . . , xk)

for all xi ∈ Xi and i = 1, . . . , k. Assuming that (and otherwise reordering such that)

|X1| ≤ . . . ≤ |Xk|,

we shall call (A.1) a (|X1|, . . . , |Xk|)-equation system and refer to it as having dimension k.
With this terminology, a refinement monoid always has refinements of (2, 2)-equation systems.
However, as one might expect from the name, this property allows refinements of arbitrary
equation systems.

Example A.1.17. Before we present the proof of the below lemma formally, it might be
useful to get a visual presentation of what is going on. Let us assume that M is a refinement
monoid, i.e. that we can always fill out a 2× 2-diagram as above. Then we claim that we can
always fill out a 2× 3-diagram as well. Indeed, given a diagram

+ c d e
a

b

we can fill out the 2× 2 diagram

+ c d + e
a x y

b z w
.



A.1. ABELIAN MONOIDS 97

In particular we have d+ e = y + w, so we can fill out the diagram

+ d e

y x′ y′

w z′ w′
.

Combining these, we obtain the diagram

+ c d e

a x x′ y′

b z z′ w′
,

thereby proving the claim. Essentially, we just apply this trick over and over again in the
below proof.

Lemma A.1.18. Assume that M is a refinement monoid. Then M has refinements of any
equation system.

Proof. We argue by induction over the dimension of the equation system as follows:

(a) If M is a refinement monoid, then it possesses refinements of all 2-dimensional
equation systems.

(b) If M is an abelian monoid with refinements of all 2- and k-dimensional equation
systems, then it possesses refinements of all (k + 1)-dimensional equation systems
as well.

Proof of (1): For the proof of this claim, we shall also proceed by induction, in this case
over the first coordinate of the type of the system. However, then we will first need to prove
that every (2,m)-equation system has a refinement, and (surprise, surprise) we shall do this
by induction. The induction start is trivial, so assume that every (2,m)-equation system has
a refinement, and consider a (2,m+ 1)-equation system

2∑
i=1

xi1 =
m+1∑
i=1

xi2.

We can regard this as the (2,m)-equation system
∑2

i=1 x
i
1 = (

∑m−1
i=1 xi2) + (xm2 + xm+1

2 ), hence
by assumption there is a set {a(xi1, x

j
2) | 1 ≤ i ≤ 2, 1 ≤ j ≤ m} such that

xi1 =
m∑
j=1

a(xi1, x
j
2) for i = 1, 2

xj2 =
2∑
i=1

a(xi1, x
j
2) for j = 1, . . . ,m− 1

xm2 + xm+1
2 =

2∑
i=1

a(xi1, x
m
2 ).
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Note that the last equation is a (2, 2)-equation system, hence there is a set

{b(xi1, x
j
2) | i = 1, 2 and j = m,m+ 1}

such that

a(xi1, x
m
2 ) =

m+1∑
j=m

b(xi1, x
j
2) for i = 1, 2 and xj2 =

2∑
i=1

b(xi1, x
j
2) for j = m,m+ 1.

Finally, define

c(xi1, x
j
2) =

 a(xi1, x
j
2) if j ≤ m− 1

b(xi1, x
j
2) if j = m,m+ 1

and note that the set {c(xi1, x
j
2) | 1 ≤ i ≤ 2, 1 ≤ j ≤ m+ 1} is a refinement of the (2,m+ 1)-

equation system. This finishes the proof of the induction start — the proof of the induction
step will follow the same pattern. Let m1 ≥ 2, assume that all (m1,m2)-equation systems
have refinements and consider any (m1 + 1,m2)-equation system

m1+1∑
i=1

xi1 =

m2∑
i=1

xi2.

Regarding it as the (m1,m2)-equation system
(∑m1−1

i=1 xi1

)
+ (xm1 + xm+1

1 ) =
∑m2

i=1 x
i
2, by

assumption there is a set {a(xi1, x
j
2) | 1 ≤ i ≤ m1, 1 ≤ j ≤ m2} such that

xi1 =

m2∑
j=1

a(xi1, x
j
2) for i = 1, . . . ,m1 − 1

xj2 =

m1∑
i=1

a(xi1, x
j
2) for j = 1, . . . ,m2

xm1
1 + xm1+1

1 =

m2∑
j=1

a(xm1
1 , xj2).

Since the latter of the above equations is a (2,m2)-equation system, there is a set

{b(xi1, x
j
2) | m1 ≤ i ≤ m1 + 1, 1 ≤ j ≤ m2}

such that

xi1 =

m2∑
j=1

a(xi1, x
j
2) for i = m1,m1 + 1

and

a(xm1
1 , xj2) =

m1+1∑
i=m1

b(xi1, x
j
2) for j = 1, . . . ,m2.

Finally, we define

c(xi1, x
j
2) =

 a(xi1, x
j
2) if i ≤ m1 − 1

b(xi1, x
j
2) if i = m1,m1 + 1
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and note that {c(xi1, x
j
2) | 1 ≤ i ≤ m1 + 1, 1 ≤ j ≤ m2} is a refinement of the (m1 + 1,m2)-

equation system. This finishes the proof of the induction step.

Proof of (2): Given a (k + 1)-dimensional equation system∑
x1∈X1

x1 = . . . =
∑
xk∈Xk

xk =
∑

xk+1∈Xk+1

xk+1

consider the k-dimensional equation system obtained by discarding the latter equality. By
assumption there is a set {a(x1, . . . , xk) | xi ∈ Xi} such that

xi =
∑
j 6=i

∑
xj∈Xj

a(x1, . . . , xk)

for all xi ∈ Xi and i = 1, . . . , k. In particular

∑
xk∈Xk

xk =
∑
xk∈Xk

∑
j 6=k

∑
xj∈Xj

a(x1, . . . , xk) =
k∑
i=1

∑
xi∈Xi

a(x1, . . . , xk)

providing us with the 2-dimensional equation system

k∑
i=1

∑
xi∈Xi

a(x1, . . . , xk) =
∑

xk+1∈Xk+1

xk+1.

Thus there is a set {b(x1, . . . , xk+1) | xi ∈ Xi} such that

a(x1, . . . , xk) =
∑

xk+1∈Xk+1

b(x1, . . . , xk+1) for (x1, . . . , xk) ∈ X1 × . . .×Xk

xk+1 =
∑
i 6=k+1

∑
xi∈Xi

b(x1, . . . , xk+1) for xk+1 ∈ Xk+1.

Hence for i ≤ k and xi ∈ Xi we also have

xi =
k∑
j=1

j 6=i

∑
xj∈Xj

a(x1, . . . , xk) =
∑
j 6=i

∑
xj∈Xj

∑
xk+1∈Xk+1

b(x1, . . . , xk+1)

=
∑
j 6=i

∑
xj∈Xj

b(x1, . . . , xk+1),

proving that {b(x1, . . . , xk+1 | xi ∈ Xi} is indeed a refinement of the (k + 1)-dimensional
equation system.

Definition A.1.19. Let M denote a conical abelian monoid. A refinement of M is another
conical abelian monoid N together with a homomorphism ι : M → N such that

(a) ι is a unitary embedding;

(b) N is a refinement monoid;

(c) Given a homomorphism ϕ : M → P with P a refinement monoid, there is a homo-
morphism ϕ̃ : N → P such that ϕ̃ ◦ ι = ϕ.
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A.2 Rings, algebras and the functor V
This appendix contains the ring-theoretic results and constructions that will be of use to us
at some point. First however, we shall review some definitions to make sure that we are on
the same page. Rings are in general not assumed to be unital, and homomorphisms of unital
rings need not preserve the unit. If they do so, they will be referred to as unital.

Definition A.2.1. Let K denote an arbitrary field. A K-algebra is a ring A together with
a scalar multiplication K × A → A such that 1K · a = a for all a ∈ A. A ∗-algebra over an
involutive field K is a K-algebra A equipped with an involution, that is a conjugate linear
map A → A, denoted a 7→ a∗, of order two such that (ab)∗ = b∗a∗ for all a, b ∈ A. Of
course, a K-algebra homomorphism ϕ : A→ B is nothing but a ring homomorphism satisfying
ϕ(ka) = kϕ(a) for all a ∈ A, k ∈ K. Also, a ∗-homomorphism ϕ : A → B of ∗-algebras is an
algebra homomorphism such that ϕ(a∗) = ϕ(a)∗ for all a ∈ A.

Definition A.2.2. Given a ∗-algebra A. An element p ∈ A is called a projection if

p = p∗ = p2,

and x ∈ A is called a partial isometry if xx∗x = x. Note that for a partial isometry x, the
elements p(x) = xx∗ and p(x∗) = x∗x are projections, referred to as the final and the initial
projection of x, respectively. Finally, a set of partial isometries X is called tame, if every
element of the multiplicative semigroup U generated by X ∪X∗ is a partial isometry as well
and the final projections p(s), p(t) commute for any s, t ∈ U .

Definition A.2.3 (Morita equivalence). Two rings A and B are said to be Morita equivalent,
if there is an equivalence of the categories of left A-modules and the category of left B-modules.
Morita equivalent rings share many properties, for instance they have equivalent categories of
finitely generated projective left modules and have isomorphic ideal lattices. An idempotent
p ∈ A is called full if the corner pAp is not contained in any proper ideal of A, and in that
case pAp is called a full corner. If a ring A is isomorphic to a full corner pMn(B)p for some n,
then A and B are Morita-equivalent. In fact, for unital rings A and B, this is also a necessary
condition. It is worth noting that Morita equivalence is in fact an equivalence relation.

Recall the following fact.

Lemma A.2.4. A left A-module P is finitely generated and projective if and only if there is
another left A-module Q such that P ⊕Q ∼= An for some n.

Definition A.2.5 (The functor V). In the following we shall give a description and mention
the very basic properties of the covariant functor V : Rings→ AbMon. Now, one can define
V in two naturally isomorphic ways, and both will be of use to us at some point. The first is
as follows: For a ring A, let V(A) denote the set of isomorphism classes of finitely generated
projective left A-modules. Then we can define an addition by [P ] + [Q] := [P ⊕ Q], making
V(A) into an abelian monoid. Functoriality is achieved by defining V(ϕ) : V(A) → V(B) by
V(ϕ)([P ]) = [B ⊗A P ], where B is made into a right A-module via the ring homomorphism
ϕ : A→ B. Note that B ⊗A P is a finitely generated projective B-module by Lemma A.2.4.

The other definition is as follows: Let P∞(A) denote the set of idempotents of M∞(A), M∞(A)
being the ring of infinite matrices with entries in A of which only finitely many are non-zero.
Define an equivalence relation on P∞(A) by

p ∼ q ⇔ there exist a, b ∈M∞(A) such that p = ab and q = ba.
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Then we define V(A) = P∞(A)/ ∼ and equip V(A) with an addition defined as follows: Given
idempotents p, q ∈ M∞(A), we may regard each of them as lying in finite matrix rings, i.e.
p ∈Mm(A) and q ∈Mm(A). Then we can form the diagonal sum

p⊕ q =
(
p 0
0 q

)
∈Mm+n(A)

and set [p]+[q] = [p⊕q]. This is easily seen to be independent of the choice of m and n. Finally,
given a ring homomorphism ϕ : A→ B, we define V(ϕ)([p]) = [ϕ(p)], where ϕ(p) is the matrix
obtained by applying ϕ to every entry in p. We can translate between these two descriptions
as follows: Given a finitely generated projective left A-module P , by possible changing P
to an isomorphic module we have P ⊕ Q = An for some A-module Q. Thus the projection
P ⊕ Q → P is an idempotent linear map An → An, so it corresponds to right multiplication
by an idempotent element of Mn(A). Conversely, given an idempotent p ∈ Mn(A), the left
A-module Anp is a finitely generated projective left A-module, and one can check that these
maps give mutually inverse natural isomorphisms of the associated monoids. It is fairly easy
to check that V is continuous, i.e. that V(lim−→i

Ai) ∼= lim−→i
V(Ai) for any directed system of

rings. If A and B are Morita equivalent then V(A) ∼= V(B), and referring to K-theory, K0(A)
is exactly the Groethendieck group of V(A) in case A is unital.

Definition A.2.6 (The Bergman algebra). Given a unital K-algebra A and finitely generated
projective left A-modules P andQ, George M. Bergman constructed in [7] a unitalK-algebraB
together with a unital K-algebra homomorphism ι : A→ B (making B into an A-module) and
a left B-module isomorphism µ : B⊗AP → B⊗AQ, satisfying the following universal property:
For any unital K-algebra homomorphism A→ C and any left C-module isomorphism

ϕ : C ⊗A P → C ⊗A Q,

there is a unique K-algebra homomorphism ψ : B → C (giving C a B-module structure) such
that the diagram

C ⊗B (B ⊗A P ) C ⊗B (B ⊗A Q)

C ⊗A P C ⊗A Q

IdC ⊗ µ

ϕ

∼= ∼=

commutes. We shall refer toB as the Bergman algebra obtained from adjoining an isomorphism
between P and Q. This construction is important to us because of the following deep result:

Theorem A.2.7. Assume that A is a unital K-algebra with finitely generated projective left A-
modules P and Q, and denote by (B, ι : A→ B) the Bergman algebra obtained from adjoining
an isomorphism between P and Q along with the universal algebra homomorphism. Then V(ι)
drops to an isomorphism

V(A)

[P ] = [Q]
→ V(B).

Proof. See [7, Theorem 5.2].

We shall also need the concept of a double centralizer.
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Definition A.2.8. Let A denote a K-algebra. A double centralizer is an ordered pair (L,R)
of K-linear maps A→ A such that

(a) L(ab) = L(a)b

(b) R(ab) = aR(b)

(c) R(a)b = aL(b)

for all a, b ∈ A. For such a pair, we shall refer to L as a left multiplier and R as a right
multiplier. Note that for any a ∈ A, we can define a double centralizer (La, Ra) by

La(b) = ab and Ra(b) = ba.

Definition A.2.9. An algebra A is called

• non-degenerate if for any non-zero a ∈ A, there is some b ∈ A such that ab 6= 0 or ba 6= 0.

• idempotent if A2 = A.

• (L,R)-associative if
R′ ◦ L = L ◦R′

for all double centralizers (L,R), (L′, R′) of A.

Proposition A.2.10. Assume that A is non-degenerate or idempotent. Then it is (L,R)-
associative as well.

Proof. Assume first that A is non-degenerate and take double centralizers (L,R), (L′, R′) of A
along with a ∈ A. Then

R′(L(a))b = L(a)L′(b) = L(aL′(b)) = L(R′(a)b) = L(R′(a))b

and

bR′(L(a)) = R′(bL(a)) = R′(R(b)a) = R(b)R′(a) = bL(R′(a))

for any b ∈ A, hence L ◦R′(a) = R′ ◦ L(a).

Now assume that A is idempotent and take a ∈ A. By assumption we may write a = bc
for b, c ∈ A, hence

R′(L(a)) = R′(L(bc)) = R′(L(b)c) = L(b)R′(c) = L(bR′(c)) = L(R′(bc)) = L(R′(a))

as desired.

Later on we shall also need the following minor lemma.

Lemma A.2.11. Given a ring A and elements a1, . . . , ak, b1, . . . , bl ∈ A. Then

[a1 · · · ak, b1 · · · bl] ∈
∑
i,j

A[ai, bj]A.

Proof. We proceed by induction over k+ l. If k+ l = 2 the claim is trivial, so we shall assume
that the claim holds for all k, l such that k+l ≤ n for some n ≥ 2. Taking k, l with k+l = n+1
and elements a1, . . . , ak, b1, . . . , bl ∈ A, we can assume without loss of generality that k ≥ 2.
Writing a = a1 · · · ak−1 and b = b1 · · · bl we then have

[a1 · · · ak, b1 · · · bl] = aakb− baak = aakb− abak + abak − baak
= a[ak, b] + [a, b]ak,

and we can apply the inductive assumption to obtain the claim.
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A.3 C∗-algebras

Although C∗-algebras play a crucial role in this thesis, strictly speaking the reader need not
have any prior knowledge of C∗-algebras. Therefore, we will provide some basic definitions
and results in this minor appendix.

Definition A.3.1. A C∗-algebra A is a complex ∗-algebra equipped with a Banach space
norm satisfying ‖ab‖ ≤ ‖a‖ · ‖b‖ and ‖a∗a‖ = ‖a‖2 for all a, b ∈ A. A ∗-homomorphism of
C∗-algebras is just an algebraic ∗-homomorphism, since they are automatically contractive,
and a ∗-homomorphism A → B(H) for some Hilbert space H is called a representation of A.
Finally, an ideal I of A is a two-sided closed ideal — it will then automatically be self-adjoint
— and the quotient A/I is again a C∗-algebra.

Remark A.3.2 (Commutative C∗-algebras). It is a basic fact that any unital commutative
C∗-algebraA is canonically isomorphic to the C∗-algebra C(X) of continuous functions X → C
on a uniquely determined compact Hausdorff space X. The assignment X 7→ C(X) can be
made into a contravariant functor in the obvious way, i.e. for any continuous map θ : X → Y ,
we define θ∗ : C(Y ) → C(X) by θ∗(f) = f ◦ θ. Then the correspondence X ↔ C(X) is in
fact a contravariant equivalence between the category of compact Hausdorff spaces and the
category of unital commutative C∗-algebras. Finally, the reader should note that an ideal I
in the C∗-algebra C(X) is necessarily of the form

{f ∈ C(X) | f(x) = 0 for x /∈ U}

for some open subspace U ⊂ X.

Definition A.3.3 (Morita equivalence). Morita equivalence can be defined for arbitrary C∗-
algebras in terms of so-called imprimitivity bimodules, but for C∗-algebras with countable
approximate identities (which include all unital and separable C∗-algebras), there is an equiv-
alent and more accessible definition. Indeed, two such C∗-algebras A and B are called Morita
equivalent if A⊗K ∼= B ⊗K, where K denotes the C∗-algebra of compact operators on some
separable Hilbert space. As for rings, Morita equivalence preserves many properties, including
the K-theory and the ideal lattice, and if p ∈ A is a full projection of A, then the full corner
pAp is Morita-equivalent to A.

Remark A.3.4 (The universal enveloping C∗-algebra). Given a ∗-algebra A, one can define
the (possibly infinite) number

‖a‖ = sup{‖π(a)‖ | π : A→ B(H) is a representation}

for a ∈ A. In case ‖a‖ <∞ for all a ∈ A, ‖ · ‖ defines a semi-norm on A, hence

I = {a ∈ A | ‖a‖ = 0}

is a two-sided ideal in A. The norm induced on the quotient A/I satisfies all the C∗-axioms,
however A/I need not be complete. The completion C∗u(A) of A/I is called the universal en-
veloping C∗-algebra of A. It enjoys the following universal property: For any ∗-homomorphism
ϕ : A→ B into a C∗-algebra B, there is a ∗-homomorphism C∗u(A)→ B such that the diagram

A B

C∗u(A)

ϕ
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commutes. It is a general fact that any Banach ∗-algebra with an approximate unit has a
universal enveloping C∗-algebra, so in particular this holds for unital Banach ∗-algebras.

Limits always exist in the category of C∗-algebras. At one point we shall need the following
result on inductive limits, which can easily be generalized to arbitrary inductive sequences if
one desires so.

Lemma A.3.5. Given an inductive sequence of C∗-algebras

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ . . .

with surjective transit maps and inductive limit (A, {µn}). Then

ker(µ1) =
⋃
n≥2

ker(ϕ1,n)

where ϕ1,n = ϕn−1 ◦ . . . ◦ ϕ1 : A1 → An.

Proof. Define an ideal of A1 by I =
⋃
n≥2 ker(ϕ1,n) and write ϕ1,n for the induced isomorphism

A/ ker(ϕ1,n)→ An. Since all the transit maps are surjections, we can define ∗-homomorphisms

πn : An
ϕ1,n

−1

−−−−→ A1

ker(ϕ1,n)
→ A1

I
for all n ≥ 1 — note that π1 is just the quotient map. We claim that the diagram

An An+1

A1/I

ϕn

πn
πn+1

commutes for all n. To see this, we note that both the upper and lower triangle of the diagram

An An+1 A1/ ker(ϕ1,n+1)

A1/ ker(ϕ1,n) A1/I

ϕn ϕ1,n+1
−1

ϕ1,n
−1

,

where all the non-labeled arrows are the obvious quotient maps, commutes. In particular
the outer diagram commutes, i.e. πn+1 ◦ ϕn = πn. Thus we obtain a ∗-homomorphism
π : A → A1/I as in the diagram

A1 A

A1/I

µ1

π1
π

.

By definition I ⊂ ker(µ1), and µ1 clearly drops to an inverse of π, hence π is an isomorphism.
In particular we have

ker(µ1) = ker(π1) = I.
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