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Introduction

The purpose of this thesis is to prove that every separable, nuclear C∗-algebra embeds into
(i.e. is isomorphic to a sub-C∗-algebra of) the Cuntz algebra O2. This is a slight modification
of Kirchberg’s Exact Embedding Theorem that every separable, exact C∗-algebra can be
embedded into O2, see [KP].

The salient feature of nuclear C∗-algebras is that their tensor products with arbitrary
C∗-algebras are particularly well-behaved, and so are ∗-homomorphisms which are defined
on or take values in a separable, nuclear C∗-algebra. Another important property which a
C∗-algebra can have is being purely infinite, which means that it contains plenty of infinite
projections.

A particularly interesting nuclear and purely infinite C∗-algebra which plays a central part
in this thesis is the Cuntz algebra O2. In addition to embedding various C∗-algebras into it we
also prove that any two unital, injective ∗-homomorphisms ϕ,ψ : A→ O2 are approximately
unitarily equivalent if A is unital, separable and exact. This leads to an important uniqueness
result for O2.

Moreover, we show that the K0-group of O2 is zero (in fact, K1(O2) is zero, too). Using
Kirchberg’s Embedding Theorem and the result on approximate unitary equivalence it can
be shown that O2 can even be regarded as a tensorial zero for unital, separable, simple and
nuclear algebras, i.e. A⊗O2

∼= O2 for every C∗-algebra A having these properties.
Kirchberg’s Embedding Theorem is situated in the field of classification theory, the funda-

mental concept of which it is to assign to each C∗-algebra one or several objects such that two
C∗-algebras are isomorphic if and only if their corresponding objects are isomorphic. Based
on Kichberg’s Embedding Theorem and the above A⊗O2 statement, Kirchberg and Phillips
independently proved a spectacular classification result for Kirchberg algebras (separable,
simple, nuclear and purely infinite C∗-algebras).

The line of argument in this thesis mainly follows Chapter 6 in [R2], at some places giving
modified proofs based on [KR] or personal discussions with Professor Mikael Rørdam.

The main changes happen in the following places: In the proof of the statement on ap-
proximate unitary equivalence we use recent results from [KR] to perform the step from
approximate similarity via isometries to approximate unitary equivalence. In the proof of
Kirchberg’s Embedding Theorem we modify the first part of the embedding procedure as fol-
lows: In the original proof, a separable, nuclear C∗-algebra A is embedded into K⊗C(T)⊗A
∼= C0(R, A) oτA Z, while we show that A embeds into (C0(R) oτ Z)⊗A ∼= C0(R, A) oτA Z.

This thesis is organized as follows: Chapter 1 serves as a toolbox for the whole paper, providing
a collection of definitions and statements both in fundamental C∗-algebra theory and in more
specific areas such as purely infinite or nuclear C∗-algebras. In Chapter 2 we give the definition
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of the Cuntz algebras On, state some of their most significant properties and present the proof
that K0(O2) is zero.

Chapter 3 deals with the first steps towards the proof of Kirchberg’s Embedding Theorem
and concludes with the important result that any two unital, injective ∗-homomorphisms from
a unital, separable, exact C∗-algebra into O2 are approximately unitarily equivalent.

In Chapter 4 we digress a bit from the main ideas of the proof of the embedding theorem
to discuss limit algebras and to collect statements about them which we need later on. In
particular we show that approximate unitary equivalence can be turned into exact unitary
equivalence by passing to limit algebras.

Chapter 5 opens with the proof that the C∗-algebra C(T) of continuous, complex valued
functions on the unit circle embeds into O2, then we return to the main line of the argument
and use the results from Chapter 3 to prove the first embedding results for exact C∗-algebras.

Chapter 6 is used to introduce the notion of discrete crossed products and to prove that a
C∗-algebra A can be embedded into (C0(R)oτ Z)⊗A ∼= C0(R, A)oτA Z. We apply this result
in Chapter 7, where we prove Kirchberg’s Embedding Theorem and present its first important
consequence, namely the existence of non-zero ∗-homomorphisms between Kirchberg algebras.

In Appendix A we discuss a uniqueness property of O2 and the A⊗O2-Theorem, which
are also consequences of the embedding theorem. In Appendix B we just take a quick glance
at Kirchberg and Phillips’ Classification Theorem to give an idea of what a striking result
could be proved after Kirchberg presented his famous embedding result.
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Chapter 1

Toolbox

This chapter is a collection of fundamental definitions and statements for this thesis. After
some general C∗-algebra theory we first turn to equivalence relations of projections in C∗-
algebras and give a short account of the definition of the K0-group of a unital C∗-algebra.
Then we introduce the concepts of purely infinite and nuclear C∗-algebras which are going to
play a central part in this thesis.

1.1 C∗-algebra theory

This section starts with some basic definitions and important standard results in C∗-algebra
theory, and then presents some concepts which will be needed later on in this thesis, among
them matrix algebras, homotopy equivalence and special elements, like projections or posi-
tives, in C∗-algebras.

1.1.1 Preliminaries

A good reference for the material covered in this section is [Mu].

Definition 1.1.1. A C∗-algebra is a complex algebra A equipped with a norm ‖·‖ and an
involution ∗ such that

(i) A is complete with respect to ‖·‖;

(ii) ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A;

(iii) ‖a∗a‖ = ‖a‖2 for all a ∈ A.

A norm on A which satisfies (ii) and (iii) is called a C∗-norm on A. A C∗-algebra A is said to
be unital if it has a multiplicative identity, usually denoted by 1A, it is said to be separable if
it contains a countable, dense subset, and it is called simple if it has no non-trivial, two-sided,
closed ideals.

Definition 1.1.2. Let A and B be C∗-algebras. A ∗-homomorphism from A into B is a
linear map ϕ : A→ B satisfying ϕ(ab) = ϕ(a)ϕ(b) and ϕ(a∗) = (ϕ(a))∗ for all a, b ∈ A, i.e. ϕ
is multiplicative and self-adjoint. If A and B are unital with units 1A and 1B, respectively,
then a ∗-homomorphism ϕ is said to be unital if ϕ(1A) = 1B.
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Remarks 1.1.3. Let A and B be C∗-algebras and let ϕ : A→ B be a ∗-homomorphism.

(i) The image ϕ(A) is a sub-C∗-algebra of B. In particular, if ϕ is injective, then A is
isomorphic to a sub-C∗-algebra of B. We then often say that A embeds into B, in
symbols A ↪→ B, and call ϕ an embedding of A into B.

(ii) All ∗-homomorphisms are norm-decreasing , i.e. ‖ϕ(a)‖ ≤ ‖a‖ for all a ∈ A.

(iii) A ∗-homomorphism is isometric, i.e. ‖ϕ(a)‖ = ‖a‖ for all a ∈ A, if and only if it is
injective.

Notation. For every locally compact Hausdorff space X let C0(X) denote the C∗-algebra
of continuous functions f : X → C with the following property: For each ε > 0 there is a
compact subset K of X such that |f(x)| ≤ ε for all x ∈ X \K. If X is compact this coincides
with C(X), the C∗-algebra of all continuous functions f : X → C.

Theorem 1.1.4 (Gelfand). Let A be an abelian C∗-algebra. Then there exists a locally
compact Hausdorff space X such that A is ∗-isomorphic to C0(X). If, additionally, A is
unital, then A is ∗-isomorphic to C(X) for a compact Hausdorff space X.

Remark 1.1.5. Let A be a C∗-algebra. There exists a unique unital C∗-algebra Ã that
contains A as an ideal and that satisfies Ã/A ∼= C. The C∗-algebra Ã is called the unitization
of A and can be written as

Ã =
{
a+ α1

eA

∣∣ a ∈ A, α ∈ C
}
.

Let B also be a C∗-algebra and let ϕ : A → B be a ∗-homomorphism. Then there exists a
unique unital ∗-homomorphism ϕ̃ : Ã→ B̃ which extends ϕ, and ϕ̃ is given by ϕ̃(a+ α1

eA
) =

ϕ(a) + α1
eB

for all a ∈ A and all α ∈ C.

Remark 1.1.6. Let A be a separable C∗-algebra. Then Ã also is separable, because when
{a1, a2, . . . } is a countable, dense subset of A, then {an + γ1

eA
| n ∈ N, γ ∈ Q + iQ} is a

countable, dense subset of Ã = {a+ α1
eA
| a ∈ A, α ∈ C}.

Definition 1.1.7. Let A be a C∗-algebra and let a ∈ A. If A is unital we define the spectrum
σ(a) of a to be the set

σ(a) = {λ ∈ C | λ1A − a is not invertible in A}.

If A is non-unital, then a is considered to be an element of the unitization Ã of A and the
spectrum σ(a) is defined in the unital C∗-algebra Ã.

Theorem 1.1.8 (Functional calculus). Let A be a unital C∗-algebra and let a ∈ A be a
normal element, i.e. a∗a = aa∗. Let z : σ(a) → C denote the inclusion map. Then there exists
a unique unital, injective ∗-homomorphism ϕ : C(σ(a)) → A such that ϕ(z) = a. The image
Im(ϕ) is the sub-C∗-algebra of A generated by a and 1A, i.e.

C(σ(a)) ∼= C∗(a, 1A).
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Representing C∗-algebras on Hilbert spaces

Definition 1.1.9. A representation of a C∗-algebra A is a pair (H,π) where H is a Hilbert
space and π : A→ B(H) is a ∗-homomorphism. A representation (H,π) is said to be faithful
if π is injective. We often refer to π as a ∗-representation of A on the Hilbert space H.

Theorem 1.1.10 (Gelfand-Naimark). Every C∗-algebra admits a faithful representation.

Notation. Let V be a normed linear space and let W be a subset of V . Then [W ] denotes
the closure of the linear span of W in V .

Remark 1.1.11. Let A be a C∗-algebra and let (H,π) be a faithful representation of A.
Then K = [π(A)H] is a Hilbert space which is contained in H. For each a ∈ A and for each
ξ ∈ K define πK(a)ξ = π(a)ξ, then πK : A → B(K) defines a faithful ∗-representation of A
such that [πK(A)K] = K, i.e. πK is non-degenerate.

The following lemma will be needed in some norm estimates in Chapter 3, and at this stage it
serves as an example of how the properties of a C∗-norm and the Gelfand-Naimark Theorem
can be used.

Lemma 1.1.12. Let A be a C∗-algebra and let a, b ∈ A with a∗b = 0 = ab∗. Then

‖a+ b‖ = max{‖a‖, ‖b‖}.

Proof. We first show that ‖a+ b‖ ≤ max{‖a‖, ‖b‖}. Put x = a+ b and notice that

x∗x = a∗a+ a∗b+ b∗a+ b∗b = a∗a+ b∗b

and that (x∗x)n = (a∗a)n + (b∗b)n for some n ∈ N implies that

(x∗x)n+1 = ((a∗a)n + (b∗b)n) (a∗a+ b∗b)

= (a∗a)n+1 + (a∗a)n b∗b+ (b∗b)n a∗a+ (b∗b)n+1 = (a∗a)n+1 + (b∗b)n+1 .

It follows by induction that (x∗x)n = (a∗a)n + (b∗b)n for all n ∈ N, and thus

‖(x∗x)n‖ ≤ ‖(a∗a)n‖+ ‖(b∗b)n‖ ≤ ‖a‖2n + ‖b‖2n for all n ∈ N,

which implies

‖x‖2m
= ‖(x∗x)2m−1‖ ≤ ‖a‖2m

+ ‖b‖2m ≤ 2 (max{‖a‖, ‖b‖})2
m

for all m ∈ N0.

Thus,
‖x‖ ≤ 2

1
2m max{‖a‖, ‖b‖} for all m ∈ N0,

and hence ‖a+ b‖ = ‖x‖ ≤ max{‖a‖, ‖b‖}. To show the other inequality choose a faithful
∗-representation π : A → B(H) for some Hilbert space H. Let T = π(a) and S = π(b), then
T ∗S = 0 = ST ∗ and therefore

〈Tξ, Sη〉 = 〈ξ, T ∗Sη〉 = 0 for all ξ, η ∈ H,

i.e. T (H) ⊥ S(H). This implies (see, for instance, Theorem 12.2 in [Ru]) that

‖Tξ‖ ≤ ‖(T + S)ξ‖ for all ξ ∈ H,

and therefore ‖T‖ ≤ ‖T + S‖. It follows in the same way that ‖S‖ ≤ ‖T + S‖ and hence
‖T + S‖ ≥ max{‖T‖, ‖S‖}. As π is isometric this implies that ‖a+ b‖ ≥ max{‖a‖, ‖b‖}, as
required.
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Multiplier algebras and essential ideals

The following facts about multiplier algebras and essential ideals can all be looked up in [Mu]
(see pages 38–39 for multiplier algebras and Theorem 3.1.8 for essential ideals).

Proposition/Definition 1.1.13. Let A be a C∗-algebra. A pair (L,R) of bounded, linear
maps on A is called a double centralizer for A if

L(ab) = L(a)b, R(ab) = aR(b), R(a)b = aL(b) for all a, b ∈ A.

The set of all double centralizers for A can be equipped with algebraic operations and a norm
which make it a unital C∗-algebra, which is called the multiplier algebra of A, denoted by
M(A).

Remark 1.1.14. Let A be a C∗-algebra. Then A is unital if and only if A = M(A).

Definition 1.1.15. Let A be a C∗-algebra. A closed, two-sided ideal I of A is said to be an
essential ideal in A, in symbols I

ess
C A, if

aI = 0 =⇒ a = 0 for all a ∈ A.

Remark 1.1.16. Each C∗-algebra A is contained as an essential ideal in its multiplier algebra
M(A), and M(A) is the largest unital C∗-algebra which contains A as an essential ideal. The
second statement is a consequence of the following statement, which is part of Theorem 3.1.8
in [Mu]:

Lemma 1.1.17. Let I be an essential ideal in a C∗-algebra A. Then there is a unique
injective ∗-homomorphism ϕ : A→M(I) extending the inclusion I ↪→M(I). If A is a unital
C∗-algebra, then ϕ is a unital ∗-homomorphism.

We use this lemma to prove the following equivalence for essential ideals:

Lemma 1.1.18. Let A be a C∗-algebra and let I be an ideal in A. The following statements
are equivalent:

(i) The ideal I is essential in A;

(ii) There exists a faithful representation π : A→ B(H) for some Hilbert space H such that
[π(I)H] = H.

Proof. (i)⇒(ii): Suppose that I is essential in A and let π0 : I → B(H) be a ∗-representation
of I on some Hilbert space H. By Remark 1.1.11 we can assume that π0 is non-degenerate,
i.e. [π0(I)H] = H. By Corollary 3.12.5 in [Pe1], π0 extends to a faithful ∗-representation
π1 : M(I) → B(H). As I is essential in A, Lemma 1.1.17 yields an injective ∗-homomorphism
ι : A →M(I) extending the inclusion of I into M(I). Set π = π1 ◦ ι : A → B(H), then π is
a faithful ∗-representation of A and

[π(I)H] = [π1(I)H] = [π0(I)H] = H.

(ii)⇒(i): Let π : A → B(H) be a faithful ∗-representation of A such that [π(I)H] = H. Let
a ∈ A be such that ax = 0 for all x ∈ I. Then π(ax) = π(a) ◦ π(x) = 0 for all x ∈ I, i.e.
π(I)H ⊆ ker(π(a)). Since ker(π(a)) is a closed linear subspace of H we can conclude that
H = [π(I)H] = ker(π(a)), i.e. π(a) = 0. As π is faithful, this implies that a = 0.
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Matrix algebras

Definition 1.1.19. Let A be a C∗-algebra and let n ∈ N. We denote by Mn(A) the set of
all n× n matrices (aij)i,j with entries in A.

Proposition 1.1.20. Let A be a C∗-algebra and let n ∈ N. Equip Mn(A) with entry-wise
vector space operations, matrix multiplication and the involution given by (aij)∗i,j = (a∗ji)i,j
for each (aij)i,j in Mn(A). Then Mn(A) is a complex, involutive algebra and there is a unique
norm on Mn(A) making it a C∗-algebra. For each element a = (aij)i,j in Mn(A) this norm
satisfies

max
1≤i,j≤n

‖aij‖ ≤ ‖a‖ ≤
n∑

i,j=1

‖aij‖.

Definition 1.1.21. Let n ∈ N. The system of standard matrix units of Mn(C) is defined to
be {eij | i, j ∈ N≤n} where eij ∈ Mn(C) is the matrix whose (i, j)th entry entry is one and
whose other entries are zero for all i, j ∈ N≤n.

Remark 1.1.22. Let n ∈ N and let {eij | i, j ∈ N≤n} be the system of standard matrix units
in Mn(C). Then

eijekl =
{
eil if j = k
0 if j 6= k

for all i, j, k, l ∈ N≤n,

and e∗ij = eji for all i, j ∈ N≤n. The system of standard matrix units is a basis for Mn(C).

Lemma 1.1.23. Let A be a C∗-algebra. If A is unital and simple, then so is Mn(A) for all
n ∈ N.

Proposition/Definition 1.1.24. Let A and B be C∗-algebras, let ϕ : A → B be a ∗-
homomorphism and let n ∈ N. The map

ϕ(n) : Mn(A) →Mn(B), (aij)i,j 7→ (ϕ(aij))i,j

obtained by applying ϕ entry-wise is a ∗-homomorphism and is called the nth inflation of ϕ.

1.1.2 Homotopy equivalence of C∗-algebras

Definition 1.1.25. Let A and B be C∗-algebras and let ϕ,ψ : A→ B be ∗-homomorphisms.
A map Φ: [0, 1]×A→ B, (t, a) 7→ Φt(a) is called a homotopy between ϕ and ψ if the following
hold:

(i) The map Φt : A→ B, a 7→ Φt(a) is a ∗-homomorphism for each t ∈ [0, 1],

(ii) The map [0, 1] → B, t 7→ Φt(a) is continuous for each a ∈ A,

(iii) Φ0 = ϕ and Φ1 = ψ.

If such a homotopy exists, then ϕ and ψ are called homotopic, in symbols ϕ ∼h ψ. The
C∗-algebras A and B are said to be homotopy equivalent, denoted by A ∼h B, if there exist
∗-homomorphisms f : A→ B and g : B → A such that g ◦ f ∼h idA and f ◦ g ∼h idB.

Remark 1.1.26. Homotopy equivalence of C∗-algebras is an equivalence relation.
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Statement (ii) in Definition 1.1.25 can be referred to by saying that the family (Φt)t∈[0,1]

is point-wise continuous. The following statement will be helpful when we have to check
point-wise continuity:

Lemma 1.1.27. Let A and B be C∗-algebras, let T be a non-empty topological space and
let (ϕt)t∈T be a family of ∗-homomorphisms from A to B. Then the set

D = {a ∈ A | T → B, t 7→ ϕt(a) is continuous}

on which (ϕt)t∈T is point-wise continuous is a sub-C∗-algebra of A.

Proof. Let a, b ∈ D and let λ ∈ C. Then the maps

T → B, t 7→ ϕt(λa+ b) = λϕt(a) + ϕt(b),

T → B, t 7→ ϕt(ab) = ϕt(a)ϕt(b)

and
T → B, t 7→ ϕt(a∗) = ϕt(a)∗

are continuous as the maps t 7→ ϕt(a) and t 7→ ϕt(b) are, and hence λa+ b ∈ D, ab ∈ D and
a∗ ∈ D. Let now a ∈ D, let t ∈ T and let ε > 0. Choose d ∈ D with ‖a− d‖ < ε/3 and let
U be a neighbourhood of t such that ‖ϕt(d)− ϕs(d)‖ < ε/3 for all s ∈ U . Then

‖ϕt(a)− ϕs(a)‖ ≤ ‖ϕt(a)− ϕt(d)‖+ ‖ϕt(d)− ϕs(d)‖+ ‖ϕs(d)− ϕs(a)‖ < ε

for all s ∈ U , i.e. t 7→ ϕt(a) is continuous and therefore a ∈ D.

Before we turn to two examples of homotopy equivalence we give the definition of the cone
and the suspension of a C∗-algebra.

Definition 1.1.28. Let A be a C∗-algebra. The cone CA of A is defined by

CA = {f ∈ C ([0, 1], A) | f(0) = 0},

and the suspension SA of A is defined to be

SA = {f ∈ C ([0, 1], A) | f(0) = f(1) = 0}.

Remark 1.1.29. Let A be a C∗-algebra. Then ϕ : C0 ((0, 1), A) → SA, given by

ϕ(f)(t) =
{

0 , t ∈ {0, 1},
f(t), t ∈ (0, 1),

is a ∗-isomorphism (with inverse given by restriction). Let now λ : R → (0, 1) be a homeo-
morphism. Then

ψ : C0 ((0, 1), A) → C0(R, A), f 7→ f ◦ λ

also is a ∗-isomorphism. Altogether,

SA ∼= C0 ((0, 1), A) ∼= C0(R, A).
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Remark 1.1.30. Notice that C([0, 1]) is separable by the Stone-Weierstraß Theorem (the
polynomials with complex rational coefficients form a countable, dense subset). By Re-
mark 1.1.29, C0(R) is isomorphic to the sub-C∗-algebra SC of C([0, 1]) and hence also sepa-
rable.

Examples 1.1.31. (i) For every C∗-algebra A the cone CA is homotopy equivalent to the
zero C∗-algebra.

(ii) Let A and B be C∗-algebras and let Ã and B̃ denote their unitizations. If A and B are
homotopy equivalent, then so are Ã and B̃.

Proof. (i): Let A be a C∗-algebra. Considering the zero maps f : CA → 0 and g : 0 → CA
it is clear that g ◦ f = 0 and f ◦ g = 0, where 0 denotes both the zero C∗-algebra and the
appropriate zero maps. Hence all we have to show is that idCA is homotopic to the zero map
on CA. For each t ∈ [0, 1] define Φt : CA → CA by Φt(f)(s) = f(st) for all f ∈ CA and for
all s ∈ [0, 1]. Then each Φt is a ∗-homomorphism, the map t 7→ Φt(f) is continuous for each
f ∈ CA, and Φ0 = 0 and Φ1 = idCA.

(ii): Suppose that A ∼h B and choose ∗-homomorphisms ϕ : A→ B and ψ : B → A such that
ψ ◦ ϕ ∼h idA and ϕ ◦ ψ ∼h idB. Recall that the unitizations can be written as

Ã =
{
a+ α1

eA

∣∣ a ∈ A, α ∈ C
}
, B̃ =

{
b+ β1

eB

∣∣ b ∈ B, β ∈ C
}
,

and consider the unique unital extensions ϕ̃ : Ã → B̃ and ψ̃ : B̃ → Ã of ϕ and ψ, given by
ϕ̃(a+ α1

eA
) = ϕ(a) + α1

eB
and ψ̃(b+ β1

eB
) = ψ(b) + β1

eA
. We show that ψ̃ ◦ ϕ̃ ∼h id

eA
. Let Φ

be a homotopy between ψ ◦ ϕ and idA, and define

Φ̃ : [0, 1]× Ã→ Ã, (t, ã) 7→ Φ̃t(ã),

where each Φ̃t denotes the unique unital ∗-homomorphism extending Φt to Ã. For each
ã = a+ α1

eA
∈ Ã and for all t, s ∈ [0, 1] we can calculate

‖Φ̃t(ã)− Φ̃s(ã)‖ eA = ‖Φt(a) + α1
eA
− Φs(a)− α1

eA
‖
eA

= ‖Φt(a)− Φs(a)‖ eA
= ‖Φt(a)− Φs(a)‖A

which shows that t 7→ Φ̃t(ã) is continuous for each ã ∈ Ã as t 7→ Φt(a) is continuous for
each a ∈ A. It follows from Φ0 = ψ ◦ ϕ and by uniqueness of the unital extensions that
Φ̃0 = ψ̃ ◦ ϕ = ψ̃ ◦ ϕ̃, and in the same way Φ1 = idA implies that Φ̃1 = ĩdA = id

eA
. Thus,

ψ̃ ◦ ϕ̃ ∼h id
eA
. It can be shown analogously that ϕ̃ ◦ ψ̃ ∼h id

eB
, and altogether it follows that

Ã ∼h B̃.

1.1.3 Special elements in C∗-algebras

Definition 1.1.32. Let A be a C∗-algebra. An element a ∈ A is said to be self-adjoint if
a∗ = a. An element p ∈ A is called a projection if p∗ = p = p2, and an element v ∈ A for
which v∗v is a projection is said to be a partial isometry .

Suppose now that A is unital. An element s ∈ A with s∗s = 1A is said to be an isometry ,
and an element u ∈ A with u∗u = uu∗ = 1A is called a unitary .
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Remarks 1.1.33. Let A be a C∗-algebra.

(i) Non-zero projections and non-zero partial isometries in A (and hence also isometries
and unitaries if A is unital) have norm one.

(ii) Suppose that A is unital and let s be an isometry in A. Then

‖sa‖ = ‖as∗‖ = ‖a‖ for all a ∈ A.

Proof. (i): Let 0 6= p be a projection in A. Then ‖p‖ = ‖p∗p‖ = ‖p‖2, and as ‖p‖ 6= 0 by
assumption, it follows that ‖p‖ = 1. Let 0 6= v be a partial isometry in A. Then v∗v is a
non-zero projection in A and hence ‖v‖2 = ‖v∗v‖ = 1.

(ii): Let a ∈ A. Then
‖sa‖2 = ‖a∗s∗sa‖ = ‖a∗a‖ = ‖a‖2,

i.e. ‖sa‖ = ‖a‖, and hence also ‖as∗‖ = ‖sa∗‖ = ‖a∗‖ = ‖a‖, or apply the same argument as
for ‖as‖.

These statements will be used without further comment in many estimates throughout this
thesis. Proofs of the following statements about positive elements and projections can all be
found in [Mu].

Definition 1.1.34. Let A be a C∗-algebra. An element a ∈ A is said to be positive if it
is self-adjoint and σ(a) ⊆ R≥0, we then write a ≥ 0. The set of positive elements in A is
denoted by A+. For two self-adjoint elements a, b ∈ A we write a ≤ b if b− a ≥ 0.

Proposition 1.1.35. Let A be a C∗-algebra and let a ∈ A+. Then there exists a unique
element b ∈ A+ such that b2 = a. The element b is invertible if and only if so is a.

Notation. The element b in Proposition 1.1.35 is called the positive square root of a and is
denoted by a1/2.

Proposition 1.1.36. An element a in a C∗-algebra A is positive if and only if there is x ∈ A
with x∗x = a.

Proposition 1.1.37. Let A be a C∗-algebra. Every projection in A is positive. Let now
p, q ∈ A be projections. Then the following statements are equivalent:

(i) q ≤ p;

(ii) pq = q;

(iii) qp = q.

The following statement shows that elements which behave approximately like a projection,
isometry or unitary, are in fact close to a projection, an isometry, or a unitary, respectively.
We prove only statement (ii) on isometries here as the other proofs are very similar. Further
comments on these results can be found in Exercises 2.7 and 2.8 in [R1].

Lemma 1.1.38. Let A be a C∗-algebra and let ε > 0. Then there exists δ > 0 such that
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(i) for any q in A satisfying ‖q − q∗‖ ≤ δ and ‖q2 − q‖ ≤ δ there is a projection p in A with
‖q − p‖ ≤ ε.

(ii) if A is unital, then for any t in A with ‖t∗t− 1A‖ ≤ δ there exists an isometry s in A
such that ‖t− s‖ ≤ ε.

(iii) if A is unital, then for any v in A satisfying ‖v∗v − 1A‖ ≤ δ and ‖vv∗ − 1A‖ ≤ δ there
exists a unitary element u in A with ‖v − u‖ ≤ ε.

Proof of (ii): Suppose that A is unital, choose 0 < δ < 1 such that δ(1 + δ)/(1− δ) ≤ ε and
let t ∈ A with ‖t∗t− 1A‖ ≤ δ. Then ‖t∗t− 1A‖ < 1, and therefore the positive element t∗t is
invertible in A and has a positive, invertible square root in A. Put s = t(t∗t)−1/2. Then

s∗s = (t∗t)−1/2t∗t(t∗t)−1/2 = 1A,

i.e. s is an isometry in A. To show that ‖t− s‖ ≤ ε we compute estimates for ‖t‖ and
for ‖1A − (t∗t)−1/2‖, using the continuous function calculus for t∗t. The spectrum σ(t∗t) is
contained in the interval [1−δ, 1+δ] because ‖t∗t− 1A‖ ≤ δ (see, for instance, Lemma 2.2.3 in
[R1]). As t∗t is self-adjoint, this yields ‖t‖2 = ‖t∗t‖ ≤ 1 + δ, and hence ‖t‖ ≤

√
1 + δ ≤ 1 + δ.

By the functional calculus we obtain

‖1A − (t∗t)−1/2‖ ≤ sup{|1− λ−1/2| | λ ∈ σ(t∗t)} ≤ δ

1− δ
,

where the last inequality follows by a short calculation from σ(t∗t) ⊆ [1−δ, 1+δ]. Altogether,
we can now show that

‖t− s‖ = ‖t− t(t∗t)−1/2‖ ≤ ‖t‖‖1A − (t∗t)−1/2‖ ≤ δ(1 + δ)
1− δ

≤ ε,

which completes the proof.

1.2 Relations of projections and K0

For proofs and details about the material in this section the reader may consult Chapters 1–4
in [R1].

1.2.1 Relations of projections and properly infinite projections

Definition 1.2.1. Let A be a C∗-algebra. Two projections p and q in A are said to be
(Murray-von Neumann) equivalent , in symbols p ∼ q, if there exists a partial isometry v ∈ A
such that v∗v = p and vv∗ = q.

Remarks 1.2.2. (i) Let A be a C∗-algebra and let v be a partial isometry in A, i.e. v∗v
is a projection. Then v = vv∗v, hence vv∗ also is a projection, and with p = v∗v and
q = vv∗ the following holds:

v = qv = vp = qvp.

(ii) The relation ∼ defines an equivalence relation on the set of projections in A.
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Definition 1.2.3. Let A be a C∗-algebra. A projection p in A is said to be infinite if it is
equivalent to a proper subprojection of itself, i.e. if there is a projection q in A such that
p ∼ q < p, where q < p means q ≤ p and q 6= p. A projection which is not infinite is said to
be finite.

If A is unital then A is said to be infinite if 1A is an infinite projection, otherwise A is
called finite.

The next definition gives a stronger notion of infinity:

Definition 1.2.4. Let A be a C∗-algebra. A non-zero projection p in A is said to be properly
infinite if there are two projections e, f in A such that ef = 0 (i.e. e and f are mutually
orthogonal), e ≤ p, f ≤ p and e ∼ p ∼ f .

A unital C∗-algebra A is said to be properly infinite if 1A is a properly infinite projection.

Remark 1.2.5. Let A be a unital, properly infinite C∗-algebra. Then A contains a sequence
(tn)n∈N of isometries with orthogonal range projections, i.e. with tit∗i ⊥ tjt

∗
j for all i 6= j ∈ N.

See Exercise 4.6 in [R1] for an idea of the proof.

Notation. Let P(A) denote the set of projections in a C∗-algebra A. For each n ∈ N let
Pn(A) = P(Mn(A)), and let P∞(A) =

⋃
n∈N Pn(A).

In what follows we define a generalized Murray-von Neumann equivalence and introduce a
binary operation on P∞(A). In Section 1.2.2 these concepts will be used to define the K0-
group of a unital C∗-algebra, and now they will, combined with one more relation on P∞(A),
lead to some useful statements about properly infinite projections.

Definition 1.2.6. Let A be a C∗-algebra and define a relation on P∞(A) as follows: Let
m,n ∈ N, let p ∈ Pn(A) and let q ∈ Pm(A). Then p ∼0 q if there exists an element v in the
m× n matrices Mm,n(A) such that p = v∗v and q = vv∗.

Definition 1.2.7. Let A be a C∗-algebra, let p and q be projections in P∞(A) and define

p⊕ q = diag(p, q) =
(
p 0
0 q

)
,

such that p⊕ q is contained in Pn+m(A) when p ∈ Pn(A) and q ∈ Pm(A) for some m,n ∈ N.

Another relation on P∞(A) can be defined as follows:

Definition 1.2.8. Let A be a C∗-algebra, let m,n ∈ N, let p ∈ Pn(A) and q ∈ Pm(A). We
write q - p if there is a projection p0 ∈ Pn(A) such that q ∼0 p0 ≤ q.

Remark 1.2.9. It is not true that p - q - p implies p ∼0 q, see the note to Exercise 4.7 in
[R1].

Definition 1.2.10. An element a in a C∗-algebra A is said to be full if it is not contained
in any proper, closed, two-sided ideal in A. A projection p ∈ Pn(A) ⊆ P∞(A) is called full if
p is a full element in Mn(A).

Lemma 1.2.11. Let A be a C∗-algebra.

(i) A non-zero projection p ∈ P∞(A) is properly infinite if and only if p⊕ p - p.
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(ii) Let p, q be projections in A and suppose that p - q - p and that p is properly infinite.
Then q also is properly infinite.

(iii) If p is a properly infinite, full projection in P∞(A), then q - p for every projection q in
P∞(A).

An idea of the proofs is given in Exercises 4.7, 4.8 and 4.9 in [R1].

1.2.2 The functor K0 for unital C∗-algebras

This section gives a very short introduction to the construction of K0(A) for a unital C∗-
algebra A. This construction also works for non-unital C∗-algebras, but the resulting functor
lacks certain exactness properties (see [R1] for details). Therefore, K0 is defined in a different
way for non-unital C∗-algebras which we will not present here. In Chapter 2 it will be shown
how the K0-group of the (unital) Cuntz algebra O2 can be determined explicitly.

Proposition/Definition 1.2.12. Let A be a C∗-algebra. Then ∼0 defines an equivalence
relation on P∞(A), and the set of equivalence classes is denoted by D(A) = P∞(A)/ ∼0. For
each p ∈ P∞(A) let [p]D denote the equivalence class containing p. One can define an addition
on D(A) by

[p]D + [q]D = [p⊕ q]D for all p, q ∈ P∞(A),

and this makes (D(A),+) an abelian semigroup.

Remark 1.2.13. To every abelian semigroup S on can assign an abelian group G(S) via the
Grothendieck construction. There exists an additive map γS : S → G(S) such that

G(S) =
{
γS(g)− γS(h)

∣∣ g, h ∈ S}
,

the so-called Grothendieck map. For details the reader is referred to Chapter 3 in [R1].

Definition 1.2.14. Let A be a unital C∗-algebra. Then K0(A) is defined to be the abelian
group which is assigned to D(A) via the Grothendieck construction. Let γ : D(A) → K0(A)
be the Grothendieck map and define

[ · ]0 : P∞(A) → K0(A), p 7→ [p]0 = γ([p]D).

The following proposition gives the standard picture of K0(A) in the unital case.

Proposition 1.2.15. Let A be a unital C∗-algebra. Then

K0(A) =
{
[p]0 − [q]0

∣∣ p, q ∈ P∞(A)
}

=
{
[p]0 − [q]0

∣∣ p, q ∈ Pn(A), n ∈ N
}
.

The following proposition states that to every ∗-homomorphism ϕ between unital C∗-algebras
A and B one can assign a group homomorphism K0(ϕ) : K0(A) → K0(B). The results in
Proposition 1.2.17 and Proposition 1.2.18 show that K0 defines a homotopy invariant functor
from the category of unital C∗-algebras into the category of abelian groups.

Proposition 1.2.16. Let A and B be unital C∗-algebras. Every ∗-homomorphism ϕ : A→ B
induces a unique group homomorphism K0(ϕ) : K0(A) → K0(B) that satisfies

K0(ϕ)([p]0) = [ϕ(n)(p)]0

for p ∈ Pn(A), where ϕ(n) denotes the nth inflation of ϕ.
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Proposition 1.2.17. (i) For every unital C∗-algebra A, K0(idA) = idK0(A).

(ii) Let A,B and C be unital C∗-algebras and let ϕ : A → B and ψ : B → C be ∗-
homomorphisms. Then K0(ψ ◦ ϕ) = K0(ψ) ◦K0(ϕ).

Proposition 1.2.18. Let A and B be unital C∗-algebras.

(i) If ϕ,ψ : A→ B are homotopic ∗-homomorphisms, then K0(ϕ) = K0(ψ).

(ii) If A and B are homotopy equivalent, then K0(A) is isomorphic to K0(B).

The following proposition gives a very useful picture of K0(A) in case that A contains a
properly infinite, full projection. Its proof is given in Theorem 1.4 in [Cu2]. Notice that this
holds both in the unital and in the non-unital case.

Proposition 1.2.19. Let A be a C∗-algebra.

(i) If A contains a properly infinite, full projection, then

K0(A) =
{
[p]0

∣∣ p ∈ P(A) is properly infinite and full
}
.

(ii) If p and q are properly infinite, full projections in A, then [p]0 = [q]0 if and only if p ∼ q.

1.3 Purely infinite C∗-algebras

The definition of purely infinite C∗-algebras can be given in many equivalent formulations,
which are given in Proposition 1.3.10 below. Before we state these equivalences we introduce
the notions of hereditary sub-C∗-algebras and of C∗-algebras having real rank zero.

Definition 1.3.1. A sub-C∗-algebra B of a C∗-algebra A is said to be hereditary if a ≤ b
implies a ∈ B for all positive elements a, b ∈ A with b ∈ B.

Remark 1.3.2. Let B be a hereditary sub-C∗-algebra of a C∗-algebra A. Then any hereditary
sub-C∗-algebra of B also is a hereditary sub-C∗-algebra of A.

Proof. Recall that if C is any sub-C∗-algebra of A, then an element x ∈ C is positive in C
if and only if it is positive in A. Let D be a hereditary sub-C∗-algebra of B, and let a, d be
positive elements in A with a ≤ d and d ∈ D. As D ⊆ B and B is a hereditary sub-C∗-
algebra of A, we get a ∈ B. Since D is a hereditary sub-C∗-algebra of B, this gives a ∈ D, as
required.

The following two lemmas give an idea of what hereditary sub-C∗-algebras may look like.
Their proofs can be found in [Mu], Theorem 3.2.2, Corollary 3.2.4 and Theorem 3.2.5.

Lemma 1.3.3. A sub-C∗-algebra B of a C∗-algebra A is hereditary if and only if bab′ ∈ B
for all b, b′ ∈ B and for all a ∈ A.

Lemma 1.3.4. Let A be a C∗-algebra. If a is a positive element in A, then aAa is a hereditary
sub-C∗-algebra of A. If B is a separable hereditary sub-C∗-algebra of A, then there exists a
positive element a ∈ A such that B = aAa.
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Corollary 1.3.5. Let p be a projection in a C∗-algebra A. Then pAp is a hereditary sub-
C∗-algebra of A which is unital with unit p.

Proof. For all a ∈ A we have ppap = pap = papp, i.e. p is a unit in pAp. To prove that pAp
is a C∗-algebra it suffices by the preceding lemma to show that pAp is closed. Notice that
a ∈ pAp if and only if a = pap for every a ∈ A. Let a ∈ pAp and let (an)n∈N be a sequence
in pAp with an → a as n → ∞. Then a = limn→∞ an = limn→∞ panp = pap, and hence
a ∈ pAp.

A proof of this which only uses the definition of hereditary sub-C∗-algebras can be found
in [Mu], Example 3.2.1. The following remark shows that, if we need a properly infinite
projection in a hereditary sub-C∗-algebra of a C∗-algebra A, it suffices to find a properly
infinite projection in A which is contained in the hereditary sub-C∗-algebra.

Remark 1.3.6. Let A be a C∗-algebra, let B be a non-zero, hereditary sub-C∗-algebra of A
and let p be a non-zero projection in B. Then p is properly infinite in B if and only if p is
properly infinite in A.

Proof. The “only if” part is clear. Suppose now that p is properly infinite in A and choose
mutually orthogonal projections e, f ∈ A with e ≤ p, f ≤ p and e ∼ p ∼ f in A. As B is
hereditary, it follows immediately that e, f ∈ B. Choose v ∈ A with v∗v = e and vv∗ = p,
then v = pve by Remark 1.2.2(i), and hence v ∈ B by Lemma 1.3.3. Hence, e ∼ p in A
implies that e ∼ p in B, and it follows in the same way that p ∼ f in B. Thus, p is properly
infinite in B.

Definition 1.3.7. Let A be a C∗-algebra. An approximate unit for A is a net (uλ)λ of
positive elements in the closed unit ball of A such that

lim
λ
uλa = lim

λ
auλ = a for all a ∈ A.

It is shown in Theorem 3.1.1 in [Mu] that every C∗-algebra admits an approximate unit. The
reference for the following statement about C∗-algebras with real rank zero is [BP], Theorem
2.6.

Definition 1.3.8. A unital C∗-algebra A is said to have real rank zero if the set of invertible,
self-adjoint elements in A is dense in the set of self-adjoint elements in A. A non-unital
C∗-algebra A is said to have real rank zero if its unitization Ã has real rank zero.

Theorem 1.3.9. Let A be a C∗-algebra. The following conditions are equivalent:

(i) The real rank of A is zero.

(ii) The set of self-adjoint elements in A with finite spectrum is dense in the set of self-adjoint
elements in A.

(iii) Every hereditary sub-C∗-algebra of A has an approximate unit consisting of projections.

The equivalent conditions in the following proposition will be used below to define what it
means for a unital and simple C∗-algebra to be purely infinite.

Proposition 1.3.10. Let A be a unital, simple C∗-algebra. The following statements are
equivalent:
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(i) A is not isomorphic to C and for all non-zero, positive elements a, b in A there exists x
in A such that b = x∗ax.

(ii) A is not isomorphic to C and for each non-zero, positive element a in A there exists x
in A such that 1A = x∗ax.

(iii) A is not isomorphic to C and every non-zero, hereditary sub-C∗-algebra of A contains
a projection p with p ∼ 1A.

(iv) Every non-zero, hereditary sub-C∗-algebra of A contains a properly infinite projection.

(v) The real rank of A is zero and every non-zero projection in A is properly infinite.

Proof. It is shown in the following that (i)⇔(ii), that (ii)⇒(iii)⇒(iv)⇒(ii), and that (iv)⇔(v).

(i)⇔(ii): It is clear that (i) implies (ii). Suppose now that (ii) holds and let a, b be non-zero,
positive elements in A. Then there exists x0 ∈ A with 1A = x∗0ax0. Put x = x0b

1/2, then
x∗ax = b1/2x∗0ax0b

1/2 = b.

(ii)⇒(iii): Suppose that (ii) holds and let B be a non-zero, hereditary sub-C∗-algebra of A.
Let a be a non-zero, positive element in B, then a also is positive in A, and by (ii) there is
x ∈ A such that 1A = x∗ax. Set v = a1/2x, then v∗v = x∗ax = 1A and p = vv∗ = a1/2xx∗a1/2

is a projection in B by Lemma 1.3.3, and p = vv∗ ∼ v∗v = 1A.

(iii)⇒(iv): Assume that (iii) holds. We show first that 1A is properly infinite. As A is not
isomorphic to C there exists a positive element d in A which is not contained in C1A, which
implies that the spectrum σ(d) contains more than one point. Let λ 6= µ ∈ σ(d). By Urysohn’s
Lemma there exist two continuous functions fλ, fµ : σ(d) → [0, 1] such that fλ(λ) = fµ(µ) = 1
and fλfµ ≡ 0. Apply the continuous function calculus for d to define a = fλ(d) and b = fµ(d).
Then a and b are non-zero, positive elements in A with ab = 0, and aAa and bAb are non-zero,
hereditary sub-C∗-algebras of A. By (iii) there exist projections p ∈ aAa and q ∈ bAb with
p ∼ 1A ∼ q. As ab = 0 it follows that (axa)(byb) = 0 for all x, y ∈ A, which implies that
pq = 0. Since p ≤ 1A and q ≤ 1A anyway, this shows that 1A is properly infinite.

Let now B be a non-zero, hereditary sub-C∗-algebra of A. By (iii), B contains a projection
e with e ∼ 1A. Then 1A ∼ e ≤ 1A and in particular 1A - e - 1A, which by Lemma 1.2.11(ii)
implies that e is properly infinite as 1A is.

(iv)⇒(ii): Suppose that (iv) holds and notice that this implies that A is not isomorphic to
C, because C does not contain any properly infinite projections.

Let a be a non-zero, positive element in A. Then aAa is a non-zero, hereditary sub-
C∗-algebra of A and (iv) yields a properly infinite projection p in aAa. Choose z ∈ A with
‖aza− p‖ < 1. As A is assumed to be simple, p is full, and hence 1A - p by Lemma 1.2.11(iii),
i.e. there exists a projection p0 in A such that 1A ∼ p0 ≤ p. Choose v ∈ A with v∗v = 1A and
vv∗ = p0. Then, as p0p = p0 = pp0 because p0 ≤ p, and as p0v = v by Remark 1.2.2(i), we
have

1A = v∗p0v = v∗p0pp0v = v∗pv. (1.3.1)

Put w = zav, then

‖1A − v∗aw‖ = ‖v∗(p− aza)v‖ ≤ ‖p− aza‖ < 1
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by choice of z, which shows that v∗aw = v∗a1/2a1/2w is invertible. Hence, a1/2w is left-
invertible, and therefore (a1/2w)∗a1/2w = w∗aw is invertible (see, for example, the proof of
Lemma 5.1.2 in [R1]). Moreover, w∗aw is positive, and therefore (w∗aw)1/2 exists and is
invertible as w∗aw is. Put x = w(w∗aw)−1/2, then

x∗ax = (w∗aw)−1/2w∗aw(w∗aw)−1/2 = 1A,

as desired.

(iv)⇒(v): Assume that (iv) holds. We show first that this implies that every non-zero pro-
jection in A is properly infinite. Let p be a non-zero projection in A. Then pAp is a non-zero,
hereditary sub-C∗-algebra of A which, by (iv), contains a properly infinite projection q. Then
pq = q = qp and hence q ≤ p, and as q is a properly infinite, full projection, we know that p - q
by Lemma 1.2.11(iii). Combining these we have that q ≤ p - q which by Lemma 1.2.11(ii)
implies that p also is properly infinite.

We now show that (iv) implies that A has real rank zero. Let a be a self-adjoint element
in A. In case that a is invertible there is nothing to prove, hence assume in the following that
a is not invertible. Let ε > 0.

Case 1: There exists a non-zero, positive element b in A such that ab = ba = 0, i.e. b is
orthogonal to a. By (iv) there exists a properly infinite projection p in bAb. As A is simple,
p is full and therefore 1A − p - p, i.e. there exists a projection q ∈ A with 1A − p ∼ q ≤ p.
Choose v ∈ A with v∗v = 1A − p and vv∗ = q. Notice that ab = ba = 0 implies ap = pa = 0,
and that pq = qp = q as q ≤ p. Using these and the relation v = qv = v(1A − p) we obtain
that

v2 = v(1A − p)qv = 0, vp = v(1A − p)p = 0, vq = vpq = 0, pv = pqv = qv,

aq = apq = 0 = qa, av = aqv = 0. (1.3.2)

Set s = v + v∗ + (p− q), then s is self-adjoint and

s2 = (v + v∗ + (p− q))(v + v∗ + (p− q)) = vv∗ + v∗v + v∗p− v∗q + p− q

= q + 1A − p+ p− q = 1A,

i.e. s is invertible with s = s−1. Put d = a + εs, then d is self-adjoint and ‖d− a‖ = ε, as
‖s‖ = 1. We proceed to show that d is invertible with inverse ε−1s − ε−2vav∗. Notice that
ap = 0 and the equations in (1.3.2) imply that as = av∗ and sv = v∗v = 1A − p (and, taking
adjoints, sa = va and v∗s = 1A − p) and calculate

d(ε−1s− ε−2vav∗) = (a+ εs)(ε−1s− ε−2vav∗) = ε−1av∗ + 1A − ε−1svav∗

= ε−1av∗ + 1A − ε−1(1A − p)av∗ = ε−1av∗ + 1A − ε−1av∗ = 1A

and, similarly,

(ε−1s− ε−2vav∗)d = (ε−1s− ε−2vav∗)(a+ εs) = ε−1va+ 1A − ε−1vav∗s

= ε−1va+ 1A − ε−1va = 1A.

This shows that d is invertible.
Case 2: In this case we construct a self-adjoint element a′ ∈ A such that ‖a′ − a‖ ≤ ε/2

and for which there exists a non-zero positive element b′ ∈ A with a′b′ = b′a′ = 0. Then
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Case 1 can be applied to find an invertible, self-adjoint element d′ ∈ A with ‖a′ − d′‖ ≤ ε/2,
and therefore with ‖a− d′‖ < ε. To find a′ and b′ we apply the functional calculus for a.
Define

f : σ(a) → R, t 7→


t+ ε

2 , t ≤ − ε
2 ,

0 , t ∈ [− ε
2 ,

ε
2 ],

t− ε
2 , t ≥ ε

2

and

g : σ(a) → R, t 7→


0 , t ≤ − ε

2 ,
t+ ε

2 , t ∈ [− ε
2 , 0],

−t+ ε
2 , t ∈ [0, ε2 ],

0 , t ≥ ε
2

and set a′ = f(a) and b′ = g(a). As f and g are real-valued functions, a′ and b′ are self-adjoint.
As a is assumed to be not invertible we know that 0 ∈ σ(a), and as g ≥ 0 and g(0) > 0 it
follows that b′ is a non-zero positive element in A. Moreover, a′b′ = b′a′ = 0 as fg = 0.
Let now z : σ(a) → R denote the inclusion (we know that σ(a) ⊆ R as a is self-adjoint) and
use that the functional calculus is isometric to see that ‖a′ − a‖ = ‖f − z‖ ≤ ε/2, as required.

(v)⇒(iv): Suppose that (v) holds and let B be a non-zero, hereditary sub-C∗-algebra of A.
By (v) and by Theorem 1.3.9(iii) we can conclude that B has an approximate unit consisting
of projections, in particular this means that there exists a non-zero projection p in B. By
(v), p is properly infinite.

Remark 1.3.11. Conditions (i),(iv) and (v) are also equivalent if A is non-unital, see [LZ].

Definition 1.3.12. A (unital) simple C∗-algebra A is said to be purely infinite if it satisfies
one — and hence any — of the equivalent conditions (i), (iv), (v) (and (ii),(iii) if A is unital)
in Proposition 1.3.10.

The definition of non-simple, purely infinite C∗-algebras and some important properties of
purely infinite C∗-algebras are given in [R2], Chapter 4.1.

Lemma 1.3.13. Let A be a simple, purely infinite C∗-algebra.

(i) Every non-zero, hereditary sub-C∗-algebra B of A is again purely infinite.

(ii) For each n ∈ N the matrix algebra Mn(A) is simple and purely infinite.

Proof. (i): We show condition (iv) in Proposition 1.3.10. Let B be a non-zero, hereditary sub-
C∗-algebra of A. Then B is simple because A is, see Theorem 3.2.8 in [Mu]. By Remark 1.3.2
every non-zero, hereditary sub-C∗-algebra of B also is a non-zero, hereditary sub-C∗-algebra
of A and hence contains a properly infinite projection.

(ii): We show this in the unital case only, the general case is contained in the proof of
Proposition 4.1.8 in [R2]. Let n ∈ N. As A is unital and simple so is Mn(A) by Lemma 1.1.23.
We show that Mn(A) satisfies condition (ii) in Proposition 1.3.10. Let a = (aij)i,j be a non-
zero, positive element in Mn(A). Then there exists a non-zero element z = (zij)i,j ∈ Mn(A)
such that a = z∗z, i.e. aii =

∑n
k=1 z

∗
kizki for each i ∈ N≤n. Therefore, each aii is positive,

and there exists i ∈ N≤n such that aii is non-zero (otherwise z and hence a were forced to be
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zero). Since A is purely infinite there exists an element y ∈ A such that y∗aiiy = 1A. Define
t = (tkl)k,l ∈Mn(A) by

tkl =
{
y, k = i and l = 1,
0, else

and let p = (pkl)k,l ∈Mn(A) denote the projection given by

pkl =
{

1A, k = l = 1,
0 , else.

Then t is the matrix having y as the first entry of its ith row and zeros elsewhere, and p
has 1A in its upper left corner and zeros elsewhere. Matrix multiplication now shows that
t∗at = p. As 1A is a properly infinite projection in A, so is p in Mn(A), because if q and r
are mutually orthogonal projections in A with q ∼ 1A ∼ r, then q(n), r(n) ∈Mn(A) given by

q
(n)
kl =

{
q, k = l = 1,
0, else,

and r
(n)
kl =

{
r, k = l = 1,
0, else,

are mutually orthogonal projections with q(n) ≤ p, r(n) ≤ p and q(n) ∼ p ∼ r(n). As Mn(A) is
simple, p is a properly infinite, full projection in Mn(A), and therefore 1Mn(A) - p. As shown
in the paragraph before equation (1.3.1) this entails that there is an element v ∈Mn(A) such
that v∗pv = 1Mn(A). Now set x = tv and check that

x∗ax = v∗t∗atv = v∗pv = 1Mn(A),

as required.

1.4 Completely bounded/positive maps

A good reference for the theory of operator systems and completely bounded/positive maps
is [Pa], and most of the statements given here are taken from this book. As an example for
unital, completely positive maps we consider maps like A → A, a 7→ s∗as for an isometry
s in a unital C∗-algebra A, which we shall often encounter in this thesis. We conclude this
section with some extension and approximation results.

Definition 1.4.1. A closed linear subspace E of a unital C∗-algebra A is said to be an
operator system if 1A ∈ E and if E is self-adjoint, i.e. E = E∗ = {x∗ | x ∈ E}.

For each n ∈ N we regard Mn(E) as a subspace of Mn(A) and equip it with the norm
inherited from the norm on the matrix algebra Mn(A).

Definition 1.4.2. Let A be a unital C∗-algebra and let E be an operator system in A. An
element x of E is said to be positive if it is positive in A.

Definition 1.4.3. Let E and F be operator systems. A linear map % : E → F is said to be
positive if it maps any positive element in E to a positive element in F , and % is said to be
contractive, or a contraction, if ‖%‖ ≤ 1.

Remark 1.4.4. Positive, linear maps are self-adjoint.
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Definition 1.4.5. Let E and F be operator systems. Let % : E → F be a linear map and
let for each n ∈ N the nth inflation %(n) of % be defined as in the case of ∗-homomorphisms,
see Definition 1.1.24. Then % is said to be completely bounded if supn∈N‖%(n)‖ is finite, and
it is said to be completely contractive, respectively completely positive if %(n) is contractive,
respectively positive for each n ∈ N.

Remark 1.4.6. The linear space of completely bounded maps between two operator systems
E and F can be normed with the completely bounded norm, given by

‖%‖cb = sup
n∈N

‖%(n)‖

for every completely bounded map % : E → F .

The following remark is a combination of Propositions 2.11 and 3.6 in [Pa].

Remark 1.4.7. Let E and F be operator systems and let % : E → F be a linear map.

(i) If % is completely positive, then % is completely bounded and ‖%‖cb = ‖%‖ = ‖%(1E)‖.

(ii) If % is unital, then % is completely positive if and only if ‖%‖cb = 1. In particular, unital,
completely positive maps have norm equal to one, which will be used in many estimates
later on.

Examples 1.4.8. (i) All ∗-homomorphisms are completely positive.

(ii) Let A be a unital C∗-algebra and let s be an isometry in A. Then V : A→ A, a 7→ s∗as
is a unital, completely positive map.

Proof. (i) Let A and B be C∗-algebras, let ϕ : A → B be a ∗-homomorphism, let n ∈ N and
let a ∈Mn(A) be a positive element. Then there exists x ∈Mn(A) such that a = x∗x. Since
the inflation ϕ(n) also is a ∗-homomorphism, we have ϕ(n)(a) = ϕ(n)(x∗x) = ϕ(n)(x)∗ϕ(n)(x)
which shows that ϕ(n)(a) is positive in Mn(B).

(ii) It is easy to check that V is linear, and V is unital because s is an isometry. For every
n ∈ N let sn = diag(s, . . . , s) ∈ Mn(A) and note that V (n)(a) = s∗nasn for every a ∈ Mn(A).
Let now n ∈ N and let a be a positive element in Mn(A). Then

V (n)(a) = s∗na
1/2a1/2sn =

(
a1/2sn

)∗
a1/2sn

is positive in Mn(A).

A proof of the following extension result for completely bounded maps is given in Theorem 8.2
in [Pa].

Theorem 1.4.9 (Wittstock’s Extension Theorem). Let A be a unital C∗-algebra and let E
be an operator system in A. Let H be a Hilbert space and let η : E → B(H) be a unital,
completely bounded map. Then η extends to a unital, completely bounded map η : A→ B(H)
with ‖η‖cb = ‖η‖cb.

The next result shows that a self-adjoint, unital, completely bounded map η is close to a
unital, completely positive map if its completely bounded norm is close to one (we know that
‖η‖cb ≥ 1 as η is assumed to be unital). A proof can be found in Proposition 1.19 in [Wa].
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Proposition 1.4.10. Let A be a unital C∗-algebra, let H be a Hilbert space and let η be
a self-adjoint, unital, completely bounded map from A into B(H). Then there is a unital,
completely positive map % : A→ B(H) such that ‖%− η‖cb ≤ ‖η‖cb − 1.

Combining the two preceding results we can prove the following statement, which is Lemma 1.6
in [KP]:

Lemma 1.4.11. Let A be a unital C∗-algebra and let E be an operator system in A. Let H
be a Hilbert space and let η : E → B(H) be a self-adjoint, unital, completely bounded map.
Then there is a unital, completely positive map % : A→ B(H) with ‖%|E − η‖cb ≤ ‖η‖cb − 1.

Proof. By Wittstock’s Extension Theorem there exists a unital, completely bounded map

η̃ : A→ B(H)

such that η̃|E = η and ‖η̃‖cb = ‖η‖cb. Define

η : A→ B(H), a 7→ 1
2

(η̃(a) + η̃(a∗)∗) .

For each x ∈ E we then have

η(x) =
1
2

(η̃(x) + η̃(x∗)∗) =
1
2

(η(x) + η(x∗)∗) = η(x)

as η̃|E = η and as η is self-adjoint, i.e. η|E = η. For the completely bounded norm we can
estimate

‖η‖cb ≤ ‖η‖cb ≤
1
2

(‖η̃‖cb + ‖η̃‖cb) = ‖η̃‖cb = ‖η‖cb,

i.e. ‖η‖cb = ‖η‖cb. Moreover,

η(a∗) =
1
2

(η̃(a∗) + η̃(a)∗) =
1
2

(η̃(a) + η̃(a∗)∗)∗ = η(a)∗.

Altogether we have shown that η is a self-adjoint, unital, completely bounded map which
extends η to A. Proposition 1.4.10 now yields a unital, completely positive map % : A→ B(H)
such that

‖%− η‖cb ≤ ‖η‖cb − 1 = ‖η‖cb − 1,

which implies that
‖%|E − η‖cb ≤ ‖η‖cb − 1,

as required.

1.5 Nuclearity and exactness

After stating some frequently used results on minimal tensor products we turn to the definition
of nuclear C∗-algebras and state some of their permanence properties. We then discuss nuclear
maps and show that a completely positive contraction being defined on or taking values in a
separable, nuclear C∗-algebra is automatically nuclear. In Sections 1.5.3 and 1.5.4 we define
exactness, present Kirchberg’s result that every separable, exact C∗-algebra admits a nuclear
embedding into B(H), and use this to prove that the identity map on a unital, separable,
exact C∗-algebra can be locally factorized through matrix algebras via unital, completely
bounded maps.
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1.5.1 Tensor products

In the following definitions and throughout this thesis tensor products play a very important
part. As their definition requires quite a bit of work it is not given here, but there are several
textbooks where all the work is done. For a very first start into the theory of algebraic tensor
products the reader may consult [Gr], the theory of tensor products of Hilbert spaces and of
C∗-algebras is dealt with in [Mu]. Except for Appendix A.2 we only consider minimal tensor
products in this thesis.

Notation. For two C∗-algebras A and B let A⊗min B denote their minimal tensor product.

The following result is a consequence of Theorem 6.3.3 in [Mu] and the definition of the
minimal tensor product.

Lemma 1.5.1. Let A and B be C∗-algebras with representations (HA, πA) and (HB, πB),
respectively. Then there exists a unique ∗-homomorphism π : A⊗minB → B(HA⊗HB), where
HA ⊗HB is the Hilbert space tensor product, such that

π(a⊗ b) = πA(a)⊗ πB(b) for all a ∈ A, b ∈ B.

If πA and πB are injective, then so is π.

The next result on ∗-homomorphisms between minimal tensor products is also taken from
[Mu], where it is Theorem 6.5.1.

Lemma 1.5.2. Let A,B,A′, B′ be C∗-algebras and let ϕ : A → A′ and ψ : B → B′ be
∗-homomorphisms. Then there is a unique ∗-homomorphism π : A ⊗min B → A′ ⊗min B

′

satisfying
π(a⊗ b) = ϕ(a)⊗ ψ(b) for all a ∈ A, b ∈ B.

Moreover, if ϕ and ψ are injective, then so is π.

Notation. We denote the ∗-homomorphism π in Lemma 1.5.2 by ϕ⊗ ψ.

Remark 1.5.3. Let A and B be C∗-algebras and let p be a non-zero projection in B. Then
the map

ι : A→ A⊗min B, a 7→ a⊗ p

is linear as ⊗ is bilinear, and it is self-adjoint and multiplicative because p = p∗ = p2. Hence,
ι is a ∗-homomorphism. Moreover, ‖a⊗ p‖ = ‖a‖‖p‖ = ‖a‖ for all a ∈ A, which shows that ι
is an embedding of A into A⊗min B.

Remark 1.5.4. Let A and B be separable C∗-algebras. Then A⊗minB is separable, because
if QA and QB are countable, dense subsets of A and B, respectively, then the set

{ n∑
i=1

ai ⊗ bi
∣∣ n ∈ N, ai ∈ QA, bi ∈ QB

}
is a countable, dense subset of A⊗min B.

The following result is Corollary 4.21 in [Ta].

Lemma 1.5.5. If two C∗-algebras A and B are simple then so is A⊗min B.
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1.5.2 Nuclear C∗-algebras and nuclear maps

Definition 1.5.6. A C∗-algebra A is said to be nuclear if for any C∗-algebra B there is a
unique C∗-norm on the algebraic tensor product of A and B.

Notation. Let A and B be C∗-algebras. If A or B is nuclear, the completion of their algebraic
tensor product with respect to the unique C∗-norm is denoted by A⊗B.

Nuclear C∗-algebras have a number of permanence properties, i.e. nuclearity is preserved
under many natural operations. Some of them are stated below, and more examples can be
found in Proposition 2.1.2 in [R2], where all save the second statement below are taken from.
A reference for statement (ii) is Theorem 6.3.9 in [Mu].

Proposition 1.5.7. (i) Abelian C∗-algebras are nuclear.

(ii) Finite dimensional C∗-algebras are nuclear.

(iii) If two of the C∗-algebras in a short exact sequence 0 → I → A → B → 0 (see Defini-
tion 1.5.15 below) are nuclear, then so is the third.

(iv) If A and B are nuclear C∗-algebras, then so is A⊗B.

(v) If A is a nuclear C∗-algebra and α is a ∗-automorphism on A, then the crossed product
Aoα Z (see Definition 6.2.1) is nuclear.

Remarks 1.5.8. (i) The C∗-algebra of complex matrices Mn(C) is nuclear for each n ∈ N
as it is finite dimensional. For any C∗-algebra A the map ψ : Mn(C)⊗A→Mn(A), given by

ψ ((λij)i,j ⊗ a) = (λija)i,j ,

is a ∗-isomorphism, see for instance Example 6.3.1 in [Mu]. In particular, if A is nuclear, then
so is Mn(A).

(ii) Let A and B be C∗-algebras and let ϕ : A → B be a ∗-homomorphism. For each n ∈ N,
the inflation ϕ(n) : Mn(A) →Mn(B) of ϕ corresponds to the map

idMn(C) ⊗ ϕ : Mn(C)⊗A −→Mn(C)⊗B,

in the sense that the diagram

Mn(A)
ϕ(n)

// Mn(B)

Mn(C)⊗A

ψA

OO

idMn(C)⊗ϕ
// Mn(C)⊗B

ψB

OO

commutes, where ψA and ψB denote the ∗-isomorphisms corresponding to ψ in (i).

Definition 1.5.9. Let A and B be C∗-algebras and let % : A → B be a completely positive
contraction. Then % is said to be nuclear if for each finite subset F of A and for each ε > 0
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there exist a natural number n and completely positive contractions σ : A → Mn(C) and
η : Mn(C) → B such that

‖%(a)− (η ◦ σ)(a)‖ ≤ ε for all a ∈ F,

i.e. the diagram

A
% //

σ

��1
1

1
1 B

Mn(C)

η

FF





commutes within ε on F .

Remark 1.5.10. In case that A and B are unital C∗-algebras and % is a unital, completely
positive map, the maps σ and η can be chosen to be unital, completely positive maps (an
idea of how to do this is given in the proof of Proposition 4.3 in [EH]).

Remark 1.5.11. Let A,B and C be C∗-algebras and let %1 : A → B and %2 : B → C be
completely positive contractions. If %1 or %2 is nuclear, then so is the composition %2 ◦ %1.

Proof. Suppose first that %1 is nuclear. Let F be a finite subset of A and let ε > 0. Choose
n ∈ N and completely positive contractions σ : A→Mn(C) and η′ : Mn(C) → B such that

‖%1(a)− (η′ ◦ σ)(a)‖ ≤ ε for all a ∈ F.

Put η = %2 ◦ η′ : Mn(C) → C, then η is a completely positive contraction as %2 and η′ are,
and

‖(%2 ◦ %1)(a)− (η ◦ σ)(a)‖ ≤ ‖%2‖‖%1(a)− (η′ ◦ σ)(a)‖ ≤ ε

for all a ∈ F , which shows that %2 ◦ %1 is nuclear.
Assume now that %2 is nuclear. Let F be a finite subset of A and let ε > 0. Then

%1(F ) is a finite subset of B, and we can choose n ∈ N and completely positive contractions
σ′ : B →Mn(C) and η : Mn(C) → C such that

‖%2(b)− (η ◦ σ′)(b)‖ ≤ ε for all b ∈ %1(F ).

Put σ = σ′ ◦ %1 : A → Mn(C), then σ is a completely positive contraction as σ′ and %1 are,
and

‖(%2 ◦ %1)(a)− (η ◦ σ)(a)‖ = ‖(%2(%1(a))− (η ◦ σ′)(%1(a))‖ ≤ ε

for all a ∈ F , as required.

The following theorem, which is part of Theorem 3.1 in [CE2], sheds some light on the relation
between nuclear C∗-algebras and nuclear maps.

Theorem 1.5.12 (Choi-Effros). Let A be a separable C∗-algebra. The following conditions
are equivalent:

(i) A is nuclear;

(ii) the identity map idA is nuclear.
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We shall frequently use the following corollary to this theorem:

Corollary 1.5.13. Let A and B be C∗-algebras and let % : A→ B be a completely positive
contraction. If A or B is a separable and nuclear C∗-algebra, then % is a nuclear map.

Proof. Assume first that A is separable and nuclear. Then idA is nuclear by Choi-Effros’
Theorem, and hence so is % = % ◦ idA by Remark 1.5.11.

If B is separable and nuclear, then idB is a nuclear map and thus so is % = idB ◦%.

The following theorem states an important lifting property of nuclear maps which plays
a central part in the proof of Kirchberg’s Embedding Theorem. The original reference is
Theorem 3.10 in [CE1]; a proof is also given in Chapter 6.3 of [Wa].

Theorem 1.5.14 (Choi-Effros’ Lifting Theorem). Let A be a unital C∗-algebra, let I be an
ideal in A, let π : A → A/I denote the quotient map, let E be a separable operator system
and let % : E → A/I be a nuclear, unital, completely positive map. Then there is a unital,
completely positive map λ : E → A which lifts %, i.e. which satisfies π◦λ = %, i.e. the following
diagram commtes:

A

π
��

E

λ

==|
|

|
|
%

// A/I

1.5.3 Exact C∗-algebras

Definition 1.5.15. Let (An)n∈Z be a sequence of C∗-algebras and let (ϕn)n∈Z be a sequence
of ∗-homomorphisms ϕn : An → An+1 for all n in Z. Then the sequence

. . . // An
ϕn // An+1

ϕn+1 // An+2
// . . .

is said to be exact if Im(ϕn) = Ker(ϕn+1) for all n ∈ Z. An exact sequence of the form

0 // I
ϕ // A

ψ // B // 0

is called short exact.

Definition 1.5.16. A C∗-algebra A is said to be exact if for every short exact sequence

0 // I
ϕ // D

ψ // B // 0

the induced sequence

0 // A⊗min I
idA⊗ϕ // A⊗min D

idA⊗ψ // A⊗min B // 0

is also exact. In other words, A is exact if the functor A⊗min(·) is exact (see Chapter 3.2 in
[R1] for the definition of exact functors).

Remark 1.5.17. Every nuclear C∗-algebra is exact (see, for instance, in Theorem 6.5.2 in
[Mu] for a proof).
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Similarly to nuclear C∗-algebras, exact C∗-algebras satisfy a number of permanence proper-
ties. The following statements are taken from Proposition 7.1 in [Ki1].

Proposition 1.5.18. (i) Every sub-C∗-algebra of an exact C∗-algebra is again exact.

(ii) If A is an exact C∗-algebra and I is an ideal in A, then A/I is exact.

(iii) If A and B are exact C∗-algebras, then so is A⊗min B.

(iv) If A is an exact C∗-algebra and α is a ∗-automorphism on A, then Aoα Z is exact (see
Definition 6.2.1).

(v) Let A be a C∗-algebra, let I be an ideal in A, let π : A→ A/I denote the quotient map
and suppose that there exists a ∗-homomorphism λ : A/I → A which lifts π, i.e. which
satisfies π ◦ λ = idA/I . In other words, suppose that the short exact sequence

0 // I
ι // A

π // A/I
λ

oo // 0

is split exact. Then A is exact if I and A/I are.

Remark 1.5.19. Notice the differences between the permanence properties of exact C∗-
algebras and those of nuclear C∗-algebras: Sub-C∗-algebras of nuclear C∗-algebras need not
be nuclear, and extensions of exact C∗-algebras by exact C∗-algebras need not be exact (the
existence of the lift λ in statement (v) is crucial). Counterexamples can be found in [Wa].

1.5.4 Exactness and nuclear embeddability

A proof of the following theorem is given in [Wa], Proposition 7.2 and Theorem 7.3.

Theorem 1.5.20 (Kirchberg). Let A be a separable C∗-algebra. Then A is exact if and only
if there exists a nuclear, injective ∗-homomorphism ι : A → B(H) for some Hilbert space H,
i.e. A admits a nuclear embedding into B(H).

Remark 1.5.21. If A in Theorem 1.5.20 is unital, then the Hilbert space H and the nuclear
embedding ι : A→ B(H) can be chosen such that ι is unital.

Proof. Suppose that A is unital, and use Theorem 1.5.20 to find a Hilbert space H and a
nuclear embedding ι : A→ B(H). Put P = ι(1A) and setH ′ = P (H). As P is a projection, H ′

is a Hilbert space. For each a ∈ A and for each x ∈ H we have that ι(a)x = (P ◦ ι(a))x ∈ H ′,
and hence we can define a ∗-homomorphism

π : ι(A) → B(H ′), ι(a) 7→ ι(a)|H′ .

We use this to define
ι′ = π ◦ ι : A→ B(H ′), a 7→ ι(a)|H′ .

Then ι′ is a unital ∗-homomorphism from A into B(H ′), which is injective because ι(a)|H′ = 0
if and only if ι(a) = 0 for all a ∈ A as ι(a)x = ι(a)Px ∈ ι(a)(H ′) for all x ∈ H. Moreover, we
know from Remark 1.5.11 that ι′ is nuclear as ι is, and thus ι′ is a unital, nuclear embedding
of A into B(H ′).
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We shall later on need a corollary of Theorem 1.5.20 which states that the identity map
on any finite dimensional operator system E in a unital, separable, exact C∗-algebra A can
be factorized through a complex matrix algebra, where the involved maps are unital and
completely bounded with completely bounded norm arbitrarily close to one. In the proof
of that corollary we shall have to perturb the unital, completely positive maps which arise
from the unital, nuclear embedding of A into B(H), so we first prove a lemma which helps
us to control the completely bounded norms in case of such a perturbation (see Lemma 1.5
in [KP]).

Lemma 1.5.22. Let A be a unital C∗-algebra, let E be a finite dimensional operator system
in A, let m = dimE and let {e1, . . . , em} be a basis of E, let {ξ1, . . . , ξm} be the standard
basis of Cm, and let Q : E → Cm be defined by Q(ei) = ξi for each i ∈ N≤m. Then for any
subset {a1, . . . , am} of A, the map W : E → span{a1, . . . , am} defined by W (ei) = ai for each
i ∈ N≤m is completely bounded and

‖W‖cb ≤ 1 +m‖Q‖
m∑
i=1

‖ai − ei‖.

Moreover, if m‖Q‖
∑m

i=1‖ai − ei‖ < 1, then W is bijective, W−1 is completely bounded and

‖W−1‖cb ≤
(
1−m‖Q‖

m∑
i=1

‖ai − ei‖
)−1

.

Proof. Let {a1, . . . , am} be a subset of A and let W be defined as above. Define a map
R : Cm → A by R(ξi) = ai − ei for each i ∈ N≤m. Equip Cm with the maximum norm and
compute

‖R‖ = sup
{
‖
m∑
i=1

λi(ai − ei)‖
∣∣∣ (λi)mi=1 ∈ Cm with max

1≤i≤m
|λi| ≤ 1

}
≤

m∑
i=1

‖ai − ei‖.

As R ◦Q is a linear map on the m-dimensional operator system E, Lemma 2.3 in [EH] yields
that R ◦Q is completely bounded and

‖R ◦Q‖cb ≤ m‖R ◦Q‖ ≤ m‖Q‖
m∑
i=1

‖ai − ei‖. (1.5.1)

For each i ∈ N≤m we have
W (ei) = ai = ei + (R ◦Q)(ei)

which implies that W = idE +R ◦Q. Therefore, W is completely bounded and

‖W‖cb

(1.5.1)

≤ 1 +m‖Q‖
m∑
i=1

‖ai − ei‖,

as desired. Assume now that m‖Q‖
∑m

i=1‖ai − ei‖ < 1. For every n ∈ N and for every
x ∈Mn(E) we can use (1.5.1) to estimate

‖W (n)(x)‖ = ‖id(n)
E (x) + (R ◦Q)(n)(x)‖

≥ ‖idMn(E)(x)‖ − ‖(R ◦Q)(n)(x)‖
≥ ‖x‖ (1− ‖R ◦Q‖cb)

≥ ‖x‖
(
1−m‖Q‖

m∑
i=1

‖ai − ei‖
)
, (1.5.2)
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which implies that ‖W (x)‖ > 0 for all x ∈ E \ {0}, i.e. W is injective. It is clear from the
definition of W that W is also surjective and hence bijective, so we can deduce from (1.5.2)
that

‖(W−1)(n)‖ = ‖
(
W (n)

)−1‖ ≤
(
1−m‖Q‖

m∑
i=1

‖ai − ei‖
)−1

for all n ∈ N,

and thus

‖W−1‖cb ≤
(
1−m‖Q‖

m∑
i=1

‖ai − ei‖
)−1

.

We now turn to the corollary to Theorem 1.5.20:

Corollary 1.5.23. Let A be a unital, separable, exact C∗-algebra, let E be a finite dimen-
sional operator system in A and let ε > 0. Then there exist a natural number n, a unital,
completely positive map σ : E →Mn(C), and a self-adjoint, unital, completely bounded map
η : σ(E) → E such that η ◦ σ = idE and ‖η‖cb ≤ 1 + ε.

Proof. By Remark 1.5.21 there exists a Hilbert space H such that there is a unital, nuclear,
injective ∗-homomorphism ι : A → B(H). Let m = dimE and let {e1, . . . , em} be a basis
of E with e1 = 1A, then {ι(e1) = idH , . . . , ι(em)} is a basis of the operator system ι(E) in
B(H) as ι is unital and injective. Let {ξ1, . . . , ξm} denote the standard basis in Cm and
define a map Q : ι(E) → Cm by Q(ι(ei)) = ξi for each i ∈ N≤m. Choose 0 < δ < 1 such
that (1− δ)−1 ≤ 1 + ε, and find by nuclearity of ι a natural number n and unital, completely
positive maps σ : A→Mn(C) and η′ : Mn(C) → B(H) such that

‖ι(ei)− (η′ ◦ σ)(ei)‖ ≤
δ

m2‖Q‖
for all i ∈ N≤m. (1.5.3)

Set ai = (η′ ◦ σ)(ei) for each i ∈ N≤m and define a map W : ι(E) → span{a1, . . . , am} by
W (ι(ei)) = ai for each i ∈ N≤m. Notice that W (idH) = W (ι(e1)) = a1 = idH , i.e. W is
unital. Now

m‖Q‖
m∑
i=1

‖ι(ei)− ai‖ ≤ δ < 1

by (1.5.3), and therefore Lemma 1.5.22 yields that W is bijective and that W−1 is completely
bounded with

‖W−1‖cb ≤
(
1−m‖Q‖

m∑
i=1

‖ι(ei)− ai‖
)−1

≤ (1− δ)−1 ≤ 1 + ε.

Let ι−1 : ι(A) → A denote the left-inverse of the injective ∗-homomorphism ι and set

η = ι−1 ◦W−1 ◦ η′|σ(E) : σ(E) → E.

Then η is unital and completely bounded with

‖η‖cb = ‖ι−1 ◦W−1 ◦ η′|σ(E)‖cb ≤ ‖W−1‖cb ≤ 1 + ε,

and
(η ◦ σ)(ei) =

(
ι−1 ◦W−1 ◦ η′ ◦ σ

)
(ei) =

(
ι−1 ◦W−1

)
(ai) = ι−1(ι(ei)) = ei
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for each i ∈ N≤m, and thus η ◦ σ|E = idE . To show that η is self-adjoint let x ∈ σ(E) and
choose e ∈ E with σ(e) = x. Being completely positive, σ is self-adjoint and hence

η(x∗) = η (σ(e)∗) = η(σ(e∗)) = e∗ = (η(σ(e)))∗ = η(x)∗,

as required.
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Chapter 2

The Cuntz algebras On

The Cuntz algebras, introduced by Joachim Cuntz in [Cu1], are an important example of
unital, separable, simple and purely infinite C∗-algebras. We start here with their definition
and some important properties, then prove in Section 2.2 that K0(O2) = 0 and conclude that
pO2p ∼= O2 for every non-zero projection in O2. In Section 2.3 we show that Mn(C) ↪→ On ↪→
O2 for every n ∈ N≥2 which will be used in Chapter 5 to embed quasidiagonal C∗-algebras
into O2.

2.1 Definition and important properties

Unless otherwise stated, Cuntz’ paper [Cu1] is the reference for the statements in this section.
An introduction to Cuntz algebras is also given in Chapter 4.2 in [R2].

Proposition/Definition 2.1.1. Let H be a separable, infinite dimensional Hilbert space.
For each n ∈ N≥2 there exist n isometries s1, . . . , sn in B(H) satisfying

n∑
i=1

sis
∗
i = idH . (2.1.1)

The Cuntz algebra On is defined to be the sub-C∗-algebra of B(H) generated by s1, . . . , sn.
Equation (2.1.1) is called the Cuntz relation. Let n ∈ N≥2 and suppose that s1, . . . , sn are
isometries satisfying the Cuntz relation. Then

s∗i sj =
{

1 if i = j
0 if i 6= j

for all i, j ∈ N≤n. (2.1.2)

The Cuntz algebra O∞ is defined to be the C∗-algebra generated by an infinite sequence
(si)i∈N of isometries with (2.1.2) for all i, j ∈ N.

The following theorem shows that the Cuntz algebras are well defined in the sense that they
do not depend on the choice of the generating isometries.

Theorem 2.1.2 (The universal property of the Cuntz algebras). Let A be a unital C∗-
algebra, let n ∈ N≥2 and let s1, . . . , sn be isometries generating On. Suppose that A contains
n isometries t1, . . . , tn which satisfy the Cuntz relation, i.e.

∑n
i=1 tit

∗
i = 1A. Then there exists

a unique, unital ∗-homomorphism ϕ : On → A satisfying ϕ(si) = ti for all i ∈ N≤n.
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Theorem 2.1.3. For each n ∈ N≥2 and for n = ∞ the Cuntz algebra On is unital, separable,
simple, nuclear and purely infinite.

Remark 2.1.4. With the notation from Theorem 2.1.2, the ∗-homomorphism ϕ is automat-
ically injective as On is simple, i.e. On is isomorphic to the sub-C∗-algebra of A which is
generated by t1, . . . , tn.

The following important result is proved in Theorem 5.2.1 in [R2]. It is often referred to by
saying that O2 is self-absorbing.

Theorem 2.1.5 (Elliot’s O2⊗O2 Theorem). The C∗-algebras O2 and O2⊗O2 are isomorphic.

2.2 Computing K0(O2)

In this section we prove that K0(O2) = 0. This is the consequence of a number of statements
on the Cuntz algebras On which are presented below. The original proof was given in [Cu2].
The first result we use here holds for general unital C∗-algebras:

Lemma 2.2.1. Let A be a unital C∗-algebra and let s be an isometry in A. Define

µ : A→ A, a 7→ sas∗.

Then µ is a ∗-endomorphism on A, and K0(µ) = idK0(A).

Proof. It is easy to check that the map µ is a ∗-endomorphism on A. For every n ∈ N put
sn = diag(s, . . . , s) ∈Mn(A) and note that the nth inflation of µ is then given by

µ(n) : Mn(A) →Mn(A), a 7→ snas
∗
n.

Let now p ∈ P∞(A) and take n ∈ N such that p ∈ Pn(A). Set v = snp and check that v∗v =
ps∗nsnp = p and vv∗ = snps

∗
n = µ(n)(p). This shows that p ∼ µ(n)(p), hence [p]0 = [µ(n)(p)]0

and
K0(µ)([p]0) = [µ(n)(p)]0 = [p]0,

which shows that K0(µ) = idK0(A).

Lemma 2.2.2. Let n ∈ N≥2 and let s1, . . . , sn be isometries generating On.

(i) For every unitary u ∈ On there is a unique unital ∗-endomorphism ϕu on On such that
ϕu(si) = usi for all i ∈ N≤n. Moreover, u =

∑n
i=1 ϕu(si)s

∗
i .

(ii) Let ϕ be a unital ∗-endomorphism on On. Then ϕ = ϕu for u =
∑n

i=1 ϕ(si)s∗i .

Proof. (i): Let u be a unitary in On. Then s∗iu
∗usi = 1On for all i ∈ N≤n and

n∑
i=1

usis
∗
iu
∗ = u

( n∑
i=1

sis
∗
i

)
u∗ = uu∗ = 1On ,

i.e. {us1, . . . , usn} is a set of isometries in On satisfying the Cuntz relation. By the universal
property of the Cuntz algebras there is a unique, unital ∗-homomorphism ϕu : On → On
satisfying ϕu(si) = usi for all i ∈ N≤n. Besides,

n∑
i=1

ϕu(si)s∗i =
n∑
i=1

usis
∗
i = u.
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(ii): Check first that u as given above is a unitary:

u∗u =
n∑

i,j=1

siϕ(s∗i sj)s
∗
j =

n∑
i=1

sis
∗
i = 1On ,

uu∗ =
n∑

i,j=1

ϕ(si)s∗i sjϕ(s∗j ) = ϕ
( n∑
i=1

sis
∗
i

)
= ϕ(1On) = 1On .

By (i), there is a unique unital ∗-endomorphism ϕu with ϕu(si) = usi for all i ∈ N≤n, and as

ϕ(sj) =
n∑
i=1

ϕ(si)s∗i sj = usj = ϕu(sj) for all j ∈ N≤n

it follows that ϕ = ϕu.

Lemma 2.2.3. Let n ∈ N≥2, let s1, . . . , sn be isometries which generate On and define

λ : On → On, x 7→
n∑
i=1

sixs
∗
i .

Then λ is a unital ∗-endomorphism on On and the following hold:

(i) K0(λ) = n idK0(On);

(ii) K0(λ) = idK0(On).

Proof. It is easy to check that λ is unital, linear and self-adjoint. To show that λ is multi-
plicative let x, y ∈ On and calculate

λ(x)λ(y) =
n∑

i,j=1

sixs
∗
i sjys

∗
j =

n∑
i=1

sixys
∗
i = λ(xy).

Hence, λ is a unital ∗-endomorphism on On.

(i): For each i ∈ N≤n let µi : On → On, x 7→ sixs
∗
i . Then µi is a ∗-endomorphism on On

and K0(µi) = idK0(On) for all i ∈ N≤n by Lemma 2.2.1, and λ =
∑n

i=1 µi. Let k ∈ N and

let p ∈ Pk(On). Note that for all i 6= j ∈ N≤n the elements µ(k)
i (p) and µ

(k)
j (p) are mutually

orthogonal projections, and hence

[µ(k)
i (p) + µ

(k)
j (p)]0 = [µ(k)

i (p)]0 + [µ(k)
j (p)]0

by Proposition 3.1.7(iv) in [R1]. Thus,

K0(λ)([p]0) = [λ(k)(p)]0 =
[ n∑
i=1

µ
(k)
i (p)

]
0

=
n∑
i=1

[µ(k)
i (p)]0

=
n∑
i=1

K0(µi)([p]0) =
n∑
i=1

[p]0 = n[p]0,
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which shows that K0(λ) = n idK0(On).

(ii): We will show that λ ∼h idOn , because then the statement follows from Proposi-
tions 1.2.18(i) and 1.2.17(i). Let u =

∑n
i=1 λ(si)s∗i be the unitary with λ = ϕu. Then

u∗ =
n∑
i=1

siλ(s∗i ) =
n∑

i,j=1

sisjs
∗
i s
∗
j =

n∑
i,j=1

λ(sj)s∗j = u,

i.e. u is self-adjoint and hence the spectrum σ(u) is contained in R. Consequently, σ(u) is
not equal to the unit circle in C, and hence Lemma 2.1.3(ii) in [R1] yields a continuous map
v : [0, 1] → On, t 7→ ut such that each ut is a unitary and such that u0 = u and u1 = 1On .
Use these unitaries to define

Φ: [0, 1]×On → On, (t, x) 7→ ϕut(x).

Then each Φt = ϕut is a ∗-endomorphism on On, and the map t 7→ ϕut(si) = utsi is continuous
for every i ∈ N≤n as v is continuous. By Lemma 1.1.27 this implies that t 7→ ϕut(x) is
continuous for every x ∈ On. Finally, Φ0 = ϕu0 = ϕu = λ and Φ1 = ϕu1 = ϕ1On

= idOn ,
and therefore λ ∼h idOn which implies K0(λ) = K0(idOn) = idK0(On) by the propositions
mentioned above.

Corollary 2.2.4. Let n ∈ N and let g ∈ K0(On). Then (n− 1)g = 0.

Proof. By Lemma 2.2.3 we have that

ng = n idK0(On)(g) = K0(λ)(g) = idK0(On)(g) = g,

and thus (n− 1)g = 0.

Corollary 2.2.5. K0(O2) = 0.

Proof. For every g ∈ K0(O2) we have g = (2− 1)g = 0; thus K0(O2) = 0.

The following statement, which is Theorem 3.7 in [Cu2], describes the K0-groups for all On
with n ∈ N≥2.

Theorem 2.2.6. For every n ∈ N≥2, the K0-group of On is isomorphic to Z/(n− 1)Z.

The following consequence of Corollary 2.2.5 will be used to prove Kirchberg’s Embedding
Theorem in the unital case.

Corollary 2.2.7. For each non-zero projection p in O2 the corner pO2p is isomorphic to O2.

Proof. Let p be a non-zero projection in O2. As O2 is simple and purely infinite, p is properly
infinite and full. Since K0(O2) = 0, we have that [p]0 = [1O2 ]0, and as 1O2 also is properly
infinite and full Proposition 1.2.19(ii) yields that p ∼ 1O2 . Use this to choose an isometry
s ∈ O2 with ss∗ = p. Then sxs∗ = psxs∗p for all x ∈ O2, and we can define

ϕ : O2 → pO2p, x 7→ sxs∗,

which is a unital, isometric and hence injective ∗-homomorphism. To see that ϕ is also
surjective let pyp ∈ pO2p and check that

ϕ(s∗ys) = ss∗yss∗ = pyp.

Thus, pO2p ∼= O2.
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2.3 Embedding Mn(C) into O2

The following two lemmas show that, for each n ∈ N≥2, the complex matrix algebra Mn(C)
embeds unitally into On which can be unitally embedded into O2. Consequently, each Mn(C)
can be unitally embedded into O2 (if n = 1 this simply means that C embeds into O2).

Lemma 2.3.1. For each n ∈ N≥2, the complex matrix algebra Mn(C) embeds unitally into
the Cuntz algebra On.

Proof. Let n ∈ N≥2, let {eij | i, j ∈ N≤n} be the system of standard matrix units for Mn(C)
as in Definition 1.1.21 and let {si | i ∈ N≤n} be a system of isometries generating On. Define
ϕ : Mn(C) → On by ϕ(eij) = sis

∗
j for all i, j ∈ N≤n and extend linearly. We show that ϕ is a

unital ∗-homomorphism. Let a =
∑n

i,j=1 aijeij and b =
∑n

i,j=1 bijeij be elements in Mn(C),
compute their product

ab =
n∑

i,j,k,l

aijbkleijekl =
n∑

i,k,l=1

aikbkleil

and check that

ϕ(ab) =
n∑

i,k,l=1

aikbklsis
∗
l =

n∑
i,j,k,l=1

aijbklsis
∗
jsks

∗
l = ϕ(a)ϕ(b),

i.e. ϕ is multiplicative. Moreover,

ϕ(a∗) = ϕ
( n∑
i,j=1

a∗ijeji
)

= ϕ
( n∑
i,j=1

a∗jieij
)

=
n∑

i,j=1

a∗jisis
∗
j =

n∑
i,j=1

a∗ijsjs
∗
i = ϕ(a)∗

and

ϕ(1Mn(C)) = ϕ
( n∑
i=1

eii
)

=
n∑
i=1

sis
∗
i = 1On ,

Thus, ϕ is a unital ∗-homomorphism, which is automatically injective as Mn(C) is simple.

Lemma 2.3.2. For all n ∈ N≥2, the Cuntz algebra On embeds unitally into O2.

Proof. We show that O2 contains, for each n ∈ N≥2, a set of isometries {ti | i ∈ N≤n} which
satisfy the On-relation. By the universal property of the Cuntz algebras it then follows that
there is a unital, injective ∗-homomorphism ϕ : On → O2 given by ϕ(si) = ti for all i ∈ N≤n,
where {si | i ∈ N≤n} is a set of generating isometries in On.

Let s1 and s2 be two isometries generating O2. We show that, for each n ∈ N≥2, the set
{ti | i ∈ N≤n} where

ti =
{
si−1
2 s1 if i < n

sn−1
2 if i = n

(2.3.1)

is a set of isometries in O2 which satisfy the On-relation. Being a product of isometries in
O2 each such ti is an isometry in O2. If n = 2 then {t1, t2} = {s1, s2} and there is nothing
to prove. Suppose that the On-relation is satisfied by {ti | i ∈ N≤n} defined as in (2.3.1) for
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some n ∈ N≥2 and consider the set of isometries {t̃i | i ∈ N≤n+1} with t̃i = si−1
2 s1 if i < n+ 1

and t̃n+1 = sn2 . Then

n+1∑
i=1

t̃it̃
∗
i =

n∑
i=1

si−1
2 s1s

∗
1(s

i−1
2 )∗ + sn2 (sn2 )∗

=
n−1∑
i=1

si−1
2 s1s

∗
1(s

i−1
2 )∗ + sn−1

2 s1s
∗
1(s

n−1
2 )∗ + sn−1

2 s2s
∗
2(s

n−1
2 )∗

=
n−1∑
i=1

si−1
2 s1s

∗
1(s

i−1
2 )∗ + sn−1

2 (sn−1
2 )∗

=
n∑
i=1

tit
∗
i = 1O2 ,

which completes the proof.
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Chapter 3

Obtaining approximate unitary
equivalence

Before discussing the purpose of this chapter we give the definition of (approximate) unitary
equivalence and the weaker notion of approximate similarity via isometries.

Definition 3.0.3. Let A and B be C∗-algebras, B unital, and let %, η : A→ B be completely
positive maps. If there is a unitary u in B such that uη(a)u∗ = %(a) for all a ∈ A, then % and
η are said to be unitarily equivalent, in symbols % ∼u η.

If for every ε > 0 and for every finite subset F of A there is a unitary u in B with
‖uη(a)u∗ − %(a)‖ ≤ ε for all a ∈ F , then % and η are said to be approximately unitarily
equivalent, denoted by % ≈u η.

Definition 3.0.4. Let A and B be C∗-algebras, B unital, and let %, η : A→ B be completely
positive maps. We say that % is approximately similar via isometries to η if for every ε > 0
and for every finite subset F of A there is an isometry s in B such that ‖s∗η(a)s− %(a)‖ ≤ ε
for all a ∈ F .

The main purpose of this chapter is to find conditions on which two unital, completely positive
maps or ∗-homomorphisms % and η between unital C∗-algebras A and B are approximately
unitarily equivalent. As it turns out that obtaining approximate similarity via isometries
is an important step towards approximate unitary equivalence, the first two sections of this
chapter deal with this weaker property.

In particular, the main statement of Section 3.1 is that a nuclear, unital, completely
positive map on a unital, simple, purely infinite C∗-algebra A is approximately similar via
isometries to the identity map on A.

In Section 3.2 we will show the following: If %1 and %2 are unital, completely positive
maps defined on a finite dimensional operator system in a unital, separable, exact C∗-algebra
A, then there exists, on certain assumptions, a nuclear map η such that ‖η ◦ %1 − %2‖ can
be made arbitrarily small. Combining this with the result of Section 3.1 we will be able to
establish approximate similarity via isometries between %1 and %2 if these maps are unital,
injective ∗-homomorphisms from a unital, separable, exact C∗-algebra into a unital, separable,
simple, nuclear and purely infinite C∗-algebra.

In Section 3.3 it will be shown how to get from approximate similarity via isometries to
approximate unitary equivalence.
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As a first application of these results it will be proved in Section 3.4 that any two uni-
tal, injective ∗-homomorphisms from a unital, separable, exact C∗-algebra A into O2 are
approximately unitarily equivalent.

3.1 Approximating nuclear, unital, completely positive maps
via isometries

In Proposition 3.1.3 and Lemma 3.1.4 below, which are important ingredients to the proof
of Proposition 3.1.5 on approximate similarity of a nuclear map to the identity, we need the
notion of states on a C∗-algebra:

Definition 3.1.1. Let A be a unital C∗-algebra. A linear functional ω : A → C is said to
be a state (on A) if ω is positive and unital. A state ω on A is said to be pure if for every
positive linear functional % on A with % ≤ ω (i.e. ω− % is positive) there is a number t ∈ [0, 1]
such that % = tω.

Remark 3.1.2. Let A be a C∗-algebra and let ω : A → C be a positive linear functional.
Then the map

σ : A×A→ C, (a, b) 7→ ω(b∗a)

is a positive, sesquilinear form, and hence the Cauchy-Schwarz inequality

|σ(a, b)|2 ≤ σ(a, a)σ(b, b)

holds for all a, b ∈ A. For ω this yields

|ω(ab)|2 = |σ(b, a∗)|2 ≤ σ(b, b)σ(a∗, a∗) = ω(b∗b)ω(aa∗)

for all a, b ∈ A.

Proposition 3.1.3. Let A be a unital, simple, purely infinite C∗-algebra and let ω be a state
on A. For each finite subset F of A and for each ε > 0 there is a non-zero projection p in A
such that

‖pap− ω(a)p‖ ≤ ε for all a ∈ F.

Proof. We first consider the case that ω is a pure state. Define L = {x ∈ A | ω(x∗x) = 0},
the so-called left kernel of ω. Since ω is bounded, L is closed, and by Remark 3.1.2 we have

|ω ((ax)∗ax) |2 ≤ ω(x∗x)ω ((ax)∗a ((ax)∗a)∗) = 0 for all a ∈ A, x ∈ L,

i.e. L is a closed left ideal in A. By Theorem 3.2.1 in [Mu] this implies that the set N = L∩L∗
is a hereditary sub-C∗-algebra of A. We proceed to show that N is non-zero. As ω is assumed
to be pure, Proposition 3.13.6 in [Pe1] yields that ker(ω) = L + L∗. Notice that, for each
a ∈ A, we have ω(a − ω(a)1A) = 0, i.e. a − ω(a)1A ∈ ker(ω). Being purely infinite, A
is not isomorphic to C and thus contains an element a such that a − ω(a)1A 6= 0. This
shows that ker(ω) and hence L are non-zero. For every non-zero element x ∈ L we have
0 6= x∗x ∈ L∩L∗ = N because L is a left ideal and x∗x is self-adjoint. Thus, N is a non-zero,
hereditary sub-C∗-algebra of A.

Since, being purely infinite, A has real rank zero, Theorem 1.3.9 yields the existence of
an approximate unit (qλ)λ∈Λ for N such that each qλ is a projection. As N ⊆ L we have
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ω(qλ) = ω(q∗λqλ) = 0 for each λ ∈ Λ. Thus, setting pλ = 1A − qλ for each λ ∈ Λ, we have
ω(pλ) = ω(1A) − ω(qλ) = ω(1A) = 1, i.e. each pλ is a non-zero projection in A. As shown
above, x ∈ L implies x∗x ∈ N and thus

‖xpλ‖2 = ‖pλx∗xpλ‖ ≤ ‖x∗x(1− qλ)‖ → 0 for all x ∈ L

as (qλ)λ∈Λ is an approximate unit for N . We have already seen that a− ω(a)1A is contained
in ker(ω) = L+ L∗ for all a ∈ A, and thus we can for every a ∈ A choose x, y ∈ L such that
a− ω(a)1A = x+ y∗ to obtain

‖pλapλ − ω(a)pλ‖ = ‖pλ (a− ω(a)1A) pλ‖ = ‖pλ(x+ y∗)pλ‖ ≤ ‖xpλ‖+ ‖pλy∗‖
= ‖xpλ‖+ ‖ypλ‖ → 0. (3.1.1)

Let now F be a finite subset of A and let ε > 0. For each a ∈ F we can by (3.1.1) choose
λa ∈ Λ such that ‖pλapλ − ω(a)pλ‖ ≤ ε for all λ ≥ λa in Λ. Let λ ∈ Λ be a majorant of
{λa | a ∈ F} and put p = pλ, then

‖pap− ω(a)p‖ ≤ ε for all a ∈ F,

which proves the proposition in the case of pure states.
In the general case we use the fact that A, being simple and purely infinite, satisfies the

assumptions of Lemma 11.2.4 in [Di], which then entails that the set of pure states on A is
weak∗-dense in the state space of A. Let F be a finite subset of A, let ε > 0 and choose a
pure state τ on A such that |τ(a)−ω(a)| ≤ ε/2 for all a ∈ F . As shown above, there is a net
(pλ)λ∈Λ of non-zero projections in A such that ‖pλapλ − τ(a)pλ‖ → 0 for all a ∈ A. Choose
λ ∈ Λ such that ‖pλapλ − τ(a)pλ‖ ≤ ε/2 for all a ∈ F , set p = pλ and conclude that

‖pap− ω(a)p‖ ≤ ‖pap− τ(a)p‖+ ‖τ(a)p− ω(a)p‖ ≤ ε for all a ∈ F,

as desired.

The following lemma shows that every unital, completely positive map from a complex matrix
algebra Mn(C) into a unital, properly infinite C∗-algebra A can, via an isometry, be related
to a ∗-homomorphism from Mn(C) into A.

Lemma 3.1.4. Let A be a unital, properly infinite C∗-algebra, let n be a natural number and
let % : Mn(C) → A be a unital, completely positive map. Then there exist a ∗-homomorphism
ϕ : Mn(C) → A and an isometry t in A such that

%(x) = t∗ϕ(x)t for all x ∈Mn(C).

Proof. Let {eij | i, j ∈ N≤n} denote the system of standard matrix units in Mn(C). Keep in
mind that

eijekl =
{
eil if j = k
0 if j 6= k

for all i, j, k, l ∈ N≤n.

and e∗ij = eji for all i, j ∈ N≤n. Most of the work in this proof will be needed to show the
following two statements:

(i) There is a partial isometry v ∈Mn(C)⊗Mn(C)⊗A such that

v∗
(
x⊗ 1Mn(C) ⊗ 1A

)
v = e11 ⊗ e11 ⊗ %(x) for all x ∈Mn(C);
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(ii) There are a ∗-homomorphism ψ : Mn(C)⊗Mn(C)⊗A→ A and an isometry s ∈ A such
that

ψ (e11 ⊗ e11 ⊗ a) = sas∗ for all a ∈ A.

If (i) and (ii) are true we can define

ϕ : Mn(C) → A, x 7→ ψ(x⊗ 1Mn(C) ⊗ 1A).

Then ϕ is a ∗-homomorphism because both ψ and the map defined by x 7→ x⊗1Mn(C)⊗1A are
∗-homomorphisms (the latter as 1Mn(C)⊗1A is a projection in Mn(C)⊗A, see Remark 1.5.3).
The elements v and s satisfy

v∗v = v∗
(
1Mn(C) ⊗ 1Mn(C) ⊗ 1A

)
v

(i)
= e11 ⊗ e11 ⊗ %(1Mn(C)) = e11 ⊗ e11 ⊗ 1A (3.1.2)

and
ss∗ = s1As∗

(ii)
= ψ (e11 ⊗ e11 ⊗ 1A) = ψ(v∗v). (3.1.3)

Set t = ψ(v)s and use (3.1.3) to see that t∗t = s∗ψ(v∗v)s = s∗ss∗s = 1A, i.e. t is an isometry.
Altogether, ϕ and t satisfy

t∗ϕ(x)t = s∗ψ
(
v∗

(
x⊗ 1Mn(C) ⊗ 1A

)
v
)
s

(i)
= s∗ψ (e11 ⊗ e11 ⊗ %(x)) s

(ii)
= s∗s%(x)s∗s = %(x)

for all x ∈Mn(C), as desired. For the proof of (i) define

y =
n∑

i,j=1

eij ⊗ %(eij), (3.1.4)

then y ∈Mn(C)⊗A corresponds to the n× n-matrix with entries in A for which the (i, j)th
entry is %(eij). Write y as

y =
(
idMn(C) ⊗ %

) ( n∑
i,j=1

eij ⊗ eij

)
.

Calculate ( 1
n

n∑
i,j=1

eij ⊗ eij

)2
=

1
n2

n∑
i,j,k,l=1

eijekl ⊗ eijekl

=
1
n2

n∑
i,k,l=1

eikekl ⊗ eikekl =
1
n

n∑
i,l=1

eil ⊗ eil

to see that 1/n
∑n

i,j=1 eij ⊗ eij is a projection and hence a positive element, which implies
that

∑n
i,j=1 eij ⊗ eij is also positive. As idMn(C)⊗ % is a positive map because % is completely

positive, this shows that y is positive and hence has a positive square root y1/2 in Mn(C)⊗A.
Choose elements aij ∈ A such that y1/2 =

∑n
i,j=1 eij ⊗ aij and compute

y =
( n∑
i,j=1

eij ⊗ aij

)2
=

n∑
i,j,k,l=1

eijekl ⊗ aijakl =
n∑

i,k,l=1

eil ⊗ aikakl =
n∑

i,l=1

eil ⊗
n∑
k=1

aikakl.
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Since the matrix units {eij | i, j ∈ N≤n} are linearly independent, comparing the last equation
with (3.1.4) yields that

%(eij) =
n∑
k=1

aikakj for all i, j ∈ N≤n. (3.1.5)

Set v =
∑n

i,j=1 ei1 ⊗ ej1 ⊗ aji. Then v is an element in Mn(C)⊗Mn(C)⊗A and corresponds
to the following n2 × n2-matrix with entries in A: The first column lists the columns of
(aij)i,j , the other entries are zero. Notice that, as y1/2 is self-adjoint, we have a∗ji = aij for all
i, j ∈ N≤n and thus

v∗
(
eij ⊗ 1Mn(C) ⊗ 1A

)
v

=
( n∑
k,l=1

e1k ⊗ e1l ⊗ akl

) (
eij ⊗ 1Mn(C) ⊗ 1A

) ( n∑
m,r=1

em1 ⊗ er1 ⊗ arm

)
=

n∑
k,l,m,r=1

e1keijem1 ⊗ e1ler1 ⊗ aklarm =
n∑
l=1

e11 ⊗ e11 ⊗ ailalj

(3.1.5)
= e11 ⊗ e11 ⊗ %(eij)

for all i, j ∈ N≤n. As each x ∈Mn(C) can be written as
∑n

i,j=1 xijeij this extends to

v∗
(
x⊗ 1Mn(C) ⊗ 1A

)
v = e11 ⊗ e11 ⊗ %(x) for all x ∈Mn(C);

and as seen in (3.1.2) this implies that v is a partial isometry. This proves (i).
We now turn to the proof of (ii). For technical reasons we want to identify the set

{eij ⊗ ekl | i, j, k, l ∈ N≤n2} ⊆ Mn(C) ⊗ Mn(C) with the system of standard matrix units
in Mn2(C) ∼= Mn(C) ⊗ Mn(C). Formally this can be done in the following way: For all
i, j, k, l ∈ N≤n2 define two numbers r = (i−1)n+k and s = (j−1)n+ l and set grs = eij⊗ekl.
A calculation shows that then {grs | r, s ∈ N≤n2} = {eij ⊗ ekl | i, j, k, l ∈ N≤n}, and

grsguv =
{
grv if s = u
0 if s 6= u

for all r, s, u, v ∈ N≤n2

and g∗rs = gsr for all r, s ∈ N≤n2 . Since A is properly infinite we can by Remark 1.2.5 choose
a set of isometries {ti | i ∈ N≤n2} in A with mutually orthogonal range projections, i.e. with
tit
∗
i ⊥ tjt

∗
j whenever i 6= j. Define ψ : Mn(C) ⊗ Mn(C) ⊗ A → A by ψ(gij ⊗ a) = tiat

∗
j

for all i, j ≤ n2 and for all a ∈ A. Let a, b ∈ Mn(C) ⊗ Mn(C) ⊗ A and choose elements
aij , bij ∈ A, i, j ∈ N≤n2 , such that

a =
n2∑
i,j=1

gij ⊗ aij , b =
n2∑
i,j=1

gij ⊗ bij .

Extending the definition of ψ linearly gives ψ(a) =
∑n2

i,j=1 tiaijt
∗
j , correspondingly for b. To

see that ψ is a ∗-homomorphism use

a∗ =
n2∑
i,j=1

gij ⊗ a∗ji, ab =
n2∑
i,l=1

gil ⊗
n2∑
k=1

aikbkl,
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to compute

ψ(a∗) =
n2∑
i,j=1

tia
∗
jit
∗
j =

n2∑
i,j=1

tja
∗
ijt
∗
i =

( n2∑
i,j=1

tiaijt
∗
j

)∗
= ψ(a)∗

and

ψ(ab) = ψ
( n2∑
i,l=1

gil ⊗
n2∑
k=1

aikbkl

)
=

n2∑
i,l=1

ti
( n2∑
k=1

aikbkl
)
t∗l =

n2∑
i,j,k,l=1

tiaijt
∗
j tkbklt

∗
l = ψ(a)ψ(b).

By definition of ψ and g11 we have

ψ(e11 ⊗ e11 ⊗ a) = ψ(g11 ⊗ a) = t1at
∗
1 for all a ∈ A,

and thus (ii) holds with s = t1. This completes the proof.

We are now able to show that each nuclear, unital, completely positive map on a unital,
simple, purely infinite C∗-algebra A is approximately similar via isometries to idA. In the
proof we shall need the fact that an element which is almost an isometry is close to an
isometry, which was proved in Lemma 1.1.38.

Proposition 3.1.5. Let A be a unital, simple, purely infinite C∗-algebra and let % : A→ A
be a nuclear, unital, completely positive map. Then for each finite subset F of A and for each
ε > 0 there exists an isometry s in A such that

‖s∗as− %(a)‖ ≤ ε for all a ∈ F.

Proof. Let F be a finite subset of A and let ε > 0. Assume that 1A ∈ F . By nuclearity
of % choose a natural number n and unital, completely positive maps σ : A → Mn(C) and
η : Mn(C) → A such that

‖%(a)− (η ◦ σ)(a)‖ ≤ ε

2
for all a ∈ F. (3.1.6)

Being purely infinite, A is properly infinite, and so Lemma 3.1.4 yields a (possibly non-unital)
∗-homomorphism ϕ : Mn(C) → A and an isometry t ∈ A with

η(x) = t∗ϕ(x)t for all x ∈Mn(C). (3.1.7)

We will show the following:

(?) There exists an element w in A such that w∗w = ϕ(1Mn(C)) and

‖w∗aw − (ϕ ◦ σ)(a)‖ ≤ ε

2
for all a ∈ F. (3.1.8)

Then set s = wt, check that s∗s = t∗w∗wt = t∗ϕ(1Mn(C))t = η(1Mn(C)) = 1A to see that s is
an isometry in A and use (3.1.7), (3.1.8) and (3.1.6) to estimate

‖s∗as− %(a)‖ ≤ ‖t∗w∗awt− t∗(ϕ ◦ σ)(a)t‖+ ‖(η ◦ σ)(a)− %(a)‖ ≤ ε for all a ∈ F.

We now proceed to prove (?). Put M = maxa∈F ‖a‖ and choose 0 < δ < min{1, ε/4} such that
Lemma 1.1.38 holds with ε/(12M), i.e. any element that behaves “δ-almost” like an isometry
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is ε/(12M)-close to an isometry. We start with the construction of an element u ∈ A which
satisfies

‖u∗au− (ϕ ◦ σ)(a)‖ ≤ δ for all a ∈ F, (3.1.9)

then we perturb u slightly to obtain w. Let {eij | i, j ∈ N≤n} denote the standard matrix
units in Mn(C) and let {ξi | i ∈ N≤n} be the standard basis for Cn. Define a map

ω : Mn(C)⊗A→ C,
n∑

i,j=1

eij ⊗ aij 7→
1
n

n∑
i,j=1

〈σ(aij)ξj , ξi〉.

Since σ is a unital, completely positive map, ω is a unital, positive linear functional (see
Theorem 6.1 and the paragraph preceding it in [Pa]), i.e. ω is a state. We shall use later on
that

σ(a) = (σ(a)ij)i,j =
n∑

i,j=1

σ(a)ijeij =
n∑

i,j=1

〈σ(a)ξj , ξi〉eij = n

n∑
i,j=1

ω(eij ⊗ a)eij (3.1.10)

for all a ∈ A. As A is unital, simple and purely infinite, so is Mn(C)⊗A by Remarks 1.3.13(ii)
and 1.5.8(i), and thus Proposition 3.1.3 yields a non-zero projection p ∈Mn(C)⊗A with

‖p (ekl ⊗ a) p− ω (ekl ⊗ a) p‖ ≤ δ

n3
(3.1.11)

for all k, l ∈ N≤n and for all a ∈ F . As Mn(C) ⊗ A is simple and purely infinite, p is a full
and properly infinite projection. By Lemma 1.2.11(iii) this entails that e11 ⊗ ϕ(e11) - p for
the projection e11 ⊗ ϕ(e11) in Mn(C)⊗A, i.e. there exists a partial isometry v ∈Mn(C)⊗A
with v∗v = e11 ⊗ ϕ(e11) and vv∗ ≤ p. As usual, we can choose elements vij ∈ A with

v =
n∑

i,j=1

eij ⊗ vij ,

but we will show that it is here possible to choose elements vi ∈ A, i ∈ N≤n such that

v =
n∑
i=1

ei1 ⊗ vi. (3.1.12)

It follows from

e11 ⊗ ϕ(e11) = v∗v =
n∑

i,j,k,l=1

ejiekl ⊗ v∗ijvkl =
n∑

j,l=1

ejl ⊗
n∑
k=1

v∗kjvkl

that v∗klvkl = 0 if l 6= 1 and thus vkl = 0 if l 6= 1. Putting vi = vi1 for each i ∈ N≤n gives
(3.1.12). As vv∗ ≤ p we know that vv∗p = vv∗ = pvv∗ and, combining this with the usual
relations from Remark 1.2.2(i), we obtain that v = vv∗v = pvv∗v = pv. We use this to
establish the following two equalities, which we shall need below: For all k, l ∈ N≤n and for
all a ∈ A we have

e11 ⊗ v∗kavl =
n∑

i,j=1

e1ieklej1 ⊗ v∗i avj =
( n∑
i=1

e1i ⊗ v∗i

)
(ekl ⊗ a)

( n∑
j=1

ej1 ⊗ vj

)
= v∗ (ekl ⊗ a) v = v∗p (ekl ⊗ a) pv (3.1.13)
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and

e11 ⊗ ω(ekl ⊗ a)ϕ(e11) = ω(ekl ⊗ a)(e11 ⊗ ϕ(e11)) = ω(ekl ⊗ a)v∗v
= ω(ekl ⊗ a)v∗pv = v∗ω(ekl ⊗ a)pv. (3.1.14)

Combining equations (3.1.13) and (3.1.14) and using (3.1.11) we can estimate

‖v∗kavl − ω(ekl ⊗ a)ϕ(e11)‖ = ‖e11 ⊗ v∗kavl − e11 ⊗ ω(ekl ⊗ a)ϕ(e11)‖
= ‖v∗p(ekl ⊗ a)pv − v∗ω(ekl ⊗ a)pv‖

≤ ‖p(ekl ⊗ a)p− ω(ekl ⊗ a)p‖ ≤ δ

n3
(3.1.15)

for all k, l ∈ N≤n and for all a ∈ F . Put

u =
√
n

n∑
k=1

vkϕ(e1k),

calculate

u∗au = n
n∑

k,l=1

ϕ(ek1)v∗kavlϕ(e1l) for all a ∈ A,

and estimate, using (3.1.15) and that σ(a) can be written as in (3.1.10), that

‖u∗au− (ϕ ◦ σ)(a)‖ = ‖n
n∑

k,l=1

ϕ(ek1)v∗kavlϕ(e1l)− n

n∑
k,l=1

ω(ekl ⊗ a)ϕ(ekl)‖

≤ n

n∑
k,l=1

‖ϕ(ek1)
(
v∗kavl − ω(ekl ⊗ a)ϕ(e11)

)
ϕ(e1l)‖

≤ n
n∑

k,l=1

‖v∗kavl − ω(ekl ⊗ a)ϕ(e11)‖

≤ n

n∑
k,l=1

δ

n3
= δ

for all a ∈ F , which proves (3.1.9). To obtain w write q = ϕ(1Mn(C)), notice that q is a
non-zero projection in A and consider the sub-C∗-algebra qAq. Using ϕ(x) = qϕ(x)q for all
x ∈Mn(C) we get

‖qu∗auq − (ϕ ◦ σ)(a)‖ = ‖qu∗auq − q(ϕ ◦ σ)(a)q‖ ≤ ‖u∗au− (ϕ ◦ σ)(a)‖ ≤ δ

for all a ∈ F . Hence, the element uq has the same approximation property as u, so we can
assume that u = uq. Then u∗u = qu∗uq is contained in the unital C∗-algebra qAq and satisfies

‖u∗u− 1qAq‖ = ‖u∗u− q‖ = ‖u∗u− (ϕ ◦ σ)(1A)‖ ≤ δ,

because we assumed that 1A ∈ F . Now, Lemma 1.1.38 provides us with an isometry w ∈ qAq,
i.e. with w∗w = q, satisfying ‖w − u‖ ≤ ε/(12M). To complete the proof it is only left to
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check that w has the desired approximation property. Notice that ‖w‖ = 1 and ‖u‖ ≤ 1 + δ
and calculate

‖w∗aw − (ϕ ◦ σ)(a)‖ ≤ ‖w∗aw − u∗aw‖+ ‖u∗aw − u∗au‖+ ‖u∗au− (ϕ ◦ σ)(a)‖
≤ ‖w∗ − u∗‖‖aw‖+ ‖u∗a‖‖w − u‖+ δ

≤ ‖w − u‖M + ‖w − u‖(1 + δ)M + δ

≤ 3‖w − u‖M + δ ≤ 3Mε

12M
+ δ ≤ ε

2

for all a ∈ F , using that δ < min{1, ε/4}. This shows (?) and completes the proof.

3.2 Approximate similarity via isometries

Proposition 3.2.1. Let A be a unital, separable, exact C∗-algebra, let E be a finite dimen-
sional operator system in A and let ε > 0. Then there exists a natural number n, depending
on A,E and ε, such that if B1 and B2 are unital C∗-algebras and %1 : E → B1 and %2 : E → B2

are unital, completely positive maps satisfying

(i) %1 is injective;

(ii) ‖idn ⊗ %−1
1 ‖ ≤ 1 + ε/2, where %−1

1 : %1(E) → E;

(iii) %2 is nuclear;

then there is a unital, completely positive map η : B1 → B2 such that ‖η ◦ %1 − %2‖ ≤ ε, i.e.
such that the diagram

E

%1

����
��
��
��
�

%2

��3
33

33
33

33

B1 η
//_____ B2

commutes within ε on the unit sphere of E.

If now B1 = B2 = B is a unital, simple and purely infinite C∗-algebra and η is nuclear and
hence by Proposition 3.1.5 approximately similar via isometries to idB, then Proposition 3.2.1
yields that %2 is approximately similar via isometries to %1. We will pursue this further in
Corollary 3.2.3 below.

Proof. The basic idea of the proof is to construct the following diagram

E

%1

yyssssssssssssssss

σ1

���
�
�
�

idE // E

σ2

���
�
�
�

%2

%%KKKKKKKKKKKKKKKK

B1 τ1
//______ Mn(C)

η1

88

τ2
//______ Mr(C) η2

//______ B2

such that η = η2 ◦ τ2 ◦ τ1 is a unital, completely positive map satisfying ‖η ◦ %1 − %2‖ ≤ ε.
To this end it will be shown that one can construct maps (as indicated in the diagram by
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dashed or dotted arrows) such that the diagram is almost commutative on the unit spheres
of the involved spaces. The dashed arrows stand for unital, completely positive maps and the
dotted one indicates a unital, completely bounded map defined on σ1(E). We start with the
construction of the second triangle:

Since A is a unital, separable, exact C∗-algebra and E is a finite dimensional operator
system in A, Corollary 1.5.23 yields a natural number n, a unital, completely positive map
σ1 : E → Mn(C), and a self-adjoint, unital, completely bounded map η1 : σ1(E) → E such
that η1 ◦ σ1 = idE and

‖η1‖cb ≤ 1 + ε/4. (3.2.1)

We continue with the fourth triangle: As the unit sphere of any finite dimensional normed
space is compact there exists an ε/16-dense finite subset F of the unit sphere of E. By
nuclearity of %2 there are r ∈ N and unital, completely positive maps σ2 : E → Mr(C)
and η2 : Mr(C) → B2 such that ‖(%2 − η2 ◦ σ2)(a)‖ ≤ ε/8 for all a ∈ F . For any x in the unit
sphere of E choose a ∈ F with ‖x− a‖ ≤ ε/16 and calculate

‖(%2 − η2 ◦ σ2)(x)‖ ≤ (‖%2‖+ ‖η2 ◦ σ2‖) ‖x− a‖+ ‖(%2 − η2 ◦ σ2)(a)‖ ≤ 2
ε

16
+
ε

8
=
ε

4
.

Hence,
‖%2 − η2 ◦ σ2‖ ≤ ε/4. (3.2.2)

We now turn to the third triangle. Notice that σ1(E), being the image of the finite dimensional
operator system E under the unital and self-adjoint map σ1, also is a finite dimensional (hence
closed) operator system in the unital C∗-algebra Mn(C). Notice that σ2 ◦η1 : σ1(E) →Mr(C)
is a self-adjoint, unital, completely bounded map taking values in Mr(C) ∼= B(Cr), and hence
Lemma 1.4.11 yields a unital, completely positive map τ2 : Mn(C) →Mr(C) with

‖τ2|σ1(E) − σ2 ◦ η1‖cb ≤ ‖σ2 ◦ η1‖cb − 1 ≤ ‖η1‖cb − 1
(3.2.1)

≤ ε

4
. (3.2.3)

Similarly, we construct the map τ1 in the first triangle: As above it follows that %1(E) is
an operator system. Consider the map σ1 ◦ %−1

1 : %1(E) → Mn(C). Proposition 8.11 in [Pa]
tells us that the map σ1 ◦ %−1

1 , being a linear map from an operator system into the complex
matrix algebra Mn(C), is completely bounded with

‖σ1 ◦ %−1
1 ‖cb = ‖idn ⊗ (σ1 ◦ %−1

1 )‖ = ‖(idn ⊗ σ1) ◦
(
idn ⊗ %−1

1

)
‖

≤ ‖idn ⊗ σ1‖‖idn ⊗ %−1
1 ‖ ≤ 1 +

ε

2
.

Moreover, σ1 ◦ %−1
1 is unital and self-adjoint, so we can apply Lemma 1.4.11 once more to

obtain a unital, completely positive map τ1 : B1 →Mn(C) with

‖τ1|%1(E) − σ1 ◦ %−1
1 ‖cb ≤ ‖σ1 ◦ %−1

1 ‖cb − 1 ≤ ε

2
. (3.2.4)

Now put η = η2 ◦ τ2 ◦ τ1 : B1 → B2. Then η is a unital, completely positive map and applying
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(3.2.4), (3.2.3), η1 ◦ σ1 = idE and (3.2.2) we get

‖η ◦ %1 − %2‖ ≤ ‖η2 ◦ τ2 ◦ τ1 ◦ %1 − η2 ◦ τ2 ◦ σ1 ◦ %−1
1 ◦ %1‖+ ‖η2 ◦ τ2 ◦ σ1 − %2‖

≤ ‖τ1|%1(E) − σ1 ◦ %−1
1 ‖+ ‖η2 ◦ τ2 ◦ σ1 − η2 ◦ σ2 ◦ η1 ◦ σ1‖

+ ‖η2 ◦ σ2 ◦ η1 ◦ σ1 − %2‖

≤ ε

2
+ ‖τ2|σ1(E) − σ2 ◦ η1‖+ ‖η2 ◦ σ2 − %2‖

≤ ε

2
+
ε

4
+
ε

4
= ε,

as required.

Definition 3.2.2. A Kirchberg algebra is a C∗-algebra which is separable, simple, nuclear
and purely infinite.

Corollary 3.2.3. Let A be a unital, separable, exact C∗-algebra, let B1 and B2 be unital C∗-
algebras and let ϕ1 : A→ B1 and ϕ2 : A→ B2 be unital ∗-homomorphisms with ϕ1 injective
and ϕ2 nuclear.

(i) There exists a sequence (ηn)n∈N of unital, completely positive maps from B1 to B2 such
that ‖(ηn ◦ ϕ1)(a)− ϕ2(a)‖ → 0 as n→∞ for each a ∈ A.

(ii) If B1 = B2 = B is a unital Kirchberg algebra, then there is a sequence (sn)n∈N of
isometries in B such that ‖s∗nϕ1(a)sn − ϕ2(a)‖ → 0 as n→∞ for each a ∈ A.

Proof. (i): By separability of A there exists an increasing sequence of finite dimensional
operator systems (En)n∈N in A such that

⋃
n∈NEn = A. Then, for each n ∈ N, we have that

ϕ1|En is injective and ϕ2|En is nuclear. Moreover, ϕ−1
1 : ϕ1(A) → A is a ∗-homomorphism,

and hence ‖idk ⊗ ϕ−1
1 ‖ ≤ 1 for all k ∈ N, and, consequently, ‖idk ⊗ (ϕ1|En)−1‖ ≤ 1 for all

k, n ∈ N. We can hence apply Proposition 3.2.1 to obtain for each n ∈ N a unital, completely
positive map ηn : B1 → B2 with ‖ηn ◦ ϕ1|En − ϕ2|En‖ ≤ 1/n, which implies that

‖(ηn ◦ ϕ1) (b)− ϕ2(b)‖ ≤
‖b‖
n

for all n ∈ N, b ∈ En. (3.2.5)

As (En)n∈N is increasing, there exists for every b ∈
⋃
n∈NEn a number n0 ∈ N such that

b ∈ En for all n ∈ N≥n0 , and hence (3.2.5) implies ‖(ηn ◦ ϕ1) (b)− ϕ2(b)‖ → 0 as n → ∞.
As

⋃
n∈NEn = A and as ηn ◦ ϕ1 − ϕ2 is bounded, this implies ‖(ηn ◦ ϕ1)(a)− ϕ2(a)‖ → 0 as

n→∞ for each a ∈ A.

(ii): If B1 = B2 = B is a unital Kirchberg algebra then each of the maps ηn in (i) is nuclear by
Corollary 1.5.13. As each En is finite dimensional we can for each n ∈ N choose a 1/n-dense
finite subset Fn of the unit sphere of En. Then Proposition 3.1.5 yields for each n ∈ N an
isometry sn ∈ B such that

‖s∗nϕ1(a)sn − ηn(ϕ1(a))‖ ≤
1
n

for all a ∈ Fn.

For each n ∈ N and for each b in the unit sphere of En choose a ∈ Fn with ‖a− b‖ ≤ 1/n to
obtain
‖s∗nϕ1(b)sn − (ηn ◦ ϕ1)(b)‖
≤ ‖s∗nϕ1(b)sn − s∗nϕ1(a)sn‖+ ‖s∗nϕ1(a)sn − (ηn ◦ ϕ1)(a)‖+ ‖(ηn ◦ ϕ1)(a)− (ηn ◦ ϕ1)(b)‖

≤ ‖b− a‖+
1
n

+ ‖a− b‖ ≤ 3
n
.
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This implies that

‖s∗nϕ1(b)sn − (ηn ◦ ϕ1)(b)‖ ≤
3‖b‖
n

for all n ∈ N, b ∈ En,

and combining this with (3.2.5) gives

‖s∗nϕ1(b)sn − ϕ2(b)‖ ≤ ‖s∗nϕ1(b)sn − (ηn ◦ ϕ1)(b)‖+ ‖(ηn ◦ ϕ1)(b)− ϕ2(b)‖ ≤
4‖b‖
n

for each n ∈ N and for each b ∈ En. As in (i) we can conclude that ‖s∗nϕ1(a)sn − ϕ2(a)‖ → 0
as n→∞ for all all a ∈ A.

3.3 From approximate similarity via isometries to unitary equiv-
alence

The results in this section are based on Lemmas 2.4 and 2.5 in [KP]. We start with some
technical results and estimations which shall be useful later on, when we construct unitaries
out of isometries to obtain approximate unitary equivalence.

Lemma 3.3.1. Let A be a unital C∗-algebra, let s be an isometry in A and let V : A → A,
a 7→ s∗as be the corresponding unital, completely positive map. Then

‖[a, ss∗]‖ = max
{
‖V (a∗a)− V (a∗)V (a)‖1/2, ‖V (aa∗)− V (a)V (a∗)‖1/2

}
for all a ∈ A.

That the map V as defined in the lemma is indeed unital and completely positive was proved
in Example 1.4.8(ii).

Proof. Set p = ss∗, then p is a projection. Note that x = (1A − p)ap and y = −pa(1A − p)
satisfy x∗y = 0 = xy∗, so that we can apply Lemma 1.1.12 to get

‖[a, ss∗]‖ = ‖ap− pa‖ = ‖(1A − p)ap− pa(1A − p)‖ = max {‖(1A − p)ap‖, ‖pa(1A − p‖} .

The expressions on the right hand side can be modified using

‖(1A − p)ap‖2 = ‖pa∗(1A − p)ap‖ = ‖s∗a∗(1A − ss∗)as‖ = ‖V (a∗a)− V (a∗)V (a)‖

and, similarly,

‖pa(1A − p)‖2 = ‖pa(1A − p)a∗p‖ = ‖s∗a(1A − ss∗)a∗s‖ = ‖V (aa∗)− V (a)V (a∗)‖,

and therefore

‖[a, ss∗]‖ = max
{
‖V (a∗a)− V (a∗)V (a)‖1/2, ‖V (aa∗)− V (a)V (a∗)‖1/2

}
.

Remark 3.3.2. Let A, s and V be as in Lemma 3.3.1. Then ss∗ commutes with all a ∈ A if
and only if V is multiplicative. The “if”-part is an immediate consequence of Lemma 3.3.1.
To see the converse, assume that ss∗ commutes with all a ∈ A and let a, b ∈ A. Then

V (ab) = s∗abs = s∗abss∗s = s∗ass∗bs = V (a)V (b).
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Definition 3.3.3. Let A be a unital C∗-algebra and let s, t be isometries in A that satisfy
the O2-relation, i.e. ss∗ + tt∗ = 1A. For all a, b ∈ A define the Cuntz sum of a and b with
respect to s and t by a⊕s,t b = sas∗ + tbt∗.

Lemma 3.3.4. Let A be a unital C∗-algebra, let s be an isometry in A and let V : A → A,
a 7→ s∗as be the corresponding unital, completely positive map. Suppose that v1 and v2 are
isometries in A which satisfy the O2-relation. Then w1 = (1A − ss∗) + sv1s

∗ and w2 = sv2
are also isometries satisfying the O2-relation, and

‖a⊕w1,w2 V (a)− a‖ ≤ ‖[v1, V (a)]‖+ ‖[v2, V (a)]‖+ 2‖[a, ss∗]‖

for all a ∈ A.

Proof. Put p = ss∗. Then p is a projection, (1A − p)s = s − ss∗s = 0 = s∗(1A − p) and
therefore

w∗1w1 = ((1A − p) + sv∗1s
∗) ((1A − p) + sv1s

∗) = (1A − p) + sv∗1s
∗sv1s

∗ = 1A − p+ p = 1A.

This shows that w1 is an isometry, and w2 is an isometry being a product of isometries. To
show that the O2-relation holds for w1 and w2 we use that it is satisfied by v1 and v2:

w1w
∗
1 + w2w

∗
2 = ((1A − p) + sv1s

∗) ((1A − p) + sv∗1s
∗) + sv2v

∗
2s
∗

= 1A − p+ sv1v
∗
1s
∗ + sv2v

∗
2s
∗

= 1A − p+ p = 1A.

Now the Cuntz sum with respect to w1 and w2 is well-defined, and we can calculate for any
a ∈ A:

‖a⊕w1,w2 V (a)− a‖ = ‖w1aw
∗
1 + w2V (a)w∗2 − a‖

= ‖((1A − p) + sv1s
∗) a ((1A − p) + sv∗1s

∗) + sv2V (a)v∗2s
∗ − a‖

= ‖(1A − p)a(1A − p) + (1A − p)asv∗1s
∗ + sv1s

∗a(1A − p) + sv1V (a)v∗1s
∗ + sv2V (a)v∗2s

∗ − a‖
= ‖(1A − p)a(1A − p) + (1A − p)asv∗1s

∗ + sv1s
∗a(1A − p) + s (V (a)⊕v1,v2 V (a)) s∗

− sV (a)s∗ + pap− a‖
≤ ‖(1A − p)a(1A − p) + pap− a‖+ ‖(1A − p)asv∗1s

∗ + sv1s
∗a(1A − p)‖

+ ‖V (a)⊕v1,v2 V (a)− V (a)‖ (3.3.1)

Check that (1A − p− p)(1A − p− p) = 1A to see that 1A − p− p is a unitary and use this to
transform the first term in (3.3.1) as follows:

‖(1A − p)a(1A − p) + pap− a‖ = ‖((1A − p)a(1A − p) + pap− a) (1A − p− p)‖
= ‖(1A − p)a(1A − p)− a(1A − p)− pap+ ap‖
= ‖ap− pa‖ = ‖[a, ss∗]‖.

To deal with the second term use ps = s to see that

‖(1A − p)asv∗1s
∗‖ = ‖apsv∗1s∗ − pasv∗1s

∗‖ = ‖[a, p] sv∗1s∗‖ ≤ ‖[a, ss∗]‖

and, similarly,

‖sv1s∗a(1A − p)‖ = ‖sv1s∗pa− sv1s
∗ap‖ = ‖sv1s∗[p, a]‖ ≤ ‖[a, ss∗]‖.
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Notice that with x = (1A− p)asv∗1s∗ and y = sv1s
∗a(1A− p) we have x∗y = 0 = xy∗ (because

(1A − p)s = 0), and hence we can apply Lemma 1.1.12 to give

‖(1A − p)asv∗1s
∗ + sv1s

∗a(1A − p)‖ = max {‖(1A − p)asv∗1s
∗‖, ‖sv1s∗a(1A − p)‖} ≤ ‖[a, ss∗]‖.

For the third term in (3.3.1) we get

‖V (a)⊕v1,v2 V (a)− V (a)‖
≤ ‖v1V (a)v∗1 − V (a)v1v∗1‖+ ‖v2V (a)v∗2 − V (a)v2v∗2‖+ ‖V (a)(v1v∗1 + v2v

∗
2)− V (a)‖

= ‖[v1, V (a)]‖+ ‖[v2, V (a)]‖.

This completes the proof.

Definition 3.3.5. A C∗-algebra A is said to be O2-absorbing if A⊗O2
∼= A.

In the proof of Lemma 3.3.10 below we shall need the existence of an asymptotically central
sequence of ∗-homomorphisms from O2 into a unital, O2-absorbing C∗-algebra A. We start
with the definition of asymptotically central sequences and then turn to the result we need.

Definition 3.3.6. Let A and B be C∗-algebras. A bounded sequence (xn)n∈N in B is said
to be asymptotically central if limn→∞‖[xn, b]‖ = 0 for all b in B. A sequence (ϕn)n∈N of
∗-homomorphisms from A into B is called asymptotically central if (ϕn(a))n∈N is an asymp-
totically central sequence in B for every a ∈ A.

The following remark will be helpful when we have to prove that a given sequence is asymp-
totically central.

Remark 3.3.7. Let (xn)n∈N be a bounded sequence in a C∗-algebra A. Then the set

D =
{
a ∈ A

∣∣ lim
n→∞

‖[xn, a]‖ = 0
}

is a closed linear subspace of A.

Proof. Let a, b ∈ D and let λ ∈ C. Then

‖xn(λa+ b)− (λa+ b)xn‖ ≤ |λ|‖xna− axn‖+ ‖xnb− bxn‖ → 0

as n → ∞, i.e. D is a linear space. To see that D is closed let a ∈ D and let ε > 0. Let
M ∈ R≥0 be an upper bound of {‖xn‖ | n ∈ N} and choose d ∈ D such that ‖d− a‖ < ε/(3M).
Next, find N ∈ N such that ‖[xn, d]‖ < ε/3 for all n ∈ N≥N , then

‖[xn, a]‖ = ‖xna− axn‖ ≤ ‖xna− xnd‖+ ‖xnd− dxn‖+ ‖dxn − axn‖

< M‖a− d‖+
ε

3
+ ‖d− a‖M < ε

for all n ∈ N≥N , and hence a ∈ D.

The result we need here is a corollary of the following statement, which is proved in [R2],
Lemma 5.2.3.

Lemma 3.3.8. There exists an asymptotically central sequence of unital ∗-endomorphisms
of O2.
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Corollary 3.3.9. Let A be a unital, O2-absorbing C∗-algebra. Then there exists an asymp-
totically central sequence of unital ∗-homomorphisms from O2 into A.

Proof. Lemma 3.3.8 provides us with an asymptotically central sequence (%n)n∈N of unital
∗-endomorphisms of O2. For each n ∈ N define ψn : O2 → A ⊗ O2, x 7→ 1A ⊗ %n(x). Then
each ψn is a unital ∗-homomorphism and for each x ∈ O2 and for each elementary tensor
a⊗ y ∈ A⊗O2 we have

lim
n→∞

‖[ψn(x), a⊗ y]‖ = lim
n→∞

‖(1A ⊗ %n(x)) (a⊗ y)− (a⊗ y) (1A ⊗ %n(x))‖

= lim
n→∞

‖a⊗
(
%n(x)y − y%n(x)

)
‖

= ‖a‖ lim
n→∞

‖[%n(x), y]‖ = 0. (3.3.2)

Since the sequence (ψn(x))n∈N is bounded by ‖x‖ for each x ∈ O2, it follows from Remark 3.3.7
and from (3.3.2) that (ψn(x))n∈N is asymptotically central for each x ∈ O2, i.e. (ψn)n∈N is
an asymptotically central sequence of unital ∗-homomorphisms from O2 into A ⊗ O2. As A
is assumed to be O2-absorbing we can find a ∗-isomorphism λ : A⊗O2 → A and use this to
define ϕn = λ ◦ ψn for each n ∈ N. Then each ϕn is a unital ∗-homomorphism from O2 into
A, and it is easily seen that (ϕn)n∈N is asymptotically central: Let x ∈ O2, let a ∈ A and let
z = λ−1(a) ∈ A⊗O2. Then, for all n ∈ N:

‖ϕn(x)a− aϕn(x)‖ = ‖λ
(
ψn(x)z − zψn(x)

)
‖ = ‖ψn(x)z − zψn(x)‖,

and as (ψn)n∈N is asymptotically central so is (ϕn)n∈N.

The following lemma is the first step on the way from approximate similarity via isometries to
approximate unitary equivalence: It shows how, for an isometry s in a unital, O2-absorbing
C∗-algebra A, the unital, completely positive map corresponding to s can, via a unitary, be
related to the identity map on A.

Lemma 3.3.10. Let A be a unital, O2-absorbing C∗-algebra, let s and t be isometries in
A and let V : A → A, a 7→ s∗as and W : A → A, a 7→ t∗at be the corresponding unital,
completely positive maps. Then for every finite subset F of A and for every ε > 0 there is a
unitary u in A with

‖uV (a)u∗ − a‖ ≤ 5κ+ ε for all a ∈ F,

where

κ = max
a∈F∪F ∗

{
‖V (a∗a)− V (a∗)V (a)‖1/2, ‖WV (a∗a)−WV (a∗)WV (a)‖1/2, ‖WV (a)− a‖

}
.

Before we turn to the proof we have a look at the special case where κ = 0 for all subsets F
of A. By Lemma 3.3.1 and Remark 3.3.2 we then have that V is multiplicative and that W is
multiplicative on V (A). Moreover, W is a left inverse of V . The conclusion of Lemma 3.3.10
is in this case that V is approximately unitarily equivalent to idA.

Let now F be a finite subset of A, let ε > 0, and let u be a unitary in A such that
‖uV (a)u∗ − a‖ ≤ ε for all a ∈ F . Then we also have that ‖V (a)− u∗au‖ ≤ ε for all a ∈ F
which reveals another way of looking at the statement of the lemma: If s and t are isometries
in A such that the corresponding unital, completely positive maps V and W are multiplicative
and W is a left inverse of V , then s and t can be used to construct unitary elements u such
that V is approximated by the ∗-automorphisms on A given by a 7→ u∗au.
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In this way Lemma 3.3.10 may remind one of the Cantor-Bernstein Theorem, which states
that if f : M → N and g : N → M are injective maps between sets M and N , then there
exists a bijection between M and N . A slightly different version of Lemma 3.3.10 is given
as Lemma 6.3.7 in [R2], where the proof uses methods similar to those in the proof of the
Cantor-Bernstein Theorem.

Proof of Lemma 3.3.10. By Corollary 3.3.9 there exists an asymptotically central sequence
(ϕn)n∈N of unital ∗-homomorphisms from O2 into A. Let F be a finite subset of A and
let ε > 0. Let r1 and r2 be isometries in O2 satisfying the O2-relation. As (ϕn)n∈N is
asymptotically central we can choose N ∈ N such that

‖[ϕN (r1), V (a)]‖+ ‖[ϕN (r2), V (a)]‖ ≤ ε

2
,

‖[ϕN (r1),WV (a)]‖+ ‖[ϕN (r2),WV (a)]‖ ≤ ε

2
(3.3.3)

for all a ∈ F . Put v1 = ϕN (r1) and v2 = ϕN (r2). Since ϕN is a unital ∗-homomorphism, v1
and v2 are isometries in A and satisfy the O2-relation. As in Lemma 3.3.4 define

s1 = (1A − ss∗) + sv1s
∗, s2 = sv2,

t1 = (1A − tt∗) + tv1t
∗, t2 = tv2,

to obtain two pairs of isometries (s1, s2) and (t1, t2) in A satisfying the O2-relation. Define
u = s2t

∗
1 + s1t

∗
2 and calculate

u∗u = (t1s∗2 + t2s
∗
1)(s2t

∗
1 + s1t

∗
2) = t1t

∗
1 + t1s

∗
2s1t

∗
2 + t2s

∗
1s2t

∗
1 + t2t

∗
2 = 1A,

uu∗ = (s2t∗1 + s1t
∗
2)(t1s

∗
2 + t2s

∗
1) = s2s

∗
2 + s2t

∗
1t2s

∗
1 + s1t

∗
2t1s

∗
2 + s1s

∗
1 = 1A

to see that u is a unitary in A. We show that, for all a, b ∈ A, adjoining with u turns the
Cuntz sum of a and b with respect to t1, t2 into the Cuntz sum of b and a with respect to
s1, s2:

u (a⊕t1,t2 b)u∗ = (s2t∗1 + s1t
∗
2)(t1at

∗
1 + t2bt

∗
2)(t1s

∗
2 + t2s

∗
1) = (s2at∗1 + s1bt

∗
2)(t1s

∗
2 + t2s

∗
1)

= s2as
∗
2 + s1bs

∗
1 = b⊕s1,s2 a.

Thus we can calculate

‖uV (a)u∗ − a‖
= ‖uV (a)u∗ − u (V (a)⊕t1,t2 WV (a))u∗ +WV (a)⊕s1,s2 V (a)− a‖
≤ ‖V (a)− V (a)⊕t1,t2 WV (a)‖+ ‖s1WV (a)s∗1 − s1as

∗
1‖+ ‖s2V (a)s∗2 + s1as

∗
1 − a‖

≤ ‖V (a)⊕t1,t2 WV (a)− V (a)‖+ ‖WV (a)− a‖+ ‖a⊕s1,s2 V (a)− a‖ (3.3.4)

for all a ∈ A. We have that ‖WV (a)− a‖ ≤ κ for all a ∈ F by definition of κ. We proceed
to obtain an estimation for the first term. By Lemma 3.3.4 and by (3.3.3) we know that

‖V (a)⊕t1,t2 WV (a)− V (a)‖ ≤ ‖[v1,WV (a)]‖+ ‖[v2,WV (a)]‖+ 2‖[V (a), tt∗]‖

≤ 2‖[V (a), tt∗]‖+
ε

2
(3.3.5)
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for all a ∈ F . We show next that ‖[V (a), tt∗]‖ ≤ κ for all a ∈ F . To achieve this, note that
1A − tt∗ is a projection and hence positive, which implies that

W (V (a∗)V (a))−WV (a∗)WV (a) = t∗s∗a∗ss∗ast− t∗s∗a∗stt∗s∗ast

= t∗s∗a∗s(1A − tt∗)s∗ast
= (s∗ast)∗(1A − tt∗)s∗ast ≥ 0

for all a ∈ A. In the same way we obtain

WV (a∗a)−W (V (a∗)V (a)) = t∗s∗a∗ast− t∗s∗a∗ss∗ast = (ast)∗(1− ss∗)ast ≥ 0,

and combining the last two equations gives

0 ≤W (V (a∗)V (a))−WV (a∗)WV (a) ≤WV (a∗a)−WV (a∗)WV (a) for all a ∈ A.

Combining this with Lemma 3.3.1 yields

‖[V (a), tt∗]‖

= max
{
‖W (V (a∗)V (a))−WV (a∗)WV (a)‖1/2, ‖W (V (a)V (a∗))−WV (a)WV (a∗)‖1/2

}
≤ max

{
‖WV (a∗a)−WV (a∗)WV (a)‖1/2, ‖WV (aa∗)−WV (a)WV (a∗)‖1/2

}
≤ κ

for all a ∈ F and hence, together with (3.3.5), we have

‖V (a)⊕t1,t2 WV (a)− V (a)‖ ≤ 2κ+
ε

2
for all a ∈ F.

For the remaining term in (3.3.4) notice first that, by Lemma 3.3.1 and by definition of κ, we
have

‖[a, ss∗]‖ = max
{
‖V (a∗a)− V (a∗)V (a)‖1/2, ‖V (aa∗)− V (a)V (a∗)‖1/2

}
≤ κ

for all a ∈ F and thus, by Lemma 3.3.4 and by (3.3.3)

‖a⊕s1,s2 V (a)− a‖ ≤ ‖[v1, V (a)]‖+ ‖[v2, V (a)]‖+ 2‖[a, ss∗]‖ ≤ 2κ+
ε

2
for all a ∈ F . Altogether we have shown that

‖uV (a)u∗ − a‖ ≤ 5κ+ ε for all a ∈ F,

which completes the proof.

In the following lemma it is shown that if two unital, completely positive maps % and η are,
on finite sets, almost multiplicative and similar via two isometries s and t, then the constant
κ from the previous lemma can be made arbitrarily small.

Lemma 3.3.11. Let A and B be unital C∗-algebras, let s and t be isometries in B and let
V,W : B → B be the corresponding unital, completely positive maps. Let %, η : A → B be
unital, completely positive maps, let F be a finite subset of A and let δ > 0. Put

κ = max
b∈%(F∪F ∗)

{
‖V (b∗b)− V (b∗)V (b)‖1/2, ‖WV (b∗b)−WV (b∗)WV (b)‖1/2, ‖WV (b)− b‖

}
and M = maxa∈F ‖a‖. If
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(i) ‖%(a∗a)− %(a∗)%(a)‖ ≤ δ and ‖η(a∗a)− η(a∗)η(a)‖ ≤ δ for all a ∈ F ∪ F ∗, and

(ii) ‖V %(a)− η(a)‖ ≤ δ and ‖Wη(a)− %(a)‖ ≤ δ for all a ∈ F ∪ F ∗ ∪ {x∗x | x ∈ F ∪ F ∗},

then
κ ≤ max

{
2δ, 2

√
(1 +M)δ

}
.

Note that this lemma is actually true for arbitrary unital, completely positive maps V and
W on B.

Proof. Let b ∈ %(F ∪ F ∗) and choose a ∈ F ∪ F ∗ with %(a) = b. Then

‖V (b∗b)− V (b∗)V (b)‖ = ‖V (%(a∗)%(a))− V %(a∗)V %(a)‖
= ‖V

(
%(a∗)%(a)− %(a∗a)

)
‖+ ‖V %(a∗a)− η(a∗a)‖

+ ‖η(a∗a)− η(a∗)η(a)‖+ ‖η(a∗)η(a)− V %(a∗)V %(a)‖
≤ δ + δ + δ + ‖η(a∗)‖‖η(a)− V %(a)‖+ ‖η(a∗)− V %(a∗)‖‖V %(a)‖
≤ (3 + 2M)δ

and

‖WV (b)− b‖ = ‖WV %(a)− %(a)‖ ≤ ‖W
(
V %(a)− η(a)

)
‖+ ‖Wη(a)− %(a)‖ ≤ 2δ.

The last calculation can also be done with a∗a or a∗ instead of a to yield

‖WV %(a∗a)− %(a∗a)‖ ≤ 2δ, ‖WV %(a∗)− %(a∗)‖ ≤ 2δ.

This helps us in the estimation of the remaining term:

‖WV (b∗b)−WV (b∗)WV (b)‖
= ‖WV (%(a∗)%(a))−WV %(a∗)WV %(a)‖
≤ ‖WV

(
%(a∗)%(a)− %(a∗a)

)
‖+ ‖WV %(a∗a)−WV %(a∗)WV %(a)‖

≤ δ + ‖WV %(a∗a)− %(a∗a)‖+ ‖%(a∗a)− %(a∗)%(a)‖+ ‖%(a∗)%(a)−WV %(a∗)WV %(a)‖
≤ δ + 2δ + δ + ‖%(a∗)‖‖%(a)−WV %(a)‖+ ‖%(a∗)−WV %(a∗)‖‖WV %(a)‖
≤ δ + 2δ + δ + 4δM = 4(1 +M)δ.

Altogether we have obtained now that

κ ≤ max
{√

(3 + 2M)δ, 2δ, 2
√

(1 +M)δ
}

= max
{

2δ, 2
√

(1 +M)δ
}
.

Combining the results of Lemmas 3.3.10 and 3.3.11 we can now obtain approximate unitary
equivalence of two almost multiplicative, unital, completely positive maps which are mutually
approximately similar via isometries and which take values in an O2-absorbing C∗-algebra.
The following lemma is designed to be used in the proof of Lemma 5.2.1. A less technical
version in the case where % and η are unital ∗-homomorphisms is given in Lemma 3.4.1 in the
beginning of the following section.
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Lemma 3.3.12. Let A and B be unital C∗-algebras such that B is O2-absorbing, and let
ε > 0. Then there exists δ > 0 such that for all unital, completely positive maps %, η : A→ B
and for all finite subsets F of the unit sphere of A the following holds: If

(i) ‖%(a∗a)− %(a∗)%(a)‖ ≤ δ and ‖η(a∗a)− η(a∗)η(a)‖ ≤ δ for all a ∈ F ∪ F ∗, and

(ii) there exist isometries s, t ∈ B with ‖s∗%(a)s− η(a)‖ ≤ δ and ‖t∗η(a)t− %(a)‖ ≤ δ for
all a ∈ F ∪ F ∗ ∪ {x∗x | x ∈ F ∪ F ∗},

then there is a unitary u ∈ B such that

‖uη(a)u∗ − %(a)‖ ≤ ε for all a ∈ F.

Proof. Choose 0 < δ < 1 with δ+10
√

2δ ≤ ε/2 and let F be a finite subset of the unit sphere
of A. Let %, η : A → B be unital, completely positive maps satisfying (i), and suppose that
there are isometries s, t ∈ B satisfying (ii). Then Lemma 3.3.10 yields a unitary u ∈ B with

‖us∗%(a)su∗ − %(a)‖ ≤ 5κ+
ε

2
for all a ∈ F, (3.3.6)

where

κ = max
b∈%(F∪F ∗)

{
‖V (b∗b)− V (b∗)V (b)‖1/2, ‖WV (b∗b)−WV (b∗)WV (b)‖1/2, ‖WV (b)− b‖

}
.

By Lemma 3.3.11,
κ ≤ max

{
2δ, 2

√
(1 +M)δ

}
,

where M = maxa∈F ‖a‖. As F is a subset of the unit sphere of A, we have M = 1 and hence
κ ≤ max{2δ, 2

√
2δ} ≤ 2

√
2δ since we assumed δ < 1. Therefore, δ + 5κ ≤ δ + 10

√
2δ ≤ ε/2

and hence, using (3.3.6),

‖uη(a)u∗ − %(a)‖ ≤ ‖uη(a)u∗ − us∗%(a)su∗‖+ ‖us∗%(a)su∗ − %(a)‖

≤ ‖η(a)− s∗%(a)s‖+ 5κ+
ε

2
≤ δ + 5κ+

ε

2
≤ ε

for all a ∈ F .

3.4 Unitary equivalence of unital, injective ∗-homomorphisms
into O2

This section starts with a simplified version of Lemma 3.3.12, and then deals with the impor-
tant result that any two unital, injective ∗-homomorphisms from a unital, separable, exact
C∗-algebra into O2 are approximately unitarily equivalent.

Lemma 3.4.1. Let A and B be unital C∗-algebras such that B is O2-absorbing and let
ϕ,ψ : A→ B be unital ∗-homomorphisms. Let ε > 0 and let F be a finite subset of A. Then
there exists δ > 0 such that if there are isometries s, t in B with

‖s∗ϕ(a)s− ψ(a)‖ ≤ δ, ‖t∗ψ(a)t− ϕ(a)‖ ≤ δ (3.4.1)

for all a ∈ F ∪ F ∗ ∪ {x∗x | x ∈ F ∪ F ∗}, then there is a unitary u in B such that

‖uψ(a)u∗ − ϕ(a)‖ ≤ ε for all a ∈ F.
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Proof. Put M = maxa∈F ‖a‖ and choose δ > 0 with max{2δ, 2
√

(1 +M)δ} ≤ ε/15. Assume
that there are isometries s, t in B satisfying (3.4.1), and let V : B → B, b 7→ s∗bs and
W : B → B, b 7→ t∗bt be the corresponding unital, completely positive maps on B. By
Lemma 3.3.10 there is a unitary u in B such that

‖us∗ϕ(a)su∗ − ϕ(a)‖ ≤ 5κ+
ε

3
for all a ∈ F,

where

κ = max
b∈ϕ(F∪F ∗)

{
‖V (b∗b)− V (b∗)V (b)‖1/2, ‖WV (b∗b)−WV (b∗)WV (b)‖1/2, ‖WV (b)− b‖

}
.

By Lemma 3.3.11,
κ ≤ max

{
2δ, 2

√
(1 +M)δ

}
≤ ε

15
,

and therefore

‖uψ(a)u∗ − ϕ(a)‖ ≤ ‖uψ(a)u∗ − us∗ϕ(a)su∗‖+ ‖us∗ϕ(a)su∗ − ϕ(a)‖

≤ δ + 5κ+
ε

3
≤ ε.

for all a ∈ F .

Theorem 3.4.2. Let A be a unital, separable, exact C∗-algebra.

(i) Let B be a unital, separable, simple and nuclear C∗-algebra. Then any two unital,
injective ∗-homomorphisms ϕ,ψ : A→ B ⊗O2 are approximately unitarily equivalent.

(ii) Any two unital, injective ∗-homomorphisms ϕ,ψ : A→ O2 are approximately unitarily
equivalent.

Proof. (i): Let ϕ,ψ : A → B ⊗O2 be unital, injective ∗-homomorphisms. We want to apply
Corollary 3.2.3(ii) to show that ϕ and ψ are mutually approximately similar via isometries.
First of all we have to check that B ⊗ O2 is a unital Kirchberg algebra: We know that
B ⊗O2 is unital with unit 1B ⊗ 1O2 , separable as a tensor product of separable C∗-algebras
(Remark 1.5.4), nuclear as the tensor product of nuclear C∗-algebras (Proposition 1.5.7(iv)),
and simple as the minimal tensor product of two simple C∗-algebras (Lemma 1.5.5). To get
that B⊗O2 is purely infinite we consider two cases: At first assume that B is of type I, i.e. B
is isomorphic either to some Mn(C) or to K, the compact operators on an infinite dimensional,
separable Hilbert space. As B is assumed to be unital and K is not, we have B ∼= Mn(C) for
some n ∈ N, and therefore B⊗O2

∼= Mn(C)⊗O2
∼= Mn(O2), which is purely infinite as O2 is

by Lemma 1.3.13(ii). If B is not of type I, then B ⊗O2 is purely infinite by Theorem 4.1.10
in [R2]. Altogether this gives that B ⊗O2 is a unital Kirchberg algebra. Moreover,

(B ⊗O2)⊗O2
∼= B ⊗ (O2 ⊗O2) ∼= B ⊗O2,

i.e. B ⊗O2 is O2-absorbing as O2 is self-absorbing.
As B ⊗ O2 is a nuclear C∗-algebra, ϕ and ψ are nuclear ∗-homomorphisms by Corol-

lary 1.5.13, and hence we can apply Corollary 3.2.3(ii) to find two sequences of isometries
(sn)n∈N and (tn)n∈N in B ⊗O2 with

lim
n→∞

‖s∗nϕ(a)sn − ψ(a)‖ = 0, lim
n→∞

‖t∗nψ(a)tn − ϕ(a)‖ = 0 for all a ∈ A. (3.4.2)

55



Let ε > 0, let F be a finite subset of A and choose δ > 0 as in Lemma 3.4.1. By (3.4.2) there
exists N ∈ N such that

‖s∗Nϕ(a)sN − ψ(a)‖ ≤ δ, ‖t∗Nψ(a)tN − ϕ(a)‖ ≤ δ

for all a ∈ F ∪F ∗ ∪ {x∗x | x ∈ F ∪ F ∗}, and hence Lemma 3.4.1 yields a unitary u ∈ B ⊗O2

with
‖uψ(a)u∗ − ϕ(a)‖ ≤ ε for all a ∈ F.

This proves that ϕ and ψ are approximately unitarily equivalent.

(ii): Let ϕ,ψ : A → O2 be unital, injective ∗-homomorphisms. We consider two possibilities
of proving that ϕ and ψ are approximately unitarily equivalent. The first is to apply part (i):
Let λ : O2 → O2⊗O2 be a ∗-isomorphism and consider the unital, injective ∗-homomorphisms
ϕ̃ = λ ◦ ϕ and ψ̃ = λ ◦ ψ from A into O2 ⊗O2. By (i), ϕ̃ and ψ̃ are approximately unitarily
equivalent. Let now ε > 0, let F be a finite subset of A and choose a unitary ũ ∈ O2 ⊗ O2

such that
‖ũψ̃(a)ũ∗ − ϕ̃(a)‖ ≤ ε for all a ∈ F.

Set u = λ−1(ũ), then u is a unitary in O2 and

‖uψ(a)u∗ − ϕ(a)‖ = ‖λ−1
(
ũψ̃(a)ũ∗ − ϕ̃(a)

)
‖ = ‖ũψ̃(a)ũ∗ − ϕ̃(a)‖ ≤ ε for all a ∈ F,

which shows that ϕ and ψ are approximately unitarily equivalent.
Alternatively we can apply Corollary 3.2.3(ii) and Lemma 3.4.1 directly as in (i): Note

that both ϕ and ψ are nuclear as O2 is. As O2 is a unital Kirchberg algebra we can apply
Corollary 3.2.3(ii) to find two sequences of isometries (sn)n∈N and (tn)n∈N in O2 with

lim
n→∞

‖s∗nϕ(a)sn − ψ(a)‖ = 0, lim
n→∞

‖t∗nψ(a)tn − ϕ(a)‖ = 0 for all a ∈ A.

As in the proof of (i) we can now apply Lemma 3.4.1 to prove that ϕ and ψ are approximately
unitarily equivalent.

Part (ii) of the preceding theorem will play an important part in the proof of Kirchberg’s
Embedding Theorem. In Appendix A we will show how both theorems can be combined
to obtain a uniqueness statement for O2, which shows that O2 is basically the only unital,
separable, exact C∗-algebra satisfying these theorems.
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Chapter 4

Limit algebras

Limit algebras are, roughly speaking, C∗-algebras consisting of equivalence classes of se-
quences in a given C∗-algebra. They can be used to turn properties which are only approx-
imately satisfied in the original algebra into exact statements. An example of this occurs
in Lemma 4.5.2 in Section 4.5, where approximate unitary equivalence will be turned into
exact unitary equivalence by passing to limit algebras. Sections 4.1–4.4 are used to present
the concepts of products of C∗-algebras, filters and limit algebras, and Section 4.6 gives some
results on limit algebras of minimal tensor products and matrix algebras.

4.1 Products and sums of C∗-algebras

In the definition of limit algebras below we introduce the C∗-algebra `∞(A) of bounded se-
quences in a C∗-algebra A which is a special case of a product of C∗-algebras. As more general
products will appear in Section 5.3 we use this opportunity to give the general definition and
to state some facts, the proofs of which are either given here or can be looked up in [R1] or
[Mu].

Definition 4.1.1. Let I be a non-empty set and let (Ai)i∈I be a family of C∗-algebras. The
product

∏
i∈I Ai is defined to be the set of all functions a : I →

⋃
i∈I Ai with a(i) ∈ Ai for all

i ∈ I and with
sup{‖a(i)‖Ai | i ∈ I} <∞.

We usually write ai instead of a(i) for each i ∈ I and denote an element of
∏
i∈I Ai by (ai)i∈I .

Remark 4.1.2. The product
∏
i∈I Ai is a C∗-algebra with coordinate-wise addition, scalar

multiplication, multiplication and involution, and with norm given by

‖a‖ = sup{‖a(i)‖Ai | i ∈ I}.

Definition 4.1.3. Let I and (Ai)i∈I be as before. The sum
∑

i∈I Ai is defined to be the
closure of the set {

a ∈
∏
i∈I

Ai
∣∣ a(i) 6= 0 for only finitely many i ∈ I

}
.
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Remark 4.1.4. The sum
∑

i∈I Ai is a closed, two-sided ideal in
∏
i∈I Ai, and hence the

quotient ∏
i∈I

Ai
/∑
i∈I

Ai

is a C∗-algebra. Let
π :

∏
i∈I

Ai →
∏
i∈I

Ai/
∑
i∈I

Ai

denote the quotient map.

The following is Lemma 6.1.3 in [R1].

Lemma 4.1.5. Let (An)n∈N be a sequence of C∗-algebras and let a = (an)n∈N be an element
in

∏
n∈NAn. Then

‖π(a)‖ = lim sup
n→∞

‖an‖.

In particular, a belongs to
∑

n∈NAn if and only if limn→∞‖an‖ = 0.

We now examine matrix algebras of products and vice versa, and use this result to describe
completely positive maps taking values in a product C∗-algebra.

Lemma 4.1.6. Let I be a non-empty set, let (Ai)i∈I be a family of C∗-algebras and let
n ∈ N. Then the map

ϕ :
∏
i∈I

Mn(Ai) →Mn

( ∏
i∈I

Ai

)
,

( (
aikl

)
k,l

)
i∈I

7→
((
aikl

)
i∈I

)
k,l

is a ∗-isomorphism.

Proof. It is easily seen that ϕ is linear, self-adjoint and bijective. Showing multiplicativity
also comes down to doing matrix multiplication and shifting brackets: Let

(
(aikl)k,l

)
i∈I and(

(bikl)k,l
)
i∈I be elements in

∏
i∈IMn(Ai). Then

ϕ
((

(aikl)k,l
)
i∈I

(
(bikl)k,l

)
i∈I

)
= ϕ

((( n∑
m=1

aikmb
i
ml

)
k,l

)
i∈I

)
=

(( n∑
m=1

aikmb
i
ml

)
i∈I

)
k,l

=
(
(aikl)i∈I

)
k,l

(
(bikl)i∈I

)
k,l

= ϕ
((

(aikl)k,l
)
i∈I

)
ϕ

((
(bikl)k,l

)
i∈I

)
.

Thus, ϕ is a ∗-isomorphism.

Remark 4.1.7. Let I be a non-empty set, let (Ai)i∈I be a family of C∗-algebras and let
a = (ai)i∈I ∈

∏
i∈I Ai. Then a is positive in

∏
i∈I Ai if and only if ai is positive in Ai for all

i ∈ I. To see this recall that a is positive if and only if there exists x ∈
∏
i∈I Ai with x∗x = a.

This is the case if and only if for each i ∈ I there exists xi ∈ Ai such that x∗ixi = ai.

Lemma 4.1.8. Let A be a C∗-algebra, let I be a non-empty set, let (Bi)i∈I be a family of
C∗-algebras and let

% : A→
∏
i∈I

Bi

be a linear map. For each i in I let %i : A → Bi be the ith component map of %, i.e.
%(a) = (%i(a))i∈I for all a in A. Then % is completely positive if and only if %i is completely
positive for each i in I.
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Proof. Let n ∈ N and let %(n) denote the nth inflation of %, accordingly define %(n)
i for each

i ∈ I. By Lemma 4.1.6 there is a ∗-isomorphism

ϕ :
∏
i∈I

Mn(Bi) →Mn

( ∏
i∈I

Bi

)
.

For each a = (akl)k,l ∈Mn(A) we can compute

%(n)(a) = (%(akl))k,l =
(
(%i(akl))i∈I

)
k,l

= ϕ
((

(%i(akl))k,l
)
i∈I

)
= ϕ

((
%
(n)
i (a)

)
i∈I

)
,

and as both ϕ and ϕ−1 are positive, this implies by Remark 4.1.7 that %(n)(a) is positive if
and only if so is %(n)

i (a) for each i ∈ I.

4.2 The limit algebra (A)∞

This first example of limit algebras is constructed as the quotient of the bounded sequences
on a C∗-algebra by the ideal of sequences which are convergent to zero.

Notation. For every C∗-algebra A the product
∏
n∈NA is simply the C∗-algebra of bounded

sequences on A, which is denoted by `∞(A). The sum
∑

n∈NA equals the subset of all
sequences (an)n∈N in `∞(A) that converge to zero, i.e. limn→∞‖an‖ = 0, and is denoted by
c0(A).

Definition 4.2.1. Let A be a C∗-algebra. The quotient `∞(A)/c0(A) is denoted by (A)∞.
Let π∞ : `∞(A) → (A)∞ be the quotient map, define the diagonal embedding δA : A→ `∞(A),
a 7→ (a, a, a, . . . ) and put ιA = π∞ ◦ δA : A→ (A)∞.

Remark 4.2.2. The map ιA embeds A into (A)∞ because π∞(a, a, a, . . . ) 6= π∞(b, b, b, . . . )
for all a 6= b ∈ A.

4.3 Filters

To generalize the idea of limit algebras given in Section 4.2 one needs a more general notion
of convergence, which can be achieved by introducing the concept of filters and convergence
along filters.

Definition 4.3.1. Let ω be a non-empty subset of the power set of N. If

(i) ∅ /∈ ω,

(ii) ω is closed under finite intersections, i.e. X ∩ Y ∈ ω for all X,Y ∈ ω,

(iii) ω is upwards directed, i.e. if X ∈ ω and Y ⊆ N with X ⊆ Y , then Y ∈ ω,

then ω is called a filter on N. A filter ω on N is said to be

- an ultrafilter if it is not properly contained in any other filter on N;

- free if
⋂
X∈ωX = ∅.
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We first present two standard examples and then turn to a lemma with some important facts
on ultrafilters and free filters.

Examples 4.3.2. (i) For each n ∈ N define ωn = {X ⊆ N | n ∈ X}, then ωn is an ultra-
filter on N, but it is not free (see Lemma 4.3.3(ii),(iii)).

(ii) Define ω0 = {X ⊆ N | N \X is finite}, the filter of cofinite subsets of N. This is a free
filter on N, but it is not an ultrafilter (see Lemma 4.3.3(ii)).

Lemma 4.3.3. (i) Every filter on N is contained in an ultrafilter on N.

(ii) A filter ω on N is an ultrafilter if and only if either X ∈ ω or N\X ∈ ω for each X ⊆ N.

(iii) An ultrafilter ω on N is free if and only if ω 6= ωn for all n ∈ N.

(iv) If ω is a free filter on N then each X ∈ ω is an infinite set and ω contains infinitely
many sets.

(v) Each free ultrafilter ω on N contains the free filter ω0 of all cofinite subsets of N.

Proof. (i): Let ω be a filter on N. We use Zorn’s Lemma to prove that

M =
{
ω̃

∣∣ ω̃ is a filter on N and ω ⊆ ω̃
}
,

partially ordered by inclusion, contains a maximal element. Let N be a totally ordered subset
of M and set ωN =

⋃
ω̃∈N ω̃. We show first that ωN is a filter. As ∅ /∈ ω̃ for all ω̃ ∈ N it

follows that ∅ /∈ ωN . Let X,Y ∈ ωN . As N is totally ordered there is ω̃ ∈ N with X ∈ ω̃
and Y ∈ ω̃. Then X ∩ Y ∈ ω̃ and hence X ∩ Y ∈ ωN . Let now Z ∈ ωN and let K ⊆ N with
Z ⊆ K. Choose ω̃ ∈ N with Z ∈ ω̃, then K ∈ ω̃ and therefore K ∈ ωN . This shows that ωN
is a filter, and as ω ⊆ ω̃ ⊆ ωN for all ω̃ ∈ N it follows that ωN is contained in M and is a
majorant of N . Hence there exists a maximal filter containing ω.

(ii): Let ω be a filter on N. Suppose first that ω is an ultrafilter, and assume that there is
X ⊆ N such that X /∈ ω and N \X /∈ ω. Define

ω̃ =
{
Y ⊆ N | ∃A ∈ ω : A ∩X ⊆ Y

}
and show that ω̃ is a filter on N with ω ⊂ ω̃, which contradicts the assumption that ω is an
ultrafilter. As N \ X /∈ ω we know that B 6⊆ N \ X and hence B ∩ X 6= ∅ for all B ∈ ω.
Thus, ∅ /∈ ω̃. Let Y, Z ∈ ω̃ and choose A,B ∈ ω such that A ∩X ⊆ Y and B ∩X ⊆ Z, then
A ∩ B ∈ ω and (A ∩ B) ∩X ⊆ Y ∩ Z, i.e. Y ∩ Z ∈ ω̃. Let now K ⊆ N with Y ⊆ K. Then
A ∩ X ⊆ Y ⊆ K and hence K ∈ ω̃. Thus, ω̃ is a filter on N. For all A ∈ ω we have that
A∩X ⊆ A and A∩X ⊆ X. The first implies that ω ⊆ ω̃, and the second implies that X ∈ ω̃,
and hence ω ⊂ ω̃.

Conversely, assume that ω is not an ultrafilter and show that there is X ⊆ N such that
X /∈ ω and N \X /∈ ω. By (i) there exists an ultrafilter ω̃ with ω ⊂ ω̃. Choose X ∈ ω̃ \ ω,
then clearly X /∈ ω. But as ω̃ is a filter, we have that N \ X /∈ ω̃, because otherwise
∅ = X ∩ N \X ∈ ω̃, and consequently N \X /∈ ω.

(iii): Let ω be an ultrafilter on N. If ω = ωn for some n ∈ N, then
⋂
X∈ω = {n} 6= ∅, i.e.

ω is not free. Conversely, suppose that ω is not free, and show that there is n ∈ N with
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ω = ωn. Since ω is an ultrafilter, statement (ii) implies that for all m,n ∈
⋂
X∈ωX we have

{m}, {n} ∈ ω, consequently also {m} ∩ {n} ∈ ω and thus {m} ∩ {n} 6= ∅, and hence m = n.
We can thus choose n ∈ N with

⋂
X∈ωX = {n}. This implies that ωn ⊆ ω because for

every X ∈ ωn we know that X ∈ ω, because otherwise (ii) implied N \ X ∈ ω and hence
n /∈

⋂
Y ∈ω Y . Thus ωn ⊆ ω, and as ωn is an ultrafilter this implies ωn = ω.

(iv): Let ω be a free filter on N and let X ∈ ω. As
⋂
Y ∈ω Y = ∅ there is for every n ∈ X a

set Yn ∈ ω with n /∈ Yn, i.e. X ∩
⋂
n∈X Yn = ∅, but on the other hand, X ∩

⋂
n∈E Yn 6= ∅ for

every finite subset E of X. Thus, X is infinite. Now, {Yn | n ∈ X} contains infinitely many
sets, and {Yn | n ∈ X} ⊆ ω.

(v): Let ω be a free ultrafilter and let X be a finite subset of N. By (iv) this implies that
X /∈ ω, and hence N \X ∈ ω by (ii). Thus, ω0 ⊆ ω.

Convergence along filters is defined as follows:

Definition 4.3.4. Let (xn)n∈N be a sequence in a Hausdorff space T , let x0 be a point in T
and let ω be a filter on N. Then (xn)n∈N is said to converge to x0 along ω, in symbols

lim
ω
xn = x0,

if for every neighbourhood U of x0 there exists X ∈ ω such that xn ∈ U for all n ∈ X.

Lemma 4.3.5. Let T , (xn)n∈N and ω be as in Definition 4.3.4.

(i) If ω = ωm for some m ∈ N, then (xn)n∈N converges to xm.

(ii) Assume that ω is an ultrafilter and that (xn)n∈N is a sequence in a compact subset K
of T . Then (xn)n∈N converges along ω.

(iii) Assume that ω = ω0 is the free filter of cofinite subsets of N and let x0 ∈ T . Then
limω0 xn = x0 if and only if limn→∞ xn = x0.

(iv) Assume there is x0 ∈ T with limn→∞ xn = x0. Then limω xn = x0 for every free
ultrafilter ω on N.

Proof. (i): Let m ∈ N and suppose that ω = ωm. Then {m} ∈ ω and we can simply choose
X = {m} for every neighbourhood U of xm.

(ii): For each X ⊆ N set TX = {xn | n ∈ X}. Then TX is a non-empty, compact subset of
K whenever X is a non-empty subset of N. We show first that

⋂
X∈ω TX 6= ∅. To this end

let F be a finite subset of ω. Then Y =
⋂
X∈F X 6= ∅ as ω is a filter, and therefore TY 6= ∅.

Moreover, if x ∈ TY , then there exists a sequence (nk)k∈N in Y such that xnk
→ x as k →∞.

By definition of Y this entails that (nk)k∈N is a sequence in each X ∈ F , and hence x ∈ TX
for each X ∈ F . Thus,

∅ 6= TY ⊆
⋂
X∈F

TX ,

and by the finite intersection property of compact sets it follows that
⋂
X∈ω TX 6= ∅.

Choose x ∈
⋂
X∈ω TX and let U be a neighbourhood of x. Let A = {n ∈ N | xn ∈ U} and

B = N \ A. Then x /∈ TB, which implies that B /∈ ω. As ω is an ultrafilter, this implies that
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A ∈ ω and therefore x = limω xn.

(iii) Let U be a neighbourhood of x0 and suppose that limω0 xn = x0. Then there is a finite
subset F of N such that for each n ∈ X = N \ F we have xn ∈ U . Then xn ∈ U for all
n ≥ maxF and hence limn→∞ xn = x0. Conversely, if limn→∞ xn = x0, choose N ∈ N with
xn ∈ U for all n ≥ N and put X = N \ N≤N , then X ∈ ω0 and xn ∈ U for all n ∈ X.

(iv) This follows from statement (iii) and Lemma 4.3.3(v).

Definition 4.3.6. Let ω be a filter on N and let (xn)n∈N be a sequence of real numbers.
Define

lim sup
ω

xn = inf
X∈ω

sup
n∈X

xn.

Remark 4.3.7. If ω in Definition 4.3.6 is a free filter on N, then

lim sup
ω

xn ≤ lim sup
n→∞

xn,

because for each k ∈ N there is X ∈ ω with X ⊆ N≥k: Let k ∈ N. As
⋂
X∈ωX = ∅ there

exists for each n ∈ N a set Xn ∈ ω with n /∈ Xn. Then X =
⋂
n<kXn ∈ ω and X ⊆ N≥k.

4.4 The ultrapower C∗-algebra (A)ω

We now perform a construction similar to the one in Section 4.2 to obtain the so-called
ultrapower C∗-algebra (A)ω of a given C∗-algebra A, which defines a more general class of
limit algebras.

Remark 4.4.1. Let A be a C∗-algebra and let ω be a filter on N. Denote by cω(A) the subset
of all sequences (an)n∈N in `∞(A) that converge to zero along ω, i.e. limω‖an‖ = 0. Then
cω(A) is a closed, two-sided ideal in A.

Definition 4.4.2. Let A be a C∗-algebra and let ω be a filter on N. The quotient C∗-algebra
`∞(A)/cω(A), denoted by (A)ω, is called the ultrapower of A with respect to the filter ω. Let
πω : `∞(A) → (A)ω denote the quotient map and set ιA = πω ◦ δA : A → (A)ω, where δA is
the diagonal embedding of A into `∞(A) as defined in Definition 4.2.1.

Remarks 4.4.3. Let A be a C∗-algebra and let ω be a filter on N.

(i) It follows as in Remark 4.2.2 that ιA embeds A into (A)ω.

(ii) If ω0 is the filter of cofinite sets in N, then Lemma 4.3.5(iii) implies that cω0(A) = c0(A)
and therefore (A)ω0 = (A)∞.

The following lemma establishes, for every sequence a ∈ `∞(A), a very useful relation between
the norm of its limit (or lim sup) and the norm of its image in the ultrapower algebra.

Lemma 4.4.4. Let A be a C∗-algebra and let ω be a filter on N.

(i) For each a = (an)n∈N in `∞(A) one has ‖πω(a)‖ = lim supω‖an‖; and if ω is an ultrafilter,
then ‖πω(a)‖ = limω‖an‖.
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(ii) Let k ∈ N and consider for each j ∈ N≤k an element a(j) = (a(j)
n )n∈N in l∞(A). Let

ε > 0 and assume that ‖πω(a(j))‖ < ε for all j ∈ N≤k. Then there exists X ∈ ω such
that ‖a(j)

n ‖ < ε for all n ∈ X and for all j ∈ N≤k.

Proof. (i): Consider two sequences a = (an)n∈N and b = (bn)n∈N in `∞(A) with a−b ∈ cω(A),
i.e. πω(a) = πω(b) in (A)ω. Then, by definition of cω(A), limω‖an − bn‖ = 0 and therefore
lim supω‖an‖ = lim supω‖bn‖. Thereby the map

‖·‖ω : (A)ω → R≥0, πω(a) 7→ lim sup
ω

‖an‖

is well-defined, and it is easily shown that ‖·‖ω defines a C∗-norm on (A)ω. Besides, the
quotient C∗-algebra (A)ω is canonically equipped with the complete C∗-norm defined by

‖πω(a)‖ = inf{‖a+ x‖ | x ∈ cω(A)}

for each a ∈ `∞(A), which implies that (A)ω admits only one C∗-norm (see Remark 6.3.3 in
[Mu]). Hence,

‖πω(a)‖ = lim sup
ω

‖an‖ for all a = (an)n∈N ∈ `
∞(A).

Assume now that ω is an ultrafilter and let a = (an)n∈N ∈ `∞(A). Then (‖an‖)n∈N is a
sequence in the compact interval [0, supn∈N‖an‖] and hence convergent by Lemma 4.3.5(ii).
Combining this with the first statement gives

‖πω(a)‖ = lim sup
ω

‖an‖ = lim
ω
‖an‖.

(ii): By (i), the assumption that ‖πω(a(j))‖ < ε implies

lim sup
ω

‖a(j)
n ‖ < ε for all j ∈ N≤k,

and hence there exists for each j ∈ N≤k a set Xj ∈ ω such that supn∈Xj
‖a(j)

n ‖ < ε. Put

X =
⋂
j≤kXj , then X ∈ ω as a finite intersection, and ‖a(j)

n ‖ < ε for all n ∈ X and for all
j ∈ N≤k.

The following lemma extracts a detail from the proof of Kirchberg’s Embedding Theorem.

Lemma 4.4.5. Let A and B be C∗-algebras and let ι : A → B be an embedding of A into
B. Then (A)ω embeds into (B)ω for every filter ω on N. If A,B and ι are unital, then (A)ω
also embeds unitally into (B)ω.

Proof. Let ω be a filter on N. Let πBω : `∞(B) → (B)ω denote the quotient map and define

ι∞ : `∞(A) → `∞(B), (an)n∈N 7→ (ι(an))n∈N ,

then πBω ◦ι∞ is a ∗-homomorphism from `∞(A) into (B)ω. As ι is isometric and by Lemma 4.4.4
we have

lim sup
ω

‖an‖ = lim sup
ω

‖ι(an)‖ = ‖
(
πBω ◦ ι∞

)
(a)‖ for all a = (an)n∈N ∈ `

∞(A)

and hence
ker

(
πBω ◦ ι∞

)
= cω(A).

The first isomorphism theorem now yields an injective ∗-homomorphism ῑ : (A)ω → (B)ω. If
A,B and ι are unital, then so is ῑ by construction.
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4.5 Lifting problems and unitary equivalence

We shall next be concerned with the lifting of projections, isometries and unitaries in (A)ω
to projections, isometries and unitaries in `∞(A), i.e. for a projection p ∈ (A)ω we try to
find a projection q ∈ `∞(A) with πω(q) = p and so on. In the proof of these statements we
shall need the fact that an element which behaves almost like a projection, an isometry or a
unitary, is close to a projection, an isometry or a unitary, respectively, see Lemma 1.1.38.

Lemma 4.5.1. Let A be a C∗-algebra and let ω be a filter on N. Then the following hold:

(i) Each projection in (A)ω lifts to a projection in `∞(A);

(ii) If A is unital, then each isometry in (A)ω lifts to an isometry in `∞(A);

(iii) If A is unital, then each unitary in (A)ω lifts to a unitary in `∞(A).

Proof. (i): Let p be a projection in (A)ω and choose an element a = (an)n∈N in `∞(A) with
πω(a) = p. Then

‖πω(a− a∗)‖ = ‖p− p∗‖ = 0, ‖πω(a− a2)‖ = ‖p− p2‖ = 0,

and therefore
lim sup

ω
‖an − a∗n‖ = 0, lim sup

ω
‖an − a2

n‖ = 0 (4.5.1)

by Lemma 4.4.4. We will use this to define a sequence q = (qn)n∈N in `∞(A) consisting of
projections satisfying limω‖an − qn‖ = 0 and therefore πω(q) = πω(a) = p.

For each k ∈ N choose δk > 0 such that Lemma 1.1.38(i) holds with ε = 1/k, and such
that (δk)k∈N converges to zero. By (4.5.1) we can for each k ∈ N find Xk ∈ ω such that

‖an − a∗n‖ ≤ δk, ‖an − a2
n‖ ≤ δk for all n ∈ Xk. (4.5.2)

Let n ∈ N.
Case 1: The element an is itself a projection. Then set qn = an.
Case 2: For all k ∈ N we have ‖an − a∗n‖ > δk or ‖an − a2

n‖ > δk. Then set qn = 0.
Case 3: Assume that neither Case 1 nor Case 2 holds. Then

kn = max
{
k ∈ N

∣∣ ‖an − a∗n‖ ≤ δk and ‖an − a2
n‖ ≤ δk

}
is well-defined (the set on the right hand side is bounded as (δk)k∈N converges to zero and as
an is not a projection), and Lemma 1.1.38(i) yields a projection qn with ‖an − qn‖ ≤ 1/kn.

As qn is a projection in A for each n ∈ N, the element q = (qn)n∈N is a projection in
`∞(A). Let now ε > 0, choose K ∈ N with 1/K < ε and let n ∈ XK . By (4.5.2) we know
that ‖an − a∗n‖ ≤ δK and ‖an − a2

n‖ ≤ δK , and hence Case 1 or Case 3 applies. In Case 1 we
have ‖an − qn‖ = 0 < ε, and in Case 3 we have

‖an − qn‖ ≤
1
kn

≤ 1
K

< ε.

Thus, limω‖an − qn‖ = 0 and hence πω(q) = πω(a) = p.

64



(ii): Suppose that A is unital, let s be an isometry in (A)ω and let a = (an)n∈N ∈ `∞(A) with
πω(a) = s be a lift of s. As in the proof of (i) we conclude that

lim sup
ω

‖a∗nan − 1A‖ = ‖πω(a∗a− 1`∞(A))‖ = ‖s∗s− 1(A)ω
‖ = 0. (4.5.3)

For each k ∈ N choose a number δk > 0 such that Lemma 1.1.38(ii) holds for ε = 1/k, and
such that (δk)k∈N converges to zero. For each k ∈ N use (4.5.3) to find Xk ∈ ω with

‖a∗nan − 1A‖ ≤ δk for all n ∈ Xk.

Let n ∈ N. As in (i) we consider three cases:
Case 1: The element an is an isometry. Set tn = an.
Case 2: For all k ∈ N we have ‖a∗nan − 1A‖ > δk. Then set tn = 1A.
Case 3: Suppose that neither Case 1 nor Case 2 holds. Then

kn = max
{
k ∈ N

∣∣ ‖a∗nan − 1A‖ ≤ δk
}

is well-defined, and Lemma 1.1.38(ii) yields an isometry tn with ‖an − tn‖ ≤ 1/kn.
Now t = (tn)n∈N is an isometry in `∞(A), and it follows as in the proof of (i) that

limω‖an − tn‖ = 0 and hence πω(t) = s.

(iii): Suppose that A is unital, let u be a unitary in (A)ω and let a = (an)n∈N ∈ `∞(A) be a
lift of u. As before conclude that

lim sup
ω

‖a∗nan − 1A‖ = ‖πω(a∗a− 1`∞(A))‖ = ‖u∗u− 1(A)ω
‖ = 0

and in the same way
lim sup

ω
‖ana∗n − 1A‖ = ‖uu∗ − 1(A)ω

‖ = 0.

Using the same procedure as in (i) and (ii) one can prove the existence of a unitary v = (vn)n∈N
in `∞(A) with limω‖an − vn‖ = 0 and hence πω(v) = u.

The following lemma shows how approximate unitary equivalence of ∗-homomorphisms can
be turned into exact unitary equivalence by passing over to limit algebras.

Lemma 4.5.2. Let A and B be C∗-algebras such that B is unital, and let ϕ,ψ : A → B be
∗-homomorphisms. Let ω be a filter on N and let ιB = πω ◦ δB : B → (B)ω be the canonical
embedding of B into (B)ω. Then the following hold:

(i) We have ιB ◦ ϕ ≈u ιB ◦ ψ in (B)ω if and only if ϕ ≈u ψ in B.

(ii) If A is separable and ω is a free filter, then ιB ◦ϕ ∼u ιB ◦ψ if and only if ιB ◦ϕ ≈u ιB ◦ψ.

Proof. (i): Assume that ιB ◦ ϕ ≈u ιB ◦ ψ in (B)ω, let F be a finite subset of A and let ε > 0.
By assumption there is a unitary v ∈ (B)ω such that

‖v(ιB ◦ ψ)(a)v∗ − (ιB ◦ ϕ)(a)‖ < ε for all a ∈ F.

Lemma 4.5.1(iii) yields a unitary u = (un)n∈N in `∞(B) with πω(u) = v, and we have that

‖πω
(
uδB(ψ(a))u∗ − δB(ϕ(a))

)
‖ = ‖v(ιB ◦ ψ)(a)v∗ − (ιB ◦ ϕ)(a)‖ < ε for all a ∈ F.
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Now Lemma 4.4.4(ii) provides us with a set X ∈ ω such that

‖unψ(a)u∗n − ϕ(a)‖ < ε for all n ∈ X, a ∈ F.

Hence, ϕ and ψ are approximately unitarily equivalent in B.
Conversely, suppose that ϕ ≈u ψ in B. Let ε > 0, let F be a finite subset of A and choose

u ∈ B with
‖uψ(a)u∗ − ϕ(a)‖ < ε for all a ∈ F.

As ιB is a unital, isometric ∗-homomorphism, ιB(u) is a unitary in (B)ω, and

‖ιB(u)(ιB ◦ ψ)(a)ιB(u)∗ − (ιB ◦ ϕ)(a)‖ = ‖uψ(a)u∗ − ϕ(a)‖ < ε for all a ∈ F,

which shows that ιB ◦ ϕ and ιB ◦ ψ are approximately unitarily equivalent in (B)ω.

(ii): Suppose now that A is separable and that ω is free. It is clear by definition that
ιB ◦ ϕ ∼u ιB ◦ ψ implies ιB ◦ ϕ ≈u ιB ◦ ψ. Assume now that ιB ◦ ϕ ≈u ιB ◦ ψ. By (i) this
implies that ϕ ≈u ψ in B. Let (Fn)n∈N be an increasing sequence of finite subsets of A with⋃
n∈N Fn = A and choose for each n ∈ N a unitary un ∈ B with

‖unψ(a)u∗n − ϕ(a)‖ ≤ 1
n

for all a ∈ Fn.

Since (Fn)n∈N is increasing, we can as in the proof of Corollary 3.2.3(i) conclude that

lim
n→∞

‖unψ(a)u∗n − ϕ(a)‖ = 0 for all a ∈
⋃
n∈N

Fn,

and as unψ(·)u∗n−ϕ(·) is bounded for each n ∈ N this can be extended to hold for each a ∈ A.
Put v = πω((un)n∈N), then v is a unitary in (B)ω and by Lemma 4.4.4(i) and Remark 4.3.7
we obtain

‖v(ιB ◦ ψ)(a)v∗ − (ιB ◦ ϕ)(a)‖ = lim sup
ω

‖unψ(a)u∗n − ϕ(a)‖

≤ lim sup
n→∞

‖unψ(a)u∗n − ϕ(a)‖ = 0

for all a ∈ A, which shows that ιB ◦ ϕ ∼u ιB ◦ ψ.

Corollary 4.5.3. Let A and B be C∗-algebras with A separable and B unital, let ω be a
free filter on N and let ϕ,ψ : A→ B be ∗-homomorphisms. Then ϕ ≈u ψ in B if and only if
ιB ◦ ϕ ∼u ιB ◦ ψ in (B)ω.

Proof. This follows immediately from Lemma 4.5.2.

4.6 Limit algebras of minimal tensor products and matrix al-
gebras

The following result will be useful as a part of the embedding procedure in the proof of
Kirchberg’s Embedding Theorem.
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Lemma 4.6.1. Let A and B be unital C∗-algebras, B nuclear, and let ω be a filter on N.
Then there exists a unital, injective ∗-homomorphism λ : (A)ω ⊗B → (A⊗B)ω.

Proof. Let πω : `∞(A) → (A)ω and π⊗ω : `∞(A ⊗ B) → (A ⊗ B)ω be the respective quotient
maps. Define ϕ : (A)ω → (A⊗B)ω as follows: Let x ∈ (A)ω and choose a = (an)n∈N ∈ `∞(A)
with x = πω(a). Then (an ⊗ 1B)n∈N ∈ `∞(A⊗min B) and we can set

ϕ(x) = π⊗ω
(
(an ⊗ 1B)n∈N

)
.

To see that this does not depend on the choice of a consider ã = (ãn)n∈N ∈ `∞(A) with
x = πω(ã) and note that

lim sup
ω

‖an ⊗ 1B − ãn ⊗ 1B‖ = lim sup
ω

‖an − ãn‖ = 0

which implies that

π⊗ω
(
(ãn ⊗ 1B)n∈N

)
= π⊗ω

(
(an ⊗ 1B)n∈N

)
= ϕ(x).

Hence, ϕ is well-defined and it is easy to check that ϕ is a unital ∗-homomorphism. Let
ι⊗ : A⊗B → (A⊗B)ω be the canonical embedding and define

ψ : B → (A⊗B)ω, b 7→ ι⊗(1A ⊗ b),

then ψ is a unital ∗-homomorphism. Let now x ∈ (A)ω, choose a = (an)n∈N ∈ `∞(A) with
πω(a) = x and let b ∈ B. Then

ϕ(x)ψ(b) = π⊗ω
(
(an ⊗ 1B)n∈N

)
ι⊗(1A ⊗ b) = π⊗ω

(
(an ⊗ 1B)n∈N

)
π⊗ω

(
(1A ⊗ b)n∈N

)
= π⊗ω

(
(an ⊗ b)n∈N

)
= π⊗ω

(
(1A ⊗ b)n∈N

)
π⊗ω

(
(an ⊗ 1B)n∈N

)
= ψ(b)ϕ(x),

i.e. ϕ((A)ω) and ψ(B) commute. As B is nuclear, Theorem 6.3.7 in [Mu] implies that there
is a ∗-homomorphism

λ : (A)ω ⊗B → (A⊗B)ω

such that λ(x ⊗ b) = ϕ(x)ψ(b) for all x ∈ (A)ω and for all b ∈ B, which implies that λ is
unital. It follows from Theorem 3.3 in [Bl] that every closed, two-sided ideal in (A)ω ⊗ B is
generated by elementary tensors as B is nuclear. We use this to show that ker(λ) = {0}. Let
x⊗ b ∈ (A)ω ⊗B such that λ(x⊗ b) = 0. Choose a lift (an)n∈N ∈ `∞(A) of x. Then

0 = λ(x⊗ b) = π⊗ω
(
(an ⊗ b)n∈N

)
which implies that

lim sup
ω

‖an ⊗ b‖ = ‖b‖ lim
ω
‖an‖ = 0.

Hence, b = 0 or limω an = 0 and thus x = 0, i.e. x ⊗ b = 0. Consequently, ker(λ) = {0} and
λ is injective.

We conclude this chapter with the following result on matrix algebras and limit algebras and
a corollary to it which will be needed in the proof of Lemma 5.2.1 in the following chapter.
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Lemma 4.6.2. Let A be a C∗-algebra, let ω be a filter on N and let n ∈ N. Then

Mn ((A)ω) ∼= (Mn(A))ω .

Proof. Consider the diagram

Mn (`∞(A))

π
(n)
ω

��

ψ // `∞ (Mn(A))

πMn
ω

��
Mn ((A)ω) ϕ

//____ (Mn(A))ω

where π(n)
ω is the nth inflation of the quotient map πω : `∞(A) → (A)ω, where

πMn
ω : `∞ (Mn(A)) → (Mn(A))ω

is the quotient map in case of the matrix algebras, and where ψ is the inverse of the ∗-
isomorphism from Lemma 4.1.6. We want to construct a ∗-isomorphism ϕ as indicated by
the dashed arrow.

Let x = (xij)i,j ∈Mn((A)ω), choose a =
(
(akij)k∈N

)
i,j
∈Mn(`∞(A)) with π(n)

ω (a) = x and
set

ϕ(x) =
(
πMn
ω ◦ ψ

)
(a).

To check that this is independent of the choice of a let b =
(
(bkij)k∈N

)
i,j
∈ Mn(`∞(A)) with

π
(n)
ω (b) = x. Then, using Proposition 1.1.20 at the inequalities marked with (?),

‖
(
πMn
ω ◦ ψ

)
(a− b)‖ = ‖πMn

ω

((
(akij − bkij)i,j

)
k∈N

)
‖ = lim sup

ω
‖
(
akij − bkij

)
i,j
‖

(?)

≤ lim sup
ω

n∑
i,j=1

‖akij − bkij‖ =
n∑

i,j=1

lim sup
ω

‖akij − bkij‖

=
n∑

i,j=1

‖πω
(
(akij − bkij)k∈N

)
‖

(?)

≤ n2‖π(n)
ω

((
(akij − bkij)k∈N

)
i,j

)
‖

= n2‖π(n)
ω (a− b)‖ = 0.

Hence, ϕ is well-defined, and it is easy to check that ϕ is a ∗-homomorphism. Let now
x ∈ Mn((A)ω) with ϕ(x) = 0. Choose a =

(
(akij)k∈N

)
i,j
∈ Mn(`∞(A)) such that 0 = ϕ(x) =(

πMn
ω ◦ ψ

)
(a), i.e.

0 = ‖
(
πMn
ω ◦ ψ

)
(a)‖ = ‖πMn

ω

((
(akij)i,j

)
k∈N

)
‖

= lim sup
ω

‖(akij)i,j‖
(?)

≥ lim sup
ω

‖akml‖

and hence
(
akml

)
k∈N ∈ cω(A) for all m, l ∈ N≤n. Consequently,

x = π(n)
ω (a) =

(
πω

(
(akij)k∈N

))
i,j

= 0

in Mn((A)ω) and ϕ is injective. To see that ϕ is surjective let y ∈ (Mn(A))ω, choose a lift
a ∈ `∞(Mn(A)) of y and set x =

(
π

(n)
ω ◦ ψ−1

)
(a). Then ϕ(x) =

(
πMn
ω ◦ ψ

)
(ψ−1(a)) = y.
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Corollary 4.6.3. Let A and B be C∗-algebras, let ω be a filter on N and let % : A→ `∞(B)
be a linear map with component maps %k : A → B for all k ∈ N. Let n ∈ N and let
πω : `∞(B) → (B)ω and πMn

ω : `∞ (Mn(B)) → (Mn(B))ω denote the quotient maps as before,
and let ϕ : Mn ((B)ω) → (Mn(B))ω be the ∗-isomorphism from Lemma 4.6.2. Then

ϕ ◦ (πω ◦ %)(n) = πMn
ω ◦

(
%
(n)
k

)
k∈N,

i.e. the diagram

Mn(A)
(%

(n)
k )k∈N //

(πω◦%)(n)

��

`∞(Mn(B))

πMn
ω

��
Mn((B)ω) ϕ

// (Mn(B))ω

commutes. In particular, if (πω ◦ %)(n) is injective, then so is πMn
ω ◦

(
%
(n)
k

)
k∈N.

Proof. To see this, take a = (aij)i,j ∈Mn(A). Then(
ϕ ◦ (πω ◦ %)(n)

)
(a) =

(
ϕ ◦ π(n)

ω

) ((
%(aij)

)
i,j

)
= πMn

ω

(((
%k(aij)

)
i,j

)
k∈N

)
= πMn

ω

((
%
(n)
k (a)

)
k∈N

)
=

(
πMn
ω ◦

(
%
(n)
k

)
k∈N

)
(a).
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Chapter 5

First embeddings into O2

In this chapter we construct the first embeddings of exact C∗-algebras into O2. Section 5.1
deals with the embedding of C(T) into O2. Though this result goes directly into the proof of
Kirchberg’s Embedding Theorem, it is quite independent of the rest of the theory developed
here. In Section 5.2 we resume our main line of argumentation and use several results from
Chapter 3 to show that a unital, separable, exact C∗-algebra which has a liftable, unital
embedding into (O2)ω for a free ultrafilter ω embeds unitally into O2. In Section 5.3 this
result will be applied to embed unital, separable, exact and quasidiagonal C∗-algebras into
O2.

5.1 Embedding C(T) into O2

Lemma 5.1.1. The C∗-algebra C(T) of continuous complex-valued functions on the unit
circle embeds unitally into O2.

In the proof of this lemma we first obtain a topological space X such that C(X) embeds
into O2. To construct then an embedding of C(T) into C(X) we shall use the following
topological statements. Moreover, we shall need the notion of maximal abelian subalgebras
which is introduced below. We start with the following facts about the Cantor Set C, which
are part of Theorem VI′ in [AH].

Theorem 5.1.2. (i) Every compact, totally disconnected, metrizable topological space
without isolated points is homeomorphic to the Cantor Set C.

(ii) For every compact, metrizable topological space Y there exists a continuous, surjective
map f : C → Y from the Cantor Set C onto Y .

We also consider the following corollary to statement (i) of the previous theorem:

Corollary 5.1.3. Let X be a compact, metrizable topological space without isolated points.
Then there exists a closed subset X0 of X which is homeomorphic to the Cantor Set C.

Proof. By Theorem 5.1.2(i) it suffices to construct a closed, totally disconnected subset of
X which has no isolated points. To this end we inductively construct a decreasing sequence
(Xn)n∈N of subsets of X such that for every n ∈ N the following holds: The set Xn is
the disjoint union of 2n non-empty, closed balls Bn

j , j ∈ N≤2n , with radius less than 2−n.
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Moreover, Bn+1
2j−1, B

n+1
2j ⊆ Bn

j for all j ∈ N≤2n . All balls are defined with respect to the metric
which induces the topology on X and are supposed to have radius greater than zero.

As X has no isolated points and is metrizable and hence Hausdorff there are points
x, y ∈ X such that there are disjoint, closed balls B1

1 , B
1
2 ⊆ X with radius less than 1/2 and

x ∈ B1
1 , y ∈ B1

2 . Set X1 = B1
1 ∪ B1

2 . Again as X has no isolated points and is metrizable
we find non-empty, disjoint, closed balls B2

1 , B
2
2 ⊆ B1

1 and B2
3 , B

2
4 ⊆ B1

2 with radius less than
1/4. Set X2 =

⋃
1≤j≤4B

2
j . Similarly, when Xn =

⋃
1≤j≤2n Bn

j has been constructed for some
n ∈ N, we find for each j ∈ N≤2n two non-empty, disjoint, closed balls Bn+1

2j−1, B
n+1
2j ⊆ Bn

j with
radius less than 2−(n+1) and set Xn+1 =

⋃
1≤l≤2n+1 B

n+1
l . Being a finite union of non-empty,

closed balls each Xn is non-empty and closed in X. Thus, (Xn)n∈N is a decreasing sequence
of non-empty, compact subsets of X, and hence

X0 =
⋂
n∈N

Xn

also is a non-empty, compact subset of X. We show that X0 is totally disconnected and has
no isolated points.

For the first property we show that every subset of X0 which contains more than one
point is disconnected. Let K ⊆ X0 and let x 6= y ∈ K. There are n ∈ N and k ∈ N≤2n such
that x ∈ Bn

k and y /∈ Bn
k . As each Bn

j is a closed ball in X, the sets Bn
j ∩K are closed in K

for every j ∈ N≤2n . On the other hand,

K = Xn ∩K =
⋃

1≤j≤2n

(
Bn
j ∩K

)
,

and hence
Bn
k ∩K = K \

⋃
1≤j≤2n

j 6=k

(
Bn
j ∩K

)
is open in K as the complement of a finite union of closed sets. Altogether, Bn

k ∩ K is a
non-empty, clopen, proper subset of K, and hence K is not connected.

Let now x ∈ X0 and show that x is not an isolated point in X0. Let ε > 0, and choose
n ∈ N with 2−n+1 < ε and k ∈ N≤2n with x ∈ Bn

k . By construction of X0 this implies that
x ∈ Bn+1

2k−1 or x ∈ Bn+1
2k , assume the first. Take y ∈ Bn+1

2k ∩X0, then y 6= x, but both x and y
are contained in Bn

k , and hence have distance less than 2 · 2−n < ε.

We also need the following statement on metrizability:

Lemma 5.1.4. Let (X, τ) be a compact Hausdorff space such that C(X) is separable. Then
X is metrizable.

Proof. Let {fn | n ∈ N} be a countable, dense subset of C(X). Define a function

d : X ×X → R≥0, (x, y) 7→
∞∑
n=1

1
2n

max{|fn(x)− fn(y)|, 1}. (5.1.1)

It is easily checked that d(x, x) = 0 for all x ∈ X, that d is symmetric and satisfies the triangle
inequality. To show that d(x, y) > 0 if x 6= y ∈ X we need the separability of C(X): Let
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x 6= y ∈ X. There exists (by Urysohn’s Lemma) a function f ∈ C(X) with f(x) 6= f(y). Set
ε = |f(x)− f(y)| and choose n ∈ N such that ‖f − fn‖ < ε/2. Then

|fn(x)− fn(y)| ≥ |f(x)− f(y)| − |fn(x)− f(x)| − |f(y)− fn(y)| > 0,

and hence d(x, y) > 0, as required. Thus, (5.1.1) defines a metric on X, and it is left to
show that the topology induced by this metric coincides with the given topology τ on X.
Let (xk)k∈N be a sequence in X, let x ∈ X and suppose first that (xk)k∈N converges to
x with respect to τ . Let ε > 0 and choose q ∈ (0, 1) with

∑∞
n=1 q

n < ε/2. As each fn
is continuous with respect to τ we can for every n ∈ N choose a number Kn ∈ N with
|fn(xk) − fn(x)| < qn for all k ∈ N≥Kn . Choose N ∈ N such that

∑∞
n=N 2−n < ε/2 and set

K = max{Kn | n ∈ N≤N}. Then, for all k ∈ N≥K :

d(xk, x) =
∞∑
n=1

1
2n

max{|fn(x)− fn(y)|, 1} ≤
N∑
n=1

qn

2n
+

∞∑
n=N+1

1
2n

< ε,

i.e. (xk)k∈N also converges to x with respect to d. Conversely, assume that (xk)k∈N does not
converge to x with respect to τ , i.e. there exists a neighbourhood U of x such that xk ∈ X \U
for infinitely many k ∈ N. By Urysohn’s Lemma there exists f ∈ C(X) with f(x) = 1 and
f |X\U ≡ 0. By separability of C(X) there is j ∈ N with ‖f − fj‖ ≤ 1/3. For all k ∈ N with
xk ∈ X \ U we thus have

d(xk, x) ≥
1
2j
|fj(xk)− fj(x)|

≥ 1
2j

(|f(xk)− f(x)| − |fj(xk)− f(xk)| − |f(x)− fj(x)|)

≥ 1
3 · 2j

,

i.e. (xk)k∈N does not converge to x with respect to d either.

We now turn to some statements about maximal abelian sub-C∗-algebras:

Definition 5.1.5. Let A be a C∗-algebra. An abelian sub-C∗-algebra D of A is called a
maximal abelian subalgebra, or masa, if it is not properly contained in any other abelian
sub-C∗-algebra of A.

Remarks 5.1.6. (i) An application of Zorn’s Lemma shows that every abelian sub-C∗-
algebra of a C∗-algebra A is contained in a masa of A. Therefore, every C∗-algebra
contains a masa.

(ii) Let A be a C∗-algebra and let D be a masa of A. If an element a in A commutes with
every element in D, then a belongs to D.

For more information about masas the reader may consult [R1]. We have now collected
enough material to prove that C(T) embeds unitally into O2:

Proof of Lemma 5.1.1. Let D ⊆ O2 be a maximal abelian sub-C∗-algebra of O2. As 1O2

commutes with every element of O2 and hence of D, D contains 1O2 by Remark 5.1.6(ii).
Since D is a unital, commutative C∗-algebra, there exists a ∗-isomorphism ϕ : C(X) → D
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(automatically unital) for some compact Hausdorff space X. Being a sub-C∗-algebra of O2,
D is separable, and hence so is C(X). By Lemma 5.1.4 this implies that X is metrizable.

We show indirectly that X has no isolated points. Assume that there is an isolated point
x0 in X. Then the characteristic function χ{x0} of {x0} is continuous, and we can consider
p = ϕ(χ{x0}) in D. As χ2

{x0} = χ{x0} = χ∗{x0}, the element p is a projection in D. For every
d ∈ D choose fd ∈ C(X) such that ϕ(fd) = d and calculate

pdp = ϕ(χ{x0}fd)p = ϕ
(
fd(x0)χ{x0}

)
p = fd(x0)ϕ(χ{x0})p = fd(x0)p2 = fd(x0)p.

This shows that pDp = Cp. Using this and that D is abelian we obtain for each d ∈ D that
pd = dp = dp2 = pdp ∈ Cp, i.e. there is λ ∈ C such that pd = dp = λp. Therefore we can
calculate for any x ∈ pO2p and any d ∈ D that

xd = xpd = λxp = λx = λpx = dpx = dx.

Thus, every x ∈ pO2p commutes with every d ∈ D, and hence pO2p ⊆ D by Remark 5.1.6(ii).
But this implies pO2p = pDp = Cp, which is a contradiction as pO2p, being a hereditary
sub-C∗-algebra of O2, is purely infinite and Cp is finite.

Thus, X has no isolated points, and Corollary 5.1.3 yields the existence of a closed subset
X0 of X which is homeomorphic to the Cantor Set C. By Theorem 5.1.2(ii) there exists a
continuous, surjective function from C onto the interval [0, 1], and as X0 is homeomorphic to
C, this also yields a continuous, surjective function f0 : X0 → [0, 1]. By Tietze’s Extension
Theorem (see Proposition 1.5.8 and its proof in [Pe2]), the function f0 can be extended to a
continuous, surjective function f : X → [0, 1]. This can be used to define a function

h : X → T, x 7→ e2πif(x),

which is continuous and surjective as f is. Now we can define

ψ : C(T) → C(X), g 7→ g ◦ h.

It is easy to check that ψ is a unital ∗-homomorphism. To see that ψ is injective, take g ∈ C(T)
with ψ(g) = 0. Since h is surjective, this implies that g(t) = 0 for all t ∈ T, and hence g = 0.
Thus, ψ defines a unital embedding of C(T) into C(X) ∼= D ⊆ O2, i.e. C(T) embeds unitally
into O2.

Remark 5.1.7. Another way to obtain an embedding of C(T) into O2 is the following: Let s
be one of the isometries which generate O2 and show that σ(s+ s∗) = [−2, 2] (which requires
some work). Then C([−2, 2]) is isomorphic to C∗(s + s∗, 1O2), the sub-C∗-algebra of O2

generated by s+ s∗ and 1O2 , and one can construct embeddings

C(T) ↪→ C([−2, 2]) ↪→ O2.

5.2 A first embedding result for exact C∗-algebras

We now return to the main argument of this thesis and show how the results from Chapter 3
on obtaining approximate similarity via isometries and then approximate unitary equivalence
can be used to construct an embedding into O2.
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Lemma 5.2.1. Let A be a unital, separable, exact C∗-algebra and let ω be a free ultrafilter
on N. Suppose that there is a unital, injective ∗-homomorphism ϕ : A→ (O2)ω with a unital,
completely positive lift % : A→ l∞(O2), i.e. the diagram

`∞ (O2)

πω

��
A

%
;;xxxxxxxxx

ϕ
// (O2)ω

commutes. Then there is a unital, injective ∗-homomorphism from A into O2.

Notation. In the following proof let idn denote the identity map on Mn(C) for every n ∈ N.

Proof. Let (%k)k∈N be the sequence of component maps of %, i.e. %(a) = (%k(a))k∈N for each
a ∈ A. Then each %k is a unital, completely positive map by Lemma 4.1.8. By separability of
A choose an increasing sequence of finite dimensional operator systems (Ek)k∈N in A such that⋃
k∈NEk = A. Let (εk)k∈N be a summable sequence in R>0 and choose another summable,

decreasing sequence (δk)k∈N in R>0 such that Lemma 3.3.12 holds with εk and 4δk for each
k ∈ N.

We construct two increasing sequences (kj)j∈N and (lj)j∈N in N such that Proposition 3.2.1
can be applied to find sequences (ηj)j∈N and (σj)j∈N of unital, completely positive maps from
O2 into O2 such that the diagrams

Elj

%kj

��


 %kj+1

��1
11

11
11

1

O2 ηj

//____ O2

Elj+1

%kj+1

��


 %kj

��1
11

11
11

1

O2 σj

//____ O2

commute within δj and δj+1 on the unit spheres of Elj and Elj+1
, respectively. For each n ∈ N

let
πMn
ω : `∞ (Mn(O2)) → (Mn(O2))ω

denote the quotient map in the case of matrix algebras. As πω ◦ % = ϕ is an injective and
hence isometric ∗-homomorphism so is (πω ◦ %)(n), and hence also πMn

ω ◦
(
%
(n)
k

)
k∈N for every

n ∈ N by Corollary 4.6.3. As ω is an ultrafilter we have by Lemma 4.4.4 that

lim
ω
‖(idn ⊗ %k)(a)‖ = lim

ω
‖%(n)

k (a)‖ = ‖
(
πMn
ω ◦

(
%
(n)
k

)
k∈N

)
(a)‖ = ‖a‖ (5.2.1)

for all n ∈ N and for all a ∈Mn(A). Moreover we have

πω
(
(%k(ab)− %k(a)%k(b))k∈N

)
= (πω ◦ %) (ab)− (πω ◦ %) (a) (πω ◦ %) (b)
= ϕ(ab)− ϕ(a)ϕ(b) = 0

and therefore
lim
ω

(
%k(ab)− %k(a)%k(b)

)
= 0 for all a, b ∈ A. (5.2.2)

As each Ej is finite dimensional we can for each j ∈ N find a δj-dense finite subset Fj of the
unit sphere of Ej . Choose (Fj)j∈N to be increasing and set F̃j = Fj ∪F ∗j ∪{a∗a | a ∈ F ∪ F ∗}
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for each j ∈ N. Since each F̃j is contained in the unit sphere of A and since
⋃
k∈NEk = A

we can find an increasing sequence (lj)j∈N in N such that for each j ∈ N and for each b ∈ F̃j
there is an element a in the unit sphere of Elj with ‖b− a‖ ≤ δj . For each j ∈ N choose
nj = n(A,Elj , δj) as in Proposition 3.2.1, put rj = 1− (1 + δj/2)−1 and choose an rj/2-dense
finite subset Gj of the unit sphere of Mnj (Elj ).

For each j ∈ N we can now perform the following construction: For each a ∈ Gj use
(5.2.1) and (1 + δj/2)−1 + rj/2 < 1 = ‖a‖ to choose a set Xj,a ∈ ω such that

‖(idnj ⊗ %m)(a)‖ ≥
(

1 +
δj
2

)−1

+
rj
2

for all m ∈ Xj,a.

Put Xj =
⋂
a∈Gj

Xj,a to obtain a set Xj ∈ ω with

‖(idnj ⊗ %m)(a)‖ ≥
(

1 +
δj
2

)−1

+
rj
2

for all m ∈ Xj , a ∈ Gj . (5.2.3)

Using equations (5.2.2) and (5.2.1) with n = 1 we can in the same way find X̃j and X̂j in ω
such that

‖%m(ab)− %m(a)%m(b)‖ ≤ δj for all m ∈ X̃j , a, b ∈ Fj ∪ F ∗j (5.2.4)

and
‖%m(a)‖ ≥ ‖a‖ − δj for all m ∈ X̂j , a ∈ Fj . (5.2.5)

Now choose for each j ∈ N an element kj ∈ Xj ∩ X̃j ∩ X̂j such that (kj)j∈N is increasing,

which is possible because Xj ∩ X̃j ∩ X̂j ∈ ω and each set in a free filter is infinite.
For any j ∈ N and for any b in the unit sphere of Mnj (Elj ) there is an element a ∈ Gj

with ‖b− a‖ ≤ rj/2. Hence, by (5.2.3):

‖
(
idnj ⊗ %kj

)
(b)‖ ≥ ‖

(
idnj ⊗ %kj

)
(a)‖ − ‖

(
idnj ⊗ %kj

)
(b− a)‖

≥
(

1 +
δj
2

)−1

+
rj
2
− rj

2

=
(

1 +
δj
2

)−1

. (5.2.6)

For every x in the unit sphere of Elj this implies that

‖%kj
(x)‖ = ‖1Mnj (C) ⊗ %kj

(x)‖ = ‖
(
idnj ⊗ %kj

) (
1Mnj (C) ⊗ x

)
‖ ≥

(
1 +

δj
2

)−1

> 0.

Thus, %kj
|Elj

is injective, i.e. (%kj
|Elj

)−1 : %kj
(Elj ) → Elj is well-defined, and it follows from

(5.2.6) that

‖idnj ⊗ (%kj
|Elj

)−1‖ ≤ 1 +
δj
2

for each j ∈ N.

Moreover, each %kj
is nuclear as O2 is, and hence Proposition 3.2.1 yields for each j ∈ N

two unital, completely positive maps ηj : O2 → O2 and σj : O2 → O2 as indicated in the two
diagrams above such that

‖
(
ηj ◦ %kj

− %kj+1

)∣∣
Elj

‖ ≤ δj , ‖
(
σj ◦ %kj+1

− %kj

)∣∣
Elj+1

‖ ≤ δj+1. (5.2.7)
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As O2 is unital, simple, purely infinite and nuclear, all ηj and σj are nuclear and we can apply
Proposition 3.1.5 to find for each j ∈ N two isometries sj , tj ∈ O2 such that

‖s∗j%kj
(a)sj −

(
ηj ◦ %kj

)
(a)‖ ≤ δj , ‖t∗j%kj+1

(a)tj −
(
σj ◦ %kj+1

)
(a)‖ ≤ δj (5.2.8)

for all a ∈ F̃j . For any j ∈ N and for any a ∈ F̃j choose an element b in the unit sphere of
Elj with ‖b− a‖ ≤ δj and combine (5.2.7) and (5.2.8) to obtain

‖s∗j%kj
(a)sj − %kj+1

(a)‖
≤ ‖s∗j%kj

(a)sj −
(
ηj ◦ %kj

)
(a)‖+ ‖

(
ηj ◦ %kj

)
(a)−

(
ηj ◦ %kj

)
(b)‖+ ‖

(
ηj ◦ %kj

)
(b)− %kj+1

(b)‖
+ ‖%kj+1

(b)− %kj+1
(a)‖

≤ δj + ‖a− b‖+ δj + ‖b− a‖
≤ 4δj ,

‖t∗j%kj+1
(a)tj − %kj

(a)‖
≤ ‖t∗j%kj+1

(a)tj −
(
σj ◦ %kj+1

)
(a)‖+ ‖

(
σj ◦ %kj+1

)
(a)−

(
σj ◦ %kj+1

)
(b)‖

+ ‖
(
σj ◦ %kj+1

)
(b)− %kj

(b)‖+ ‖%kj
(b)− %kj

(a)‖
≤ δj + ‖a− b‖+ δj + ‖a− b‖
≤ 4δj

for all a ∈ F̃j . By (5.2.4) we also have

‖%kj
(a∗a)− %kj

(a∗)%kj
(a)‖ ≤ δj , ‖%kj+1

(a∗a)− %kj+1
(a∗)%kj+1

(a)‖ ≤ δj+1 ≤ δj

for all a ∈ Fj ∪ F ∗j , and so Lemma 3.3.12 provides us with a sequence of unitaries (uj)j∈N in
O2 such that

‖uj%kj+1
(a)u∗j − %kj

(a)‖ ≤ εj for all j ∈ N, a ∈ Fj .

Since each Fj is δj-dense in the unit sphere of Ej we can extend this as follows: For each
j ∈ N and for each b in the unit sphere of Ej choose a ∈ Fj with ‖b− a‖ ≤ δj and compute

‖uj%kj+1
(b)u∗j − %kj

(b)‖
≤ ‖uj%kj+1

(b)u∗j − uj%kj+1
(a)u∗j‖+ ‖uj%kj+1

(a)u∗j − %kj
(a)‖+ ‖%kj

(a)− %kj
(b)‖

≤ 2δj + εj
def= αj . (5.2.9)

The sequence (αj)j∈N is summable as (δj)j∈N and (εj)j∈N are. We want to define

ψ(a) = lim
j→∞

Ad (u1 · · ·uj) %kj+1
(a) for all a ∈ A, (5.2.10)

where
Ad(u) : O2 → O2, x 7→ uxu∗

for each unitary u ∈ O2 (notice that Ad(u) is a ∗-automorphism on O2 for each unitary
u ∈ O2 and that any product of unitaries is a unitary). We proceed to show that the limit in
(5.2.10) exists and that ψ then defines a unital, injective ∗-homomorphism from A into O2.
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Consider the set D of all a ∈ A for which the sequence
(
Ad (u1 · · ·uj) %kj+1

(a)
)
j∈N con-

verges. Since ‖Ad (u1 · · ·uj) %kj+1
‖ ≤ 1 for every j ∈ N it follows easily that D is closed.

Hence it suffices to show that
⋃
k∈NEk ⊆ D to conclude that D = A.

We obviously have 0 ∈ D, hence consider 0 6= b ∈
⋃
k∈NEk, say b ∈ El for some l ∈ N.

We show that
(
Ad (u1 · · ·uj) %kj+1

(b)
)
j∈N is a Cauchy sequence. For each m ∈ N≥l we have

b ∈ Em and hence by (5.2.9):

‖Ad (u1 · · ·um+1) %km+2(b)−Ad (u1 · · ·um) %km+1(b)‖
= ‖Ad (um+1) %km+2(b)− %km+1(b)‖

= ‖b‖‖Ad (um+1) %km+2

(
b
‖b‖

)
− %km+1

(
b
‖b‖

)
‖

≤ ‖b‖αm+1,

and therefore for all m,n ∈ N≥l with m < n

‖Ad (u1 · · ·un) %kn+1(b)−Ad (u1 · · ·um) %km+1(b)‖ = ‖Ad (um+1 · · ·un) %kn+1(b)− %km+1(b)‖

≤ ‖b‖
n∑

j=m+1

αj .

As (αj)j∈N is summable, this shows that
(
Ad (u1 · · ·uj) %kj+1

(b)
)
j∈N is a Cauchy sequence

and hence convergent in O2. Thus, D = A and we can define

ψ : A→ O2, a 7→ lim
j→∞

Ad (u1 · · ·uj) %kj+1
(a).

As each %k is a unital, completely positive map it is clear that ψ is linear, unital and self-
adjoint. Moreover we have

‖ψ(a)‖ = ‖ lim
j→∞

Ad (u1 · · ·uj) %kj+1
(a)‖ = lim

j→∞
‖%kj+1

(a)‖ ≤ ‖a‖

for each a ∈ A, i.e. ψ is bounded. Recall from (5.2.4) that we have

‖%kj
(ab)− %kj

(a)%kj
(b)‖ ≤ δj for all j ∈ N, a, b ∈ Fj ∪ F ∗j .

Let 0 6= a, b ∈
⋃
k∈NEk and choose l ∈ N such that a, b ∈ El. Write ã = a/‖a‖, b̃ = b/‖b‖

and choose for each j ∈ N≥l elements aj , bj ∈ Fj with ‖ã− aj‖ ≤ δj and ‖b̃− bj‖ ≤ δj to get

‖%kj
(ab)− %kj

(a)%kj
(b)‖ = ‖a‖‖b‖‖%kj

(ãb̃)− %kj
(ã)%kj

(b̃)‖

≤ ‖a‖‖b‖
(
‖%kj

(ãb̃)− %kj
(ajbj)‖+ ‖%kj

(ajbj)− %kj
(aj)%kj

(bj)‖

+ ‖%kj
(aj)%kj

(bj)− %kj
(ã)%kj

(b̃)‖
)

≤ ‖a‖‖b‖ (2δj + δj + 2δj) = ‖a‖‖b‖5δj

for each j ∈ N≥l and therefore

‖ψ(ab)− ψ(a)ψ(b)‖ = lim
j→∞

‖Ad (u1 · · ·uj)
(
%kj+1

(ab)− %kj+1
(a)%kj+1

(b)
)
‖

= lim
j→∞

‖%kj
(ab)− %kj

(a)%kj
(b)‖ ≤ ‖a‖‖b‖ lim

j→∞
5δj = 0.
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By continuity, this implies that ψ(ab) = ψ(a)ψ(b) for all a, b ∈ A.
We have shown now that ψ is a unital ∗-homomorphism from A into O2. For injectivity

it hence suffices to show that ψ is isometric. Let j ∈ N and let b be in the unit sphere of Ej .
For each l ∈ N≥j choose al ∈ Fl with ‖b− al‖ ≤ δl, and use (5.2.5) to see that

‖%kl
(b)‖ ≥ ‖%kl

(al)‖ − ‖%kl
(b− al)‖ ≥ ‖al‖ − δl − δl ≥ ‖b‖ − 3δl for all l ∈ N≥j .

This leads to

‖ψ(b)‖ = lim
l→∞

‖Ad (u1 · · ·ul) %kl+1
(b)‖ = lim

l→∞
‖%kl

(b)‖ ≥ lim
l→∞

(‖b‖ − 3δl) = ‖b‖.

As ψ is a ∗-homomorphism we have that ‖ψ(b)‖ ≤ ‖b‖ for all b ∈ A anyway, and it follows
that ‖ψ(b)‖ = ‖b‖ for any b in the unit sphere of

⋃
k∈NEk. Therefore,

‖ψ(b)‖ = ‖b‖‖ψ
(

b
‖b‖

)
‖ = ‖b‖ for all b ∈

⋃
k∈N

Ek,

which by continuity implies that ψ is isometric. This completes the proof.

5.3 Embedding quasidiagonal C∗-algebras into O2

In this section it will be shown how Lemma 5.2.1 can be applied to embed quasidiagonal
C∗-algebras into O2. We start with the definition of quasidiagonal C∗-algebras and state a
theorem of Voiculescu which yields a class of non-trivial examples.

5.3.1 Quasidiagonal C∗-algebras

Definition 5.3.1. A separable C∗-algebra A is said to be quasidiagonal if it admits a faithful
representation (H,π) on a separable Hilbert spaceH such that there exists a sequence (Pn)n∈N
of finite rank projections in B(H) with PnH ⊆ Pn+1H for all n ∈ N, and

lim
n→∞

‖Pn(x)− x‖ = 0 for all x ∈ H,

i.e. (Pn)n∈N converges to idH in the strong operator topology, and

lim
n→∞

‖Pnπ(a)− π(a)Pn‖ = 0 for all a ∈ A.

Remarks 5.3.2. (i) A sub-C∗-algebra of a quasidiagonal C∗-algebra is again quasidiago-
nal: Simply restrict the ∗-representation π in Definition 5.3.1 to the sub-C∗-algebra and
use the same sequence of projections.

(ii) Both the zero C∗-algebra and the complex numbers C are quasidiagonal.

The following result, which is Theorem 5 in [Vo], enables us to show that certain C∗-algebras
are quasidiagonal.

Theorem 5.3.3. Let A and B be C∗-algebras such that B homotopically dominates A, i.e.
there are ∗-homomorphisms f : A→ B and g : B → A with g◦f ∼h idA. If B is quasidiagonal
then so is A.
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Corollary 5.3.4. Let A be a C∗-algebra. Then both the cone CA and its unitization C̃A
are quasidiagonal.

Proof. As shown in Example 1.1.31 the cone CA is homotopy equivalent to the zero C∗-
algebra, and its unitization C̃A is homotopy equivalent to the unitization of the zero C∗-
algebra, which is C. It now follows from Remark 5.3.2(ii) and Theorem 5.3.3 that CA and
C̃A are quasidiagonal.

5.3.2 Embedding quasidiagonal C∗-algebras

Lemma 5.3.5 below is taken from [BK], where it is contained in Proposition 3.1.3 and the
remarks preceding it. Slightly modified it will help us to show that for any unital, separable,
exact and quasidiagonal C∗-algebra A there is a commutative diagram as in the assumptions
of Lemma 5.2.1, which then implies that A embeds unitally into O2.

Notation. To make this text more readable, the complex n×n-matrices are denoted by Mn

instead of Mn(C) in this section.

Lemma 5.3.5. Let A be a unital, separable, quasidiagonal C∗-algebra. Then there exists a
sequence of natural numbers (kn)n∈N such that there is a unital embedding

ϕ : A→
∏
n∈N

Mkn

/ ∑
n∈N

Mkn

which has a unital, completely positive lift, i.e. there exists a unital, completely positive map
% : A→

∏
n∈NMkn such that the diagram ∏

n∈NMkn

π

��
A

%

77nnnnnnnnnnnnnn
ϕ

//
∏
n∈NMkn/

∑
n∈NMkn

(5.3.1)

commutes, where π is the quotient map.

We show in the following how this statement can be slightly refined:

Lemma 5.3.6. Let A be a unital, separable, quasidiagonal C∗-algebra. Then there exist
(kn)n∈N , ϕ and % as in Lemma 5.3.5 with the additional property that

lim
n→∞

‖%n(a)‖ = ‖a‖ for all a ∈ A,

where %n : A→Mkn denotes the nth component map of % for every n ∈ N.

Proof. Choose (kn)n∈N , ϕ and % as in Lemma 5.3.5 and let %n denote the nth component
map of % for each n ∈ N. For all natural numbers n1 and n2 with n1 < n2 consider the map

%n1,n2 : A→
n2∑

n=n1

Mkn , a 7→ (%n1(a), . . . , %n2(a)) .

It follows from Lemma 4.1.8 that each %n1,n2 is a unital, completely positive map. This implies
that

‖%n1,n2(a)‖ ≤ ‖a‖ for all n1 < n2 ∈ N, a ∈ A,
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and thus
lim
n→∞
n>n1

‖%n1,n(a)‖ ≤ ‖a‖ for all n1 ∈ N, a ∈ A. (5.3.2)

On the other hand, we can use that

‖π(b)‖ = lim sup
n→∞

‖bn‖ for all b = (bn)n∈N ∈
∏
n∈N

Mkn

by Lemma 4.1.5, and that ϕ is isometric as it is injective to estimate

lim
n→∞
n>n1

‖%n1,n(a)‖ = lim
n→∞
n>n1

max
n1≤j≤n

‖%j(a)‖ = sup
n>n1

‖%n(a)‖ ≥ inf
k∈N

sup
n>k

‖%n(a)‖

= lim sup
n→∞

‖%n(a)‖ = ‖(π ◦ %)(a)‖ = ‖ϕ(a)‖ = ‖a‖

for all n1 ∈ N and for all a ∈ A. Together with (5.3.2) this shows that

lim
n→∞
n>n1

‖%n1,n(a)‖ = ‖a‖ for all n1 ∈ N, a ∈ A.

In particular, this shows that for every n1 ∈ N, for every ε > 0, and for every finite subset F
of A there exists N ∈ N>n1 such that

‖%n1,N (a)‖ ≥ ‖a‖ − ε for all a ∈ F. (5.3.3)

Let {a1, a2, . . . } be a countable dense subset of A. By (5.3.3) we can inductively construct a
strictly increasing sequence (nj)j∈N such that

‖%nj ,nj+1(ai)‖ ≥ ‖ai‖ −
1
j

for all j ∈ N, i ∈ N≤j ,

which implies
lim
j→∞

‖%nj ,nj+1(ai)‖ = ‖ai‖ for all i ∈ N.

As each %nj ,nj+1 is bounded, this extends to

lim
j→∞

‖%nj ,nj+1(a)‖ = ‖a‖ for all a ∈ A. (5.3.4)

For each j ∈ N put k̃j =
∑nj+1

n=nj
kn and define

ιj :
nj+1∑
n=nj

Mkn −→Mk̃j
,

(
anj , anj+1, . . . , anj+1

)
7−→


anj 0 · · · 0
0 anj+1 · · · 0
...

...
. . .

...
0 0 · · · anj+1

 ,

where each anl denotes a knl
× knl

-matrix (with brackets erased when embedded into Mk̃j
).

Then ιj is a unital, injective and hence isometric ∗-homomorphism for each j ∈ N, and so we
can define unital, completely positive maps

%̃j = ιj ◦ %nj ,nj+1 : A −→Mk̃j
.
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As ιj is isometric for each j ∈ N, equation (5.3.4) gives

lim
j→∞

‖%̃j(a)‖ = ‖a‖ for all a ∈ A. (5.3.5)

Let
π̃ :

∏
j∈N

Mk̃j
−→

∏
j∈N

Mk̃j

/∑
j∈N

Mk̃j

be the projection map and set

%̃ = (%̃j)j∈N : A −→
∏
j∈N

Mk̃j

and
ϕ̃ = π̃ ◦ %̃ : A −→

∏
j∈N

Mk̃j

/∑
j∈N

Mk̃j
.

Then %̃ is a unital, completely positive map as each %̃j is, and thus ϕ̃ also is a unital, completely
positive map. To prove the lemma it is left to show that ϕ̃ is an injective ∗-homomorphism.
To see that ϕ̃ is injective it suffices to show that it is isometric, which is easily done: Using
Lemma 4.1.5 we have for each a ∈ A that

‖ϕ̃(a)‖ = ‖(π̃ ◦ %̃)(a)‖ = lim sup
j→∞

‖%̃j(a)‖
(5.3.5)

= ‖a‖.

For multiplicativity take a, b ∈ A and estimate

‖ϕ̃(ab)− ϕ̃(a)ϕ̃(b)‖ = ‖π̃(%̃(ab)− %̃(a)%̃(b))‖ = lim sup
j→∞

‖%̃j(ab)− %̃j(a)%̃j(b)‖

= lim sup
j→∞

max
nj≤n≤nj+1

‖%n(ab)− %n(a)%n(b)‖

= inf
k∈N

sup
j≥k

max
nj≤n≤nj+1

‖%n(ab)− %n(a)%n(b)‖

= inf
k∈N

sup
j≥nk

‖%j(ab)− %j(a)%j(b)‖

≤ inf
k∈N

sup
j≥k

‖%j(ab)− %j(a)%j(b)‖

= lim sup
j→∞

‖%j(ab)− %j(a)%j(b)‖

= ‖π(%(ab)− %(a)%(b)‖ = ‖ϕ(ab)− ϕ(a)ϕ(b)‖ = 0,

which shows that ϕ̃ is multiplicative. Hence,
(
k̃j

)
j∈N, ϕ̃ and %̃ satisfy the statement of the

lemma.

Using these results we can now verify the assumptions of Lemma 5.2.1 for every unital,
separable, exact and quasidiagonal C∗-algebra.

Lemma 5.3.7. Let A be a unital, separable, exact, quasidiagonal C∗-algebra. Then A embeds
unitally into O2.
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Proof. As A is unital, separable and quasidiagonal, Lemma 5.3.6 provides us with a sequence
(kn)n∈N of natural numbers and a commutative diagram as in (5.3.1), where ϕ is a unital,
injective ∗-homomorphism and % is a unital, completely positive lift of ϕ such that the sequence
of component maps (%n)n∈N of % satisfies

lim
n→∞

‖%n(a)‖ = ‖a‖ for all a ∈ A.

Let ω be a free ultrafilter on N, then

lim
ω
‖%n(a)‖ = lim

n→∞
‖%n(a)‖ = ‖a‖ for all a ∈ A (5.3.6)

by Lemma 4.3.5(iv). As shown in section 2.3, there is for each n ∈ N a unital, injective
∗-homomorphism ιn : Mkn → O2. We use these to define

ι :
∏
n∈N

Mkn → `∞(O2),
(
(anij)

)
n∈N 7→

(
ιn(anij)

)
n∈N ,

where each (anij) stands for a kn × kn-matrix. Then ι is a unital, injective ∗-homomorphism
as each ιn is. In the following we show that there is a unital ∗-homomorphism

ῑ :
∏
n∈N

Mkn

/ ∑
n∈N

Mkn → (O2)ω

such that the diagram ∏
n∈NMkn

ι //

π

��

`∞(O2)

πω

��
A

%

88pppppppppppppppppp
ϕ

//
∏
n∈NMkn

/∑
n∈NMkn ι

//____ (O2)ω

(5.3.7)

commutes. By the homomorphism theorem it suffices to show that
∑

n∈NMkn ⊆ ker(πω ◦ ι).
Let thus a = (an)n∈N ∈

∑
n∈NMkn . By Lemma 4.1.5 this implies that limn→∞‖an‖ = 0,

and as ιn is injective and thus isometric for each n ∈ N, and as ω is a free ultrafilter, we can
conclude that

‖(πω ◦ ι)(a)‖ = lim
ω
‖ιn(an)‖ = lim

n→∞
‖an‖ = 0,

and thus a ∈ ker(πω ◦ ι). Hence there exists a ∗-homomorphism

ῑ :
∏
n∈N

Mkn

/ ∑
n∈N

Mkn → (O2)ω

that makes the diagram (5.3.7) commutative, and as both ι and πω are unital, so is ῑ.
Using Lemma 4.4.4 and that each ιn is isometric we can show for each a ∈ A that

‖(ῑ ◦ ϕ)(a)‖ = ‖(πω ◦ ι ◦ %)(a)‖ = lim
ω
‖(ιn ◦ %n)(a)‖ = lim

ω
‖%n(a)‖

(5.3.6)
= ‖a‖,

i.e. ῑ ◦ ϕ is isometric and hence injective. Altogether, we have obtained a unital, injective
∗-homomorphism ῑ ◦ϕ : A→ (O2)ω with a unital, completely positive lift ι ◦ % : A→ `∞(O2),
and as A is assumed to be exact it follows from Lemma 5.2.1 that there exists a unital,
injective ∗-homomorphism from A into O2.
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Chapter 6

Discrete crossed products

In the proof of Kirchberg’s Embedding Theorem we will need some results about crossed
products by the integers. Those results will be proved here, but the underlying facts about
the definition of crossed products and some first results are stated here without proof. For a
more detailed treatment of this material the reader may consult [Da], for instance.

Sections 6.1 and 6.2 mainly deal with the definition of crossed products. In Section 6.3
we show how, in some cases, an injective ∗-homomorphism between C∗-algebras A and B
can be extended to an injective ∗-homomorphism from A oα Z into B. This result will be
applied both in the proof of the embedding theorem and in Section 6.4 where we deal with
crossed products of minimal tensor products. In Section 6.5 we then prove the existence of a
non-zero projection in C0(R) oτ Z, where τ is the left-shift on C0(R), and use this to embed
a C∗-algebra A into (C0(R) oτ Z)⊗A.

6.1 Crossed products by countable, discrete groups

Though the statements involved in the proof of Kirchberg’s Embedding Theorem only deal
with crossed products by the integers, it seems to make more sense to describe the construction
of a crossed product in the case of a general countable, discrete group.

Definition 6.1.1. A C∗-dynamical system is a triple (A,G, α) consisting of a C∗-algebra
A, a countable, discrete group G and a group homomorphism α from G into the group of
∗-automorphisms on A, Aut(A). The group homomorphism α is often called a (group) action
of G on A, and we denote α(g) by αg for all g ∈ G.

Definition 6.1.2. Let (A,G, α) be a C∗-dynamical system and let H be a Hilbert space. A
pair of maps (πA, πG) is called a covariant representation of (A,G, α) if the following hold:
The map πA is a ∗-representation of A on H, the map πG is a group homomorphism from G
into the unitary group U(H) in B(H), and πA and πG satisfy the following condition:

πG(g)πA(a)πG(g)∗ = πA(αg(a)) for all a ∈ A, g ∈ G.

Remark 6.1.3. Each C∗-dynamical system has a covariant representation, see [Da] for its
construction.

Proposition 6.1.4. Let (A,G, α) be a C∗-dynamical system and define

AG =
{ ∑
g∈G

agg
∣∣ ag ∈ A and ag = 0 for all but finitely many g ∈ G

}
.
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By establishing the formal rules

gag−1 = αg(a) for all a ∈ A, g ∈ G

for multiplication and

(ag)∗ = α−1
g (a∗)g−1 = g−1a∗gg−1 = g−1a∗ for all a ∈ A, g ∈ G

for involution the set AG is turned into a ∗-algebra.

Remark 6.1.5. To see how multiplication and involution work for general elements of AG,
let a =

∑
g∈G agg and b =

∑
g∈G bgg be elements of AG and compute

ab =
∑
g∈G

∑
h∈G

aggbhh =
∑
g∈G

∑
h∈G

aggbhg
−1gh =

∑
g∈G

∑
h∈G

agαg(bh)gh =
∑
s∈G

∑
g∈G

agαg(bg−1s)s

and

a∗ =
∑
g∈G

g−1a∗g =
∑
g∈G

α−1
g (a∗g)g

−1 =
∑
g∈G

αg(a∗g−1)g.

Remark 6.1.6. Every covariant representation (πA, πG) of a C∗-dynamical system (A,G, α)
on a Hilbert space H yields a ∗-representation π : AG→ B(H) defined by

π
( ∑
g∈G

agg
)

=
∑
g∈G

πA(ag)πG(g) for all
∑
g∈G

agg ∈ AG.

Proposition/Definition 6.1.7. Let (A,G, α) be a C∗-dynamical system. For each a ∈ AG
the supremum in

‖a‖ = sup
{
‖π(a)‖

∣∣ π : AG→ B(H) is a ∗-representation of AG on H
}
.

exists in R, and this defines a C∗-norm on AG. The crossed product A oα G of A by G is
defined to be the completion of AG with respect to this norm.

Remark 6.1.8. One can define an embedding ι : A→ AoαG, a 7→ ae where e is the neutral
element in G. With this in mind we shall treat A as a sub-C∗-algebra of A oα G in what
follows.

The crossed product Aoα G has the following universal property:

Remark 6.1.9. Let (A,G, α) be a C∗-dynamical system. If (πA, πG) is any covariant rep-
resentation of (A,G, α), then there is a ∗-representation π of Aoα G on C∗ ((πA(A), πG(G))
defined by

π
( ∑
g∈G

agg
)

=
∑
g∈G

πA(ag)πG(g) for all
∑
g∈G

agg ∈ AG.

The existence of such a ∗-representation of AG is just Remark 6.1.6, and the definition of
A oα G and its norm implies that every ∗-representation of AG can be extended to a ∗-
representation of A×α G.
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Remark 6.1.10. Let (A,G, α) be a C∗-dynamical system. Recall from Remark 1.1.16 that
Aoα G is contained as an essential ideal in its multiplier algebra M(Aoα G). There exists
a group homomorphism

U : G→M(Aoα G), g 7→ ug

such that
ag = aug for all a ∈ A, g ∈ G.

If A is unital, then so is Aoα G with unit 1Ae, and U can be defined by U(g) = 1Ag for all
g ∈ G.

6.2 Crossed products by Z

Definition 6.2.1. Let A be a C∗-algebra, let α be a ∗-automorphism on A and consider the
group homomorphism α̃ : Z → Aut(A), n 7→ αn. The crossed product A o

eα Z is called the
crossed product of A by Z and is denoted by AoαZ. Similarly, we write the dynamical system
(A,Z, α̃) as (A,Z, α) and call α an action on A.

Remark 6.2.2. Let A and α be as in Definition 6.2.1. By Remark 6.1.10 there exists a group
homomorphism U : Z →M(Aoα Z) with an = aU(n) for all n ∈ Z. Set u = U(1), then u is
a unitary in M(Aoα Z) with

an = aU(n) = aun for all a ∈ A, n ∈ Z.

It is very common to write the elements of AZ in the form
∑

n∈Z anu
n instead of

∑
n∈Z ann,

and we shall do so as well. In this notation, the formal rules for multiplication and involution
become

uau∗ = α(a), (au)∗ = u∗a for all a ∈ A.

We refer to u as the unitary element implementing the action α.

We now use the universal property of the crossed product to deduce a statement about crossed
products of isomorphic C∗-algebras:

Lemma 6.2.3. Let A and B be isomorphic C∗-algebras with a ∗-isomorphism ϕ : A → B,
let α be a ∗-automorphism on A and let β be a ∗-automorphism on B. If

β ◦ ϕ = ϕ ◦ α, (6.2.1)

i.e. if the diagram

A

α

��

ϕ // B

β

��
A ϕ

// B

commutes, then
Aoα Z ∼= B oβ Z.
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Proof. Let u be a unitary in M(A oα Z) implementing the action α and let v be a unitary
in M(B oβ Z) implementing the action β. Consider the map π : Z →M(B oβ Z), n 7→ vn.
Then π is a group homomorphism and the pair (ϕ, π) defines a covariant representation of
Aoα Z on M(B oβ Z), because

π(n)ϕ(a)π(n)∗ = vnϕ(a)(v∗)n = βn(ϕ(a))
(6.2.1)

= ϕ(αn(a)) for all a ∈ A.

By the universal property (Remark 6.1.9) of A oα Z this gives rise to a ∗-homomorphism
ψ : Aoα Z →M(B oβ Z) defined by

ψ
( ∑
n∈Z

anu
n
)

=
∑
n∈Z

ϕ(an)vn for all
∑
n∈Z

anu
n ∈ AZ.

Note that ψ(AZ) ⊆ BZ and therefore

ψ(Aoα Z) = ψ
(
AZ

)
⊆ ψ(AZ) ⊆ BZ = B oβ Z,

i.e. ψ is a ∗-homomorphism from A oα Z into B oβ Z. As β ◦ ϕ = ϕ ◦ α clearly implies
α ◦ ϕ−1 = ϕ−1 ◦ β we can repeat this reasoning with A and B interchanged to obtain a
∗-homomorphism η : B oβ Z → Aoα Z defined by

η
( ∑
n∈Z

bnv
n
)

=
∑
n∈Z

ϕ−1(bn)un for all
∑
n∈Z

bnv
n ∈ BZ.

Clearly, η = ψ−1, and thus ψ is a ∗-isomorphism between Aoα Z and B oβ Z.

Example 6.2.4. Let A be a C∗-algebra. For each f ∈ C0(R) and for each a ∈ A define a
map in C0(R, A) by

fa : R → A, t 7→ f(t)a,

and use this to define a map
ϕ : C0(R)⊗A→ C0(R, A)

by
ϕ(f ⊗ a) = fa for all f ∈ C0(R), a ∈ A.

Then ϕ is a ∗-isomorphism, see Theorem 6.4.17 in [Mu]. Let τ : C0(R) → C0(R) be the so-
called left-shift on C0(R), defined by τ(f)(t) = f(t+1) for all f ∈ C0(R) and all t ∈ R. Let τA
be defined correspondingly on C0(R, A). Then τ and τA are ∗-automorphisms on C0(R) and
C0(R, A), respectively, and as C0(R) is nuclear, τ ⊗ idA is a ∗-automorphism on C0(R) ⊗ A
by Lemma 1.5.2. For each elementary tensor f ⊗ a in C0(R)⊗A we can calculate

(τA ◦ ϕ)(f ⊗ a) = τA(fa) = f(·+ 1)a = ϕ(f(·+ 1)⊗ a)
= ϕ(τ(f)⊗ a) = (ϕ ◦ (τ ⊗ idA))(f ⊗ a),

and as both τA◦ϕ and ϕ◦(τ⊗idA) are ∗-homomorphisms it follows by linearity and continuity
that τA ◦ ϕ = ϕ ◦ (τ ⊗ idA). Thus, by Lemma 6.2.3,

(C0(R)⊗A) oτ⊗idA
Z ∼= C0(R, A) oτA Z.
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6.3 Extending injective ∗-homomorphisms to crossed products

In the following it will be shown how, on certain assumptions, a ∗-homomorphism between
C∗-algebras A and B can be extended to a ∗-homomorphism from A oα Z into B. For
our purposes it will also be necessary to extend injective ∗-homomorphisms without loosing
injectivity, and for this we need the notion of faithful expectations.

Definition 6.3.1. Let A be a C∗-algebra and let B be a sub-C∗-algebra of A. An expectation
of A onto B is a positive linear map E : A→ B which is surjective and satisfies E2 = E. An
expectation E is said to be faithful if

E(a) = 0 =⇒ a = 0 for all positive a ∈ A.

The following remark is extracted from Theorem VIII.2.1 in [Da] and its proof.

Remark 6.3.2. Let A be a C∗-algebra, let α be a ∗-automorphism on A and let u be a
unitary in M(A oα Z) which implements the action α. In the following we exploit the fact
that u can be replaced by tu for any t ∈ T: For each t ∈ T define a map %t : AoαZ → AoαZ
by

%t

( ∑
n∈Z

anu
n
)

=
∑
n∈Z

tnanu
n for all

∑
n∈Z

anu
n ∈ AZ.

Then each %t is a ∗-automorphism on Aoα Z, and the map

% : T → Aut(Aoα Z), t 7→ %t

is a group homomorphism. Moreover, % is point-wise continuous, i.e. the map

T → Aoα Z, t 7→ %t(x)

is continuous for each x ∈ Aoα Z. Hence we can define a map E on Aoα Z by

E(x) =
1
2π

∫
T
%t(x)dt for all x ∈ Aoα Z. (6.3.1)

Notice that E satisfies

E
( ∑
n∈Z

anu
n
)

= a0 for all
∑
n∈Z

anu
n ∈ AZ,

because ∫
T
tndt =

{
2π, if n = 0
0 , else

. (6.3.2)

It is shown in the reference mentioned above that E defines a faithful expectation of Aoα Z
onto A.

We can now prove the following extension result:

Lemma 6.3.3. Let A and B be C∗-algebras, let α be a ∗-automorphism on A, let u be a
unitary inM(AoαZ) which implements the action α and let ϕ : A→ B be a ∗-homomorphism.
Suppose there is a unitary v ∈M(B) such that

vϕ(a)v∗ = ϕ(α(a)) for all a ∈ A. (6.3.3)
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Then there is a ∗-homomorphism ψ : Aoα Z → B defined by

ψ
( ∑
n∈Z

anu
n
)

=
∑
n∈Z

ϕ(an)vn for all
∑
n∈Z

anu
n ∈ AZ. (6.3.4)

If, additionally, there is a group homomorphism γ : T → Aut(B), t 7→ γt such that

(i) the map T → B, t 7→ γt(b) is continuous for each b ∈ B,

(ii) γt(ϕ(a)vn) = tnϕ(a)vn for all t ∈ T, a ∈ A and all n ∈ Z,

then ψ is injective if ϕ is.

Proof. Assumption (6.3.3) enables us to define a covariant representation (ϕ, π) of (A,Z, α)
on M(B) where π is defined by π(u) = v. By the universal property of crossed products
this yields a ∗-homomorphism ψ : A oα Z → M(B) defined by (6.3.4) above. To see that
Im(ψ) ⊆ B note that ψ(AZ) ⊆ B as B is an ideal in M(B), and therefore

ψ(Aoα Z) = ψ
(
AZ

)
⊆ ψ(AZ) ⊆ B.

Thus, we have obtained the desired ∗-homomorphism ψ : Aoα Z → B.
Assume now that ϕ is injective and that there is a group homomorphism γ : T → Aut(B),

t 7→ γt satisfying the assumptions in (i) and (ii). We use the maps γt to define a map on B
which corresponds to the faithful expectation E on Aoα Z as given in (6.3.1): Define

F : B → B, b 7→ 1
2π

∫
T
γt(b)dt.

We show that the diagram

Aoα Z

E

��

ψ // B

F

��
A ϕ

// B

commutes: Let
∑

n∈Z anu
n ∈ AZ and use assumption (ii) and E

(∑
n∈Z anu

n
)

= a0 to com-
pute

(F ◦ ψ)
( ∑
n∈Z

anu
n
)

= F
( ∑
n∈Z

ϕ(an)vn
)

=
∑
n∈Z

F (ϕ(an)vn)

=
1
2π

∑
n∈Z

∫
T
γt (ϕ(an)vn) dt =

1
2π

∑
n∈Z

∫
T
tnϕ(an)vndt

=
1
2π

∑
n∈Z

ϕ(an)vn
∫

T
tndt

(6.3.2)
= ϕ(a0)

= (ϕ ◦ E)
( ∑
n∈Z

anu
n
)
,

which, as both F ◦ψ and ϕ◦E are norm-decreasing, implies F ◦ψ = ϕ◦E. Let now x ∈ AoαZ
with ψ(x) = 0. Then also ψ(x∗x) = 0 and (F ◦ ψ)(x∗x) = 0, and hence (ϕ ◦E)(x∗x) = 0. As
ϕ is injective, this implies E(x∗x) = 0, and as E is a faithful expectation this forces x to be
zero, which completes the proof.
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Corollary 6.3.4. Let A and B be C∗-algebras such that A embeds into B. Let α ∈ Aut(A)
and β ∈ Aut(B) be ∗-automorphisms with β|A = α. Then there exists an injective ∗-
homomorphism from Aoα Z into B oβ Z.

Proof. We apply Lemma 6.3.3 to the embedding ι : A → B oβ Z. Let v be a unitary in
M(B oβ Z) which implements the action β, i.e. vbv∗ = β(b) for all b ∈ B. It follows that

vι(a)v∗ = β(ι(a)) = α(a) = ι(α(a)),

and hence Lemma 6.3.3 yields a ∗-homomorphism ϕ : Aoα Z → B oβ Z which extends ι. By
Remark 6.3.2 there exists a group homomorphism γ : T → Aut(B oβ Z), t 7→ γt such that
the map t 7→ γt(x) is continuous for each x ∈ B oβ Z and such that

γt(bvn) = tnbvn for all t ∈ T, b ∈ B, n ∈ Z.

In particular,
γt (ι(a)vn) = tnι(a)vn for all t ∈ T, a ∈ A, n ∈ Z,

and it follows from Lemma 6.3.3 that ϕ is injective.

When we apply Lemma 6.3.3 in the proof of Kirchberg’s Embedding Theorem we shall need
the following property of C(T):

Lemma 6.3.5. There exists a group homomorphism

% : T → Aut(C(T)), t 7→ %t

such that the map
T → C(T), t 7→ %t(f)

is continuous for each f ∈ C(T).

Proof. By the Stone-Weierstraß Theorem the C∗-algebra C(T) is generated by the embedding
of T into C, which we shall denote by z, and its adjoint z∗ : T → C, t 7→ t̄. We can
set %t(z) = tz and %t(z∗) = t̄z∗ for each t ∈ [0, 1] and extend this to a ∗-homomorphism
%t : C(T) → C(T). For all s, t ∈ [0, 1], we have %st = %s ◦ %t, and hence the inverse of %t is
given by %1/t = %t̄. This shows that

% : T → Aut(C(T)), t 7→ %t

is well-defined and a group homomorphism. For pointwise continuity on C(T) it is by
Lemma 1.1.27 sufficient that t 7→ %t(z) = tz and t 7→ %t(z∗) = t̄z∗ are continuous, which
is clearly the case.

6.4 Crossed products and tensor products

In this section it will be shown that the crossed product of a minimal tensor product A⊗minB
by Z equals the minimal tensor product of AoαZ and B. In the proof we shall need a corollary
to the following statement about minimal tensor products of essential ideals:

Lemma 6.4.1. Let A and B be C∗-algebras and let I and J be essential ideals in A and B,
respectively. Then I ⊗min J is an essential ideal in A⊗min B.
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Proof. It is easy to show that I ⊗min J is an ideal in A⊗min B. By Lemma 1.1.18 there exist
faithful representations (HA, πA) of A and (HB, πB) of B with

[πA(I)HA] = HA, [πB(I)HB] = HB. (6.4.1)

Lemma 1.5.1 on representations of minimal tensor products yields a faithful ∗-representation

πA ⊗ πB : A⊗min B → B(HA ⊗HB)

such that
(πA ⊗ πB)(a⊗ b) = πA(a)⊗ πB(b) for all a ∈ A, b ∈ B.

Again by Lemma 1.1.18, I ⊗min J is essential in A⊗min B if

[(πA ⊗ πB)(I ⊗min J)(HA ⊗HB)] = HA ⊗HB.

As the left hand side is a closed linear subspace of HA ⊗ HB it suffices to show that any
elementary tensor x⊗y ∈ HA⊗HB is contained in [(πA⊗πB)(I⊗min J)(HA⊗HB)]. Let thus
x⊗y ∈ HA⊗HB and let ε > 0. Choose δ > 0 such that (‖x‖+‖y‖+δ)δ < ε. By (6.4.1) there
exist n ∈ N and elements a1, . . . , an ∈ I, b1, . . . bn ∈ J and ξ1, . . . , ξn ∈ HA, η1, . . . ηn ∈ HB

such that

‖x−
n∑
i=1

πA(ai)ξi‖ < δ, ‖y −
n∑
i=1

πB(bi)ηi‖ < δ.

Then
n∑
i=1

πA(ai)ξi ⊗
n∑
j=1

πB(bj)ηj =
n∑

i,j=1

(πA ⊗ πB) (ai ⊗ bj) (ξi ⊗ ηj)

is contained in the linear span of (πA ⊗ πB)(I ⊗min J)(HA ⊗HB), and

‖x⊗ y −
n∑
i=1

πA(ai)ξi ⊗
n∑
j=1

πB(bj)ηj‖

≤ ‖x‖‖y −
n∑
j=1

πB(bj)ηj‖+ ‖x−
n∑
i=1

πA(ai)ξi‖‖
n∑
j=1

πB(bj)ηj‖

< ‖x‖δ + δ(‖y‖+ δ) < ε,

which completes the proof.

Corollary 6.4.2. Let A and B be C∗-algebras. Then there exists a unital ∗-homomorphism
from M(A) ⊗min M(B) into M (A⊗min B) that extends the inclusion of A ⊗min B into
M(A⊗min B).

Proof. By Remark 1.1.16 we know that A
ess
C M(A) and B

ess
C M(B), which by Lemma 6.4.1

implies that
A⊗min B

ess
C M(A)⊗min M(B).

Lemma 1.1.17 yields a unital embedding of M(A)⊗minM(B) into M(A⊗minB) as required.
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Lemma 6.4.3. Let A and B be C∗-algebras and let α be a ∗-automorphism on A. Then

(A⊗min B) oα⊗idB
Z ∼= (Aoα Z)⊗min B.

Proof. Notice that α⊗ idB is a ∗-automorphism on A⊗min B by Lemma 1.5.2. Let ι denote
the embedding of A into the crossed product Aoα Z and put

ϕ = ι⊗ idB : A⊗min B → (Aoα Z)⊗min B.

Again by Lemma 1.5.2, ϕ is an injective ∗-homomorphism. Let u be a unitary in M(Aoα Z)
which implements the action α on A, and let v′ = u⊗ 1M(B). Then v′ is a unitary element in
M(Aoα Z)⊗min M(B), and, via the unital embedding

κ : M(Aoα Z)⊗min M(B) −→M((Aoα Z)⊗min B)

from Corollary 6.4.2, the element v = κ(v′) is a unitary in M ((Aoα Z)⊗min B). Since κ
extends the inclusion of (AoαZ)⊗minB into M((AoαZ)⊗minB), we can for each elementary
tensor a⊗ b ∈ A⊗min B calculate

vϕ(a⊗ b)v∗ = κ
(
(u⊗ 1M(B))(a⊗ b)(u∗ ⊗ 1M(B))

)
= κ (uau∗ ⊗ b) = uau∗ ⊗ b

= α(a)⊗ b = (ι⊗ idB)(α(a)⊗ b) = ϕ(α(a)⊗ b) = ϕ ((α⊗ idB)(a⊗ b)) ,

which extends to

vϕ(x)v∗ = ϕ ((α⊗ idB)(x)) for all x ∈ A⊗min B.

Let w be a unitary element in M(A ⊗min B) which implements the action α ⊗ idB. By
Lemma 6.3.3 there exists a ∗-homomorphism

ψ : (A⊗min B) oα⊗idB
Z → (Aoα Z)⊗min B,

given by
ψ ((a⊗ b)wn) = ϕ(a⊗ b)vn for all a ∈ A, b ∈ B, n ∈ Z.

We show next that ψ is injective. By Remark 6.3.2 there exists a group homomorphism
% : T → Aut(A oα Z), t 7→ %t such that the map T → A oα Z, t 7→ %t(x) is continuous for
each x ∈ Aoα Z and

%t(aun) = tnaun for all t ∈ T, a ∈ A, n ∈ Z.

Define γt = %t⊗ idB for each t ∈ T. Then each γt is a ∗-automorphism as %t and idB are, and

γ : T → Aut((Aoα Z)⊗min B), t 7→ γt

is a group homomorphism. To check that the map t 7→ γt(z) is continuous for each z in
(Aoα Z)⊗min B it suffices to show this for any elementary tensor z = a⊗ b, because the set{

z ∈ (Aoα Z)⊗min B
∣∣ t 7→ γt(z) is continuous

}
is a sub-C∗-algebra of (A oα Z) ⊗min B by Lemma 1.1.27. Thus, let a ∈ A oα Z and b ∈ B.
Then for all t, s ∈ T we have

‖γt(a⊗ b)− γs(a⊗ b)‖ = ‖%t(a)⊗ b− %s(a)⊗ b‖ = ‖%t(a)− %s(a)‖‖b‖,
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and hence continuity of t 7→ γt(a⊗ b) follows from continuity of t 7→ %t(a). Moreover, we have

ϕ(a⊗ b)vn = κ
(
ϕ(a⊗ b)(u⊗ 1M(B))

n
)

= κ (aun ⊗ b) = aun ⊗ b, (6.4.2)

and thus

γt (ϕ(a⊗ b)vn) = (%t ⊗ idB) (aun ⊗ b) = tnaun ⊗ b = tn(aun ⊗ b) = tnϕ(a⊗ b)vn

for all t ∈ T, for all elementary tensors a⊗ b ∈ A⊗minB and for all n ∈ Z. As γt(ϕ(·)vn) and
tnϕ(·)vn are norm-decreasing for all t ∈ T and all n ∈ Z, this extends to

γt (ϕ(x)vn) = tnϕ(x)vn for all t ∈ T, x ∈ A⊗min B, n ∈ Z.

Now it follows from Lemma 6.3.3 that ψ is injective, and we proceed to show that ψ is
surjective. For this it suffices to show that{

aun ⊗ b
∣∣ a ∈ A, n ∈ Z, b ∈ B

}
⊆ Im(ψ),

because the set on the left hand side generates (A oα Z) ⊗min B and Im(ψ) is a closed sub-
C∗-algebra of (Aoα Z)⊗min B as ψ is a ∗-homomorphism. Let now a ∈ A, n ∈ Z and b ∈ B
and calculate

aun ⊗ b
(6.4.2)

= ϕ(a⊗ b)vn = ψ((a⊗ b)wn)

to see that aun⊗b is an element of Im(ψ). Altogether we have shown that ψ is a ∗-isomorphism
between (A⊗min B) oα⊗idB

Z and (Aoα Z)⊗min B which completes the proof.

6.5 A non-zero projection in C0(R) oτ Z

In this section we perform the first step of the proof of Kirchberg’s Embedding Theorem,
namely the embedding of a C∗-algebra A into (C0(R) oτ Z) ⊗ A, where τ is the left shift
on C0(R). To obtain this embedding we prove the existence of a non-zero projection in
C0(R) oτ Z.

Lemma 6.5.1. Let A be a C∗-algebra and let τ : C0(R) → C0(R), f 7→ f(· + 1) be the
left-shift on C0(R). Then there exists a non-zero projection in C0(R) oτ Z.

Proof. We explicitly construct a projection p in C0(R) oτ Z as follows: Define two functions
f and g in C0(R) by

f : R → R, t 7→


1 + t, t ∈ [−1, 0]
1− t, t ∈ [0, 1]

0 , else

and

g : R → R, t 7→
{ √

f(t)− f(t)2, t ∈ [−1, 0]
0 , else

.

Then f and g are non-zero positive elements in C0(R). Let u be the unitary in M(C0(R)oτ Z)
with uhu∗ = τ(h) for all h ∈ C0(R) and put p = gu+ f + u∗g. Let E : C0(R) oτ Z → C0(R)
be a faithful expectation as in Remark 6.3.2. Then E(p) = f 6= 0, which implies that p is a
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non-zero element in C0(R) oτ Z. Using that f and g are self-adjoint one can easily compute
that

p∗ = u∗g + f∗ + g∗u = u∗g + f + gu = p,

i.e. p is self-adjoint. Before checking that p2 = p it is helpful to have a closer look at some
expressions which are going to appear in the calculation: We have τ(g)|[−1,0] = 0 and therefore
gτ(g) = 0, and we have

τ(f)(t) =


2 + t, t ∈ [−2,−1]
−t , t ∈ [−1, 0]
0 , else

and hence (τ(f) + f)|[−1,0] ≡ 1. Note that τ−1 is given by τ−1(h)(t) = h(t − 1) for all
h ∈ C0(R) and all t ∈ R. We therefore obtain

τ−1(g2)(t) = g2(t− 1)

=
{
f(t− 1)− f(t− 1)2, t ∈ [0, 1]

0 , else
=

{
f(t)− f(t)2, t ∈ [0, 1]

0 , else

where it is used that

f(t− 1)− f(t− 1)2 = t− t2 = (1− t)− (1− t)2 = f(t)− f(t)2 for all t ∈ [0, 1].

Combined with

g2(t)
{
f(t)− f(t)2, t ∈ [−1, 0]

0 , else

this yields that g2 + f2 + τ−1(g2) = f . Now we can calculate

p2 = (gu+ f + u∗g)(gu+ f + u∗g)

= gugu∗u2 + gufu∗u+ guu∗guu∗ + fgu+ f2 + u∗ufu∗g + u∗ggu+ u∗gf + (u∗)2ugu∗g

= gτ(g)u2 + gτ(f)u+ g2 + fgu+ f2 + u∗τ(f)g + τ−1(g2) + u∗gf + (u∗)2τ(g)g

= (τ(f) + f) gu+ g2 + f2 + τ−1(g2) + u∗g (τ(f) + f)
= gu+ f + u∗g = p,

which shows that p is a projection in C0(R) oτ Z.

Corollary 6.5.2. Let A be a C∗-algebra and let τ : C0(R) → C0(R), f 7→ f(· + 1) be the
left-shift on C0(R). Then there exists an injective ∗-homomorphism ι : A→ (C0(R)oτ Z)⊗A.

Proof. This follows immediately from the preceding lemma and Remark 1.5.3.
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Chapter 7

Kirchberg’s Embedding Theorem

Kirchberg’s Exact Embedding Theorem states that a separable C∗-algebra is exact if and only
if it admits an embedding into O2. We prove here that every separable, nuclear C∗-algebra
can be embedded into O2, and discuss in the end of Section 7.1 how this proof would have to
be adapted in the exact case. Section 7.2 deals with an important consequence of Kirchberg’s
Embedding Theorem, namely, the existence of injective ∗-homomorphisms between any two
Kirchberg algebras.

7.1 Kirchberg’s Embedding Theorem

Theorem 7.1.1 (Kirchberg’s Embedding Theorem). For every separable, nuclear C∗-algebra
A there exists an injective ∗-homomorphism ι : A → O2. If A is unital, the embedding ι can
be chosen to be unital.

Proof. Let A be a separable, nuclear C∗-algebra. We do not embed A into O2 directly, but
embed A into another C∗-algebra which can be embedded into O2 using the tools we have
collected so far. Let τ : C0(R) → C0(R) be the ∗-automorphism given by τ(f) = f(· + 1)
for all f ∈ C0(R), and let τA be the corresponding ∗-automorphism on C0(R, A). Combining
Corollary 6.5.2, Lemma 6.4.3 and Example 6.2.4, we can conclude that A can be embedded
into C0(R, A) oτA Z, because we have

A ↪→ (C0(R) oτ Z)⊗A ∼= (C0(R)⊗A) oτ⊗idA
Z ∼= C0(R, A) oτA Z. (7.1.1)

Notice that all involved tensor products are automatically minimal, because A (and also
C0(R)) is nuclear. We perform one more embedding by considering the unitization of C0(R, A),
which we denote by B. Let τB denote the unique, unital extension of τA to B and use
Corollary 6.3.4 to see that

C0(R, A) oτA Z ↪→ B oτB Z.

Combined with (7.1.1) this shows that it suffices to embed B oτB Z into O2. We first verify
the assumptions of Lemma 5.3.7 to show that B admits a unital embedding into O2. It is
clear that B is unital. As A and C0(R) are separable, this also holds for C0(R) ⊗ A, and
therefore B is separable as the unitization of a separable C∗-algebra. To see that B is exact
consider the short exact sequence

0 // C0(R, A) λ // B
π // C // 0 ,
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where C0(R, A) is considered as an ideal in its unitization B and where λ and π denote the
inclusion and the quotient map, respectively. Recall the permanence properties of nuclear
C∗-algebras from Proposition 1.5.7 to see the following: Being the minimal tensor product
of two nuclear C∗-algebras, the C∗-algebra C0(R) ⊗ A ∼= C0(R, A) is nuclear. Hence, B is
nuclear as the extension of C0(R, A) by the nuclear C∗-algebra C, which implies that BoτB Z
is nuclear and, by Remark 1.5.17, that B is exact. We show next that B is quasidiagonal.
Since

C0(R, A) ∼= C0((0, 1), A) ∼= SA ⊆ CA

by Remark 1.1.29 and by definition of SA and CA we can treat C0(R, A) as a sub-C∗-algebra
of CA and, doing unitizations, we can consider B to be a sub-C∗-algebra of C̃A. From
Corollary 5.3.4 we know that C̃A is quasidiagonal, and hence so is the sub-C∗-algebra B by
Remark 5.3.2(i). Thus, Lemma 5.3.7 yields a unital, injective ∗-homomorphism ιB : B → O2.

Let ω be a free ultrafilter and let ιO2 : O2 → (O2)ω be the canonical embedding of O2 in
its ultrapower. Both ιB and ιB ◦ τB are unital, injective ∗-homomorphisms from B into O2,
and therefore by Theorem 3.4.2(ii) approximately unitarily equivalent. By Corollary 4.5.3
this implies that the maps ιO2 ◦ ιB and ιO2 ◦ (ιB ◦ τB) are exactly unitarily equivalent in
(O2)ω. Write ι = ιO2 ◦ ιB : B → (O2)ω and choose a unitary v ∈ (O2)ω with

vι(b)v∗ = ι (τB(b)) for all b ∈ B. (7.1.2)

Let 1T : T → C, t 7→ 1 and z : T → C, t 7→ t and define

ῑ : B → (O2)ω ⊗ C(T), b 7→ ι(b)⊗ 1T

and v̄ = v ⊗ z. As 1T is the unit in C(T) and z is a unitary, the map ῑ is a unital, injective
∗-homomorphism and v̄ is a unitary in (O2)ω ⊗ C(T). Moreover, ῑ and v̄ satisfy

v̄ῑ(b)v̄∗ = (v ⊗ z)(ι(b)⊗ 1T)(v∗ ⊗ z∗) = vι(b)v∗ ⊗ 1T
(7.1.2)

= ι (τB(b))⊗ 1T = ῑ (τB(b))

for all b ∈ B, and therefore Lemma 6.3.3 yields a unital ∗-homomorphism

ψ : B oτB Z → (O2)ω ⊗ C(T)

defined by
ψ

( ∑
n∈Z

bnu
n
)

=
∑
n∈Z

ῑ(bn)v̄n for all
∑
n∈Z

bnu
n ∈ BZ,

where u is the unitary which implements the action τB. To show that ψ is injective we now
construct a group homomorphism γ : T → Aut((O2)ω ⊗ C(T)) satisfying the assumptions in
Lemma 6.3.3. Take % : T → Aut(C(T)) as in Lemma 6.3.5 and define

γ : T → Aut ((O2)ω ⊗ C(T)) , t 7→ γt = id(O2)ω
⊗ %t.

Each γt is a ∗-automorphism as id(O2)ω
and %t are and as the tensor product (O2)ω ⊗C(T) is

minimal, see Lemma 1.5.2, and therefore γ is well-defined. Moreover, γ is a group homomor-
phism as % is, and as in the proof of Lemma 6.4.3 it follows from point-wise continuity of %
that t 7→ γt(x) is continuous for any x ∈ (O2)ω ⊗ C(T). Finally, we can check that

γt (ῑ(b)v̄n) = γt
(
(ι(b)⊗ 1T)(v ⊗ z)n

)
= γt

(
ι(b)vn ⊗ zn

)
= ι(b)vn ⊗ tnzn = tn

(
(ι(b)⊗ 1T)(v ⊗ z)n

)
= tnῑ(b)v̄n

95



for all t ∈ T, b ∈ B and for all n ∈ Z, and hence ψ is injective by Lemma 6.3.3. Thus, we have
obtained a unital embedding of B oτB Z into (O2)ω ⊗C(T). By Lemma 4.6.1, (O2)ω ⊗C(T)
embeds unitally into (O2 ⊗C(T))ω which, as C(T) embeds unitally into O2, embeds unitally
into (O2 ⊗ O2)ω (by Lemmas 5.1.1 and 4.4.5). As O2 ⊗ O2

∼= O2 it follows altogether that
B oτB Z embeds unitally into (O2)ω:

B oτB Z ↪→ (O2)ω ⊗ C(T) ↪→ (O2 ⊗ C(T))ω ↪→ (O2 ⊗O2)ω ∼= (O2)ω.

Let ϕ denote the unital, injective ∗-homomorphism from B oτB Z into (O2)ω we have just
constructed. It was shown above that B oτB Z is nuclear, moreover, B oτB Z is separable as
B is, and hence Corollary 1.5.13 implies that ϕ is a nuclear map. Therefore, we can apply
Choi-Effros’ Lifting Theorem (Theorem 1.5.14) to obtain a unital, completely positive map

% : B oτB Z → `∞(O2)

which lifts ϕ, i.e. πω ◦ % = ϕ. Now, Lemma 5.2.1 yields the existence of a unital, injective
∗-homomorphism from B oτB Z into O2 which, as A embeds into B oτB Z, proves that A
embeds into O2.

Assume now that A is unital, and let ι : A→ O2 be an injective ∗-homomorphism, which
exists by the first part of the theorem. Then p = ι(1A) is a non-zero projection in O2, and
as ι(a) = pι(a)p for each a ∈ A, we can consider ι to be a unital embedding of A into pO2p.
By Corollary 2.2.7 there exists a ∗-isomorphism η : pO2p → O2 (automatically unital), and
hence η ◦ ι is a unital embedding of A into O2, which completes the proof.

Remark 7.1.2. Theorem 7.1.1 is a modification of Kirchberg’s Exact Embedding Theorem
which reads as follows: A separable C∗-algebra A is exact if and only if it admits an embedding
into O2. The “if”-part is clear, because if ι : A→ O2 is an injective ∗-homomorphism, then A
is isomorphic to ι(A) which is exact as a sub-C∗-algebra of O2 by Proposition 1.5.18. Assume
now that A is exact. Let B be defined as in the proof of Theorem 7.1.1 and note that up
to the point where we applied Choi-Effros’ Lifting Theorem, nuclearity was not needed. We
only used that B was exact which can also be shown in the following way. Notice that the
short exact sequence

0 // C0(R, A) λ // B
π // C
η

oo // 0

is split exact, where η : C → B, α 7→ α1B. As C0(R, A) is exact, being isomorphic to the
minimal tensor product of the exact C∗-algebras A and C0(R), and as C is exact, Proposi-
tion 1.5.18(v) yields that B is exact. The difference in the exact case is that the lifting of the
embedding of B oτB Z into (O2)ω gets more involved, see [KP] for a proof in this case.

7.2 Existence of injective ∗-homomorphisms between Kirch-
berg algebras

An important consequence of Kirchberg’s Embedding Theorem is that, combined with the
following lemma, it enables us to prove the existence of non-zero ∗-homomorphisms from a
C∗-algebra A into a C∗-algebra B if A is separable and exact and if B contains a properly
infinite, full projection. The following statement is taken from Lemma 4.2.3 (ii) in [R2].
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Lemma 7.2.1. Let A be a C∗-algebra and let p be a properly infinite, full projection in A
with [p]0 = 0 in K0(A). Then there exists a unital embedding of O2 into pAp.

Proof. As p is properly infinite there exist mutually orthogonal projections p0, p1 ∈ A with
p0 ≤ p, p1 ≤ p and p0 ∼ p ∼ p1. We use these to construct isometries in pAp which satisfy
the O2-relation. Let p2 = p− p1. Using

p2
2 = p− pp1 − p1p+ p1 = p2, p2p0 = (p− p1)p0 = p0, p− p2 = p1 ≥ 0

it follows that p2 is a projection and that p ∼ p0 ≤ p2 ≤ p. Hence,

p2 ⊕ p2 ≤ p⊕ p - p - p2,

i.e. p2 is properly infinite. We now show that p0 is full and then conclude that p2 is full as
well. Assume that p0 is not full and choose a proper, closed, two-sided ideal I in A which
contains p0. As p ∼ p0 there exists a partial isometry s0 ∈ A with s∗0s0 = p and s0s

∗
0 = p0.

Then p = s∗0p0s0 ∈ I which contradicts the assumption that p is full. Hence, p0 is full. If
p2 were not full, we could find a proper, closed, two-sided ideal J in A with p2 ∈ J . This
would imply that p0 = p0p2 ∈ J , which is a contradiction as p0 is full. Thus, p2 is a properly
infinite, full projection. Notice that p1p2 = p1(p− p1) = 0 and therefore

[p]0 = [p1 + p2]0 = [p1]0 + [p2]0

by Proposition 3.1.7(iv) in [R1]. Moreover, [p1]0 = [p]0 = 0 as p1 ∼ p, and thus

[p2] = [p]0 − [p1] = 0 = [p]0.

As both p and p2 are properly infinite and full, this implies that p ∼ p2 by Proposi-
tion 1.2.19(ii). We can now choose partial isometries s1, s2 ∈ A such that s∗1s1 = s∗2s2 = p,
and s1s

∗
1 = p1 and s2s

∗
2 = p2. Then s1 = pp1s1p ∈ pAp and s2 = pp2s2p ∈ pAp, i.e. s1

and s2 are isometries in pAp, and as s1s∗1 + s2s
∗
2 = p1 + p2 = p, these isometries satisfy the

O2-relation in pAp. The universal property of O2 now yields a unital embedding of O2 into
pAp.

Corollary 7.2.2. Let A be a separable, exact C∗-algebra and let B be a C∗-algebra which
contains a properly infinite, full projection. Then there exists an injective ∗-homomorphism
from A into B.

Proof. By Remark 7.1.2 there exists an embedding ι : A → O2. It follows from Proposi-
tion 1.2.19(i) that B contains a properly infinite, full projection p with [p]0 = 0 in K0(B),
and thus Lemma 7.2.1 yields a unital embedding κ : O2 → pBp. As pBp is a sub-C∗-algebra
of B we can consider κ as an injective ∗-homomorphism from O2 into B, and thus κ ◦ ι is an
injective ∗-homomorphism from A into B.

Remark 7.2.3. Recall that a Kirchberg algebra is a simple, separable, nuclear and purely
infinite C∗-algebra. As each purely infinite C∗-algebra contains a properly infinite projection,
and as each element in a simple C∗-algebra is automatically full, Corollary 7.2.2 implies that
there exist injective ∗-homomorphisms between any two Kirchberg algebras. This was not
known before there was Kirchberg’s Embedding Theorem.
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Appendix A

More on O2

In this appendix we combine Theorem 3.4.2 on unitary equivalence of ∗-homomorphisms
into O2 and Kirchberg’s Exact Embedding Theorem to present two important properties of
the Cuntz algebra O2. As announced after Theorem 3.4.2 we will show that O2 is, up to
isomorphism, the only unital, separable, exact C∗-algebra which satisfies these two theorems.
In Section A.2 we then show that A⊗O2 is isomorphic to O2 for sufficiently nice C∗-algebras
A.

A.1 A uniqueness result for O2

The following lemma, which is often referred to as “approximate intertwining”, shows how
approximate unitary equivalence can be used to prove that two given C∗-algebras are isomor-
phic. Its proof is given in [R2], where it is part of Corollary 2.3.4.

Lemma A.1.1. Let A and B be unital, separable C∗-algebras, and suppose that there are
∗-homomorphisms ϕ : A→ B and ψ : B → A such that ψ ◦ϕ ≈u idA and ϕ ◦ψ ≈u idB. Then
A is isomorphic to B.

Using this lemma we can now prove the following uniqueness result:

Theorem A.1.2. Let A be a unital, separable C∗-algebra. Then A is isomorphic to O2 if
and only if the following hold:

(i) A is exact;

(ii) Each unital ∗-endomorphism on A is approximately unitarily equivalent to idA;

(iii) For every unital, separable, exact C∗-algebra B there exists a unital ∗-homomorphism
from B into A.

Proof. Suppose first that A ∼= O2. Then A is exact and simple as O2 is. Let ϕ : A → A be
a unital ∗-endomorphism, then ϕ is automatically injective and it follows from A ∼= O2 and
Theorem 3.4.2(ii) that ϕ ≈u idA. Property (iii) follows from Kirchberg’s Exact Embedding
Theorem, see Remark 7.1.2.

Conversely, assume that (i),(ii) and (iii) hold. Then A is exact and Kirchberg’s Exact
Embedding Theorem yields a unital, injective ∗-homomorphism ϕ : A → O2. By (iii) there
exists a unital ∗-homomorphism ψ : O2 → A, which is injective as O2 is simple. By (ii),
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ψ ◦ ϕ ≈u idA, and by Theorem 3.4.2(ii), ϕ ◦ ψ ≈u idO2 . By Lemma A.1.1 this implies that
A ∼= O2.

Remark A.1.3. Property (iii) can be replaced by the following requirements: The unit 1A
is a properly infinite, full projection in A and [1A]0 = 0 in K0(A). In the “if” part of the
proof we can then use Lemma 7.2.1 to obtain a unital embedding of O2 into A, and the “only
if” part follows because O2 is unital, simple and purely infinite and K0(O2) = 0, i.e. 1O2 is a
properly infinite, full projection in O2 with [1O2 ]0 = 0 in K0(O2).

A.2 Kirchberg’s A⊗O2-Theorem

Theorem A.2.1. Let A be a C∗-algebra. Then A⊗O2 is isomorphic to O2 if and only if A
is unital, separable, simple and nuclear.

Proof. We first give the proof of the “if”-part of the statement. Suppose that A is unital,
separable, simple and nuclear. Then A ⊗ O2 also is unital, separable, simple and nuclear,
and thus Theorem 7.1.1 yields a unital embedding λ : A ⊗O2 → O2. On the other hand we
can define a unital embedding ι : O2 → A ⊗ O2, x 7→ 1A ⊗ x. Now λ ◦ ι : O2 → O2 is a
unital, injective ∗-homomorphism, and hence λ ◦ ι ≈u idO2 by Theorem 3.4.2(ii). Besides,
ι ◦ λ : A ⊗O2 → A ⊗O2 is a unital, injective ∗-homomorphism, and Theorem 3.4.2(i) yields
that ι ◦ λ ≈u idA⊗O2 . By Lemma A.1.1 this implies that A⊗O2

∼= O2.
Assume now that A⊗O2

∼= O2. This implies that A⊗O2 is unital, separable, simple and
nuclear. As A embeds into A⊗O2 via a 7→ a⊗ 1O2 , A is isomorphic to a sub-C∗-algebra of
A⊗O2 and hence separable. If J were a non-trivial, two-sided, closed ideal in A, then J ⊗O2

would be a non-trivial, two-sided, closed ideal in A ⊗ O2. Thus, A is simple. To see that A
is unital let (en)n∈N be an approximate unit for A. We show that (en)n∈N converges to an
element e ∈ A which then is a unit for A. By Lemma 6.4.1 in [Mu] the sequence (en ⊗ 1O2)n∈N
is an approximate unit for A⊗O2. Then

‖en ⊗ 1O2 − 1A⊗O2‖ = ‖(en ⊗ 1O2)1A⊗O2 − 1A⊗O2‖ → 0

as n→∞, i.e. (en ⊗ 1O2)n∈N is convergent and hence a Cauchy sequence in A⊗O2. As the
map given by a 7→ a⊗ 1O2 is an isometric ∗-homomorphism, we can conclude that (en)n∈N is
a Cauchy sequence in A. Take e = limn→∞ en in A and check that

‖ae− a‖ ≤ ‖a(e− en)‖+ ‖aen − a‖ ≤ ‖a‖‖e− en‖+ ‖aen − a‖ → 0

as n→∞ for every a ∈ A, i.e. ae = a for all a ∈ A. Similarly, ea = a for all a ∈ A, and hence
e is a unit for A.

To prove that A is nuclear we need a different notion of nuclearity as we’ve used so far, and
thus we only sketch this part of the proof. For every C∗-algebra B there exists a canonical,
surjective ∗-homomorphism from A⊗maxB onto A⊗minB, and A is nuclear if and only if this
∗-homomorphism is injective, and hence a ∗-isomorphism, for every C∗-algebra B. Let now B
be a C∗-algebra and let λ : A⊗maxB → A⊗minB be the canonical surjective ∗-homomorphism.
Notice that, because O2 is nuclear and taking maximal tensor products is associative,

O2 ⊗min (A⊗max B) ∼= O2 ⊗max (A⊗max B)
∼= (O2 ⊗max A)⊗max B ∼= (O2 ⊗min A)⊗max B, (A.2.1)
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and consider the commutative diagram

O2 ⊗min (A⊗max B)
idO2

⊗λ
//

∼=
��

O2 ⊗min (A⊗min B)

∼=
��

(O2 ⊗min A)⊗max B ∼=
// (O2 ⊗min A)⊗min B

We have a ∗-isomorphism in the second row because A ⊗min O2 is nuclear, and there are ∗-
isomorphisms in the vertical direction by (A.2.1) and because taking minimal tensor products
is associative. This shows that the map

idO2 ⊗ λ : O2 ⊗min (A⊗max B) −→ O2 ⊗min (A⊗min B)

is a ∗-isomorphism. Let now x ∈ A⊗max O2 be such that λ(x) = 0. Then

(idO2 ⊗ λ) (1O2 ⊗ x) = 1O2 ⊗ λ(x) = 0,

i.e. 1O2 ⊗ x = 0 and hence x = 0. This shows that λ is a ∗-isomorphism and that A is
nuclear.

In the context of the A ⊗ O2-Theorem above it also makes sense to consider the following
result, which is taken from Theorem 7.2.6 in [R2]:

Theorem A.2.2. Let A be a simple, separable, nuclear C∗-algebra. Then A ⊗ O∞ is iso-
morphic to A if and only if A is purely infinite.

Remark A.2.3. Theorems A.2.1 and A.2.2 show that, for every unital Kirchberg algebra A,
A ⊗ O2

∼= O2 and A ⊗ O∞ ∼= A, i.e. O2 acts as a tensorial zero, and O∞ acts as a tensorial
unit in the class of unital Kirchberg algebras.
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Appendix B

Classification of Kirchberg algebras

To demonstrate the significance of Kirchberg’s Exact Embedding Theorem and the A⊗O2 and
A⊗O∞-Theorems for the classification of Kirchberg algebras we state Kirchberg and Phillips’
Classification Theorem. As the formulation of this theorem requires some notions from KK-
theory it is far beyond the scope of this thesis to give all definitions which are necessary for
understanding this theorem in detail, but I think the result is interesting nonetheless. For an
introduction to KK-theory the reader is referred to Section 2.4 in [R2], where the following
notions are explained in more detail:

To every pair of C∗-algebras A and B one can assign an abelian group KK(A,B) in such
a way that every ∗-homomorphism ϕ : A → B represents an element KK(ϕ) in KK(A,B).
For every triple of C∗-algebras A, B, C there exists a bi-additive map

KK(A,B)×KK(B,C) → KK(A,C), (x, y) 7→ x · y,

the so-called Kasparov product, with the following properties:

(i) The product is associative, i.e. ifA, B, C, D are C∗-algebras, then for all x ∈ KK(A,B),
y ∈ KK(B,C) and z ∈ KK(C,D) we have (x · y) · z = x · (y · z);

(ii) For all ∗-homomorphisms ϕ : A→ B and ψ : B → C we have

KK(ϕ) ·KK(ψ) = KK(ψ ◦ ϕ);

(iii) KK(A,A) is a ring with unit KK(idA).

An element x ∈ KK(A,B) is said to be invertible if there exists y ∈ KK(B,A) such that
x · y = KK(idA) and y · x = KK(idB). Two C∗-algebras A and B are said to be KK-
equivalent if KK(A,B) contains an invertible element. It follows from property (ii) of the
Kasparov product that any ∗-isomorphism ϕ : A → B induces an invertible element KK(ϕ)
in KK(A,B), i.e. isomorphic C∗-algebras are KK-equivalent.

For every C∗-algebra A the following isomorphisms hold:

K0(A) ∼= KK(C, A), K1(A) ∼= KK(C0(R), A).

Using these identifications and the Kasparov product one can for all C∗-algebras A and B
define two group homomorphisms

γ0 : KK(A,B) → Hom(K0(A),K0(B)),
γ1 : KK(A,B) → Hom(K1(A),K1(B))
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by setting γ0(x)(z0) = z0 · x and γ1(x)(z1) = z1 · x for all x ∈ KK(A,B), z0 ∈ KK(C, A)
and z1 ∈ KK(C0(R), A). The Universal Coefficient Theorem (UCT) below provides more
information about these maps.

A C∗-algebra A is called K-abelian if it is KK-equivalent to an abelian C∗-algebra, and
the UCT class N is defined to be the family of all separable, K- abelian C∗-algebras.

Theorem B.0.4 (Universal Coefficient Theorem). Let A and B be separable C∗-algebras.

(i) If A belongs to N , then the group homomorphism

γ = γ0 ⊕ γ1 : KK(A,B) → Hom
(
K0(A),K0(B)

)
⊕Hom

(
K1(A),K1(B)

)
is surjective.

(ii) If both A and B belong to N , then an element x ∈ KK(A,B) is invertible if and only
if γ0(x) : K0(A) → K0(B) and γ1(x) : K1(A) → K1(B) are group isomorphisms.

(iii) If bothA andB belong toN , then they areKK-equivalent if and only ifK0(A) ∼= K0(B)
and K1(A) ∼= K1(B).

Another term which appears in the classification theorem is the following:

Definition B.0.5. A C∗-algebra A is said to be stable if it is isomorphic to its stabilization
A ⊗ K, where K is the C∗-algebra of compact operators on a separable, infinite dimensional
Hilbert space.

It might be useful to know the following statement, usually referred to as “Zhang’s Di-
chotomy”, which was proved in [Zh]:

Proposition B.0.6. Every separable, simple, purely infinite C∗-algebra is either unital or
stable.

Theorem B.0.7 (Kirchberg and Phillips). Let A and B be Kirchberg algebras.

(i) If A and B are stable, then they are isomorphic if and only if they are KK-equivalent.
Moreover, for every invertible element x in KK(A,B) there exists a ∗-isomorphism
ϕ : A→ B with KK(ϕ) = x.

(ii) If A and B are stable and belong to the UCT class N , then A is isomorphic to B if
and only if K0(A) ∼= K0(B) and K1(A) ∼= K1(B). Moreover, for each pair of group
isomorphisms α0 : K0(A) → K0(B) and α1 : K1(A) → K1(B) there is a ∗-isomorphism
ϕ : A→ B with K0(ϕ) = α0 and K1(ϕ) = α1.

(iii) If A and B are unital, then they are isomorphic if and only if there is an invertible
element x in KK(A,B) with γ0(x)([1A]0) = [1B]0. For each such element x there is a
∗-isomorphism ϕ : A→ B with KK(ϕ) = x.

(iv) If A and B are unital and belong to the UCT class N , then they are isomorphic if and
only if there are group isomorphisms α0 : K0(A) → K0(B) and α1 : K1(A) → K1(B)
such that α0([1A]0) = [1B]0. For each such pair of group isomorphisms there is a
∗-isomorphism ϕ : A→ B with K0(ϕ) = α0 and K1(ϕ) = α1.

The proof of this classification theorem was independently obtained by Kirchberg and Phillips.
Kirchberg’s proof (see [Ki2]) is based on the existence of non-zero ∗-homomorphisms from
unital, separable, exact C∗-algebras to unital, properly infinite C∗-algebras, which we dealt
with in Corollary 7.2.2. Phillips’ approach (see [Ph]) uses the A⊗O2 and A⊗O∞-Theorems
from Section A.2 above.
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faithful expectation, 87
filter, 59

free, 59
ultra-, 59

full element, 12
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self-adjoint map, 3
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