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Abstract

This project is a study of AF-algebras, which are defined as inductive limits of finite-dimensional
C∗-algebras. First, the unital AF-algebras are classified using their K-theoretic invariants follow-
ing Elliott’s proof, using results such as the classification of finite-dimensional C∗-algebras and the
fact that the functor Ki preserves inductive limits for i = 0, 1. The classification invariants turn
out to have an intrinsic characterization as countable, unperforated ordered groups with Riesz’ in-
terpolation property, and this characterization is proved following the original papers of Shen and
Effros-Handelman-Shen. Lastly, the tracial state spaces of AF-algebras are examined, and it is proved
using a result of Lazar and Lindenstrauss that any metrizable Choquet simplex can be realized as
the tracial simplex of a simple and unital AF-algebra.
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Introduction

The study of AF-algebras started when Bratteli introduced them in his 1972 paper [2]. In this paper,
he defined AF-algebras as unital C∗-algebra which could be realized as the closure of the union of
an increasing sequence of finite-dimensional C∗-algebras. This generalized the UHF-algebras, which
were classified by Glimm in 1960 using supernatural numbers [8], by expanding the dense subalgebra
from a union of matrix algebras under certain conditions to a union of arbitrary finite-dimensional
C∗-algebras. This generalization allowed for more exotic behaviour; for instance, AF-algebras need
not be simple, which UHF-algebras necessarily are. One key point of Bratteli’s paper was the intro-
duction of Bratteli diagrams, which he used both as a way to graphically represent AF-algebras in
an easy way, as well as a classification tool. Later on the definition of AF-algebras was expanded to
be the class of inductive limits of finite-dimensional C∗-algebras, allowing for non-unital cases and
sometimes — depending on one’s definition of inductive limits — non-separability.

Throughout the 1970’s, AF-algebras and their K-theoretical invariants were studied closely [4, 16],
including Elliott’s 1976 classification of unital AF-algebras via their ordered K0-groups [5]. This was
among the first classes of C∗-algebras to be classified via K-theory and marked the beginning of
Elliott’s classification program. He conjectured that unital, separable, nuclear, simple C∗-algebras
could be classified by their K-theory, tracial simplex structure and a natural pairing of the two; this
invariant is often called the Elliott invariant. In the early 2000’s, however, examples of non-isomorphic
nuclear and separable C∗-algebras with the same Elliott invariant were constructed, disproving El-
liott’s conjecture. Even though the conjecture was false in general, it was proven for a wide class of
C∗-algebras that the Elliott invariant could be used in classification. In fact, it was proven recently
by Elliott, Gong, Lin and Niu [7] that if one restricts these C∗-algebras to the ones satisfying a cer-
tain regularity property and the so-called UCT, this class of C∗-algebras is classifiable by the Elliott
invariant, and with these further assumptions, the Elliott conjecture is hence a theorem.

The idea of AF-algebras is thus not new whatsoever, as they have been studied and completely
classified for more than 40 years. Still, there are several reasons to study AF-algebras. For one the
AF-algebras actually satisfy Elliott’s conjecture with a very simple invariant, since portion of Elliott’s
invariant concerning the K0-group is used, giving a very hands-on demonstration of the usefulness of
the sometimes very abstract notion of K-theory. Moreover, AF-algebras are in many ways uncom-
plicated C∗-algebras to examine; they do not behave too exotically, such that they are difficult to
study, nor do they behave too uninterestingly. For instance, AF-algebras are all nuclear and stably
finite, but they still exhibit almost arbitrary tracial simplices. All of these results will be shown in
this project. For a more current reason to be interested in AF-algebras, one can look at the question
of AF-embeddability, that is, the question: When can a C∗-algebra be identified as a subalgebra of an
AF-algebra? This is still unresolved, and a more intrinsic characterization would lead to a better un-
derstanding of AF-algebras. More details regarding AF-embeddability can be found in [3, Chapter 8].

The structure of this project is as follows:

• In Chapter 1, we establish some facts regarding C∗-algebras, elementary K-theory, and convex
analysis, which are assumed well-known and mostly included in the project for the purpose
of it being self-contained. Moreover, the chapter contains a classification of finite-dimensional
C∗-algebras, as well as a study of ordered Abelian groups, including under which conditions
K0-groups are ordered. Both of these results are vital in the classification of AF-algebras.

• In Chapter 2, the notions of inductive and inverse limits in general categories are established.
The most important parts are the proofs of the categories of C∗-algebras and (ordered) Abelian
groups admitting inductive limits as well as the continuity of the K0-functor, meaning that it
preserves inductive limits. Throughout the chapter we encounter many small propositions and
lemmas about the structure of inductive limits in C∗-algebras, some of which are used in proving
continuity of K0, and others that are used in the study and classification of AF-algebras. In
some sense, this chapter lacks many of the interesting properties of inverse limits, as they are
not directly necessary for the rest of the project. The chapter ends with a proof of continuity
of the suspension of C∗-algebras as well as K1, neither of which are particularly surprising, nor
particularly useful in this project and are mostly added for completeness in showing continuity
of the Ki-functors for i = 0, 1, as well as to show that AF-algebras have trivial K1-groups.
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• In Chapter 3, we finally define and study AF-algebras. Our first goal is a justification of
the name approximately finite-dimensional C∗-algebras using several notions of finiteness, for
example having finite approximation properties and being stably finite in particular. The main
goal of the section is the classification of unital AF-algebras using ordered K0-groups following
the proof in [10]. We end the chapter with a quick perspective on similar classes of C∗-algebras,
and how the classification of AF-algebras can be used to achieve Glimm’s classification of UHF-
algebras by supernatural numbers.

• Having classified the unital AF-algebras, it is natural to ask what structure these K-theoretical
invariants may have. This question shall be answered fully in Chapter 4, where we define dimen-
sion groups as inductive limits of simplical groups, which turn out to be precisely the ordered
K0-groups of AF-algebras. In fact, these dimension groups have an intrinsic characterization
being countable unperforated groups with Riesz’ interpolation. This connection is established
by following the proofs of Effros, Handelman and Shen in [4] as well as Shen in [16].

• Following the classification and study of the invariants in the previous two chapters, Chapter
5 serves as a study of the tracial simplices on AF-algebras. More precisely we shall, using
a theorem of Lazar and Lindenstrauss in [11], prove that any infinite-dimensional metrizable
Choquet simplex can be realized as the tracial simplex of a simple AF-algebra. We end the
section with a few specific examples of interest.

Notation

Since virtually every single mathematical paper differs notationally in some way, we shall establish
some of the notation used in this project.

We denote by N = {1, 2, . . .} the natural numbers, and Z+ = N0 = {0, 1, . . .} are the natural num-
bers with 0 adjoined; we shall use both Z+ and N0 depending on the scenario. The letters A,B are
C∗-algebras and the letters G,H denote groups unless otherwise stated. The letter H will sometimes
refer to a Hilbert space, in which case B(H) and K(H) will denote the bounded linear operators and
the compact operators respectively on H. A C∗-algebra is not assumed to be unital unless explicitly
stated as such. Whenever we refer to matrix algebras in the project, we mean C∗-algebras of the
form Mn(C) for some n ∈ N, unless otherwise stated.

Acknowledgements

I would like to thank my advisor, Mikael Rørdam, for help and guidance throughout the last months,
both on this project and in general by introducing me to further subjects within the field of C∗-
algebras.
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1 Preliminaries

This chapter is, admittedly, rather peculiar. It is a recap of the theory of C∗-algebras and K-theory
as well as some basis results on convex analysis, most of which are assumed well-known in the project
but included in order to have a reference for whenever we need the results. Proofs for many of the
statements may be found in any introductory textbook on C∗-algebras, e.g., [12, 17], and K-theory,
e.g., [10, 12]. The chapter also includes a study of a somewhat basic classification result, namely the
classification of finite-dimensional C∗-algebras, which is (obviously) needed later on in the project,
but which is often regarded as well-known and consequently stated without proof. As the result, but
not the proof, was known to the author, a complete proof has been added to this chapter. Lastly we
shall delve into ordered Abelian groups, which is a more sophisticated type of structure a K0-group
may have.

1.1 Elementary results on C∗-algebras

Throughout this section we let A denote an arbitrary C∗-algebra, not necessarily unital unless other-
wise stated. For n ∈ N, define Mn(A) to be the matrix algebra with entries in A in the usual sense,
and if ϕ : A → B is a *-homomorphism, then the amplified map ϕ(n) : Mn(A) → Mn(B) is given by
ϕ(n)((aij)) = (ϕ(aij)) and is a *-homomorphism. Note that we can consider A as a C∗-subalgebra of

M2(A) etc. via the injection A ↪→ M2(A) given by a 7→
(
a 0
0 0

)
. The unit of a unital C∗-algebra is

denoted by 1 or 1A, whichever is more useful.
For a general C∗-algebra A, unital or not, we can construct its unitization Ã that contains A as an
ideal with Ã/A ∼= C, i.e. such that we have the short exact sequence 0 → A → Ã → C → 0. If
π : Ã→ C is the quotient map, then the map λ : C→ Ã by λ(z) = z1Ã satisfies π ◦ λ = idC, i.e., the

sequence is split exact. We get the mapping s = λ◦π : Ã→ Ã, which maps s(a+α1Ã) = α1Ã, and is
named the scalar mapping for this reason. Unitization is functorial in the sense that if ϕ : A→ B is a
*-homomorphism, then the induced map ϕ̃ : Ã→ B̃ by ϕ̃(a+α1Ã) = ϕ(a)+α1B̃ is a *-homomorphism.

Given an element a ∈ A, we denote the spectrum by σ(a). An element v ∈ A in a unital C∗-
algebra is an isometry if v∗v = 1, and u ∈ A is unitary if u∗u = 1A = uu∗, and we let U(A) denote
the collections of unitary elements on A. For any u ∈ U(A) the map Adu : A→ A by Adu(a) = uau∗

for a ∈ A is a *-homomorphism. An element p ∈ A is called a projection if p2 = p = p∗, and two
projections p, q ∈ A are said to be Murray-von Neumann equivalent if there exists a partial isometry
v ∈ A such that p = v∗v and q = vv∗. In this case we write p ∼ q; this is an equivalence relation on
P(A), the collection of projections on A.

We now establish a couple of lemmas, which we shall use in proving continuity of the K0-functor
in Chapter 2.

Lemma 1.1. If a ∈ A is self-adjoint and δ =
∥∥a2 − a∥∥ < 1

4 , then there exists a projection p ∈ A with
‖p− a‖ ≤ 2δ.

Proof. Since a is self-adjoint, we know that σ(a) ⊆ R. Note that σ(a2 − a) ⊆ [−δ, δ], and that if
t ∈ σ(a), then t2−t ∈ σ(a2−a). Moreover, if

∣∣t2 − t∣∣ ≤ δ, then we find that t ∈ [−2δ, 2δ]∪[1−2δ, 1+2δ],
as δ < 1

4 . Therefore, if t ∈ σ(a), then t ∈ [−2δ, 2δ] ∪ [1− 2δ, 1 + 2δ]. All in all this implies that

σ(a) ⊆ [−2δ, 2δ] ∪ [1− 2δ, 1 + 2δ].

Since δ < 1
4 , the right-hand side consists of two disjoint intervals. The function f : σ(a) → C given

by

f(t) =

{
0 if t ∈ [−2δ, 2δ]

1 if t ∈ [1− 2δ, 1 + 2δ]
(1.1)

is thus well-defined and continuous. By continuous functional calculus, put p = f(a) and note that p
is a projection, since f is idempotent and real-valued. Moreover, as |t− f(t)| ≤ 2δ for all t ∈ σ(a), it
follows that ‖a− p‖ ≤ 2δ as desired.

The next lemma states that if two projections are approximately Murray-von Neumann equivalent
in a specific sense, then they actually are Murray-von Neumann equivalent.
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Lemma 1.2. If p, q ∈ A are projections such that there exists x ∈ A satisfying

‖x∗x− p‖ < 1

2
and ‖xx∗ − q‖ < 1

2
,

then p ∼ q.

Proof. Define δ = 1
2 max{‖x∗x− p‖ , ‖xx∗ − q‖} < 1

4 and let X = σ(x∗x) ∪ σ(xx∗). Since x∗x and
xx∗ are self-adjoint elements of distance at most δ to a projection, we find that X ⊆ [−2δ, 2δ] ∪ [1−
2δ, 1 + 2δ]. Define f ∈ C(X) as in (1.1) and projections p0 = f(x∗x) and q0 = f(xx∗). Note that
‖x∗x− p0‖ ≤ 2δ and ‖xx∗ − q0‖ ≤ 2δ, hence the triangle inequality implies that

‖p− p0‖ , ‖q − q0‖ ≤ 4δ < 1

and thus p ∼ p0 and q ∼ q0. If we show that p0 ∼ q0, then we are done.
If h ∈ C(X) is a polynomial, then one easily verifies that we have the identity

xh(x∗x)x∗ = h(xx∗)xx∗, (1.2)

again by continuous functional calculus. Hence, by the Stone-Weierstrass theorem, it holds for all
h ∈ C(X). Define the continuous function g : X → C by

g(t) =

{√
f(t)
t if t ≥ 1− 2δ

0 if t ≤ 2δ
,

which is well-defined and continuous as f(t) ≥ 0 and 1 − 2δ > 0. Note that g satisfies the identity
tg(t)2 = f(t) for all t ∈ X. Define v = xg(x∗x), then using this identity along with (1.2), one finds
that

v∗v = p0, and vv∗ = q0,

completing the proof.

We end this discussion on elementary C∗-algebraic definitions and results with the notion of finite
C∗-algebras. This is based on the idea of an infinite set being one, which contains a proper subset of
the same cardinality.

Definition 1.3. Let A be a C∗-algebra. A projection p ∈ A is said to be infinite if there exists a
projection q ∈ A such that p ∼ q and q < p. If p is not infinite, we say that p is finite. A unital
C∗-algebra is called finite if 1A is finite. Otherwise A is said to be infinite. Moreover, we say A is
stably finite if Mn(A) is finite for each n ∈ N.
If A is not unital, then we say that A is finite/infinite/stably finite if the unitization Ã is fi-
nite/infinite/stably finite. Recall that s ∈ A is an isometry if s∗s = 1.

The following proposition gives several characterizations of finite unital C∗-algebras.

Proposition 1.4. Let A be a unital C∗-algebra. The following are equivalent:

(i) A is finite.

(ii) All isometries on A are unitary.

(iii) All projections in A are finite.

(iv) All left-invertible elements in A are invertible.

(v) All right-invertible elements in A are invertible.

Proof. (i)⇒(ii): If s ∈ A is an isometry, then

1 = s∗s ∼ ss∗ ≤ 1

implying that ss∗ = 1 by finiteness of A.
(ii)⇒(i): Suppose p ∼ 1, and let 1 = s∗s and p = ss∗. Then s is an isometry and by assumption thus
unitary, such that p = ss∗ = 1 proving that A is finite.

6



(ii)⇒(iii): Suppose p ∼ q ≤ p and let v ∈ A be the partial isometry implementing the equivalence,
i.e., such that p = v∗v and q = vv∗. Note that v∗(1 − p) ≤ vv∗(1 − p)v = q(1 − p)v such that
v∗(1−p) = 0. Similarly one finds (1−p)v = 0, (1−p)v∗ = 0 and v(1−p) = 0. Define u = v+(1−p),
then

u∗u = v∗v + (1− p) = p+ (1− p) = 1

such that u is an isometry. By assumption, u is hence a unitary, and thus we find that

1 = uu∗ = q + (1− p)

such that q = p.
(iii)⇒(ii): If u ∈ A is an isometry, i.e. u∗u = 1, then 1 ≤ uu∗ ∼ 1 and finiteness of A imply that u is
unitary.
(iv)⇒(v): Suppose a is right-invertible, then a∗ is left-invertible, hence invertible, and thus a is
invertible.
(v)⇒(iv): Analogous to the previous implication.
(iv)⇒(ii): If u∗u = 1, then as left-invertibility implies invertibility by assumption, we find that
u∗u = 1 immediately, and hence all isometries are unitaries.
(ii)⇒(iv): Suppose a ∈ A is left-invertible, then a∗a is invertible and positive. Put u = a(a∗a)−1/2,
then

u∗u = (a∗a)−1/2a∗a(a∗a)−1/2 = 1

such that u is an isometry. By (ii), u is unitary, in particular invertible, and thus a = u(a∗a)1/2 is
invertible.

1.2 Brief recap of K-theory

The following is a recap of the assumed background knowledge in K-theory, which is stated for con-
venience of the reader. We follow the exposition in [10] and refer to this for proofs of the claims in
this section.

Again, we let A denote an arbitrary C∗-algebra, which is not unital unless otherwise stated. For each
n ∈ N, denote by Pn(A) the collection of projections on Mn(A). Then define P∞(A) =

⋃∞
n=1 Pn(A)

to be the collection of projections on the matrix algebras of A. Define the equivalence relation ∼0

on P∞(A) by p ∼0 q if p ∈ Pn(A) and q ∈ Pm(A) and there exists v ∈ Mm,n(A) with p = v∗v
and q = vv∗. The equivalence class of p ∈ P∞(A) shall be denoted [p]0. Note that if p, q ∈ Pn(A),
then p ∼0 q if and only if p ∼ q on Mn(A). Denote by D(A) the equivalence classes of this equiva-
lence relation. The set D(A) becomes an Abelian monoid when equipped with the binary operation
p⊕q = diag(p, q)D(A), and using the Grothendieck construction we get an Abelian groupK0(A). This
is a functor from the category of C∗-algebras to the category of Abelian groups. It is not half-exact,
though, which is a fixable problem. If 0→ A→ Ã

π→ C→ 0 is the split exact sequence coming from

unitization of a C∗-algebra A, then it follows that the sequence 0→ K0(A)→ K0(Ã)
K0(π)→ K0(C)→ 0

is also exact. Define K0(A) = ker(K0(π)); if A is already unital, then K0(A) = K0(A). The func-
tor K0 is then a homotopy-invariant and half-exact functor from the category of C∗-algebras to the
category of Abelian groups with the following properties, which we call the standard picture for K0:

Proposition 1.5 (Standard picture for K0). Let A be a C∗-algebra, unital or not, and let s : Ã→ Ã
be the corresponding scalar mapping. Then

K0(A) = {[p]0 − [s(p)]0 | p ∈ P∞(Ã)}

and the following holds:

(i) For p, q ∈ P∞(Ã) the following are equivalent:

(a) [p]0 − [s(p)]0 = [q]0 − [s(q)]0;

(b) There exist integers k, l ∈ N such that p⊕ 1k ∼0 q ⊕ 1l;

(c) There exist scalar projections r1, r2 such that p⊕ r1 ∼0 q ⊕ r2.

7



(ii) If [p]0 − [s(p)]0 = 0 for some p ∈ P∞(A), then p⊕ 1n ∼ s(p)⊕ 1n for some n ∈ N.

(iii) If ϕ : A→ B is a *-homomorphism, then

K0(ϕ)([p]0 − [s(p)]0) = [ϕ̃(p)]0 − [ϕ̃(s(p))]0, p ∈ P∞(Ã).

In the case where A is unital, the standard picture is much simpler as we do not need to consider
the unitization at all.

Proposition 1.6 (Standard picture for K0 in the unital case). Let A be a unital C∗-algebra. Then

K0(A) = {[p]0 − [q]0 | p, q ∈ P∞(A)}

and the following properties hold:

(i) [p⊕ q]0 = [p]0 + [q]0 for all p, q ∈ P∞(A);

(ii) If p, q ∈ Pn(A) and there exists a homotopy ψ on Pn(A) with ψ(0) = p and ψ(1) = q, then
[p]0 = [q]0;

(iii) If pq = qp = 0 in Pn(A), then [p+ q]0 = [p]0 + [q]0;

(iv) For p, q ∈ P∞(A) we have [p]0 = [q]0 if and only if there exists r ∈ P∞(A) such that p⊕r ∼0 q⊕r.

The following proposition is a consequence of the standard picture of K0, which is used in proving
continuity of K0.

Proposition 1.7. Suppose A and B are C∗-algebras, and that ϕ : A→ B is a *-homomorphism. Let
g ∈ kerK0(ϕ), then there exist k ∈ N and a projection p ∈ Mk(Ã) such that g = [p]0 − [s(p)]0 and
ϕ̃(k)(p) ∼ ϕ̃(k)(s(p)).

There are other pleasant properties of K0; the following shall become very useful when examining
AF-algebras.

Proposition 1.8. If A and B are C∗-algebras, then K0(A⊕B) ∼= K0(A)⊕K0(B) by the following
map: If ιA : A ↪→ A ⊕ B and ιB : B → A ⊕ B are the canonical inclusion maps, then the map
K0(ιA)⊕K0(ιB) : K0(A)⊕K0(B)→ K0(A⊕B) is an isomorphism of Abelian groups.

For a C∗-algebra, we define the suspension algebra SA := C0((0, 1), A), which is again a C∗-
algebra. It is functorial in the sense that if ϕ : A → B is a *-homomorphism, then Sϕ : SA → SB
defined by Sϕ(f)(t) = ϕ(f(t)) for f ∈ C0((0, 1), A) and t ∈ (0, 1) is a *-homomorphism. For a
C∗-algebra A, we can define K1(A) := K0(SA). Another characterization of the K1-group is via
unitaries in a way similar to the construction of K0 via projections. Denote by U∞(Ã) the collection
of unitary elements on Mn(Ã) for all n ∈ N. Define an equivalence relation ∼1 on U∞(Ã) by u ∼1 v
if and only if there exist k, k′ such that u⊕ 1m and v⊕ 1, are homotopically equivalent within Uk(Ã)
for some integer k; the equivalence class of u ∈ U∞(A) will be denoted [u]1. Then one can define
K1(A) = U∞(Ã)/∼1, which is equivalent to the above definition via suspension. In the case where A
is unital, one can verify that K1(A) = U∞(A)/∼1. Note that K1 is a split exact functor and that it
preserves direct sums.

1.3 The basics of convex analysis

In this section, we mention some elementary definitions and results of convex analysis, which can be
found in most introductory textbooks on e.g. functional analysis. A subset K of a (complex or real)
vector space X is said to be convex if for any x, y ∈ K and λ ∈ [0, 1], we have λx + (1 − λ)y ∈ K.
We call such a combination a convex combination, and a map f : K1 → K2 of convex sets is said
to be affine if it preserves convex combinations. If X is a topological vector space, which has a
neighbourhood base at 0 consisting of convex sets, we say that X is locally convex.
Let K ⊆ X be a non-empty convex set. An element x ∈ K is called an extreme point if x can only
trivially be written as a convex combination of elements in K, that is, if x = λy + (1− λ)z for some
y, z ∈ K and λ ∈ (0, 1), then x = y = z. The set of all extreme points of K is denoted ∂eK and is
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called the extremal boundary. The convex hull of a subset A ⊆ X, denoted conv(A), is the smallest
convex set in X containing A. One can easily verify that

conv(A) =

{
n∑
i=1

λixi

∣∣∣∣xi ∈ A, λi > 0,

n∑
i=1

λi = 1

}
.

A face F in K is a convex subset satisfying the following property: If x, y ∈ K and λ ∈ (0, 1) satisfies
that λx+ (1− λ)y ∈ F , then x, y ∈ F .

The following theorem gives a description of compact convex sets in terms of their extreme points.

Theorem 1.9 (Krein-Milman). Let K be a non-empty convex compact subset of a locally convex
Hausdorff topological vector space X. Then ∂eK 6= ∅ and K = conv(∂eK).

There is a partial converse to the Krein-Milman theorem.

Theorem 1.10. If X is a locally convex Hausdorff topological vector space and K ⊆ X is a non-empty
convex compact subset, and F ⊆ K is a subset satisfying that K = conv(F ), then ∂eK ⊆ F .

Now consider Rn+1 for some n ∈ N and let {e0, e1, . . . , en} be the canonical basis. We define the
n-simplex ∆n as

∆n = conv{e0, e1, . . . , en} ⊆ Rn+1.

The n-simplex ∆n is easily seen to be a compact, convex subset of Rn+1. Properties of simplices such
as n-simplices, especially related to tracial simplices of unital C∗-algebras, shall be studied in greater
detail in Chapter 5.

1.4 Classification of finite-dimensional C∗-algebras

In this section, we aim to prove that any finite-dimensional C∗-algebra can be realized as a direct
sum of matrix algebras over C following the proof in [10]. First we need some notation; consider the
C∗-algebra A = Mn1(C)⊕ · · ·⊕Mnr (C) for each k = 1, . . . , r and i, j = 1, . . . , nk and define, for each

i, j, k, e
(k)
ij ∈ A to be the element in A which is

e
(k)
ij = (0, . . . , 0, enk

(i, j), 0, . . . , 0) ,

where enk
(i, j) are the usual matrix units in Mnk

(C). The following lemma is a straight-forward
exercise in linear algebra.

Lemma 1.11. With the notation above, we have the following properties:

(i) e
(k)
ij e

(k)
jl = e

(k)
il ;

(ii) e
(k)
ij e

(n)
lm = 0 if k 6= n or j 6= l;

(iii)
(
e
(k)
ij

)∗
= e

(k)
ji ;

(iv) A = span
{
e
(k)
ij

}
.

We call the elements {e(k)ij } the standard matrix units for A. As they are all non-zero, it follows
from (i)-(ii) that they are linearly independent, and hence by (iv) they form a basis for A.

If B is another C∗-algebra, and {f (k)ij } is a set of elements of B, then there exists a unique linear map

ϕ : A→ B satisfying ϕ(e
(k)
ij ) = f

(k)
ij . If the elements {f (k)ij } moreover satisfy the analogous of (i)-(iii)

above, in which case we call them matrix units, ϕ is actually a *-homomorphism. It is easily verified

that if each f
(k)
ij is non-zero, then ϕ is injective, and that if {f (k)ij } span B, i.e. the elements satisfy

the analogous of (iv) above, then ϕ is surjective. Hence it follows that if we for a C∗-algebra can
construct a spanning set of non-zero matrix units, then it is isomorphic to a C∗-algebra of the form

Mn1
(C)⊕ · · · ⊕Mnr

(C)
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for some suitable integers r ∈ N and ni ∈ N. The classification of finite-dimensional C∗-algebras is
done precisely by constructing such a spanning set of non-zero matrix units as we shall see shortly.

First we prove a way of extending a finite number of mutually orthogonal and Murray-von Neu-
mann equivalent projections to a system of matrix units.

Lemma 1.12. If {e(k)ii | 1 ≤ k ≤ r, 1 ≤ i ≤ nk} is a system of mutually orthogonal projections in a

C∗-algebra such that e
(k)
ii ∼ e

(k)
jj for all i, j, k, then there exists a system of matrix units {e(k)ij | 1 ≤

k ≤ r, 1 ≤ i, j ≤ nk}, which extends the original system.

Proof. Find by Murray-von Neumann equivalence partial isometries e
(k)
1i such that

e
(k)
1i

(
e
(k)
1i

)∗
= e

(k)
11 and

(
e
(k)
1i

)∗
e
(k)
1i = e

(k)
ii

and define e
(k)
ij =

(
e
(k)
1i

)∗
e
(k)
1j , then one easily verifies that the system {e(k)ij } satisfies Lemma 1.11(i)-

(iii), i.e., it is a system of matrix units.

Recall that a C∗-subalgebra B ⊆ A is called a maximal Abelian subalgebra, or a masa, if B is an
Abelian C∗-algebra, which is not properly contained in any other Abelian C∗-subalgebra of A; these
are all self-adjoint. One can show that B is a masa if and only if B = B′, where B′ = {a ∈ A | ab =
ba for all b ∈ B} is the commutant. Using Zorn’s lemma, one can show that all Abelian subalgebras
of a C∗-algebra is contained in a masa, and consequently all C∗-algebras contain a masa.

Lemma 1.13. Let D be a masa in a C∗-algebra A. If 1 is a unit for D, then it is a unit for A.

Proof. Let a ∈ A be arbitrary and put z = a − a1. It is clear that zd = 0 for all d ∈ D, and hence
dz∗ = 0 for all d ∈ D by self-adjointness of D. Thus d(z∗z) = 0 = (z∗z)d such that z∗z commutes
with D, and thus z∗z ∈ D, since D is a masa. In particular, (z∗z)2 = 0, such that

‖z‖4 = ‖z∗z‖2 =
∥∥(z∗z)2

∥∥ = 0

using that z∗z is self-adjoint. This proves a1 = a for all a ∈ A, i.e., 1 is a unit for A.

Lemma 1.14. Let D be a masa in a C∗-algebra A. If p ∈ P(D) satisfies pDp = Cp, then pAp = Cp.

Proof. Let d ∈ D, then pd = dp = pdp = λp for some λ ∈ C. Then for any a ∈ A,

papd = paλp = λpap = dpap

since p is a projection commuting with D. Hence pap ∈ D such that pap ∈ pDp as p is idempotent.
We conclude that pAp = pDp = Cp.

We are now at a point where we can prove that finite-dimensional C∗-algebras are precisely direct
sums of matrix algebras over C.

Theorem 1.15. Any finite-dimensional C∗-algebra is of the form

Mn1
(C)⊕ · · · ⊕Mnr

(C)

for some integers r ∈ N and ni ∈ N for i = 1, . . . , r.

Proof. Let A be a finite-dimensional C∗-algebra and let D ⊆ A be a masa. Since D is commuta-
tive, D ∼= C0(X) for some locally compact Hausdorff space X. As A is finite-dimensional so is D
and consequently X is a finite set; say X = {x1, . . . , xn}. Note that in particular X is compact, so
D = C(X) is unital. In particular, A is unital by Lemma 1.13; call the unit 1.
Define for each j = 1, . . . , n the continuous functions qj(xi) = δij on X and let pj be the corre-
sponding elements in D. It is clear that pj are projections with

∑n
j=1 pj = 1 and pjDpj = Cpj . In

particular, we get the identities pjApj = Cpj for each j by Lemma 1.14.

If pjApi 6= 0, then find vi,j ∈ pjApi with ‖vi,j‖ = 1. Since
∥∥v∗i,jvi,j∥∥ = ‖vi,j‖2 = 1 and v∗i,jvi,j ∈

piApi = Cpi with v∗i,jvi,j ≥ 0, we see that v∗i,jvi,j = pi, and analogously that vi,jv
∗
i,j = pj . Therefore

pi ∼ pj are Murray-von Neumann equivalent. Moreover, if a ∈ pjApi, then a = api = (av∗i,j)vi,j ,
and we find that a ∈ Cvi,j , since av∗i,j ∈ pjApj = Cpj and pjvi,j = vi,j . This implies that for any
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i, j, we either have pjApi = {0} or pjApi = Cvi,j and vi,j is the partial isometry implementing the
Murray-von Neumann equivalence pi ∼ pj .

We can hence take {p1, . . . , pn} and partition it into Murray-von Neumann equivalence classes. Let
r be the number of equivalence classes, and let nk be the number of elements in the kth equivalence

class for each 1 ≤ k ≤ r. Let {e(k)11 , . . . , e
(k)
nknk} be the elements in the kth equivalence class, and note

that the system {e(k)ii } satisfies the conditions of Lemma 1.12. We can hence extend it to a system

of matrix units {e(k)ij } in A, which satisfies (i)-(iii) in Lemma 1.11. These are all non-zero, so all that
remains to be seen is that (iv) in the same lemma is satisfied, i.e., the matrix units span A. Note that

it follows by construction that e
(k)
ii Ae

(k)
jj = Ce(k)ij , that e

(k)
ii Ae

(l)
jj = {0} if k 6= l, and that e

(k)
ii ∼ e

(k)
jj .

Since we have the identity 1 =
∑
k,i e

(k)
ii , we find that for any a ∈ A,

a =

(
r∑

k=1

nk∑
i=1

e
(k)
ii

)
a

(
r∑

k=1

nk∑
i=1

e
(k)
ii

)
=

r∑
k=1

nk∑
i,j=1

e
(k)
ii ae

(k)
jj =

r∑
k=1

nk∑
i,j=1

λ
(k)
ij e

(k)
ij

for some scalars λ
(k)
ij ∈ C. This proves that A = span{e(k)ij } such that {e(k)ij } satisfies Lemma 1.11(i)-

(iv). By the discussion following this lemma, we see that A is isomorphic to Mn1
(C)⊕ · · · ⊕Mnr

(C)
completing the proof.

This is in fact a complete classification of finite-dimensional C∗-algebras, since direct sums of
matrix algebras are uniquely determined up to isomorphisms by their standard matrix units.

Corollary 1.16. Let A = Mn1(C) ⊕ · · · ⊕ Mnr (C) and B = Mm1(C) ⊕ · · · ⊕ Mms(C) be finite-
dimensional C∗-algebras. Then A and B are isomorphic as C∗-algebras if and only if r = s and, up
to interchanging the order of direct sums, ni = mi for each i.

Having classified the finite-dimensional C∗-algebras, we are able to deduce some properties of
finite-dimensional C∗-algebras. First we calculate their K-theory.

Proposition 1.17. If A is a finite-dimensional C∗-algebra, then K0(A) = Zr for some suitable
r ∈ N, and K1(A) = 0.

Proof. Since A is finite-dimensional, we can identify A with Mn1
(C)⊕ · · · ⊕Mnr

(C) for some r ∈ N
and ni ∈ N. As the functor Ki preserves direct sums, we see that

Ki(A) =

r⊕
j=1

Ki(Mnj
(C)),

for i = 0, 1. Moreover, by Morita equivalence, we have that Ki(Mnj (C)) = Ki(C) for all j ∈ N and
i = 0, 1, so it suffices to calculate the K-theory of the complex numbers. If we show that K0(C) = Z
and K1(C) = 0, then we are done. This is well-known, but we sketch the proofs below.

In order to calculate K0(C), the easiest way is to first note that if p, q ∈ Pn(C) are projections,
then p ∼ q if and only if Tr(p) = Tr(q), where Tr denotes the usual trace. One can use this fact
to prove that the map K0(Tr) : K0(C) → Z by K0([p]0 − [q]0) = Tr(p) − Tr(q) for p, q ∈ P∞(C)
is a group isomorphism; in particular, P∞(Mn(C))∼0 is isomorphic to Z+ as Abelian monoids. To
show that K1(C) = 0, one can verify that the group of unitary elements U(Mn(C)) on Mn(C) is
path-connected by showing that all unitary elements are homotopic to the identity within U(Mn(C)),
which then implies that K1(C) = 0. The details for both proofs may be found in Example 3.3.2 and
Example 8.1.8 in [10].

The following corollary is also easily proven using the classification of Theorem 1.15.

Corollary 1.18. Let A be a finite-dimensional C∗-algebra. Then A is unital, stably finite and has
the cancellation property.

Proof. Unitality of A is clear, but can also be seen a consequence of the proof of Theorem 1.15. For
stably finiteness, note that Mn(A) is finite-dimensional for each n ∈ N, so it suffices to prove that
the direct sum of two unital finite C∗-algebras is again finite, which is immediate by Proposition
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1.4(ii). For the last part, note that Mn(C) has the cancellation property for all n ∈ N. Recall that
two projections p, q ∈ P (Mn(C)) are Murray-von Neumann equivalent if and only if they have the
same trace. If p+ r ∼ q + r for some projections p, q, r ∈ P (Mn(C)) with p ⊥ r and q ⊥ r, then

Tr(p) + Tr(r) = Tr(p+ r) = Tr(q + r) = Tr(q) + Tr(r)

implying that Tr(p) = Tr(q) and, consequently, that p ∼ q. Moreover, the direct sum of two C∗-
algebras with the cancellation property is easily shown to have the cancellation property, and conse-
quently A has the cancellation property.

1.5 Ordered Abelian groups

For some Abelian groups there can be additional structure hiding. For example, Z has both the
Abelian group structure as well as an order structure, since we have a partial ordering ≤ on Z by
x ≥ y if and only if x− y ≥ 0 or, equivalently, if and only if x− y ∈ Z+. This partial ordering hence
arises from the subset Z+ of Z and gives rise to the following definition.

Definition 1.19. An ordered Abelian group is a pair (G,G+) such that G is an Abelian group and
G+ ⊆ G is a subset satisfying the following three conditions:

(i) G+ +G+ ⊆ G+;

(ii) G+ ∩ (−G+) = {0};

(iii) G = G+ −G+.

If (G,G+) is an ordered Abelian group, then we write x ≤ y if y−x ∈ G+. We call such a subset G+

the positive cone of G.

Note that a given group G may have several different choices for positive cones.

Definition 1.20. Let (G,G+) and (H,H+) be ordered Abelian groups. A map ϕ : G→ H is called
a positive group homomorphism or an order group homomorphism if it is a group homomorphism and
ϕ(G+) ⊆ H+. If ϕ is a group isomorphism satisfying ϕ(G+) = H+, we say that ϕ is a positive group
isomorphism or an order group isomorphism.

We shall use the above terms interchangeably. The above discussion shows that (Z,Z+) is an
ordered Abelian group. It is easily verified that an ordered Abelian group (G,G+) induces a partially
ordered group; in fact, one only uses (i) and (ii) of Definition 1.19 to prove this. Conversely, if (G,≤)
is an Abelian group with a partial ordering, and we define G+ = {g ∈ G | g ≥ 0}, then (i) and (ii)
above are satisfied. The third condition is to ensure that the group is directed in a specific sense, we
shall define and show below.

Definition 1.21. Let (X,≤) be a partially ordered set. We say that X is upwards (downwards)
directed if any finite subset of X has an upper (lower) bound in X. We say that X is a lattice if every
finite subset of X has a supremum and an infimum.

Clearly Zn is a lattice for all n ∈ N with the positive cone (Z+)n, but ordered groups need not be
lattices. They are, however, upwards and downwards directed by the following proposition.

Proposition 1.22. Let (G,≤) be an Abelian group with a partial ordering. Set G+ = {x ∈ G |x ≥ 0}.
Then the following are equivalent.

(i) G is upwards directed;

(ii) G is downwards directed;

(iii) G = G+ −G+.

Proof. (i)⇔(ii): This is immediate as x 7→ −x is an order-reversing bijection on G.
(i)⇒(iii): Let a ∈ G be arbitrary and find x ∈ G+ such that a ≤ x and 0 ≤ x. Then x − a, x ∈ G+

such that a = x− (x− a), proving that G = G+ −G+.
(iii)⇒(i): Let a1, . . . , an ∈ G be a finite number of elements in G and find for each i elements
xi, yi ∈ G+ such that ai = xi − yi. Then ai ≤ xi ≤

∑n
j=1 xj for all i = 1, . . . , n proving that G is

upwards directed.
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We need one more definition for ordered Abelian groups, as well as a natural definition for group
homomorphisms, before we can establish the connection between these group theoretic notions and
the classification programme.

Definition 1.23. Let (G,G+) be an ordered Abelian group. If u ∈ G satisfies that for any g ∈ G
there exists n ∈ N such that −nu ≤ g ≤ nu, then u is called an order unit. The triple (G,G+, u)
is then called an ordered Abelian group with a distinguished order unit. If every non-zero element of
(G,G+) is an order unit, then we call G simple.
A positive group homomorphism ϕ : (G,G+, u)→ (H,H+, v) is said to be unit preserving if ϕ(u) = v.
The triples (G,G+, u) and (H,H+, v) are said to be isomorphic if there exists a unit preserving
positive group isomorphism from G to H.

As an example, Z is easily seen to be a simple ordered Abelian group. Not all ordered Abelian
groups admit order units, however; one example is the group cc(N,Z) of finitely supported sequences
(xn)n∈N of integers with

cc(N,Z)+ = {(xn)n∈N ∈ cc(N,Z) |xn ≥ 0 for all n ∈ N} .

This is an ordered Abelian group, but it clearly does not have an order unit. Since K-theory is a
way of describing a group to each C∗-algebra, one might ask when the K-theory satisfies any of the
previous conditions, e.g. when is it ordered with order units? It turns out that K0(A) is always an
ordered Abelian group for unital and stably finite C∗-algebras A, and even with an order unit [1A]0.
However, before we get ahead of ourselves, we need to define the positive cone of K0(A).

Definition 1.24. If A is a C∗-algebra, then we define the positive cone of K0(A) to be the subset
K0(A)+ = {[p]0 | p ∈ P∞(A)} of K0(A).

The definition of the positive cone is a rather natural one. If A is a C∗-algebra, unital or not,
we can express g ∈ K0(A) as g = [p]0 − [s(p)]0 for some p ∈ P∞(A), and consequently the positive
cone K0(A)+ can be viewed as the ”positive” part of this difference. In the unital case the positive
cone K0(A)+ can be viewed as the Abelian monoid from which the group K0(A) is constructed, and
since the Grothendieck group generalizes the construction of Z from Z+, the definition makes sense.
However, it is not always the case that (K0(A),K0(A)+) is an ordered Abelian group; for example,
it does not hold for properly infinite, unital C∗-algebras with non-trivial K0-groups, see [10]. The
following proposition gives a sufficient condition for K0(A) equipped with the positive cone K0(A)+

to be an ordered Abelian group.

Proposition 1.25. Let A be a C∗-algebra. Then,

(i) K0(A)+ +K0(A)+ ⊆ K0(A)+;

(ii) If A is unital, then K0(A) = K0(A)+ −K0(A)+;

(iii) If A is stably finite, then K0(A)+ ∩ (−K0(A)+) = {0};

(iv) If A is unital and stably finite, then (K0(A),K0(A)+, [1A]0) is an ordered Abelian group with a
distinguished order unit.

Proof. (i): If p, q ∈ P∞(A) then [p]0 + [q]0 = [p⊕ q]0 proving the desired inclusion.
(ii): Suppose A is unital. Inclusion from the right is trivial, so we prove inclusion from the left. For
any g ∈ K0(A) there exist projections p, q ∈ P∞(A) such that g = [p]0 − [q]0 by Proposition 1.6.
(iii): Suppose g ∈ K0(A)+ ∩ (−K0(A)+) and write g = [p]0 = −[q]0 for some p, q ∈ P∞(A). Then
[p⊕q]0 = 0 in K0(A) and consequently in K0(Ã), and hence there exists a projection r ∈ P∞(Ã) with
p⊕ q⊕ r ∼0 r. Find a sufficiently large n ∈ N such that p, q, r ∈ Pn(Ã) and find mutually orthogonal
projections p′, q′, r′ ∈ Pn(Ã) with p ∼ p′, q ∼ q′, r ∼ r′. Then

r′ ∼ r ∼ p⊕ q ⊕ r ∼ p′ + q′ + r′.

Since A is stably finite, Mn(Ã) is finite and hence all projections on Mn(Ã) are finite by Proposition
1.4. We clearly have that p′ + q′ + r′ ≥ r′, and this implies that p′ + q′ + r′ = r′. Hence p′ = q′ = 0
implying that p = q = 0 such that g = 0.
(iv) Suppose A is a stably finite C∗-algebra with unit 1, then (i)-(iii) shows that (K0(A),K0(A)+) is
an ordered Abelian group. It remains only to be shown that [1]0 is an order unit for K0(A). Suppose
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g ∈ K0(A) and find projections p, q ∈ Pn(A) such that g = [p]0 − [q]0. If 1n denotes the unit on
Mn(A), then [1n]0 = n[1]0. Moreover, (1n − p), (1n − q) ∈ Pn(A) and

−n[1]0 = −[1n]0 = −[q]0 − [1n − q]0 ≤ −[q]0 ≤ [p]0 − [q]0

= g ≤ [p]0 ≤ [p]0 + [1n − p]0 = [1n]0 = n[1]0

proving that [1]0 is an order unit for (K0(A),K0(A)+).

In the case where (K0(A),K0(A)+) is an ordered Abelian group, we call it the ordered K0-group
of A. The conditions above are not necessary in the sense that there exist non-unital C∗-algebras
with ordered K0-groups, for instance non-unital AF-algebras such as the compact operators K(H)
on a separable infinite-dimensional Hilbert space, Example 3.2, as we shall encounter later on in the
project.

Proposition 1.26. If ϕ : A → B is a *-homomorphism, then K0(ϕ) : K0(A) → K0(B) is a positive
group homomorphism. Moreover, if ϕ is a *-isomorphism, then K0(ϕ) is a positive group isomor-
phism. If further A and B are unital and ϕ is unit-preserving, then K0(ϕ) is unit preserving.

Proof. The first part is immediate, since K0(ϕ)([p]0) = [ϕ(p)]0 for all p ∈ P∞(A). The second
part is also immediate, since if ϕ is an isomorphism, then K0(ϕ) is a group isomorphism with
K0(ϕ)(K0(A)+) = K0(B)+. Lastly, in the unital case, we have K0(ϕ)([1A]0) = [ϕ(1A)]0 = [1B ]0.

We can summarize this in the following theorem, which is a theorem due to its importance rather
than its difficulty in proving.

Theorem 1.27. If A is a unital, stably finite C∗-algebra, then (K0(A),K0(A)+, [1A]0) is an isomor-
phism invariant of A.

One quick use of this isomorphism invariant is to distinguish between different matrix algebras,
which is not possible for the usual K0-group by Morita equivalence. However:

Proposition 1.28. For any n ∈ N, we have (K0(Mn(C)),K0(Mn(C))+, [1n]0) ∼= (Z,Z+, n).

Proof. The trace is an order isomorphism (K0(Mn(C)),K0(Mn(C))+) ∼= (Z,Z+), see Proposition
1.17, and K0(Tr)([1n]0) = n.

Consequently, we can distinguish matrix algebras from one another, since they have different
ordered K0-groups with distinguished units. This is, obviously, only a minor result and shall be
extended to AF-algebras in Chapter 3.

The following result is an immediate consequence of Proposition 1.8 and the fact that K0(ϕ) is a
positive group homomorphism, if ϕ is a *-homomorphism.

Proposition 1.29. For any C∗-algebras A,B, we have K0(A⊕B)+ = K0(A)+ ⊕K0(B)+.

Note that by Corollary 1.18 and Proposition 1.25, all finite-dimensional C∗-algebras have ordered
K0-groups.

Proposition 1.30. Let A = Mn1(C)⊕· · ·⊕Mnr (C) be a finite-dimensional C∗-algebra, and let {e(k)ij }
be the standard matrix units for A. Then we have the isomorphism

(K0(A),K0(A)+, [1A]0) ∼= (Zr, (Z+)r, (n1, . . . , nr))

as ordered Abelian groups with distinguished units. More specifically, we have

K0(A) = Z[e
(1)
11 ]0 + · · ·+ Z[e

(r)
11 ]0

K0(A)+ = Z+[e
(1)
11 ]0 + · · ·+ Z+[e

(r)
11 ]0

[1A]0 = n1[e
(1)
11 ]0 + · · ·+ nr[e

(r)
11 ]0.

Proof. Immediate using Proposition 1.28 and Proposition 1.29.

We call the corresponding order isomorphism γ : Zr → K0(A) for the canonical order isomor-
phism. Note in particular that the ordered K0-group of a finite-dimensional C∗-algebra is finitely
generated; this is a fact we shall use in preliminary lemmas to the classification of AF-algebras in
Chapter 3.
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2 Category theoretical constructions

Scattered throughout the entire project we shall encounter several category theoretical constructions,
especially concerning inductive and inverse limits. This chapter is dedicated to examining and proving
existence of these structures for specific categories, most importantly the categories of C∗-algebras,
compact convex spaces and ordered Abelian groups. For the inductive limits of C∗-algebras in par-
ticular we shall prove several somewhat technical lemmas, as they will be needed both in proving
continuity of K0 later on in the chapter, as well as in classifying the unital AF-algebras in Chapter
3. Our main reference of this chapter is [10].

2.1 Inductive limits

If we have a sequence A1
ϕ1→ A2

ϕ2→ · · · of objects An in a category C , wherein ϕn ∈ Hom(An, An+1)
are morphisms, in what way can we construct a limit, i.e. a way of describing the objects An in the
limit as n tends to infinity? Intuitively, if we have a sequence of inclusions A1 ⊆ A2 ⊆ · · · of, say,
sets, we would expect that such a limit should be the union A =

⋃
n∈NAn. If we denote by ιn the

inclusion map An ⊆ An+1, and by ι∞,n the inclusion map An ⊆ A, it is clear that ι∞,n+1 ◦ ιn = ι∞,n
for each n; this composition along with a universal property turn out to be defining properties of
inductive limits in general categories. Note that we are only interested in sequential inductive limits
in this project; the definition can easily be extended to arbitrary directed sets, see e.g. [13] for a
definition.

Definition 2.1. Let C be a category. An inductive sequence is a sequence A1
ϕ1→ A2

ϕ2→ · · · , where
An are objects and ϕn ∈ Hom(An, An+1) are morphisms in C . We shall often write (An, {ϕn}) for
this inductive sequence.

We shall adopt the notation

ϕm,n =


ϕm−1 ◦ ϕm−2 ◦ · · · ◦ ϕn if m > n,

idAn
if m = n

0 if m < n

.

Note that we have the easily remembered identity ϕm,n ◦ ϕn,k = ϕm,k, and that ϕn+1,n = ϕn, for all
k,m, n.

Definition 2.2. Let C be a category and let A1
ϕ1→ A2

ϕ2→ · · · be an inductive sequence. An inductive
limit of this sequence is a system (A, {ϕ∞,n}), where A is an object in C and ϕ∞,n ∈ Hom(An, A)
are morphisms, such that the following properties are satisfied:

(i) For any n ∈ N, we have ϕ∞,n+1 ◦ ϕn = ϕ∞,n.

(ii) If (B, {ψ∞,n}) is a system, where B is an object in C , and ψ∞,n ∈ Hom(An, B) are morphisms
satisfying ψ∞,n+1 ◦ ϕn = ψ∞,n for each n ∈ N, then there exists a unique morphism λ ∈
Hom(A,B) such that λ ◦ ϕ∞,n = ψ∞,n for all n ∈ N.

We write (A, {ϕ∞,n}) = lim
→

(An, {ϕn}) or, if the maps are understood, just A = lim
→
An.

Inductive limits are also known in literature as direct limits or — somewhat confusingly — colim-
its, but we shall only use the name inductive limits in this project. The notation ϕ∞,n : An → A is
chosen to give the easily remembered identity ϕ∞,m ◦ϕm,n = ϕ∞,n and to suggest the idea of taking
the codomain to be the ”limit” object. Note that while we may write lim

→
An for an inductive limit,

this is somewhat misleading as the inductive limit strongly depends on the connecting morphisms ϕn.

If an inductive sequence admits an inductive limit, then using the universal property in Definition
2.2 twice ensures that it is unique up to isomorphisms, and we can hence talk about the inductive
limit of a given inductive sequence. Not all categories admit inductive limits; an example of this
is the category of finite sets, SetF. Non-rigorously, the idea behind the counterproof is easy — an
infinite union of strictly increasing finite sets is infinite — but to showcase the potential problems
with inductive limits, we shall look more closely at the example.
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One can easily verify that the category of sets, Set, admits inductive limits, and that the induc-
tive limit of the inclusion of sets A1 ⊆ A2 ⊆ · · · is precisely the union

⋃
n∈NAn as described in the

introduction. Assume An has cardinality n for each n ∈ N and let A = lim
→
An be the inductive limit.

Note that A is infinite, i.e. it is not an object in SetF. Since SetF is a subcategory of Set, we see
that if (An, {ιn}) had an inductive limit B in SetF, then it would also be an inductive limit in Set
and consequently A and B would be isomorphic; this is impossible as A is infinite and B finite.

As not all categories admit inductive limits, we must handle this with some care — we cannot
just a priori assume that inductive limits exist! Luckily, the categories of C∗-algebras and (ordered)
Abelian groups, which we are mostly interested in, are not as strict as SetF, and they admit inductive
limits as we shall see shortly. We first look at the category of C∗-algebras, and we start by looking
at products and sums of arbitrary families of C∗-algebras. Let {Ai}i∈I be an arbitrary family of
C∗-algebras and define the product

∏
i∈I Ai as the set of all functions a : I →

⋃
i∈I Ai for which

ai ∈ Ai for each i, and where ‖a‖ = supi∈I ‖ai‖ is finite.

Proposition 2.3. The set
∏
i∈I Ai equipped with pointwise addition, multiplication, scalar multipli-

cation and involutions is a C∗-algebra.

Proof. It is trivial that it is a *-algebra when equipped with these operations. The triangle inequality
is also easy to prove, since

‖a+ b‖ = sup
i∈I
‖ai + bi‖ ≤ sup

i∈I
(‖ai‖+ ‖bi‖) ≤ ‖a‖+ ‖b‖

for all a, b ∈
∏
i∈I Ai. Similarly, if a ∈

∏
i∈I Ai, then

‖a∗a‖ = sup
i∈I
‖a∗i ai‖ = sup

i∈I
‖ai‖2 = ‖a‖2 .

The only difficulty is hence completeness. Let {a(n)}n∈N be a Cauchy sequence in
∏
i∈I Ai. Since∥∥a(n)∥∥ ≥ ∥∥∥a(n)i

∥∥∥ for each i ∈ I, we have that {a(n)i }n∈N is a Cauchy sequence in Ai. Denote for each

i ∈ I the limit in Ai by ai and consider the element a = {ai}i∈I . We claim that a ∈
∏
i∈I ai and

a(n) → a in norm. We have that a ∈
∏
i∈I Ai, since

‖ai‖ ≤
∥∥∥ai − a(n)i

∥∥∥+
∥∥∥a(n)i

∥∥∥ ≤ ∥∥∥ai − a(n)i

∥∥∥+
∥∥∥a(n)∥∥∥

and the first term on the right-hand side tends to 0, and the second term is bounded as {a(n)}n∈N is
a Cauchy sequence. Again using the fact that {a(n)}n∈N is a Cauchy sequence, we find that for any
ε > 0, there exists N ∈ N such that ∥∥∥a(n) − a(m)

∥∥∥ < ε

whenever n,m ≥ N . For any n ≥ N and i ∈ I we hence find that∥∥∥a(n)i − ai
∥∥∥ = lim

m→∞

∥∥∥a(n)i − a(m)
i

∥∥∥ ≤ lim
m→∞

∥∥∥a(n) − a(m)
∥∥∥ < ε.

This proves completeness of
∏
i∈I Ai, and consequently that it is a C∗-algebra.

Denote by
∑
i∈I Ai the norm-closure of the set of a ∈

∏
i∈I Ai for which ai = 0 for all but finitely

many i ∈ I. It is easily verified that
∑
i∈I Ai is a closed two-sided ideal in

∏
i∈I Ai, and in particular

it is a C∗-algebra. Before we prove the existence of inductive limits of C∗-algebras, we need the
following result on how norms in the quotient

∏
i∈I Ai/

∑
i∈I Ai can be computed in the sequential

case.

Lemma 2.4. Let {An}n∈N be a countable family of C∗-algebras and let

π :
∏
n∈N

An →
∏
n∈N

An/
∑
n∈N

An

be the quotient mapping. For any a = {an}n∈N ∈
∏
n∈NAn we have ‖π(a)‖ = lim supn→∞ ‖an‖ and

in particular a ∈
∑
n∈NAn if and only if limn→∞ ‖an‖ = 0.
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Proof. The last part of the lemma is a trivial consequence of the first part. By density of the set

I =
{
b ∈

∏
n∈N

An | bn = 0 except for finitely many n
}

in
∑
n∈NAn, and continuity of b 7→ ‖a− b‖, we have that ‖π(a)‖ = inf{‖a− b‖ | b ∈ I}. Then as

bn = 0 except for finitely many n ∈ N, we have

‖a− b‖ ≥ lim sup
n→∞

‖an − bn‖ = lim sup
n→∞

‖an‖

proving one inequality. For the other inequality, define for each k ∈ N the element b(k) ∈ I by

b(k)n =

{
an if n ≤ k,
0 if n > k

.

Then

‖π(a)‖ ≤ inf
k∈N

∥∥∥a− b(k)∥∥∥ = inf
k∈N

sup
n≥k

∥∥∥an − b(k)n

∥∥∥ = lim sup
n→∞

‖an‖

proving the other inequality.

We are now able to prove existence of inductive limits of C∗-algebras.

Theorem 2.5. Let (An, {ϕn}) be an inductive sequence in the category of C∗-algebras. Then there
exists an inductive limit (A, {ϕ∞,n}), which satisfies the following:

(i) A =
⋃
n∈N ϕ∞,n(An);

(ii) For any n ∈ N and a ∈ An, we have ‖ϕ∞,n(an)‖ = limm→∞ ‖ϕm,n(a)‖.

(iii) For any n ∈ N, we have a ∈ kerϕ∞,n if and only if limm→∞ ‖ϕm,n(a)‖ = 0.

(iv) Let (B, {ψ∞,n}) be a system, where B is a C∗-algebra and ψ∞,n : An → B are *-homomorphisms
satisfying ψ∞,n+1 ◦ϕn = ψ∞,n for each n ∈ N, and let λ : A→ B be the unique morphism from
Definition 2.2. Then,

(a) kerϕ∞,n ⊆ kerψ∞,n for all n ∈ N with equality if and only if λ is injective,

(b) λ is surjective if and only if B =
⋃
n∈N ψ∞,n(An).

Proof. Let π :
∏
n∈NAn →

∏
n∈NAn/

∑
n∈NAn be the quotient mapping and define for each n ∈ N

the *-homomorphism νn : An →
∏
m∈NAm by νn(a) = {ϕm,n(a)}m∈N for a ∈ An. Now define

ϕ∞,n = π ◦ νn for each n ∈ N. We shall use these maps to construct the inductive limit.

For n ∈ N and a ∈ An, we have

νn(a)− νn+1 ◦ ϕn(a) = {aδnm}m∈N ∈
∑
m∈N

Am.

where δnm denotes the Kronecker delta. Hence ϕ∞,n+1 ◦ ϕn = ϕ∞,n for all n ∈ N, and therefore
{ϕ∞,n(An)}n∈N is an increasing sequence of C∗-algebras. It is then well-known that

A =
⋃
n∈N

ϕ∞,n(An)

is a C∗-algebra. Co-restrict each ϕ∞,n to be a *-homomorphism An → A. We claim that (A, {ϕ∞,n})
is the desired inductive limit.

First of all, Definition 2.2(i) is trivially true by construction, so we shall focus on (ii) in the definition.
Let (B, {ψ∞,n}) be a system such that B is a C∗-algebra and ψ∞,n : An → B are *-homomorphisms
satisfying ψ∞,n+1 ◦ϕn = ψ∞,n for all n ∈ N. Fix a natural number n ∈ N, then ψ∞,n = ψ∞,m ◦ϕm,n
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and hence ‖ψ∞,n‖ ≤ ‖ϕm,n‖ for all m > n as *-homomorphisms are contractions. Lemma 2.4 implies
that

‖ψ∞,n(a)‖ ≤ lim sup
m→∞

‖ϕm,n(a)‖ = ‖π ◦ νn(a)‖ = ‖ϕ∞,n(a)‖ , a ∈ An.

In particular, kerϕ∞,n ⊆ kerψ∞,n, whence the map ψ′∞,n : ϕ∞,n(An)→ B given by

ψ′∞,n(ϕ∞,n(a)) = ψ∞,n(a), a ∈ An

is well-defined and uniquely defined by the relation ψ′∞,n ◦ϕ∞,n = ψ∞,n. Since {ϕ∞,n(An)}n∈N is an
increasing sequence of C∗-algebras, we find for any a ∈ An that

ψ′∞,n+1(ϕ∞,n(a)) = ψ′∞,n+1(ϕ∞,n+1 ◦ ϕn(a)) = ψ∞,n+1 ◦ ϕn(a) = ψ∞,n(a) = ψ′∞,n(ϕ∞,n(a))

implying that ψ′∞,n+1 extends ψ′∞,n, thus we can define a *-homomorphism λ′ :
⋃
n∈N ϕ∞,n(An)→ B

by λ′(a) = ψ′∞,n(a) if a ∈ ϕ∞,n(An); note that the domain of λ′ is not necessarily a C∗-algebra as
it generally is not closed. Since each ψ∞,n is a *-homomorphism between C∗-algebras, they are con-
tractions, and consequently λ′ is a contraction. By uniform continuity, we can hence extend λ′ to
a *-homomorphism λ : A → B. It follows easily that λ ◦ ϕ∞,n = ψ∞,n Moreover, λ is unique with
this property: Suppose µ ◦ ϕ∞,n = ψ∞,n, then µ(a) = λ′(a) for all a ∈

⋃
n∈N ϕ∞,n(An), and as this

set is dense in A, we get µ = λ. This proves that (A, {ϕ∞,n}) is an inductive limit of the inductive
sequence (An, {ϕn}).

We now prove that the inductive limit (A, {ϕ∞,n}) satisfies (i)-(iv) of the theorem.

(i) This is true by construction.

(ii) This follows from Lemma 2.4 using that {‖ϕm,n(a)‖}m∈N is a decreasing sequence in [0,∞),
since each ϕn is a *-homomorphism between C∗-algebras and hence a contraction.

(iii) This is a direct consequence of (ii).

(iv)(a) The first part has already been proven, so we only need to prove that λ is injective if and only
if kerϕ∞,n = kerψ∞,n. Note that λ is injective if and only if it is an isometry, and this holds
if and only if λ′ is an isometry as extensions of isometries are isometries. But λ′ is an isometry
if and only if each ψ′∞,n is an isometry or, equivalently, if and only if each ψ′∞,n is injective.
Suppose each ψ′∞,n is injective, then if a ∈ kerψ∞,n, we have 0 = ψ∞,n(a) = ψ′∞,n(ϕ∞,n(a))
and hence a ∈ kerϕ∞,n(a). On the other hand if kerϕ∞,n = kerψ∞,n, then if a ∈ kerψ′∞,n
there exists b ∈ An with ϕ∞,n(b) = a such that

0 = ψ∞,n(a) = ψ′∞,n(ϕ∞,n(b)) = ψ∞,n(b)

implying that b ∈ kerψ∞,n, i.e., b ∈ kerϕ∞,n such that a = 0, and consequently ψ′∞,n is
injective.

(iv)(b) This is a direct consequence of λ(A) =
⋃
n∈N ψ∞,n(An).

This completes the proof.

Following the above proof with very few modifications, one easily proves the existence of inductive
limits in the category of Abelian groups; we thus state the result without proof.

Theorem 2.6. Let (Gn, {ϕn}) be an inductive sequence in the category of Abelian groups. Then
there exists an inductive limit (G, {ϕ∞,n}), which satisfies the following:

(i) G =
⋃
n∈N ϕ∞,n(Gn);

(ii) For any n ∈ N, we have a ∈ kerϕ∞,n if and only if a ∈ kerϕm,n for some m > n.

(iii) Let (H, {ψ∞,n}) be a system, where H is an Abelian group and ψ∞,n : Gn → H are group
homomorphisms satisfying ψ∞,n+1 ◦ ϕn = ψ∞,n for all n, and let λ : G → H be the unique
morphism from Definition 2.2. Then,

(a) kerϕ∞,n ⊆ kerψ∞,n for all n ∈ N with equality if and only if λ is injective,
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(b) λ is surjective if and only if G =
⋃
n∈N ψ∞,n(Gn).

In fact, the category of ordered Abelian groups admits inductive limits.

Theorem 2.7. Let ((Gn, G
+
n ), {ϕn}) be an inductive sequence in the category of ordered Abelian

groups, where ϕn are positive group homomorphisms. Let (G, {ϕ∞,n}) be the inductive limit in the cat-
egory of Abelian groups, which exists by Theorem 2.6, and let G+ =

⋃
n∈N ϕ∞,n(G+

n ). Then (G,G+)
is an ordered Abelian group, each ϕ∞,n is a positive group homomorphism, and ((G,G+), {ϕ∞,n}) is
the inductive limit of the above sequence in the category of ordered Abelian groups.

Proof. We first prove that (G,G+) is an ordered Abelian group. Note that since ϕn are positive
maps, we get

ϕ∞,n(G+
n ) = ϕ∞,n+1(ϕn(G+

n )) ⊆ ϕ∞,n+1(G+
n+1)

such that {ϕ∞,n(G+
n )} is an increasing sequence of subsets of G. Hence, for any x, y ∈ G+ there

exists n ∈ N such that x, y ∈ ϕ∞,n(G+
n ) and thus x + y ∈ ϕ∞,n(G+

n ) ⊆ G+. If x ∈ G+ ∩ (−G+),
then x ∈ ϕ∞,n(G+) ∩ (−ϕ∞,n(G+) for some n ∈ N, whence there exist y1, y2 ∈ G+

n such that
x = ϕ∞,n(y1) = −ϕ∞,n(y2). Then ϕ∞,n(y1 + y2) = 0, and thus y1 + y2 ∈ kerϕm,n for some
m > n. However, then ϕm,n(y1) = −ϕm,n(y2) ∈ G+

m such that ϕm,n(y1) = ϕm,n(y2) = 0, and hence
x = ϕ∞,n(y1) = ϕ∞,m(ϕm,n(y1)) = 0. Lastly if x ∈ G then x = ϕ∞,n(y) for some n ∈ N and y ∈ Gn.
Write y = y+ − y− for some y± ∈ G+

n and thus x = ϕ∞,n(y+)− ϕ∞,n(y−) ∈ G+ −G+. This proves
that (G,G+) is an ordered Abelian group. Moreover, the definition of G+ clearly implies that ϕ∞,n
is a positive group homomorphism for each n ∈ N.

Now we prove that ((G,G+), {ϕ∞,n}) is the inductive limit of the sequence ((Gn, G
+
n ), {ϕn}) in

the category of ordered Abelian groups. Note that Definition 2.2(i) holds, as (G, {ϕ∞,n}) is the
inductive limit in the category of Abelian groups, so we only need to show (ii) in this definition. Let
((H,H+), {ψ∞,n}) be a system, where (H,H+) is an ordered Abelian group and ψ∞,n : Gn → H are
positive group homomorphisms satisfying ψ∞,n+1 ◦ ϕn = ψ∞,n for each n. From Theorem 2.6, we
know that there exists a unique group homomorphism λ : G→ H such that λ ◦ ϕ∞,n = ψ∞,n, so we
only need to show that λ is positive. This is true, since

λ(G+) = λ

(⋃
n∈N

ϕ∞,n(G+
n )

)
=
⋃
n∈N

λ(ϕ∞,n(G+
n ) =

⋃
n∈N

ψ∞,n(G+
n ) ⊆ H+

using that ψ∞,n are positive group homomorphisms.

At this point the only explicit example of an inductive limit has been the union of an increasing
sequence of sets, and this was stated without proof. In order to get a better understanding of concrete
inductive limits, we shall examine a few in this section, as well as explain the importance of them for
later purposes in the project.

Example 2.8. Let {An}n∈N be an increasing family of C∗-algebras, i.e. consider the inductive
sequence (An, {ιn}), where each ιn is the inclusion map ιn : An → An+1. We claim that the inductive

limit is isomorphic to A =
⋃∞
n=1An. Let ι∞,n : An → A be the inclusion map for each n ∈ N, and

let (B, {ψ∞,n}) denote the inductive limit of the sequence. Since ι∞,n+1 ◦ ιn = ι∞,n holds for every
n ∈ N, there exists a unique *-homomorphism λ : B → A such that λ ◦ ψ∞,n = ι∞,n. We claim that
λ is an isomorphism. Injectivity is easy, since ι∞,n is injective for each n ∈ N, and surjectivity is

similarly easy, since A =
⋃
n∈N ι∞,n(An) holds by definition.

While the above example is a straightforward one, it is not without importance; when Bratteli
first examined AF-algebras in [2], he defined them as unital C∗-algebras being the norm closure of a
union of an increasing sequence of finite-dimensional C∗-algebras, which corresponds to an inductive
limit by the above example. Our definition in Chapter 3 is more sophisticated and allows for more
freedom in the structure of AF-algebras by accepting the lack of a unit, although we only classify the
unital ones. If one removes the assumption regarding the existence of a unit, we obtain our definition
of AF-algebras.

The next example is a bit more concrete and examines how the rational numbers Q arise as the
inductive limit of an inductive sequence of integers.
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Example 2.9. Consider the inductive sequence (Gn, {ϕn}), where Gn = Z for each n ∈ N, and
ϕn(m) = nm for all n,m. Let (G, {ϕ∞,n}) be the inductive limit of this sequence; we claim that
G ∼= Q as Abelian groups.

Define for each n ∈ N the map ψ∞,n : Z → Q by ψ∞,n(m) = m
(n−1)! and note that it is well-defined

and additive. Then,

ψ∞,n+1 ◦ ϕn(m) = ψ∞,n+1(nm) =
nm

(n− 1 + 1)!
=

m

(n− 1)!
= ψ∞,n(m)

and hence there exists a unique group homomorphism λ : G → Q such that λ ◦ ϕ∞,n = ψ∞,n. We
claim that λ is an isomorphism, and we prove it using Theorem 2.6(iii). Injectivity is easy, since each
ψ∞,n is injective. For surjectivity, let n

m ∈ Q be arbitrary and assume without loss of generality that
m > 0. Then,

n

m
=
n(m− 1)!

m!
= ψ∞,m+1(n(m− 1)!) ∈

⋃
k∈N

ψ∞,k(Z).

In fact, since each ϕn is positive, and it is easily verified that

Q+ =
⋃
n∈N

ϕn(Z+) = Q ∩ [0,∞),

we see that (Q,Q+) is the inductive limit of a sequence of ordered Abelian groups, and is consequently
an ordered Abelian group.

We shall in Definition 4.1 define the dimension groups to be the inductive limits of simplical
groups, i.e., of ordered Abelian groups of the form (Zn, (Z+)n). Since it turns out, see Theorem 3.18
and Theorem 4.2, that the dimension groups with order units completely classify unital AF-algebras,
we know that there is an AF-algebra with the ordered K0-group (Q,Q+, 1). In fact, it is a UHF-
algebra, and we shall describe it later in Example 3.30.

Having proved existence and provided a few examples of inductive limits in various categories, we
return to the category of C∗-algebras. Not surprisingly, it turns out that a lot can be said about
the inductive limit given information about each algebra in the inductive sequence. Separability is a
routine exercise in ε

2 -proofs.

Proposition 2.10. Let (An, {ϕn}) be an inductive sequence of separable C∗-algebras, then the in-
ductive limit (A, {ϕ∞,n}) is separable.

Proof. Let Xn be a countable dense subset of An for each n ∈ N and let X =
⋃
n∈NXn. We claim

X is dense in A. Let ε > 0 and a ∈ A, then there exists n ∈ N with ‖a− ϕ∞,n(an)‖ < ε
2 for some

an ∈ An. Then there exists xn ∈ Xn such that ‖xn − an‖ < ε
2 . The triangle inequality then gives us

that ‖a− xn‖ < ε.

We shall establish other such properties throughout in this chapter and the next. First we shall de-
velop the theory of inductive limits of C∗-algebras further. First we show how passing to subsequences
does not change the inductive limit.

Lemma 2.11. Let (An, {ϕn}) be an inductive sequence of C∗-algebras and denote the inductive limit
by (A, {ϕ∞,n}). Let {ni}i∈N be a strictly increasing sequence in N, then (A, {ϕ∞,ni

}) is the inductive
limit of the sequence (Ani , {ϕni}).

Proof. Let (B, {ψ∞,ni
}) be the inductive limit of the subsequence. Since ϕ∞,ni+1

◦ ϕni+1,ni
= ϕ∞,ni

trivially holds, there exists a unique *-homomorphism λ : B → A such that λ ◦ ψ∞,ni = ϕ∞,ni . We
claim that λ is an isomorphism. For injectivity let a ∈ kerϕ∞,n, then limm→∞ ‖ϕm,ni(a)‖ = 0
by Theorem 2.5(iii), and hence

∥∥ϕnj ,ni
(a)
∥∥ → 0 as j → ∞, implying that a ∈ kerψ∞,ni

. For

surjectivity note that A =
⋃
n∈N ϕ∞,n(An). We thus merely need to prove that

⋃
n∈N ϕ∞,n(An) =⋃

i∈N ϕ∞,ni
(Ani

). The inclusion from the right is trivial, so suppose a ∈ An and pick ni ≥ n, then
ϕ∞,n(an) = ϕ∞,ni

◦ ϕni,n(a) proving the other inclusion.

Lemma 2.12. If the connecting maps ϕn of an inductive sequence (An, {ϕn}) of C∗-algebras are
injective, and (A, {ϕ∞,n}) is the inductive limit, then the boundary maps ϕ∞,n are all injective.
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Proof. Immediate from Theorem 2.5(iii).

It is easily verified that for any inductive sequence of unital C∗-algebras with unit-preserving
connecting maps the inductive limit is also unital. The reverse is not exactly true, but it is true in
the limit, when the connecting maps are injective.

Lemma 2.13. Suppose that (An, {ϕn}) is an inductive sequence of C∗-algebras where the connecting
maps ϕn are all injective. Assume further that the inductive limit (A, {ϕ∞,n}) is unital. Then there
exists N ∈ N such that An is unital and ϕn, ϕ∞,n are unit-preserving maps for all n > N .

Proof. Let (ϕ∞,mn(an)) ⊆
⋃∞
n=1 ϕ∞,n(An) be a sequence with limn→∞ ϕ∞,mn(an) = 1A and an ∈

Amn
. Since the set of invertibles is open in A and 1A is invertible, we have that an is invertible for all

sufficiently large n. Consider such an n, then the C∗-algebra B generated by ϕ∞,mn
(an) is a unital

C∗-subalgebra of A. Write 1 as a power series in ϕ∞,mn
(an) and ϕ∞,mn

(an)∗, then as injective *-
homomorphisms are isometries, this power series is convergent if and only if the corresponding power
series in an and a∗n is convergent; call this limit 1mn . It is then clear that ϕ∞,mn(1mn) = 1, and an
easy calculation show that

ϕ∞,mn
(1mn

a) = ϕ∞,mn
(a1mn

)

for all a ∈ Amn
. Injectivity of ϕ∞,mn

then shows that 1mn
is a unit of Amn

. Similarly one can show
that ϕk,mn

(1mn
) is a unit for Ak for each k ≥ mn, which proves the remainder of the theorem.

Interestingly, the constraint that the connecting maps are injective in the above lemmas is weak
in the sense that we for any inductive sequence can construct another inductive sequence with the
same inductive limit, but whose connecting maps are all injective.

Proposition 2.14. Let (An, {ϕn}) be an inductive sequence of C∗-algebras with inductive sequence
(A, {ϕ∞,n}). Let Bn = An/ kerϕ∞,n and let πn : An → Bn be the quotient map. Then there exist
unique injective *-homomorphisms ψn : Bn → Bn+1 and a *-isomorphism π : A → B such that the
diagram

A1 A2 A3 · · · A

B1 B2 B3 · · · lim
→
Bn

ϕ1 ϕ2 ϕ3

ψ1 ψ2 ψ3

π1 π2 π3 π

is commutative.

Proof. Suppose that πn(a) = πn(b), then a− b ∈ kerϕ∞,n by definition and hence

ϕ∞,n+1(ϕn(a− b)) = ϕ∞,n(a− b) = 0

such that πn+1 ◦ ϕn(a) = πn+1 ◦ ϕn(b). This proves that the map ψn : Bn → Bn+1 by ψn(πn(a)) =
πn+1 ◦ϕn(a) is well-defined. It is clearly a *-homomorphism. For injectivity, suppose πn(a) ∈ kerψn,
then

0 = ψn ◦ πn(a) = πn+1 ◦ ϕn(a)

such that ϕn(a) ∈ kerϕ∞,n+1. However,

0 = ϕ∞,n+1 ◦ ϕn(a) = ϕ∞,n(a)

implying that a ∈ kerϕ∞,n and hence πn(a) = 0. This proves that the maps ψn are injective *-
homomorphisms. It follows by construction that ψn ◦ πn = πn+1 ◦ ϕn for all n ∈ N.

Now let (B, {ψ∞,n}) be the inductive limit of the sequence (Bn, {ψn}) and note that each ψ∞,n
is injective by Lemma 2.12. Define for each n ∈ N the *-homomorphism α∞,n = ψ∞,n ◦ πn. Then
α∞,n = α∞,n+1 ◦ ϕn and hence there exists a unique *-homomorphism π : A→ B such that

π ◦ ϕ∞,n = α∞,n = ψ∞,n ◦ πn.

21



We now only need to show that π is an isomorphism. Surjectivity is clear by Theorem 2.5(iv), since

B =
⋃
n∈N

ψ∞,n(Bn) =
⋃
n∈N

ψ∞,n ◦ πn(An) =
⋃
n∈N

α∞,n(An).

For injectivity suppose that a ∈ kerα∞,n, then

0 = α∞,n(a) = ψ∞,n ◦ πn(a)

implying that a ∈ kerϕ∞,n by injectivity of ψ∞,n and definition of πn.

In order to understand the structure of K0-groups of inductive limits, we need to understand the
structure of the projections in the limit. One thing we need to know is when two projections in the
sequence are Murray-von Neumann equivalent in the limit. The following lemma gives a complete
description of this.

Lemma 2.15. Let (A, {ϕ∞,n}) be the inductive limit of the inductive sequence (An, {ϕn}) of C∗-
algebras. Let p, q ∈ An be projections. Then ϕ∞,n(p) ∼ ϕ∞,n(q) if and only if there exists m ≥ n
such that ϕm,n(p) ∼ ϕm,n(q).

Proof. If ϕm,n(p) ∼ ϕm,n(q) for some m ≥ n, it is clear that ϕ∞,n(p) ∼ ϕ∞,n(q). Conversely, suppose
ϕ∞,n(p) ∼ ϕ∞,n(q) and find a partial isometry v ∈ A such that ϕ∞,n(p) = v∗v and ϕ∞,n(q) = vv∗.
Find by Theorem 2.5(i) a natural number ` ≥ n and an element x` ∈ A` such that ϕ∞,`(x`) is
sufficiently close to v to ensure that

‖ϕ∞,`(x∗`x`)− ϕ∞,n(p)‖ < 1

2
, and ‖ϕ∞,`(x`x∗` )− ϕ∞,n(q)‖ < 1

2
.

Rewriting this and using that ‖ϕ∞,k(a)‖ = limm→∞ ‖ϕm,k(a)‖ for all a ∈ Ak, Theorem 2.5(ii), we
find that

1

2
> ‖ϕ∞,`(x∗`x`)− ϕ∞,n(p)‖

= ‖ϕ∞,`(x∗`x` − ϕ`,n(p))‖
= lim
m→∞

‖ϕm,`(x∗`x` − ϕ`,n(p))‖

= lim
m→∞

‖x∗mxm − ϕm,n(p)‖

where xm = ϕm,`(x`). In particular, there exists m ≥ ` such that

‖ϕm,`(x∗`x`)− ϕm,n(p)‖ < 1

2
, and ‖ϕm,`(x`x∗` )− ϕm,n(q)‖ < 1

2
.

It then follows from Lemma 1.2 that ϕm,n(p) ∼ ϕm,n(q).

This lemma can also be used to show that the cancellation property is preserved by inductive
limits. The proof uses a fact to be proven later in the chapter, namely that taking matrix algebras
preserves inductive limits in the sense that if (An, {ϕn}) is an inductive sequence of C∗-algebras with
inductive limit (A, {ϕ∞,n}), then

lim
→

(MN (An), {ϕ(N)
n }) = (MN (A), {ϕ(N)

∞,n}).

Proposition 2.16. Let (An, {ϕn}) be an inductive sequence of C∗-algebras, where each An has the
cancellation property. Denote the inductive limit by (A, {ϕ∞,n}), then A has the cancellation property.

Proof. Let p, q, r ∈ P∞(A) be projections satisfying p ⊥ r and q ⊥ r and (p+ r) ∼ (q+ r). We claim
that p ∼ q. Find N ∈ N so that p, q, r ∈ PN (A) and note that p ∼ p⊕ 0N , q ∼ q ⊕ 0N , r ∼ 0N ⊕ r,
i.e. embed p and q into a 2× 2-matrix over MN (A) in the upper-left entry, and r into the lower-right
entry; we can hence assume that p, q and r are as such in the following.
We shall find n ∈ N and projections p′, q′, r′ ∈ PN (An) such that p′ ⊥ r′ and q′ ⊥ r′ along with∥∥∥ϕ(N)

∞,n(p′)− p
∥∥∥ < 1
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and similar inequalities for q and r.
First of all, since taking matrix algebras preserves inductive limits, to be proven later in this project,

see Proposition 2.22, we find that ϕ
(N)
∞,n : MN (An)→MN (A) are the boundary maps in the inductive

limit of the inductive sequence (MN (An), {ϕ(N)
n }). Since

⋃∞
n=1 ϕ

(N)
∞,n(MN (An)) is dense in MN (A),

see Theorem 2.5(i), there exist m ∈ N and bm ∈ MN (Am) such that
∥∥∥ϕ(N)
∞,m(bm)− p

∥∥∥ < 1
5 . Let

am =
bm+b∗m

2 be self-adjoint and put an = ϕ
(N)
n,m(an) for all n > m. It is immediate that an is

self-adjoint with
∥∥∥ϕ(N)
∞,n(an)− p

∥∥∥ < 1
5 , for m ≥ n. In particular, we find that the spectrum of

ϕ
(N)
∞,n(an), being within 1

5 of a projetion, lies within [−1/5, 1/5] ∪ [4/5, 6/5] for all m ≥ n. Then,∥∥∥ϕ(N)
∞,m(a2m − am)

∥∥∥ < 1
4 and, by Theorem 2.5(ii), there exists n ≥ m with

∥∥a2n − an∥∥ < 1
4 . It is now

possible using Lemma 1.1 to find a projection p′ such that ‖an − p′‖ < 1
2 , and the triangle inequality

thus implies that
∥∥∥ϕ(N)
∞,n(p′)− p

∥∥∥ < 1 as desired. Do the same constructions for q and r and note

that p′ ⊥ r′ and q′ ⊥ r′, and that ϕ
(N)
∞,n(p′) ∼ p and similarly for q and r. We hence find that

ϕ(N)
∞,n(p′ + r′) ∼ (p+ r) ∼ (q + r) ∼ ϕ(N)

∞,n(q′ + r′).

Then Lemma 2.15 implies that there exists m ≥ n such that ϕ
(N)
m,n(p′+ r′) ∼ ϕ(N)

m,n(q′+ r′). Since Am
has the cancellation property, we find that ϕ

(N)
m,n(p′) ∼ ϕ(N)

m,n(q′), and hence

p ∼ ϕ(N)
∞,n(p′) = ϕ(N)

∞,m(ϕ(N)
m,n(p′)) ∼ ϕ(N)

∞,m(ϕ(N)
m,n(q′)) = ϕ(N)

∞,n(q′) ∼ q

as desired.

The last lemma states that if two inductive sequences are intertwined, their inductive limits agree.

Lemma 2.17. Let (An, {ϕn}) and (Bn, {ψn}) be inductive sequences of C∗-algebras with induc-
tive limits (A, {ϕ∞,n}) and (B, {ψ∞,n}) respectively. Suppose that there exist *-homomorphisms
αn : An → Bn and βn : Bn → An+1 for each n ∈ N such that the diagram

A1 A2 A3 · · · A

B1 B2 B3 · · · B

ϕ1 ϕ2

ψ1 ψ2

α1 α2 α3
β

β1 β2
α

is commutative. Then there exist *-isomorphisms α : A → B and β : B → A as indicated by dashed
arrows making the entire diagram commute.

Proof. Define the *-homomorphisms α̂∞,n : An → B by α̃∞,n = ψ∞,n ◦ αn and β̂∞,n : Bn → A by

β̂∞,n = ϕ∞,n+1 ◦ βn. Then,

α̂∞,n+1 ◦ ϕn = ψ∞,n+1 ◦ αn+1 ◦ ϕn = ψ∞,n+1 ◦ ψn ◦ αn = ψ∞,n ◦ αn = α̂∞,n,

and similarly β̂∞,n+1◦ψn = β̂∞,n. It then follows from the definition of inductive limits that there exist

unique *-homomorphisms α : A→ B and β : B → A such that α◦ϕ∞,n = α̂∞,n and β ◦ψ∞,n = β̂∞,n.
We claim that α and β are *-isomorphisms with α = β−1. We prove here that β ◦α = idA; the other
way follows analogously. Note that since A =

⋃
n∈N ϕ∞,n(An), it suffices by continuity to prove that

β ◦ α ◦ ϕ∞,n = ϕ∞,n for all n ∈ N. This is a simple calculation, since

β ◦ α ◦ ϕ∞,n = β ◦ α̂∞,n = β ◦ ψ∞,n ◦ αn = β̂∞,n ◦ αn = ϕ∞,n+1 ◦ βn ◦ αn = ϕ∞,n+1 ◦ ϕn = ϕ∞,n

completing the proof.

2.2 Inverse limits

Given a category C , one can associate the opposite category C op with the same objects, but with the
arrows reversed. The notion of inverse limits is precisely the same; take the definition of inductive
limits and reverse all the arrows. Equivalently, inverse limits in C are precisely inductive limits in
C op. We are not as interested in specific details on inverse limits in this project, as we are in inductive
limits, since we shall not encounter them often; in fact, they only appear in Chapter 5. Once again,
we only study sequential inverse limits in this project; for the general definition we refer to [13].
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Definition 2.18. Let C be a category. An inverse sequence is a sequence A1
ϕ1← A2

ϕ2← · · · , where
An are objects and ϕn ∈ Hom(An+1, An) are morphisms in C . We shall often write (An, {ϕn}) for
this inverse sequence.

Note that the notation (An, {ϕn}) is the same for inverse sequences and inductive sequences; we
shall consequently always explicitly mention what type the sequence is, whenever we use this notation.

Definition 2.19. Let C be a category and let A1
ϕ1← A2

ϕ2← · · · be an inductive sequence. An inductive
limit of this sequence is a system (A, {ϕn,∞}), where A is an object in C and ϕn,∞ ∈ Hom(A,An)
are morphisms, such that the following properties are satisfied:

(i) For any n ∈ N, we have ϕn ◦ ϕn+1,∞ = ϕn,∞;

(ii) If (B, {ψn,∞}) is a system, where B is an object in C and ψn,∞ ∈ Hom(B,An) are morphisms
satisfying ϕn ◦ψn+1,∞ = ψn,∞ for each n, then there exists a unique morphism λ ∈ Hom(B,A)
such that ϕn,∞ ◦ λ = ψn,∞ for all n ∈ N.

We write (A, {ϕ∞,n}) = lim
←

(An, {ϕn}) or, if the maps are understood, just A = lim
←
An.

Once again we emphasize that the inverse limits depends strongly on the connecting maps. In the
literature, inverse limits are also known as projective limits or — again somewhat confusingly — as
limits. An inverse limit of an inverse sequence is unique up to isomorphism by taking the universal
property twice, and we can consequently talk about the inverse limit. The notation of the connecting
maps ϕn and boundary maps ϕn,∞ are chosen to mimic the idea of reversing the arrows of inductive
limits. For example, we define

ϕn,m =


ϕn ◦ ϕn+1 ◦ · · · ◦ ϕm−1 if m > n,

idAn
if m = n

0 if m < n

and get the identities ϕn,m ◦ ϕm,k = ϕn,k and ϕn,m ◦ ϕm,∞ = ϕn,∞ for all n,m, k.
Several categories admit inverse limits, and there is a general structure to the inverse limits. The
following discussion is nonsensical in the sense that the objects examined might not be in the desired
category in general, but it gives an intuition for working with inverse limits.
Suppose (An, {ϕn}) is an inverse sequence in some category C . Consider the structure

A =

{
a = (a1, a2, . . .) ∈

∏
n∈N

An | an = ϕn(an+1) for all n ∈ N

}
(2.1)

and assume that this as well as the projection maps ϕn,∞ : A→ An by ϕn,∞(a1, a2, . . .) = an belong
to the category. It is clear that ϕn ◦ ϕn+1,∞ = ϕn,∞. Suppose that (B, {ψn,∞}) is another system,
where B is an object and ψn,∞ ∈ Hom(B,An) are morphisms in C satisfying ϕn ◦ ψn+1,∞ = ψn,∞
and construct λ : B → A by

λ(b) = (ψ1,∞(b), ψ2,∞(b), . . .)

assuming that it is a morphism in C . It is then immediate that λ is unique with the property
ϕn,∞ ◦ λ = ψn,∞ for all n ∈ N, proving that A — if the above assumptions are true — is the inverse
limit.
As an example of how one can use this in a concrete category, consider the category CptConv of
compact convex subsets of Hausdorff topological vector spaces with morphisms being affine continuous
mappings.

Theorem 2.20. The category CptConv admits inverse limits.

Proof. Let (An, {ϕn}) be an inverse system in CptConv and define the set

A = {(a1, a2, . . .) ∈
∏
n∈N

An | an = ϕn(an+1) for all n ∈ N}.

Since each ϕn is continuous, A ⊆
∏
n∈NAn is a closed subset. By Tychonoff’s theorem,

∏
n∈NAn is

compact and, hence, so is A. Convexity holds as each ϕn is affine. Thus A is an object in CptConv.
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Define the affine continuous projections ϕn,∞ : A→ An by ϕn,∞(a1, a2, . . .) = an. These maps clearly
satisfies ϕn ◦ ϕn+1,∞ = ϕn,∞. Suppose that (B, {ψn,∞}) is another system such that ϕn ◦ ψn+1,∞ =
ψn,∞ and define an affine continuous map λ : B → A by λ(b) = (ψ1,∞(b), ψ2,∞(b), . . .) for each
b ∈ B. It is immediate that this satisfies ϕn,∞ ◦ λ = ψn,∞ for each n ∈ N, and it is unique by this
characterization.

Other than the existence of inverse limits in CptConv, there are not many specific results we
need. One result we do need, which is also fairly trivial, is the following.

Lemma 2.21. Let (An, {ϕn}) be an inverse sequence in a category C and assume it has a canonical
inverse limit (A, {ϕn,∞}) as in (2.1). Let a, a′ ∈ A be arbitrary. If ϕn,∞(a) = ϕn,∞(a′) for all
sufficiently large n ∈ N, then a = a′.

Proof. Write a = (a1, a2, . . .) and a′ = (a′1, a
′
2, . . .), then by construction of the canonical inverse

limit, we see that an = a′n for all sufficiently large n ∈ N. The proof then follows from the fact that
an = ϕn(an+1) holds for all n ∈ N and the analogue identity for the primed elements.

2.3 Continuity of Ki for i = 0, 1

It is clear that a covariant functor takes inductive/inverse sequences to inductive/inverse sequences,
and that a contravariant functor takes inductive/inverse sequences to inverse/inductive sequences.
However it is not true in general that the limits are preserved; the minimal tensor product functor
− ⊗min B in the category of C∗-algebras does not in general preserve inductive limits, although the
maximal tensor product functor −⊗maxB does, see [1, II.9.6.5]. We say that a functor F is continuous
if it preserves inductive limits. This terminology differs from other literature, as one would usually
expect that continuous functors preserve limits, that is, inverse limits. We shall, however, follow the
terminology of [10].
As we shall see later, AF-algebras are inductive limits of finite-dimensional C∗-algebras, and if we
want to calculate their K-theory, it would be significantly easier if Ki is a continuous functor for
i = 0, 1. Luckily both K0 and K1 are continuous functors from C∗ to Ab (or OrdAb), as we shall
see. First we need to show that taking unitization and matrix algebras are continuous functors on
C∗.

Proposition 2.22. Let B be a C∗-algebra and (An, {ϕn}) an inductive system of C∗-algebras with
inductive limit (A, {ϕ∞,n}). Then we have the following isomorphisms of C∗-algebras:

(i) lim
→

(Ãn, {ϕ̃n}) ∼= (Ã, {ϕ̃∞,n});

(ii) lim
→

(MN (An), {ϕ(k)
n }) ∼= (MN (A), {ϕ(N)

∞,n}).

Proof. The proof of (ii) is very similar to (i), so let us only prove (i). Both proofs essentially just use
Theorem 2.5(iv).

Let (B, {ψ∞,n}) = lim
→

(Ãn, {ϕ̃n}) and note that ϕ̃∞,n+1 ◦ ϕ̃n = ϕ̃∞,n such that there exists a unique

*-homomorphism λ : B → Ã with λ◦ψ∞,n = ϕ̃∞,n for all n ∈ N. We claim that λ is a *-isomorphism.

Note that if x ∈ Ã, then x = a+µ ·1 for a ∈ A and µ ∈ C. Find a sequence such that ϕ∞,mn(an)→ a
as n→∞, then

ϕ̃∞,mn
(an + µ · 1) = ϕ∞,mn

(an) + µ · 1→ a+ µ · 1

as n→∞, which shows that Ã =
⋃
n∈N ϕ∞,n(An), and hence λ is surjective by Theorem 2.5(iv)(a).

Moreover, suppose x ∈ ker ϕ̃∞,n and write x = a+ µ · 1 for a ∈ A and µ ∈ C. Then,

0 = ϕ̃∞,n(a+ µ · 1) = ϕ∞,n(a) + µ · 1

such that x ∈ kerϕ∞,n and µ = 0. Then ‖ϕm,n(a)‖ → 0 as m→∞ by Theorem 2.5(iii), such that

‖ϕ̃m,n(x)‖ = ‖ϕm,n(a)‖ → 0, as m→∞

The same theorem implies that ψ∞,n(x) = 0, and hence we conclude that λ is injective.

We are now ready to prove continuity of K0.
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Theorem 2.23 (Continuity of K0). Let (An, {ϕn}) be an inductive sequence of C∗-algebras. Then
K0(lim

→
An) ∼= lim

→
K0(An) as Abelian groups and, in the case where (K0(An),K0(An)+) is an ordered

Abelian group for each n, then K0(lim
→
An) ∼= lim

→
K0(An) as ordered Abelian groups.

In more precise terms, suppose that (A, {ϕ∞,n}) is the inductive limit of the inductive sequence,
and (G, {ψ∞,n}) is the inductive limit of the inductive sequence (K0(An), {K0(ϕn)}) in Ab, then
there exists a unique group isomorphism λ : G → K0(A) such that λ ◦ ψ∞,n = K0(ϕ∞,n). If
(K0(An),K0(An)+) are ordered Abelian groups for each n ∈ N, then λ is a positive group isomor-
phism. Moreover, the following properties are satisfied:

(i) K0(A) =
⋃∞
n=1K0(ϕ∞,n)(K0(An));

(ii) For any n ∈ N, x ∈ kerK0(ϕ∞,n) if and only if x ∈ kerK0(ϕm,n) for some m > n.

(iii) If (K0(An),K0(An)+) are ordered Abelian groups for all n, then

K0(A)+ =

∞⋃
n=1

K0(ϕ∞,n)(K0(An)+).

Proof. We first see how (i)-(iii) imply the rest of the theorem.
By functoriality of K0, we find that K0(ϕ∞,n+1) ◦K0(ϕn) = K0(ϕ∞,n), hence there exists a unique
λ : G→ K0(A) such that λ◦ψ∞,n = K0(ϕ∞,n). If we have proven (i), then λ is surjective by Theorem
2.6. Suppose that we have proven (ii) and let g ∈ kerλ. Since G =

⋃
n∈N ψ∞,n(K0(An)) we can write

g = ψ∞,n(h) for some n ∈ N and h ∈ K0(An). Then,

0 = λ(g) = λ ◦ ψ∞,n(h) = K0(ϕ∞,n)(h).

Then (ii) implies that there exists m > n such that K0(ϕm,n)(h) = 0, and hence

g = ψ∞,n(h) = ψ∞,m ◦K0(ϕm,n)(h) = 0

proving injectivity.
Now suppose that each (K0(An),K0(An)+) is an ordered Abelian group, then the inductive limit
(G,G+) is also an ordered Abelian group by Theorem 2.6 with G+ =

⋃
n∈N ψ∞,n(K0(An)+). Then,

if (iii) is true, we get

λ(G+) = λ

(⋃
n∈N

ψ∞,n(K0(An)+)

)
=
⋃
n∈N

λ ◦ ψ∞,n(K0(An)+) =
⋃
n∈N

K0(ϕ∞,n(K0(An)+) = K0(A)+

proving that λ is a positive group isomorphism.

Having shown how proving (i)-(iii) implies the rest of the theorem, let us turn our attention to
proving these three parts. Note that taking unitizations and matrix algebras are continuous functors
by Proposition 2.22.
(i): The inclusion from the right is trivial, so assume g ∈ K0(A). Then the standard picture of K0

implies that there exists some projection p ∈ Mk(Ã) for some k ∈ N such that g = [p]0 − [s(p)]0.
The proof of Proposition 2.16 implies that there exist natural numbers n,N ∈ N and a projection

p′ ∈ PN (An) such that ϕ
(N)
∞,n(p′) ∼ p are Murray-von Neumann equivalent. Thus,

g = [p]0 − [s(p)]0 = [ϕ̃(N)
∞,n(p′)]0 − [s(ϕ̃(N)

∞,n(p′))]0 = K0(ϕ∞,n)([p′]0 − [s(p′)]0)

proving the desired inclusion.

(ii): The inclusion from the right is trivial, so suppose g ∈ kerK0(ϕ∞,n). By Proposition 1.7,

there exist k ∈ N and a projection p ∈Mk(Ãn) with g = [p]0 − [s(p)]0 and

ϕ̃(k)
∞,n(p) ∼ ϕ̃(k)

∞,n(s(p)).

By Lemma 2.15, there exists m > n such that ϕ̃
(k)
m,n(p) ∼ ϕ̃(k)

m,n(s(p)), and hence

K0(ϕm,n)(g) = [ϕ̃(k)
m,n(p)]0 − [ϕ̃(k)

m,n(s(p))]0 = [ϕ̃(k)
m,n(p)]0 − [s(ϕ̃(k)

m,n(p))]0 = 0

26



proving (ii).

(iii): The inclusion from the right is immediate, as K0(ϕ∞,n) are positive group homomorphisms.
Suppose that g ∈ K0(A)+ and find by definition of the positive cone a natural number k ∈ N and a
projection p ∈Mk(A) with g = [p]0. Using the same strategy as in (i), we can find a natural number

m ∈ N and a projection q ∈Mk(Am) such that p ∼ ϕ(k)
∞,m(q), and consequently

g = [p]0 = [ϕ(k)
∞,m(q)]0 = K0(ϕ∞,m)([q]0).

This completes the proof.

Not surprisingly, K1 is also a continuous functor. In order to prove it, we need a lemma which
effectively gives us a dense subset of the suspension.

Lemma 2.24. Let X be a locally compact Hausdorff space and A a C∗-algebra. For any f ∈ C0(X)
and a ∈ A, define fa ∈ C0(X,A) by fa(x) = f(x)a. The set

F = {fa | f ∈ C0(X), a ∈ A}

has dense span in C0(X,A).

Proof. Let f ∈ C0(X,A) be arbitrary and take an arbitrary tolerance ε > 0. Let X+ = X ∪ {∞}
be the one-point compactification of X and note that C0(X,A) = {f ∈ C0(X+, A) | f(∞) = 0}. For
every x ∈ X+, let Ux denote the open subset of X+ of elements y ∈ X+ such that ‖f(x)− f(y)‖ < ε;
then {Ux}x∈X+ is clearly an open cover of X+. By compactness of X+, we can reduce this open
cover to a finite one, say, U1, . . . , Uk. For each j = 1, . . . , k fix a point xj ∈ Uj ; if ∞ ∈ Uj , then
choose xj =∞. Take a partition of unity subordinate to this finite open cover {hj}kj=1 and note that
‖f(x)hj(x)− f(xj)hj(x)‖ ≤ εhj(x) for all x ∈ X and j ∈ {1, . . . , k}, whence∥∥∥∥∥∥f(x)−

k∑
j=1

f(xj)hj(x)

∥∥∥∥∥∥ ≤ ε, for all x ∈ X.

Set aj = f(xj) and note that if xj =∞, then aj = 0 and we can hence disregard these. In the other
terms, i.e., for j with ∞ 6∈ Uj , we have hj ∈ C0(X) such that f(xj)hj ∈ F , implying the desired
density.

Recall that the suspension S is a functor in the category of C∗-algebras taking a C∗-algebra A to
the C∗-algebra SA = C0((0, 1), A), and if ϕ : A→ B is a *-homomorphism, then Sϕ : SA→ SB is a
*-homomorphism given by Sϕ(f)(t) = ϕ(f(t)) for all f ∈ SA and t ∈ (0, 1).

Theorem 2.25. Let (An, {ϕn}) be an inductive sequence with inductive limit (A, {ϕ∞,n}). Then it
follows that (SA, {Sϕ∞,n}) is the inductive limit of the sequence (SA, {Sϕn}).

Proof. Let (B, {ψ∞,n}) = (lim
→
SAn, {Sϕn}). Noting that we for any f ∈ SA and t ∈ (0, 1) have

Sϕ∞,n+1(Sϕn(f))(t) = ϕ∞,n+1(Sϕn(f)(t)) = ϕ∞,n+1(ϕn(f(t)) = ϕ∞,n(f(t)) = Sϕ∞,n(f)(t),

we find that there exists a unique *-homomorphism λ : B → SA such that λ ◦ ψ∞,n = Sϕ∞,n. We
claim that λ is an isomorphism, and we prove it using Theorem 2.5(iv). First we prove surjectivity.
Let f ∈ SA be arbitrary and take ε > 0. Find, by Lemma 2.24, functions gj ∈ C0((0, 1)) and
coefficients aj ∈ A for j = 1, . . . , k such that∥∥∥∥∥∥f −

k∑
j=1

ajgj

∥∥∥∥∥∥ < ε

2
.
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Find some sufficiently large n such that for each j = 1, . . . , k there exists bj ∈ An with ϕ∞,n(bj) = aj
such that

∥∥aj − ϕ∞,nj
(bnj

)
∥∥ < ε

2k‖gj‖ . Then for any t ∈ (0, 1), we have∥∥∥∥∥∥f(t)−
k∑
j=1

Sϕ∞,n(bjgj)(t)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥f(t)−

k∑
j=1

ajgj(t)

∥∥∥∥∥∥+

∥∥∥∥∥∥
k∑
j=1

ajgj(t)−
k∑
j=1

Sϕ∞,n(bjgj)(t)

∥∥∥∥∥∥
≤ ε

2
+

k∑
j=1

‖ajgj(t)− ϕ∞,n(bjgj(t))‖

≤ ε

2
+

k∑
j=1

ε ‖gj‖
2k ‖gj‖

= ε

proving that
⋃
n∈N Sϕ∞,n(SAn) is dense in SA, which implies surjectivity of λ by Theorem 2.5(iv)(b).

For injectivity suppose that f ∈ kerSϕ∞,n, then for any t ∈ (0, 1) we have

0 = Sϕ∞,n(f)(t) = ϕ∞,n(f(t))

and hence f(t) ∈ kerϕ∞,n. In particular, limm→∞ ‖ϕm,n(f(t))‖ = 0 for all t ∈ (0, 1), and hence

‖Sϕm,n(f)(t)‖ = ‖ϕm,n(f(t))‖ → 0

and thus ‖Sϕm,n(f)‖ → 0 as m→∞. Consequently f ∈ kerψ∞,n, proving injectivity and completing
the proof.

Corollary 2.26. K1 is a continuous functor, that is,

K1(lim
→
An) ∼= lim

→
K1(An).

Proof. Note that K1 = K0 ◦ S and use Theorem 2.25 and Theorem 2.23

This is for our purposes only a mild curiosity and shall not be used for other than a brief fact
about approximately finite-dimensional C∗-algebras later.
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3 AF-algebras

3.1 Definition and elementary properties

In this section, we discuss AF-algebras and completely classify unital AF-algebras. We first examine
a few properties of AF-algebras, which in some sense justify the name. Then we look at a way of
visualising AF-algebras graphically due to Bratteli, which in fact gives rise to a classification. Lastly
we invoke several results in the past two chapters in order to prove that unital AF-algebras are
completely classified by their ordered K0-groups. We end the chapter with a discussion on further
classification results, as well as a classification of a subclass of AF-algebras called UHF-algebras, where
we shall see how our classification of AF-algebras can be used to realize the original classification of
UHF-algebras. We use various references in this chapter, but our main ones are [2] and [10].

Definition 3.1. An AF-algebra is a C∗-algebra which is the inductive limit of an inductive sequence
of finite-dimensional C∗-algebras.

AF stands for approximately finite-dimensional, which the above definition, and Definition 3.3
and Theorem 3.4 below in particular, encompasses.

Since finite-dimensional C∗-algebras are clearly separable, all AF-algebras in the above sense are
separable by Proposition 2.10. One could define AF-algebras to be the inductive limit of arbitrary in-
ductive systems, in which case separability might fail; it is not customary to do so and, consequently,
we shall only work with AF-algebras in the sense of Definition 3.1.
Another way of describing AF-algebras is that they are precisely the C∗-algebras A, for which there
exist nested finite-dimensional C∗-algebras An such that the union

⋃
n∈NAn is dense in A. The two

definitions are equivalent, and we shall use these interchangeably. From both definitions it is imme-
diate that finite-dimensional C∗-algebras are AF.
The original definition by Bratteli [2] is the latter one with the added assumption that A is unital,
and that each An contains the unit of A. In this project, however, we allow our AF-algebras to be
non-unital, which expands the class of AF-algebras as the example below shows.

Example 3.2. Let H be an infinite-dimensional separable Hilbert space, and consider for each

n ∈ N the *-homomorphism ϕn : Mn(C) → Mn+1(C) by a 7→
(
a 0
0 0

)
. We aim to prove that K(H)

is the inductive limit of the inductive sequence (Mn(C), {ϕn}), which would imply that K(H) is an
AF-algebra. We can regard the connecting maps as inclusions Mn(C) ⊆ Mn+1(C), such that the
inductive limit above is just the closure of

⋃
n∈NMn(C) with these inclusion maps. Let {en}n∈N

be an orthonormal basis for H and pn the projection onto the span of {e1, . . . , en} for each n ∈ N
such that pnB(H)pn = B(pnH) ∼= Mn(C). Now use the well-known fact that K(H) is the closure
of
⋃
n∈N pnB(H)pn =

⋃
n∈NMn(C) to see that K(H) is the inductive limit of the inductive sequence

(Mn(C), {ϕn}). Consequently, K(H) is an AF-algebra.

Since the identity operator is compact if and only if the Hilbert space is finite-dimensional, we
have hence constructed non-unital AF-algebras. This added freedom in the structure of AF-algebras
allow for some more complex C∗-algebras, although we shall not bother with these too much, as we
only classify the unital case.

Given the name approximately finite-dimensional, it should come as no surprise that AF-algebras
satisfy an approximation property.

Definition 3.3. A C∗-algebra A is said to be a local AF-algebra if for any finite subset {a1, . . . , an} ⊆
A and ε > 0 there exist a finite-dimensional C∗-subalgebra B of A and elements b1, . . . , bn ∈ B such
that ‖aj − bj‖ < ε for all j.

These two notions coincide on separable C∗-algebras.

Theorem 3.4. A separable C∗-algebra is an AF-algebra if and only if it is a local AF-algebra.

Proof. We only prove sufficiency here. For necessity, we refer to [2, Theorem 2.2], where it is proven
in the unital case.
Let A = lim

→
An. We can, by Proposition 2.14, assume without loss of generality that the connecting
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maps are injective, such that we can regard An as a C∗-subalgebra of An+1 etc., and regard An as
a C∗-subalgebra of A. Let a1, . . . , an ∈ A and ε > 0 be arbitrary and use the above identification to
find N ∈ N along with bi ∈ AN for all i = 1, . . . , n with ‖ai − bi‖ < ε. Since AN is finite-dimensional,
this proves the desired direction.

This local characterization gives an intrinsic definition of AF-algebras, and hence one can deter-
mine whether something is an AF-algebra without resolving to inductive limits. We can, for instance,
use it in the following way to find our first non-AF C∗-algebra.

Example 3.5. The C∗-algebra C([0, 1]) is not an AF-algebra. Note that since [0, 1] is connected,
the only projections on C([0, 1]) are 0 and 1. This means that C([0, 1]) only contains two finite-
dimensional C∗-subalgebras, namely {0} and C. In particular, C([0, 1]) cannot be an AF-algebra by
Theorem 3.4.

Another reason for this local characterization is that it is used in proving stably finiteness of
AF-algebras.

Proposition 3.6. Every AF-algebra is stably finite.

Proof. Let A = lim
→
An be an AF-algebra. Since the matrix C∗-algebra MN (B) and the unitization

B̃ are finite-dimensional C∗-algebras, whenever B is a finite-dimensional C∗-algebra, it follows from
Proposition 2.22 that MN (A) and Ã are AF-algebras. In particular, MN (Ã) is a unital AF-algebra.
By definition of stable finiteness, it thus suffices to prove that every unital AF-algebra is finite.

Let A be an arbitrary unital AF-algebra. We claim that A is finite. By Proposition 1.4, it suf-
fices to prove that every isometry on A is unitary. Let s ∈ A be an isometry, then by Theorem 3.4
there exist a C∗-subalgebra B ⊆ A and x ∈ B such that ‖s− x‖ < 1. A simple calculation shows
that

‖1− s∗x‖ = ‖s∗s− s∗x‖ ≤ ‖s∗‖ ‖s− x‖ < 1

and hence s∗x is invertible in A. In particular, x is left-invertible, which is equivalent to x∗x being
invertible.
Since invertibility is inherited by C∗-subalgebras, we see that x∗x is invertible in B, i.e. x is left-
invertible in B. As B is finite-dimensional, this is equivalent to x being invertible, and hence x is
invertible in B as well as in A. Then s is invertible, and since s∗s = 1, we see that s must be invertible
with s−1 = s∗, i.e., s is unitary.

Since AF-algebras are stably finite, it follows from Proposition 1.25 that unital AF-algebras have
ordered K0-groups. In fact, all AF-algebras have ordered K0-groups by continuity of K0, see Theorem
2.23. What is special for a unital AF-algebra A, however, is that the ordered K0-group has a
natural order unit [1A]0, which turns (K0(A),K0(A)+, [1A]0) into an ordered Abelian group with a
distinguished order unit. We show that this actually uniquely determines the underlying AF-algebra,
and consequently this is a classification invariant of unital AF-algebras. The K1-group of AF-algebras,
on the other hand, is trivial.

Proposition 3.7. If A is an AF-algebra, then K1(A) = 0.

Proof. Combine continuity ofK1, Corollary 2.26 with the fact that theK1-groups of finite-dimensional
C∗-algebras is trivial, Proposition 1.17.

Let us now examine some permanence properties of AF-algebras. It is not true in general that
the AF-property passes to subalgebras. One way of seeing this is by examining the C∗-algebra of
continuous functions on the Cantor set. The Cantor set C can be realized as an inverse limit of
finite-dimensional spaces, and since the functor taking compact Hausdorff spaces X to C∗-algebras
C(X) takes inverse limits to inductive limits, [1, II.8.2.2(i)], one can realize C(C) as the inductive
limit of finite-dimensional C∗-algebras, i.e., C(C) is an AF-algebra. However, every compact metric
space is the continuous image of C, so consider the compact metric space X = [0, 1] as in Example
3.5. Since X is the continuous image of C, i.e., there exists a surjection ϕ : C → X, which induces an
injection ϕ∗ : C(X) → C(C) by ϕ∗(f)(x) = f(ϕ(x)) for all x ∈ C and f ∈ C(X). In particular, we
have determined a C∗-subalgebra of an AF-algebra, which is not approximately finite-dimensional.
This raises the question of when we can regard C∗-algebras as subalgebras of AF-algebras, which is
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a still unanswered question; more details can be found [3, Chapter 8].

While being AF does not pass to general subalgebras, it does pass to ideals and quotients.

Proposition 3.8. Suppose A1 ⊆ A2 ⊆ · · · is an increasing sequence of C∗-algebras, and let A =⋃
n∈NAn be the inductive limit. Let I be a closed two-sided ideal in A, then

I =

∞⋃
n=1

An ∩ I.

If each An is finite-dimensional, then I is an AF-algebra, and moreover A/I is an AF-algebra, proving
that being AF passes to ideals and quotients.

Proof. Define In = An ∩ I for each n ∈ N and note that In is a closed two-sided ideal in An, and that
we have the inclusion

⋃∞
n=1 In ⊆ I. For the other inclusion suppose that x 6∈

⋃
n∈N In, then we claim

that x 6∈ I.
Find a sequence {xk}k∈N such that xk ∈ Ank

for each k ∈ N and xk → x in norm. Let ε > 0 be
defined by

2ε = inf
{
‖x− y‖ | y ∈

⋃
n∈N

In
}
> 0

using that x 6∈
⋃
n∈N In. Find N ∈ N such that ‖xk − x‖ < ε for each k ≥ N . A simple application

of the triangle inequality then gives us that

‖xk − y‖ ≥ ‖x− y‖ − ‖x− xk‖ > ε

for all y ∈ Ink
. Let π : A→ A/I be the canonical quotient mapping and note that kerπ|An = In. By

uniqueness of norms of C∗-algebras, we find that

‖π(xk)‖ = inf
y∈Ink

‖xk − y‖

where we use that the right-hand side is the norm of π(xk) when restricting it to be the quotient
mapping Ank

→ Ank
/Ink

. In particular, we see that ‖π(xk)‖ ≥ ε for each k ∈ N, and by continuity,
we have

‖π(x)‖ = lim
k→∞

‖π(xk)‖ ≥ ε.

This proves that x 6∈ I, and we conclude that I =
⋃
n∈N In. If each An is a finite-dimensional

C∗-algebra, then so is In, and hence I is an AF-algebra. To prove that A/I is an AF-algebra, let

π : A → A/I be the quotient mapping and note that A/I = π(A) =
⋃∞
n=1 π(An). Since any AF-

algebra A can be realized as the closure of a union of an increasing sequence of finite-dimensional C∗-
algebra, we have shown that being approximately finite-dimensional passes to ideals and quotients.

Proposition 3.9. Suppose (An, {ϕn}) is an inductive sequence of AF-algebras, then the inductive
limit (A, {ϕ∞,n}) is again AF.

Proof. We use the local description of AF-algebras, see Theorem 3.4. Since quotients of AF-algebras
are AF by Proposition 3.8, we can use Proposition 2.14 to assume that the connecting maps ϕn : An →
An+1 are injective, and consequently assume A =

⋃
n∈NAn. For any finite subset F = {a1, . . . , an}

of A and ε > 0, there exist sufficiently large N ∈ N along with a finite set F ′ = {a′1, . . . , a′n} ⊆ AN
such that ‖ai − a′i‖ < ε

2 for each i. Using that AN is an AF-algebra, there exist a finite-dimensional
C∗-subalgebra B ⊆ AN along with a finite set F ′′ = {b1, . . . , bn} ⊆ B with ‖a′i − bi‖ < ε

2 for each i.
Since B ⊆ A is a C∗-subalgebra, and ‖ai − bi‖ < ε by the triangle inequality, it follows from Theorem
3.4 that A is an AF-algebra.

We end this section with a brief discussion regarding another property which encompasses the
notion of approximating through finite-dimensional C∗-algebra called nuclearity. We shall only sketch
the proof of inductive limits preserving nuclearity, and consequently that AF-algebras are nuclear.
Recall that a linear map ϕ : A→ B between C∗-algebras is called contractive if ‖ϕ‖ ≤ 1. Moreover,
it is called completely positive if all the amplifications ϕ(n) : Mn(A) → Mn(B) are positive. If ϕ is
contractive and completely positive, we write that ϕ is ccp.
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Definition 3.10. A C∗-algebra A is nuclear if for any finite set F ⊆ A and ε > 0 there exist n ∈ N
and ccp maps ϕ : A→Mn(C) and ψ : Mn(C)→ A such that ‖ψ ◦ ϕ(a)− a‖ < ε for all a ∈ F .

Finite-dimensional C∗-algebras are all nuclear. The next proposition states that locally nuclear
C∗-algebras are nuclear.

Proposition 3.11. Suppose that A is a C∗-algebra satisfying the following property: For any finite
set F = {a1, . . . , an} ⊆ A and ε > 0, there exist a nuclear C∗-subalgebra B ⊆ A and elements
b1, . . . , bn ∈ B such that ‖ai − bi‖ < ε for all i = 1, . . . , n. Then A is nuclear.

The proof uses Arveson’s extension theorem, a proof of which can be found in [3, Theorem 1.6.1].

Theorem 3.12 (Arveson). Let A be a unital C∗-algebra, H a Hilbert space and E ⊆ A a closed,
self-adjoint subspace containing the unit of A (that is, E is an operator subsystem of A). Then every
ccp map ϕ : E → B(H) extends to a ccp map ϕ : A→ B(H).

Proof of Proposition 3.11. Let F = {a1, . . . , an} ⊆ A be a finite set and assume ε > 0. Find a nuclear
C∗-subalgebra B ⊆ A with elements b1, . . . , bn ∈ B such that ‖bi − ai‖ < ε

3 for each i = 1, . . . , n.
Find by nuclearity ccp maps ϕ : B → Mn(C) and ψ : Mn(C) → B such that ‖ψ ◦ ϕ(bi)− bi‖ < ε

3
for i = 1, . . . , n. Find by Arveson’s extension theorem a ccp map ϕ : A → Mn(C) extending ϕ. A
simple application of the triangle inequality then gives us that ‖ψ ◦ ϕ(ai)− ai‖ < ε for all i = 1, . . . , n
proving nuclearity of A.

Since AF-algebras are clearly locally nuclear by Theorem 3.4, we find that they are nuclear. It is
a general fact, however, that inductive limits of nuclear C∗-algebras are once again nuclear; we sketch
the proof beneath.

Proposition 3.13. If (An, {ϕn}) is an inductive sequence of nuclear C∗-algebras, then the inductive
limit A is also nuclear. In particular, all AF-algebras are nuclear.

Proof. Suppose first that the connecting maps are injective. We can then without loss of generality
assume that A1 ⊆ A2 ⊆ · · · is an increasing sequence of nuclear C∗-algebras with inductive limit
A =

⋃
n∈NAn. Using Proposition 3.11, it is easily verified that A is nuclear. Since nuclearity passes

to quotients, see [1, IV.3.1.13], and we by Proposition 2.14 can obtain an inductive sequence with
injective connecting maps by passing to certain quotients without changing the limit, the general case
follows.

For AF-algebras, we would not need the full strength of [1, IV.3.1.13], since passing to quotients
in the inductive sequence preserves the finite-dimensional C∗-algebraic structure.

3.2 Bratteli diagrams

One way of visualizing AF-algebras is by Bratteli diagrams, named after the Norwegian mathematician
Ola Bratteli, who first examined AF-algebras in [2]. With these diagrams one can easily encode the
information of the inductive sequence, and from this deduce properties of the corresponding AF-
algebra.

Definition 3.14. The multiplicity of a *-homomorphism ϕ : Mk(C)→M`(C) is Tr(ϕ(e))
Tr(e) , where e is

any non-zero projection in A.

It is easily verified that the above is well-defined, i.e., the multiplicity is independent of the pro-
jection. As the name suggests, the multiplicity in a sense encodes the number of copies, the map is
embedding. For example, the map x 7→ diag(x, . . . , x, 0, . . . , 0) with n copies of x has multiplicity n.
If two unital *-homomorphisms between matrix algebras have the same multiplicity, they are unitarily
equivalent.

Given an AF-algebra A with corresponding inductive sequence (An, {ϕn}), we can construct the
Bratteli diagram as follows, and we study some examples later. The nth row corresponds to the
finite-dimensional C∗-algebra An, and the kth vertex on the nth row corresponds to the kth matrix
algebra in some decomposition of An as in Theorem 1.15, and the vertex is labelled by its dimension.
Given a vertex on the nth row, corresponding to the matrix algebra Mk(C) in An and a vertex on the
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(n+ 1)th row, corresponding to the matrix algebra Mk′(C) in An+1, the number of edges connecting
them is equal to the multiplicity of the *-homomorphism

Mk(C) ↪→ An
ϕn−→ An+1 �Mk′(C).

For any vertex, there should be a edge connecting it to a vertex on the subsequent row, and, likewise,
a edge connecting it to a vertex on the previous row. See below for examples of Bratteli diagrams.
It is proven in [2, Section 1.8] that any Bratteli diagram corresponds to exactly one AF-algebra. It is
not true, however, that an AF-algebra has a unique Bratteli diagram; first of all, we can interchange
the vertices, together with the number of edges, on any given row in a Bratteli diagram, which does
not change the AF-algebra. Moreover, in the same way one can pass to a subsequence of the inductive
sequence in Lemma 2.11, one can ”telescope” the Bratteli diagram without changing the AF-algebra.
For example, the following two Bratteli diagrams corresponds to the same AF-algebra.

•1 •1

•2 •1

•3 •2
...

...

•1 •1

•3 •2
...

...

Graphically, telescoping the Bratteli diagram works by removing rows and counting the number of
possible paths between each vertex in the new diagram. This is precisely the same as passing to
subsequences of inductive limits, and the number of edges between each pair of vertices is exactly the
multiplicity of the new connecting maps.
However, while the correspondence between AF-algebras and Bratteli diagrams may not be one-to-
one on the nose, the diagrams still contain the data of their corresponding AF-algebras, and they are
hence both a visual guidance as well as a way of getting information about AF-algebras. In fact, the
diagrams combinatorically classify the AF-algebras by the possible diagram structures. We shall not
pursue this here.

One possible thing to read directly from a Bratteli diagram is the ideal structure of the corresponding
AF-algebra. Suppose A =

⋃
n∈NAn is an AF-algebra satisfying the conditions of Proposition 3.8

and let I be a closed two-sided ideal in A. Since An is finite-dimensional and the ideals of finite-
dimensional C∗-algebras are the subsums of its decomposition into matrix algebras, each In = An∩ I
is of this form. This implies that I is an AF-algebra whose Bratteli diagram is a subdiagram of
the Bratteli diagram of A, see [2] for the details. In particular, if there are edges connecting each
pair of vertices on subsequent rows, then A is simple. For example, the Bratteli diagrams considered
above are Bratteli diagrams for a simple AF-algebra. Another example of a simple AF-algebra is
the compact operators on a Hilbert space, see Example 3.2. For an example of a non-simple AF-
algebra, consider the following diagram where the subdiagram marked in blue, i.e., the right-hand
vertical subdiagram, forms a non-trivial ideal, see [2, Section 3.4] where the ideal structure is classified
completely.

•1 •1

•1 •2

•1 •3
...

...

In Chapter 5, we shall use this sufficient condition for an AF-algebra to be simple in order to pass
from a general AF-algebra to a simple one without changing the structure of the tracial state space.

3.3 Classification of unital AF-algebras

Having studied several properties of AF-algebras, in this section we focus our attention towards
classifying the unital AF-algebras. For this we need a few lemmas. The first two state how under
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certain circumstances we can classify maps on K-theory and lift them to maps on the level of C∗-
algebras.

Lemma 3.15. Let A be a finite-dimensional C∗-algebra and B a unital C∗-algebra with the cancel-
lation property. If α : K0(A) → K0(B) is a positive group homomorphism with α([1A]0) ≤ [1B ]0,
then there exists a *-homomorphism ϕ : A→ B such that K0(ϕ) = α. If α([1A])0 = [1B ]0, then ϕ is
unit-preserving.

Proof. Our proof is essentially a construction of a (not necessarily spanning) set of matrix units for
B using the group homomorphism α on the level of K0-groups and using the existence of a spanning
set of matrix units for A.

We first claim that if g1, . . . , gN ∈ K0(B)+ are elements such that
∑N
j=1 gj ≤ [1B ]0, then there

exist pairwise orthogonal projections p1, . . . pn ∈ P(B) such that gj = [pj ]0. Suppose we have shown
that if 0 ≤ g ≤ [1B ]0 − [p]0 for some projection p ∈ P(B), then there is a projection q ∈ P(B)
orthogonal to p such that g = [q]0. Then we can proceed iteratively to find the previous claim. So
suppose p ∈ P(B) and g ∈ K0(B)+ satisfies g ≤ [1B ]0 − [p]0. Since g ∈ K0(B)+, there exist some
e ∈ Pn(B) and f ∈ Pm(B) such that g = [e]0 and [f ]0 = [1B ]0 − [p]0 − g. Then

[e⊕ f ]0 = [e]0 + [f ]0 = [1B ]0 − [p]0 = [1B − p]0

and since B has the cancellation property, we find that e ⊕ f ∼0 1B − p. Let v ∈ M1,n+m(B) be
the partial isometry implementing this equivalence, i.e. such that e ⊕ f = v∗v and 1B − p = vv∗.
If we put q = v(e ⊕ 0m)v∗, then q ∈ P(B) is a projection satisfying q ≤ 1B − p, such that q ⊥ p.
Furthermore q ∼0 e, which proves that g = [q]0, and which completes the proof of the claim.

Let {e(k)ij } be the standard matrix units for A, then by positivity of α, and as α([1A]0) ≤ [1B ]0,

we can construct pairwise orthogonal projections f
(k)
ii for B with α([e

(k)
ii ]0) = [f

(k)
ii ]0 by the above.

Note that e
(k)
ii ∼ e

(k)
jj for all i, j, k, which implies [e

(k)
ii ]0 = [e

(k)
jj ]0. By construction of {f (k)ii }, we see

that [f
(k)
ii ]0 = [f

(k)
jj ]0, which by the cancellation property of B implies that f

(k)
ii ∼ f

(k)
jj . Use Lemma

1.12 to extend {f (k)ii } to a system of matrix units {f (k)ij } in B, and find the unique *-homomorphism

ϕ : A → B with ϕ(e
(k)
ij ) = f

(k)
ij . Since {[e(k)11 ]0} generates the finitely generated group K0(A) by

Proposition 1.30, and as

K0(ϕ)([e
(k)
11 ]0) = [ϕ(e

(k)
11 ]0 = [f

(k)
11 ]0 = α([e

(k)
11 ])0,

we conclude that K0(ϕ) = α as desired.

In the case with α([1A]0) = [1B ]0, we define the projection p =
∑r
k=1

∑nk

i=1 f
(k)
ii in B and note

that

ϕ(1A) = ϕ

(
r∑

k=1

nk∑
i=1

e
(k)
ii

)
=

r∑
k=1

nk∑
i=1

f
(k)
ii = p.

But then,

[1B − p]0 = [1B ]0 − [p]0 = α([1A]0)−K0(ϕ)([1A]0) = 0

as α = K0(ϕ) from before, which implies that (1B − p) ∼0 0 by the cancellation property of B.
However, this is only possible if 1B − p = 0, which implies that ϕ is unital.

Lemma 3.16. Let A be a finite-dimensional C∗-algebra and B a unital C∗-algebra with the cancel-
lation property. Suppose ϕ,ψ : A → B are *-homomorphisms. Then K0(ϕ) = K0(ψ) if and only if
there exists a unitary u ∈ B such that ψ = Adu ◦ ϕ.

Proof. Since unitary equivalence of projections implies Murray-von Neumann equivalence, it is clear
that if ψ = Adu ◦ ϕ for some u ∈ U(B), then K0(ϕ) = K0(ψ). For the other direction, suppose that

K0(ϕ) = K0(ψ). Let {e(k)ij } be the matrix units for A and note that

[ϕ(e
(k)
11 )]0 = K0(ϕ)([e

(k)
11 ]0) = K0(ψ)([e

(k)
11 ]0) = [ψ(e

(k)
11 )]0
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for all k. Moreover,

[1B − ϕ(1A)]0 = [1B ]0 −K0(ϕ)[1A]0 = [1B ]0 −K0(ψ)[1A]0 = [1B − ψ(1A)]0.

Since B has the cancellation property, we see that ϕ(e
(k)
11 ) ∼ ψ(e

(k)
11 ) and 1B − ϕ(1A) ∼ 1B − ψ(1A).

Let v1, . . . , vr, w ∈ B be the partial isometries implementing these equivalences, that is,

v∗kvk = ϕ(e
(k)
11 ) vkv

∗
k = ψ(e

(k)
11 )

w∗w = 1B − ϕ(1A) ww∗ = 1B − ψ(1A).

A straight-forward, but long, computation shows that for each i, k, the element si,k = ψ(e
(k)
i1 )vkϕ(e

(k)
1i )

is a partial isometry with

s∗i,ksi,k = ϕ(e
(k)
ii ), and si,ks

∗
i,k = ψ(e

(k)
ii )

and satisfying

r∑
k=1

nk∑
i=1

s∗i,ksi,k + w∗w = 1B =

r∑
k=1

nk∑
i=1

si,ks
∗
i,k + ww∗.

From this one calculates that u =
∑r
k=1

∑nk

i=1 si,k + w is unitary. Let i, j, k be arbitrary. A quick
computation shows that

uϕ(e
(k)
ij ) = ψ(e

(k)
i1 )vkϕ(e

(k)
1i ) = ψ(e

(k)
ij )u

implying that ψ = Adu ◦ ϕ as desired.

Lemma 3.17. Let (An, {ϕn}) be an inductive sequence of finite-dimensional C∗-algebras with induc-
tive limit (A, {ϕ∞,n}). Suppose B is a finite-dimensional C∗-algebra, and that α : K0(A1)→ K0(B)
and γ : K0(B)→ K0(A) are positive group homomorphisms with γ ◦α = K0(ϕ∞,1). Then there exist
a natural number n ∈ N and a positive group homomorphism β : K0(B) → K0(An) such that the
following diagram is commutative:

K0(A1) K0(An) K0(A)

K0(B)

K0(ϕn,1) K0(ϕ∞,n)

α
β

γ

If all ϕn are unital and α([1A1 ]0) = [1B ]0, then β([1B ]0) = [1An ]0.

Proof. Write B = Mn1(C)⊕· · ·⊕Mnr (C) with matrix units {e(k)ij } and note that K0(B) is generated

by [e
(k)
11 ] for 1 ≤ k ≤ r by Proposition 1.30. Define for each k the positive element xk = γ([e

(k)
11 ]0).

Continuity of K0 implies that there exist m ∈ N and y1, . . . , yr ∈ K0(Am)+ with xk = K0(ϕ∞,m)(yk).

Construct the unique positive group homomorphism β′ : K0(B)→ K0(Am) satisfying β′([e
(k)
11 ]0) = yk

for each k. Then,

K0(ϕ∞,m ◦ β′)([e(k)11 ]0) = xk = γ([e
(k)
11 ]0)

proving that K0(ϕ∞,m) ◦ β′ = γ. Moreover,

K0(ϕ∞,m) ◦ (β′ ◦ α−K0(ϕm,1)) = γ ◦ α−K0(ϕ∞,1) = 0.

Since A1 is a finite-dimensional C∗-algebra, we find that K0(A1) ∼= Zm for some m ∈ N by Proposition
1.17, and hence K0(A1) is finitely generated. By Theorem 2.6(ii), there thus exists n > m such that
im(β′ ◦α−ϕm,1) ⊆ kerK0(ϕn,m). Define β = ϕn,m ◦β′, then β ◦α = K0(ϕn,1) and K0(ϕ∞,n)◦β = γ.
Moreover, if ϕk is a unit-preserving *-homomorphism for each k, and α([1A1 ]0) = [1B ]0, then

β([1B ]0) = β ◦ α([1A1
]0) = K0(ϕn,1)([1A1

]0) = [1An
]0

completing the proof.
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We are now in good shape to prove classification of unital AF-algebras.

Theorem 3.18 (Elliott, 1976). Let A,B be unital AF-algebras. Then A and B are isomorphic if
and only if

(K0(A),K0(A)+, [1A]0) ∼= (K0(B),K0(B)+, [1B ]0)

as ordered Abelian groups with distinguished order units. More specifically, A ∼= B if and only if there
exists a unit preserving order isomorphism α : K0(A)→ K0(B), and if such α exists, then there exists
a *-isomorphism ϕ : A→ B such that K0(ϕ) = α.

Proof. Isomorphic stably finite and unital C∗-algebras have the same ordered K0-groups by Theorem
1.27. The other direction is harder. The idea of the proof is as follows: If A and B are unital AF-
algebras with an order preserving isometry on the level of K-theory, we can assume their inductive
sequences have unital injective connecting maps. Using Lemma 3.17, one can find an intertwining
diagram on the level of K-theory, which by Lemma 3.15 can be lifted to a not necessarily commuting
intertwining diagram of finite-dimensional C∗-algebras. This non-commutativity can lastly be fixed
using Lemma 3.16, and then Proposition 2.17 gives the desired isomorphism of A and B.

Having the above overview, we prove the theorem. Suppose we have the isomorphism

(K0(A),K0(A)+, [1A]0) ∼= (K0(B),K0(B)+, [1B ]0)

of ordered Abelian groups with distinguished order units via an isomorphism α : K0(A) → K0(B).
Using Lemma 2.13 and Proposition 2.14, let (An, {fn}) and (Bn, {gn}) be inductive sequences of finite-
dimensional C∗-algebras such that the connecting maps are unit preserving and injective, and such
that (A, {f∞,n}) = lim

→
(An, {fn}) and (B, {g∞,n}) = lim

→
(Bn, {gn}). Let B0 = C and g0 : B0 → B1

and ψ0 : B0 → A1 be the unique unital *-homomorphisms. Define β0 = K0(ψ0), and note that

α ◦K0(f∞,1) ◦ β0 = K0(g∞,0),

where g∞,0 = g∞,1 ◦ g0. This implies by Lemma 3.17 that there exist m1 ∈ N and a group homomor-
phism α1 : K0(A1) → K0(Bm1

) such that α1 ◦ β0 = K0(gm1,0). From this, again using Lemma 3.17,
we find n2 ∈ N and a group homomorphism β1 : K0(Bm1

)→ K0(An2
) such that β1 ◦α1 = K0(fn2,1).

Continue in this manner to inductively construct the commutative diagram

K0(A1) K0(An2
) K0(An3

) · · · K0(A)

K0(B0) K0(Bm1
) K0(Bm2

) K0(Bm3
) · · · K0(B)

α1 α2 α3
α−1

β0 β1 β2
α

By Lemma 2.11, the inductive sequences (Ani
, {fni+1,ni

}) and (Bmi
, {gmi+1,mi

}) have inductive limits
A and B, respectively. We can thus simplify the notation and let n1 = 1, n2 = 2 and m0 = 0, m1 = 1
etc.. We want to lift this diagram to a commutative one on the level of C∗-algebras.

Use Lemma 3.15 to lift each αj and βj to unit-preserving *-homomorphisms ϕ′j : Aj → Bj and
ψ′j : Bj → Aj+1 such that K0(ϕ′j) = αj and K0(ψ′j) = βj . Note that as

K0(fj) = βj ◦ αj = K0(ψ′j ◦ ϕ′j) and K0(gj) = αj+1 ◦ βj = K0(ϕ′j+1 ◦ ψ′j),

for all j, the following construction is possible by Lemma 3.16:
By uniqueness of ψ0, we see that ψ0 = ψ′0, and uniqueness of g0 implies that g0 = ϕ′1 ◦ ψ′0. The
following might seem strange, but there is a reason for it: Define v1 = 1 and ϕ1 = Ad(v1) ◦ ϕ′1, such
that g0 = ϕ1 ◦ ψ0. Now, as

K0(f1) = K0(ψ′1 ◦ ϕ′1) = K0(ψ′1 ◦ ϕ1),

there exists unitary u1 ∈ B such that f1 = Adu1◦ψ′1◦ϕ1. Let ψ1 = Adu1◦ψ′1, such that f1 = ψ1◦ϕ1.
Continue this construction inductively to find unitaries uj ∈ U(Aj+1) and vj ∈ U(Bj) with v1 = 1
such that

fj = ψj ◦ ϕj , and gj = ϕj+1 ◦ ψj ,
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for each j, where ϕj = Ad vj ◦ ϕ′j and ψj = Aduj ◦ ψ′j . By Lemma 3.16, we also find that
K0(ϕj) = K0(ϕ′j) and K0(ψj) = K0(ψ′j).

Hence we have constructed the commutative diagram

A1 A2 A3 · · · A

B0 B1 B2 B3 · · · B

f1 f2

g1 g2 g3

ϕ1 ϕ2 ϕ3
ψ

ψ0 ψ1 ψ2
ϕ

where we know that ϕ : A→ B and ψ : B → A exist and are inverses of one another by Lemma 2.17.
We conclude that A and B are isomorphic C∗-algebras. Note moreover that K0(ϕj) = αj and that
the following diagrams are commutative

K0(An) K0(A)

K0(Bn) K0(B)

K0(ϕ∞,n)

K0(ψ∞,n)

K0(ϕn) K0(ϕ)

K0(An) K0(A)

K0(Bn) K0(B)

K0(ϕ∞,n)

K0(ψ∞,n)

K0(ϕn) α

Since K0(A) =
⋃
n∈NK0(ϕ∞,n)(K0(An)) by Theorem 2.23(i), we conclude that α = K0(ϕ), which

completes the proof.

Let us briefly touch on classification of general AF-algebras. If A is a C∗-algebra, one can define
the dimension range D0(A) as

D0(A) = {[p]0 | p ∈ P(A)} ⊆ K0(A)+.

Since the classification invariant of Theorem 3.18 obviously is not defined in the non-unital case, it
is clear that in order to classify all AF-algebras, one needs to change it. In the general case, the
classification invariant is (K0(A),D0(A)), see [5]. The structure of the proof is essentially the same,
with the only differences being the change from the ordered K-groups to the dimension range. This
general classification invariant does not contain more data than the one, we are using, in the unital
case, which the following proposition shows.

Proposition 3.19. If A is a unital, stably finite C∗-algebra with the cancellation property, then

D0(A) = {g ∈ K0(A) | 0 ≤ g ≤ [1A]0}.

Proof. Since A is unital and stably finite, its ordered K0-group is an ordered Abelian group with
a distinguished order unit [1A]0, see Proposition 1.25. Suppose g ∈ D0(A), then g = [p]0 for some
p ∈ P(A), and therefore p ≤ 1A implying that 0 ≤ g = [p]0 ≤ [1A]0. If, on the other hand,
0 ≤ g ≤ [1A]0 for some g ∈ K0(A), then we can use the technique of the proof in Lemma 3.15 to find
a projection p ∈ A with g = [p]0, which completes the proof.

As stated in the introduction, classifying classes of C∗-algebras through their K-theory is not
exclusive to AF-algebras. Let us briefly touch upon how the Elliott invariant can be used to classify
a more general class of C∗-algebras, which extends the classification of AF-algebras of Theorem 3.18.

Definition 3.20. A C∗-algebra A is called approximately homogeneous, shortened AH, if it is the
inductive limit of a sequence of C∗-algebras of the form

Mk1(C(X1))⊕ · · · ⊕Mkn(C(Xk)) (3.1)

for n ∈ N and ki ∈ N, where each Xi is a compact Hausdorff space. If each Xj = T is the unit circle
in C, we call A an AT-algebra.
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AF-algebras form a subclass of AH-algebras with Xj being finite spaces; in fact, we can take
them all to be singletons. Since Abelian C∗-algebras are nuclear, and Mn(A) is nuclear whenever A
is nuclear, it follows from Proposition 3.13 that AH-algebras are nuclear. While AF-algebras have
trivial K1-groups, this does not hold for general AH-algebras; for example, K1(C(T)) = Z, see [10].
One would therefore expect that the classification of AH-algebras should in some way include the
K1-group.

Definition 3.21. A C∗-algebra has real rank zero if any self-adjoint element can be written as a
norm-limit of self-adjoint elements with finite spectrum.

For instance all AF-algebras have real rank zero, see [15, Proposition 1.2.4]. Define for a C∗-
algebra A the graded K-theory K∗(A) = K0(A) ⊕ K1(A). We say that a group homomorphism
α : K∗(A) → K∗(B) of graded K-theory is graded if α(K0(A)) ⊆ K0(B) and α(K1(A)) ⊆ K1(B).
Define moreover the graded dimension range D∗(A) as the set

D∗(A) = {([p]0, [u]1) | p ∈ P(A), u ∈ U(pAp)}.

A proof of the following theorem, which we express as in [15, Theorem 3.2.6], may be found in [6,
Theorem 7.1].

Theorem 3.22 (Elliott, 1993). Let A and B be AT-algebras of real rank zero. Then A and B
are isomorphic if and only if there is a graded group isomorphism α : K∗(A) → K∗(B) such that
α(D∗(A)) = D∗(B). In the affirmative case, α has a *-isomorphism ϕ : A → B lifting α, i.e. α =
K∗(ϕ).

The above is clearly an extension of the classification of AF-algebras. The classification structure
(K∗(A),D∗(A)) also has a specific structure, which we shall discuss in the next chapter, where we
also characterize the structure of the ordered K0-groups of AF-algebras.

3.4 UHF algebras

A specific type of AF-algebras, which was first studied in the 1960’s by Glimm [8] prior to Bratteli’s
examination of AF-algebras, is the so-called uniformly hyperfinite algebras, usually denoted UHF-
algebras. Being unital AF-algebras, they are classified by Theorem 3.18, but the UHF-algebras
can be further classified by a certain generalization of the natural numbers called the supernatural
numbers, which in essence are sequences in N0 ∪{∞}. This classification is due to Glimm [8], and we
shall see how the supernatural numbers arise exactly from the ordered K0-groups.

Definition 3.23. A C∗-algebra is called a uniformly hyperfinite algebra, or UHF-algebra for short,
if it is the inductive limit of matrix algebras with unit-preserving *-homomorphisms, that is, if it
is the inductive limit of a sequence (An, {ϕn}), where An ∼= Mkn(C) for some kn ∈ N and ϕn is
unit-preserving.

It is clear that UHF-algebras are unital AF-algebras. In fact, they are all simple, as one imme-
diately gathers from their Bratteli diagrams. Not all simple AF-algebras are UHF-algebras, though,
since the compact operators on an infinite-dimensional, separable Hilbert space is a simple non-unital
AF-algebra.
The fact that the connecting maps are unital gives a somewhat strong condition on the inductive
sequence, since there exists a unital *-homomorphism ϕ : Mk(C)→M`(C) if and only if k divides `.
If ϕ is unital, then if e is a one-dimensional projection in Mk(C), and if we denote by 1k the unit on
Mk(C), we find that

Tr(ϕ(e)) =
Tr(ϕ(1k))

Tr(1k)
=
`

k

since ϕ(e) ∈ M`(C) is a projection. As Tr(ϕ(e)) is an integer in {0, . . . , `}, this implies that k
must divide `. Conversely, if k divides `, then we can take ϕ : Mk(C) → M`(C) to be the unital
*-homomorphism x 7→ (x, . . . , x) with `

k copies of x.
Let us now define what will shortly turn out to be the classification invariant of UHF-algebras.

Definition 3.24. By a supernatural number n, we mean a sequence n = {nj}j∈N where nj ∈
N0 ∪ {∞}.
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Let {p1, p2, . . .} denote the prime numbers in strictly increasing order, then we view a supernatural
number n = {nj}j∈N as n =

∏
j∈N p

nj

j , i.e., nj denotes the multiplicity of the jth prime in the prime
factorization of n. Using this point of view, all natural numbers become supernatural numbers, since
each natural number has a unique prime factorization, and consequently this is a generalization of
the naturals. If n = {nj}j∈N and m = {mj}j∈N are two supernatural numbers, we define the product
to be nm = {nj +mj}j∈N, as one would expect with this prime factorization viewpoint.

Definition 3.25. For each supernatural number n = {nj}j∈N, we denote by Q(n) the subgroup of Q
consisting of elements x

y , where x ∈ Z and y =
∏
j∈N p

mj

j where mj ≤ nj and mj > 0 for only finitely
many j.

The K-theoretic invariants of Theorem 3.18 for UHF-algebras are precisely these subgroups. The
following proposition establishes this connection.

Proposition 3.26. Let A be a UHF-algebra with inductive sequence (Mki(C), {ϕi}). Write ki =∏∞
j=1 p

ni,j

j for some ni,j ∈ N0. Define nj = supi∈N ni,j and let n = {nj}j∈N be the corresponding

supernatural number. Then Q(n) =
⋃∞
i=1 k

−1
i Z and there exists a group isomorphism α : Q(n) →

K0(A) with α(1) = [1A]0.

Proof. Since ni,j ≤ nj for all i ∈ N, we see that k−1j ∈ Q(n). Suppose t = x
y ∈ Q(n), and write

y =
∏r
j=1 p

mj

j , where mj ≤ nj for each j. Without loss of generality, we can assume that x and y
are relatively prime. By definition of Q(n), we know that mj ≤ nj for all j, and by construction of
{nj}j∈N there exists a sufficiently large i such that mj ≤ ni,j for all j. In particular, y is a divisor in
ki for this i, and hence t ∈ k−1i Z.
We now construct the desired isomorphism. Denote by τi = 1

ki
Tr the normalized trace on Mki(C)

for each i ∈ N, and note that since K0(Tr) : K0(Mki(C)) → Z is an isomorphism, we have that
K0(τi) : K0(Mki(C)) → k−1i Z is an isomorphism. Since we clearly have that τj+1 ◦ ϕj = τj for each
j, this passes to morphisms of K0-groups, i.e., K0(τj+1) ◦K0(ϕj) = K0(τj) for each j. This implies
by definition of inductive limits that there exists a group homomorphism α : K0(A) → Q(n) such
that α ◦K0(ϕ∞,j) = K0(τj) for each j; here we have implicitly used continuity of K0, Theorem 2.23.
Since K0(τj) is injective for each j ∈ N, and Q(n) =

⋃∞
j=1K0(τj)(K0(Mkj (C)) by the previous part,

it follows from Theorem 2.6(iii) that α is an isomorphism.

We call the supernatural number n in the above proposition for the supernatural number associated
to the UHF-algebra A. At this point, however, the name is not very well justified, as it is not clear
that there exists a unique correspondence between supernatural numbers and UHF-algebras. The
following proposition shows that there is such a correspondence.

Proposition 3.27. Any subgroup of (Q,+) containing 1 is of the form Q(n) for some supernatural
number n. Moreover, there exists a group isomorphism α : Q(n) → Q(m) with α(1) = 1 if and only
if n = m.

Proof. Suppose G is a subgroup of (Q,+) containing 1. Define for each j the number

nj = sup{m ∈ N0 | p−mj ∈ G} ∈ N0 ∪ {∞} (3.2)

and consider the supernatural number n = {nj}∞j=1. Let t ∈ Q be a non-zero rational number
expressed by t = x

y , where x, y are relatively prime. Find, by Bézout’s lemma, integers a, b ∈ Z such

that 1 = ax + by, and suppose that y has prime factorization y =
∏k
j=1 p

mj

j , where mj ∈ N0. Put

yj = yp
−mj

j and note that

p
−mj

j =
yj
y

=
yj(ax+ by)

y
= yj(at+ b · 1). (3.3)

Since the numbers y1, . . . , yk are relatively prime, we can find integers c1, . . . , ck ∈ Z such that
1 = c1y1 + · · ·+ ckyk. Hence,

t =
x

y
=
x(c1y1 + · · ·+ ckyk)

y
=
xc1
pm1
1

+ · · ·+ xck
pmk

k

. (3.4)

If t ∈ G, then in particular p
−mj

j ∈ G by (3.3) and consequently mj ≤ nj for each j. Therefore
1/y ∈ Q(n) by definition, and then (3.4) implies that t ∈ Q(n). If, on the other hand, t ∈ Q(n), then
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mj ≤ nj and hence p
−mj

j ∈ G for each j. Then it follows from (3.4) that t ∈ G. Hence, we conclude
that G = Q(n).

We now prove uniqueness of the supernatural number. Suppose n,m are supernatural numbers.
If n = m, then we can just take α : Q(n)→ Q(m) to be the identity map. Conversely, if there exists a
group isomorphism α : Q(n)→ Q(m) such that α(1) = 1, then it is easily verified through additivity
and α(1) = 1 that α(x/y) = x/y for each x/y ∈ Q(n). This implies that α is, in fact, the identity map,
and hence Q(n) = Q(m). Since the supernatural number n can be recovered from Q(n) by (3.2), we
find that n = m.

We are almost able to invoke Theorem 3.18 and classify UHF-algebras by their associated super-
natural number. There is, however, a catch; the isomorphism in Proposition 3.26 is not of ordered
Abelian groups, as in Theorem 3.18. This is not a problem, though, as the positive cone can be derived
from the quantity (K0(A), [1A]0) as the following theorem, which is the classification of UHF-algebras,
shows.

Theorem 3.28. Let A and B be UHF-algebras with associated supernatural number n and m, re-
spectively. The following are equivalent:

(i) A ∼= B;

(ii) n = n′;

(iii) There exists a group isomorphism α : K0(A)→ K0(B) such that α([1A]0) = [1B ]0;

(iv) There is an isomorphism (K0(A),K0(A)+, [1A]0) ∼= (K0(B),K0(B)+, [1B ]0) of ordered Abelian
groups with distinguished order units.

Proof. It follows from Proposition 3.26 and Proposition 3.27 that (ii) and (iii) are equivalent. It is
known from classification of unital AF-algebras, Theorem 3.18, that (i) and (iv) are equivalent, and
it is trivial that (iv) implies (iii). We hence only need to establish that (iii) implies (iv), i.e. that
any group isomorphism between K0(A) and K0(B) sending [1A]0 to [1B ]0 necessarily preserves the
positive cone.

Let g ∈ K0(A) and identify via. Proposition 3.26 (K0(A), [1A]0) with (Q(n), 1) for some supernatural
number n. Then g = x

y [1A]0, and hence yg = x[1A]0, for some x ∈ Z and y ∈ N. If x ≥ 0, then

yg ≥ 0, and as K0(A) is unperforated, see Definition 4.3 and Theorem 4.8 in the next chapter, we
conclude that g ≥ 0. If x ≤ 0, then we similarly find that −g ≤ 0. We thus find that g ∈ K0(A)+ if
and only if gy = x[1A]0 for some x ∈ N0 and y ∈ N with x

y ∈ Q(n).

Since this description of K0(A)+ is determined completely by rational multiples of [1A]0, and as
α : K0(A) → K0(B) is a group isomorphism with α([1A]0) = [1B ]0, one immediately finds that
α(K0(A)+) = K0(B)+ proving the theorem.

Since we have classified the UHF-algebras via their associated supernatural numbers, it is natural
to ask: Does there for every supernatural number n exist a UHF-algebra A, whose associated super-
natural number is n? The answer is affirmative, and it is almost answered in Proposition 3.26, since
it is a simple consequence hereof.

Proposition 3.29. For any supernatural number n, there exists a UHF-algebra A whose associated
supernatural number is n.

Proof. Let n = {nj}∞j=1 be an arbitrary supernatural number and define for each j the element

kj =
∏j
i=1 p

min{j,ni}
i in N0 ∪ {∞}. It is easily seen that n is the supernatural number associated

to the sequence {kj}∞j=1 as in Proposition 3.26. Since kj+1 is divisible by kj for each j, there exist
unital *-homomorphisms ϕj : Mkj (C) → Mkj+1

(C). Let A be the inductive limit of the sequence
(Mkj , {ϕj}), then Proposition 3.26 states that (K0(A), [1A]0) is isomorphic to the pair (Q(n), 1), and
hence A has n as its associated supernatural number.

The original proof of the classification of UHF-algebras by Glimm [8] was precisely by the as-
sociated supernatural numbers. It was later realized that this classification was in fact K-theoretic
in nature, and the proof in Theorem 3.28 uses this realization to go from the classification of unital
AF-algebras via ordered K0-groups to the supernatural numbers.
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Let us end this chapter by examining a specific UHF-algebra, whose ordered K0-group has been
studied previously in this project.

Example 3.30. In Example 2.9, we discovered that the rational numbers Q could be realized as the
inductive limit of an inductive sequence of integers. Combining Proposition 3.27, Theorem 3.28 and
Proposition 3.29, there exists a UHF-algebra Q whose ordered K0-group is precisely Q equipped with
the positive cone Q+ = Q ∩ [0,∞). Following the arguments of Theorem 4.2 in the next chapter, we
can realize Q as the UHF-algebra with Bratteli diagram

•1

•1

•2

•6
...

i.e. with inductive sequence An = M(n−1)!(C) and multiplicity n for the connecting *-homomorphism
ϕn : An → An+1, such that they are unitarily equivalent to the maps x 7→ diag(x, . . . , x). The
corresponding supernatural number is n = {nj}j∈N with nj = ∞ for each j. This UHF-algebra is
sometimes known as the universal UHF-algebra [15].
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4 Dimension groups

In the previous chapter, we saw how we can classify unital AF-algebras through some K-theoretic
invariants, and then we saw that the subclass of UHF-algebras actually have a particular structure
to their K-theoretic invariants; they are all subgroups of the additive group Q containing 1, and any
such group is the K-theory invariant of a UHF-algebra. We can hence completely characterize the
classification invariants. It is natural to ask whether this is also the case for AF-algebras, and the
answer is ”yes”. Given the major difference in complexity between UHF-algebras and AF-algebras,
the structure of the K-theoretic invariants for a general AF-algebra can be expected to be more
flexible than just associating a supernatural number, as is the case for UHF-algebras. We shall see
that the classification invariants for AF-algebras still have some nice properties, and that they have
an inductive as well as an intrinsic characterization. For this chapter, we mainly rely on [9] for the
background theory on Riesz groups, and the orginal papers of Shen, [16], and Effros, Handelman and
Shen, [4], for the intrinsic characterization of dimension groups.

Recall that Zn equipped with the positive cone (Z+)n is an ordered Abelian group, and that we
call these simplical groups.

Definition 4.1. An ordered Abelian group is called a dimension group if it is isomorphic to an
inductive limit of simplical groups.

It is clear that dimension groups are always countable with our definition of inductive limits, and
it turns out that they are precisely the K-theoretic invariants, we studied in Chapter 3.

Theorem 4.2. The ordered K0-group of an AF-algebra is a dimension group, and, conversely, any
dimension group is the ordered K0-group of some AF-algebra.

Proof. If B is a finite-dimensional C∗-algebra, then (K0(B),K0(B)+) ∼= (Zk, (Z+)k) as ordered
Abelian groups for some k ∈ N. It hence follows by continuity of K0, that if A is an AF-algebra, then
(K0(A),K0(A)+) is a dimension group.
Suppose therefore that (G,G+) is a dimension group, G = lim

→
(Zni , {ϕi}). We want to construct an

AF-algebra whose ordered K0-group is precisely (G,G+). The idea of the proof is simple: For each
i ∈ N, find some finite-dimensional C∗-algebra Ai with K0(Ai) = Zni , and lift the positive group
homomorphisms Zni → Zni+1 to *-homomorphisms Ai → Ai+1.

First, we inductively choose order units uj = (k
(j)
1 , . . . , k

(j)
nj ) ∈ (Z+)j such that ϕj(uj) ≤ uj+1.

Note that k
(j)
i ∈ N, as uj are order units. Define

Aj = M
k
(j)
1

(C)⊕ · · · ⊕M
k
(j)
nj

(C)

and let by Proposition 1.30 γj : Znj → K0(Aj) be the canonical order isomorphism satisfying γj(uj) =
[1Aj ]0. Define αj : K0(Aj) → K0(Aj+1) by αj = γj+1 ◦ ϕj ◦ γ−1j and find by Lemma 3.15 a *-
homomorphism ψj : Aj → Aj+1 such that K0(ψj) = αj for each j. Then K0(ψj) ◦ γj = γj+1 ◦ ϕj by
construction. Let A = lim

→
(An, {ψn}), then A is an AF-algebra, and by continuity of K0 we conclude

that K0(A) = G as desired.

Let us try to establish some intuition for what the above proof actually says, which may be
hidden in the details. Given a dimension group, find an inductive sequence of simplical groups. We
can graphically represent this inductive sequence in a Bratteli diagram, where the multiplicity of
the connecting maps can be read directly from the corresponding matrices. If we consider the AF-
algebra corresponding to the Bratteli diagram, this will precisely correspond to the dimension group
we started with. This gives us a way to rephrase the definition of dimension groups to express its
importance in the study of AF-algebras, but no new information about the structure of dimension
groups can be extracted from this. Our main goal of this chapter is to understand dimension groups
by giving an intrinsic characterization.

Definition 4.3. Let (G,G+) be an ordered Abelian group. We say that

(i) G is unperforated if ng ≥ 0 implies that g ≥ 0 for all n ∈ N and g ∈ G;
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(ii) G has Riesz interpolation if for every x1, x2, y1, y2 ∈ G with xi ≤ yj for i, j = 1, 2 there exists
z ∈ G with xi ≤ z ≤ yj for i = 1, 2;

(iii) G satisfies Riesz decomposition property if for any x1, x2, y1, y2 ∈ G+ with x1 + x2 = y1 + y2
there exist zij ∈ G+, i, j = 1, 2, such that xi = zi1 + zi2 for each i and yj = z1j + z2j for each j.

If (G,G+) satisfies (i) and (ii), we say that G is a Riesz group.

It turns out that (ii) and (iii) are actually equivalent, as the following lemma from [9] shows.

Lemma 4.4. Let (G,G+) be an ordered Abelian group. Then the following are equivalent:

(i) G has Riesz interpolation;

(ii) Given x, y1, y2 ∈ G+ with x ≤ y1+y2, there exist x1, x2 ∈ G+ such that x = x1+x2 and xj ≤ yj
for each j;

(iii) G satisfies Riesz decomposition property.

Proof. (i)⇒(ii): Note that if x, y1, y2 ∈ G+ satisfies x ≤ y1 + y2, then 0 ≤ x and 0 ≤ y2, as well as
x− y2 ≤ y1 and x− y2 ≤ x. By Riesz interpolation, there exists x1 ∈ G1 such that 0 ≤ x1 ≤ x and
x− y2 ≤ x1 ≤ y1. Put x2 = x− x1, then x = x1 + x2, and we see that x1 ≤ y1 and 0 ≤ x2 ≤ y2.

(ii)⇒(i): Take x1, x2, y1, y2 ∈ G such that xi ≤ yj for all i, j = 1, 2. Then yj − xi ∈ G+ for all
i, j and hence

0 ≤ y2 − x1 ≤ (y2 − x1) + (y1 − x2) = (y1 − x1) + (y2 − x2),

which by (ii) implies that there exist z1, z2 ∈ G+ such that z1 + z2 = y2 − x1 and zj ≤ yj − xj for
j = 1, 2. Put z = x1 + z1, then we claim that xi ≤ z ≤ yj for all i, j.
First we note that x1 ≤ z, as z1 ≥ 0. Since z1 ≤ y1 − x1, we have z ≤ y1, and as z1 + z2 = y2 − x1,
we have z = y2 − z2 ≤ y2. Lastly, as z2 ≤ y2 − x2, we have x2 ≤ y2 − z2 = z using the definition of
z1 and z2. We conclude that G has Riesz interpolation.

(ii)⇒(iii): Suppose x1, x2, y1, y2 ∈ G+ with x1 + x2 = y1 + y2. Writing x1 = y1 + y2 − x2 shows that
x1 ≤ y1 + y2. Then, by (ii), there exist z11, z12 ∈ G+ such that x1 = z11 + z12 and z1j ≤ yj for
j = 1, 2. Now put z2j = yj − z1j for each j, then z2j ∈ G+ and yj = z1j + z2j . We hence only need
to show that x2 = z21 + z22. However, this is easily seen by the following calculations:

x1 + x2 = y1 + y2 = (z11 + z21) + (z12 + z22) = (z11 + z12) + (z21 + z22) = x1 + z21 + z22.

(iii)⇒(ii): Suppose x, y1, y2 ∈ G+ with x ≤ y1 + y2. Consider the positive elements w1 = x and
w2 = y1 + y2 − x, which satisfy w1 + w2 = y1 + y2. By (iii), there exist zij ∈ G+ such that
wi = zi1 + zi2 and yj = z1j + z2j for all i, j. Put xj = z1j for j = 1, 2 and note that x = w1 = x1 +x2.
Moreover,

xj = z1j ≤ z1j + z2j = yj

showing that G satisfies (ii). This completes the proof.

The next proposition, again from [9], states that if G satisfies one of the three equivalent properties
of Lemma 4.4, then these properties can be extended to any finite number of elements.

Proposition 4.5. Suppose G is a Riesz group.

(i) If x1, . . . , xn, y1, . . . , yk ∈ G satisfy that xi ≤ yj for all i, j, then there exists z ∈ G such that
xi ≤ z ≤ yj, for all i, j.

(ii) If x, y1, . . . , yk ∈ G+ satisfies that x ≤ y1 + · · · + yk, then there exist x1, . . . , xk ∈ G+ with
x = x1 + · · ·+ xk and xi ≤ yi for all i.

(iii) If x1, . . . , xn, y1, . . . , yk ∈ G+ satisfies that

x1 + · · ·+ xn = y1 + · · ·+ yk

then there exist zij ∈ G+ for i = 1, . . . , n and j = 1, . . . , k such that

xi = zi1 + · · ·+ zik, and yj = z1j + · · ·+ znj
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Proof. (i): We prove this by induction. The case n = 1 is trivial, and so is k = 1. So consider
n, k ≥ 2. If n = k = 2, it follows by Lemma 4.4. So we can assume n + k > 4 and proceed by
complete induction on n+ k, i.e. on the number of xi’s and yj ’s.
We can without loss of generality assume that n > 2. Find by induction hypothesis w ∈ G with
xi ≤ w ≤ yj for i = 1, . . . , n − 1 and j = 1, . . . , k. We can then use the induction hypothesis, since
2 + k < n+ k, again on the elements w, xn and y1, . . . , yk to find z ∈ G with w, xn ≤ z ≤ yj for all j.
It is then easily seen that xi ≤ z ≤ yj for all i, j.

(ii): The case k = 1 is trivial, and the case k = 2 holds by Lemma 4.4. We proceed by complete
induction on k. Note that

x1 ≤ (y1 + y2) + y3 + · · ·+ yk

and use the induction hypothesis to find x12, x3, . . . , xk ∈ G+ such that x = x12 + x3 + · · · + xk
with x12 ≤ y1 + y2 and xj ≤ yj for j ≥ 3. By the case k = 2, there exist x1, x2 ∈ G+ such that
x12 = x1 + x2 and xj ≤ yj for j = 1, 2. Then x = x1 + · · ·+ xk and xj ≤ yj for all j = 1, . . . , k.

(iii): Lastly, we prove (iii) by induction on n. The case n = 1 is trivially true. For n > 1 we
see that

x1 ≤ x− 1 + · · ·+ xn = y1 + · · ·+ yk

and hence by (ii) there exist positive elements z1j ∈ G+ such that x1 =
∑k
j=1 z1j and z1j ≤ yj for all

j = 1, . . . , k. In particular, yj − z1j ≥ 0 and we have the positive decomposition

x2 + · · ·+ xn = y1 + · · ·+ yk − x1 = (y1 − z11) + · · ·+ (yk − z1k) .

By induction hypothesis, there exist elements zij ∈ G+ for i = 2, . . . n and j = 1, . . . k such that

xi = zi1 + · · ·+ zik, and yj − z1j = z2j + · · ·+ z2n.

for all i = 2, . . . , n and j = 1, . . . , k. Adjoining these zij ’s with the z1j ’s gives us that

xi = zi1 + · · ·+ zik, and yj = z1j + z2j + · · ·+ znj

for all i = 1, . . . , n and j = 1, . . . , k. This completes the proof.

We shall see that dimension groups are precisely countable Riesz groups. We first need a lemma
explaining how we can pull back positive elements in an inductive limit to positive elements in the
sequence.

Lemma 4.6. Let (Gn, {ϕn}) be an inductive sequence of ordered Abelian groups with inductive limit
(G, {ϕ∞,n}). Then ϕ∞,n(x) ≥ 0 if and only if there exists m ≥ n with ϕm,n(x) ≥ 0.

Proof. The implication from the right is trivial, since ϕ∞,n(x) = ϕ∞,m◦ϕm,n(x), and as the boundary
maps are positive. Suppose ϕ∞,n(x) ≥ 0, then as G+ =

⋃∞
n=1 ϕ∞,n(G+

n ) there exists y ∈ G+
k such that

ϕ∞,n(x) = ϕ∞,k(y). Suppose n ≥ k; the other case follows analogously. Then ϕ∞,n(x−ϕn,k(y)) = 0
which, by Theorem 2.6(ii), implies there exists m ≥ n with ϕm,n(x− ϕn,k(y)) = 0. Then ϕm,n(x) =
ϕm,k(y) ≥ 0 completing the proof.

Note that this lemma implies that dimension groups are unperforated. If G is a dimension group
with inductive sequence (Znk , {ϕk}) and we have g ∈ G and n ∈ N such that ng ≥ 0, then g = ϕ∞,k(h)
for some k ∈ N and h ∈ Znk . Then ϕ∞,k(nh) = ng ≥ 0, which by the above lemma implies that
there exists m ∈ N with ϕm,k(nh) ≥ 0. Unperforation of simplical groups implies that ϕm,k(h) ≥ 0,
and thus g = ϕ∞,m(ϕm,k(h)) is positive.

The following result gives a local characterization of dimension groups and is due to Shen, see [16].

Theorem 4.7 (Shen, 1979). An unperforated, countable, ordered Abelian group G is a dimension
group if and only if the following condition holds:
For any simplical group Zn and any positive group homomorphism θ : Zn → G and arbitrary α ∈ ker θ,
there exist a simplical group Zp and positive group homomorphisms ϕ : Zn → Zp and θ′ : Zp → G
such that α ∈ kerϕ and the following diagram commutes:
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Zn

Zp G

ϕ θ

θ′

Proof. First suppose that G is a dimension group, and let (G, {ϕ∞,n}) = (lim
→

(Znk , ϕk). Suppose

θ : Zn → G is a positive group homomorphism, and that α ∈ ker θ. Let (ei) be a basis for Zn
and write α =

∑n
i=1 αiei. By construction of the inductive limit, there exists k ∈ N such that

θ(ei) ∈ ϕ∞,k(Znk) for all i = 1, . . . , n. Find ui ∈ Znk such that ϕ∞,k(ui) = θ(ei). By Lemma 4.6,
there exists m ≥ k such that ϕm,k(ui) ≥ 0 and thus

ϕ∞,k(ui) = ϕ∞,m(ϕm,k(ui))

such that we without loss of generality can assume that ui ≥ 0. Moreover we find that

ϕ∞,k(

n∑
i=1

αiui) =

n∑
i=1

αiϕ∞,k(ui) =

n∑
i=1

αiθ(ei) = θ(α) = 0

and hence we may assume that
∑n
i=1 αiui = 0. Now define the positive group homomorphism

ϕ : Zn → Znk by ϕ(ei) = ui and let θ′ = ϕ∞,k, then θ′ ◦ ϕ = θ and α ∈ kerϕ by construction.

Now suppose that G is an unperforated ordered Abelian group with the localization property in
the theorem. Suppose we have constructed a diagram of order homomorphisms:

Zn1 Zn2 Zn3 · · · H

G G G · · · G

ϕ1 ϕ2

θ1 θ2 θ3 λ

such that ker θk ⊆ kerϕk and G+ =
⋃
k θk((Z+)nk). We prove that the dashed map λ : H → G exists

and is an isomorphism of ordered groups. Let (H, {ϕ∞,k}) = lim
→

(Znk , {ϕk}). Then the definition

of inductive limits implies that there exists a unique group homomorphism λ : H → G such that
λ ◦ϕ∞,k = θk for all k. Injectivity of λ is clear by Theorem 2.6(iii), as ker θk ⊆ kerϕk, and surjectiv-
ity is obvious. Moreover it is positive by the proof of Theorem 2.7, and if g ∈ G+, then there exist
k ∈ N and a ∈ (Z+)nk such that g = θk(g), and putting h = ϕ∞,k(a) ≥ 0 gives us that λ(h) = g. We
have hence shown that λ is an order isomorphism and, consequently, if we were to construct such a
diagram, G would be the inductive limit of a sequence of simplical groups, i.e., a dimension group.

Since G is assumed to be countable, let G+ \ {0} = {g1, g2, . . .} be an enumeration of the non-
zero positive elements of G. Let n1 = 1 and θ1 : Z → G be given by θ1(k) = kg1 for k ∈ Z; note
that it is a positive group homomorphism. Now construct θk+1 inductively as follows: Consider the
diagram

Znk G

Znk ⊕ Z

θk

ψk ζk

where the direct sum is understood as of ordered Abelian groups, and the maps ψk : Znk → Znk ⊕ Z
and ζk : Znk ⊕ Z→ G are given by

ψk(g) = (g, 0), g ∈ Znk ,

ζk(g,m) = θk(g) +mgk+1, (g,m) ∈ Znk ⊕ Z.

Note that the diagram is clearly commutative by construction. Since the kernel ker ζk is a free module
of finite rank, we can use the localization property, which G is assumed to satisfy, a finite number of
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times to find a simplical group Znk+1 and positive group homomorphisms Φk : Znk ⊕ Z→ Znk+1 and
θk+1 : Znk+1 → G such that ker ζk ⊆ ker Φk and θk+1 ◦ Φk = ζk. Define ϕk = Φk ◦ ψk, then

θk+1 ◦ ϕk = θk+1 ◦ Φk ◦ ψk = ζk ◦ ψk = θk.

Suppose g ∈ ker θk, then ζk(ψk(g)) = 0 implying that ψk(g) ∈ ker ζk ⊆ ker Φk. Therefore ϕk(g) =
Φk ◦ ψk(g) = 0 proving that ker θk ⊆ ϕk.
Finally, having constructed this diagram, note that g1 = θ1(1) and for k > 1 we get

gk = ζk−1(0, 1) = θk(Φk−1(0, 1))

and since Φk−1 is an order homomorphism, Φk−1(0, 1) ∈ (Z+)nk , and hence G+ =
⋃
k∈N θk ((Z+)nk),

which completes the proof.

We are now able to prove the intrinsic characterization of dimension groups [4].

Theorem 4.8 (Effros-Handelmann-Shen, 1980). Let G be a countable ordered Abelian group. Then
G is a dimension group if and only if G is a Riesz group.

Proof. Suppose that (G, {ϕ∞,k}) = lim
→

(Znk , {ϕk}) is a dimension group. We saw as a consequence

of Lemma 4.6 that dimension groups are unperforated, since unperforation passes to inductive limits.
We hence only need to prove that Riesz’ interpolation property is preserved by inductive limits.
Let xi, yi ∈ G, i = 1, 2, be such that xi ≤ yj for all i, j. Find k ∈ N and ai, bi ∈ Znk such that
ϕ∞,k(ai) = xi and ϕ∞,k(bi) = yi. Since xi ≤ yj for i, j = 1, 2, we find that ϕ∞,k(bj − ai) ≥ 0,
and hence by Lemma 4.6 there exists m ≥ k such that ϕm,k(bj − ai) ≥ 0 for all i, j = 1, 2. Then
ϕm,k(ai) ≤ ϕm,k(bj) for all i, j = 1, 2, and since Znm has Riesz interpolation, there exists some
c ∈ Znm with

ϕm,k(ai) ≤ c ≤ ϕm,k(bj), i, j = 1, 2.

Setting z = ϕ∞,m(c) and using that the boundary maps are positive group homomorphisms and hence
preserves the ordering, we conclude that xi ≤ z ≤ yj for all i, j, and hence G has Riesz interpolation.
We conclude that if G is a dimension group, then G is a Riesz group.

Now assume that G is a Riesz group, then we want to construct G as an inductive limit of sim-
plical groups. We shall use the characterization given in Theorem 4.7. Suppose θ : Zn → G is an
arbitrary positive group homomorphism and let α ∈ ker θ. We define for each element g ∈ Zn the
degree of g by the following: We can decompose g into its positive and negative entries, i.e.: Find an
orthonormal basis (ei, fj , gk) of Zn such that

g =

r∑
i=1

miei −
s∑
j=1

njfj

where mi, nj > 0 are strictly positive integers, and note that the basis is unique up to relabelling.
Then deg g = (p, d), where p is the maximal coefficient, i.e. p = maxi,j{mi, nj}, and d is the number
of times this coefficient appears, i.e.,

d = #{i |mi = p}+ #{j |nj = p}.

Define moreover deg 0 = (0, 0). Then the lexicographical order, i.e., (p, d) ≤ (p′, d′) if p ≤ p′ or if

p = p′ and d ≤ d′,

defines a total ordering on the degrees. Our goal is to construct positive group homomorphisms
ϕ̃ : Zn → Zm and θ′ : Zm → G for some m such that deg ϕ̃(α) < degα and θ′ ◦ ϕ̃ = θ. If this is
possible, we can just continue this process finitely many times to get a map ϕ : Zn → Zm for which
degϕ(α) = (0, 0), and consequently ϕ(α) = 0.

Find, again up to relabelling, the unique orthonormal basis (ei, fj , gk) of Zn such that

α =

r∑
i=1

miei −
s∑
j=1

njfj

46



and define (p, d) = degα. Set ai = θ(ei) and bj = θ(fj), then ai, bj ≥ 0 by positivity of θ. Moreover,
since α ∈ ker θ, we find that

r∑
i=1

miai =

s∑
j=1

njbj .

If s = 0, then ai = 0 for all i = 1, . . . , r and if we put m = n and define ϕ̃ : Zn → Zn by ϕ̃(ei) = 0 and
ϕ̃(gk) = gk and θ′ = θ, then θ◦ ϕ̃ = θ trivially with ϕ̃(α) = 0. We get a similar result if r = 0. We can
hence assume that r, s 6= 0. Assume moreover that m1 = maxi,j{mi, nj}, such that degα = (m1, d);
if maxi,j{mi, nj} = mi0 , just permute the indices, and if maxi,j{mi, nj} = nj0 an argument similar
to the following will work. With this assumption, we get the inequalities

m1a1 ≤
r∑
i=1

miai =

s∑
j=1

njbj ≤ m1

s∑
j=1

bj ,

and since G is unperforated, we see that a1 ≤
∑s
j=1 bj . By the generalized Riesz decomposition,

Proposition 4.5, there exist a1j ∈ G+ for j = 1, . . . , s such that a1j ≤ bj for each j and
∑s
j=1 a1j = a1.

Let m = 2s+ t+ (r − 1) and let

(e′11, . . . , e
′
1s, e

′
2, . . . , e

′
r, f
′
1, . . . , f

′
s, g
′
1, . . . , g

′
t)

be a basis for Zm. Define the positive group homomorphism ϕ̃ : Zn → Zm by

e1 7→
s∑
j=1

e′1j , ei 7→ e′i for 2 ≤ i ≤ r, fj 7→ f ′j + e′ij , gk 7→ g′k

and the positive group homomorphism θ′ : Zm → G by

e′1j 7→ a1j , e′i 7→ ai, f ′j 7→ bj − a1j , g′k 7→ θ(gk).

It is straight-forward to verify that θ′ ◦ ϕ̃ = θ. Moreover,

ϕ̃(α) =

s∑
j=1

(m1 − nj)e′1j +

r∑
j=2

mje
′
j −

s∑
j=1

njf
′
j .

If we put deg ϕ̃(α) = (p′, d′), then we either get p′ < p or, if p′ = p, we get d′ < d. This completes
the proof.

We have hence proven that countable dimension groups are precisely the ordered Abelian groups,
which are unperforated with Riesz interpolation. Consequently, we have found an intrinsic charac-
terization of the dimension groups and thus the ordered K0-groups of AF-algebras.

Recall from Theorem 3.22 that AT-algebras of real rank zero can be classified completely by their
graded K-theory and graded dimension range. In [15], it is stated that if A is a simple unital AT-
algebra of real rank zero, the classification invariant — much like the case for unital AF-algebras
— can be reduced to (K0(A),K0(A)+, [1A]0,K1(A)), i.e., the ordered K0-group, as for AF-algebras,
along with the K1-group structure. In this case, the classification invariant has the structure that
(K0(A),K0(A)+) is a simple dimension group and that K1(A) is a torsion-free Abelian group. More-
over, for any tuple (G0, G

+
0 , g0, G1), where (G0, G

+
0 ) is a simple dimension group, g0 some order unit

for G0 and G1 is a countable torsion-free Abelian group, there exists a simple unital AT-algebra
A whose classification invariant is precisely this tuple. More generally, any pair (G0, G1) with G0

a countable dimension group and G1 an arbitrary countable Abelian group can be realized as the
K-theory of an AH-algebra [3, Remark 2.4.6].
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5 Tracial states on AF-algebras

This last chapter of this project examines the tracial simplices of unital AF-algebras. The first
important result is that taking tracial simplices of unital C∗-algebras takes inductive limits to inverse
limits, and therefore we can understand the tracial simplex structure of AF-algebra by understanding
the structure of the tracial simplices of finite-dimensional algebras, as well as their inverse limits.
Using a result of Lazar and Lindenstrauss, [11], as well as the above mentioned, we show that any
metrizable Choquet simplex can be realized as the tracial simplex of a simple AF-algebra. Lastly, we
discuss some specific examples of such metrizable Choquet simplices in this framework. The main
reference for this chapter is [14].

5.1 Tracial simplices of AF-algebras and metrizable Choquet simplices

Recall that an n-simplex ∆n ⊆ Rn+1 is the closed convex hull of the standard unit vectors {ek | k =
0, . . . , n} for Rn+1. Since these are compact and convex sets, it makes sense by Theorem 2.20 to
consider the inverse limits of such simplices.

Definition 5.1. A Choquet simplex is a compact, convex set ∆ which is realized as the inverse limit
of n-simplices. If the extreme boundary ∂e∆ is closed, we call ∆ a Bauer simplex. We say that a
Choquet simplex ∆ is finite-dimensional, if it is an n-simplex for some n ∈ N0; otherwise we call it
infinite-dimensional.

The above is not the usual definition of a Choquet simplex, but we take this as our definition, as
we then do not need to develop too much theory regarding simplices. For a more thorough exposition
on Choquet simplices, we refer to [9]; note in particular Theorem 11.6 herein, which is exactly our
definition above.

A state ρ on a unital C∗-algebra A is a positive linear functional ρ : A → C such that ρ(1A) = 1.
The collection of states, also called the state space, is denoted by S(A) and is a compact and convex
subset of the dual A∗ of A. A trace on A is a linear functional τ : A → C such that τ satisfies the
trace property:

τ(ab) = τ(ba), for all a, b ∈ A.

If A is unital, and τ is a positive trace with τ(1A) = 1, then we call τ a tracial state. We denote by
T (A) the set of tracial states on A. It is clear that T (A) is a convex subset of S(A). In fact, we have,
see [1, II.6.8.11]:

Proposition 5.2. For a unital C∗-algebra A, the tracial state space T (A) is a Choquet simplex.

It is natural to ask what structure the tracial state space of an AF-algebra may have. To answer
this question we need to examine how tracial simplices of inductive limits behave.

If ϕ : A→ B is a unit-preserving *-homomorphism, then it induces an affine map T (ϕ) : T (B)→ T (A)
by T (ϕ)(τ) = τ ◦ ϕ. Note that T is functorial in the sense that if ϕ : A → B and ψ : B → C, then
T (ψ ◦ ϕ) = T (ϕ) ◦ T (ψ). We can express this as follows, where C∗1 is the category of unital C∗-
algebras with unit-preserving *-homomorphisms, and CptConv is the category of compact convex
spaces with affine continuous maps as morphisms:

Proposition 5.3. The functor T is contravariant from C∗1 to CptConv.

As T is a contravariant functor, it takes inverse sequences to inductive sequences, and hence one
might ask whether it preserves these limits. This is true as the following theorem proves. Recall that a
continuous bijection f : X → Y from a compact space X to a Hausdorff space Y is a homeomorphism.

Theorem 5.4. If (An, {ϕn}) is an inductive sequence of unital C∗-algebras with inductive limit
(A, {ϕ∞,n}), then (T (A), {T (ϕ∞,n)}) is the inverse limit of the inverse sequence (T (An), {T (ϕn}).

Proof. Recall that

lim
←
T (An) =

{
τ = (τ1, τ2, . . .) ∈

∏
n∈N

T (An)

∣∣∣∣ τn = T (ϕn)(τn+1) for all n

}
.
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Recall moreover that T (ϕ∞,n)(τ) = τ ◦ ϕ∞,n. We claim that the map Φ: T (A) → lim
←
T (An) by

Φ(τ) = (τ ◦ ϕ∞,1, τ ◦ ϕ∞,2, . . .), for τ ∈ T (A), is a well-defined isomorphism of convex compact sets.
Firstly, it is well-defined since if τ ∈ T (A), then τ ◦ ϕ∞,n ∈ T (An), and moreover

(τ ◦ ϕ∞,n+1) ◦ ϕn = τ ◦ ϕ∞,n

proving that (τ◦ϕ∞,1, τ◦ϕ∞,2, . . .) ∈ lim
←
T (An). It is easily verified that Φ is an affine homomorphism,

so we only need to verify that is a continuous bijection. Φ is continuous, as

‖Φ(τ)‖ = sup
n∈N
‖τ(ϕn,∞)‖ ≤ ‖τ‖ .

For injectivity suppose that Φ(τ) = Φ(τ ′), then τ ◦ϕ∞,n = τ ′ ◦ϕ∞,n for all n ∈ N. In particular, the
traces coincide on ϕ∞,n(An). Since the union of these is dense in A by Theorem 2.5(i), continuity
of traces implies that τ = τ ′. For surjectivity suppose (τ1, τ2, . . .) ∈ lim

←
T (An), then we wish to

construct τ ∈ T (A) with Φ(τ) = (τ1, τ2, . . .). Construct the function τ̃ :
⋃
n∈N ϕ∞,n(An) → C by

τ̃(ϕ∞,n(a)) = τn(a). The map is well-defined by the following argument: Suppose that ϕ∞,n(a) =
ϕ∞,m(a′) and assume without loss of generality that n ≥ m. Then,

τn(a) = τn ◦ ϕ∞,m(a′) = τm(a′).

It is clear that τ̃ is a positive linear function with the trace property. Noting that

‖τ̃(ϕ∞,n(a))‖ = ‖τn(a)‖ ≤ ‖a‖

for all n ∈ N and a ∈ An, since τn is a tracial state on An, we see that we can extend τ̃ by uniform
continuity to a positive linear function τ : A → C with the trace property. Moreover it is obviously
unital, which proves that it is a trace.

It is easily verified that Mn(C) has a unique tracial state τ ∈ T (Mn(C)) given by τ = 1
nTr,

where Tr denotes the usual trace. Combining this fact with Theorem 5.4 gives us the following result
immediately.

Corollary 5.5. If A is a unital UHF-algebra, there exists a unique tracial state on A.

There is, consequently, nothing exotic about the structure of tracial simplices of UHF-algebras as
they always admit unique traces. This does not hold for general AF-algebras; in fact, not even finite-
dimensional C∗-algebras admit unique tracial states in general. Suppose A = Mn1

(C)⊕· · ·⊕Mnr
(C)

is a finite-dimensional C∗-algebra and define τ1, . . . , τr : A→ C by

τi((a1, . . . , ar)) =
1

ni
Tr(ai), (a1, . . . , ar) ∈ A.

It is easily verified that each τi is a tracial state. In particular, any convex combination of the τk is
a tracial state. In fact, any trace on A can be realized as such.

Proposition 5.6. If A = Mn1
(C)⊕ · · · ⊕Mnr

(C) is a finite-dimensional C∗-algebra, and τ ∈ T (A)
is a tracial state on A, then τ =

∑r
i=1 λiτi, where

∑r
i=1 λi = 1 and λi ∈ [0, 1] for all i.

Proof. Define for each i = 1, . . . , r the scalar λi = τ((0, . . . , 0, 1ni , 0, . . . , 0)), where 1ni denotes the
identity matrix on Mni(C). Note that as τ is unital and positive, we get

∑r
i=1 λi = 1 and λi ∈ [0, 1]

for all i. The map τ̃i : Mni
(C)→ C given by

τ̃i(B) =
1

λi
τ((0, . . . , 0, B, 0, . . . , 0))

for all B ∈Mni
(C) defines a tracial state on Mni

(C), and hence τ̃i = 1
ni

Tr. Therefore,

τ((0, . . . , 0, B, 0, . . . , 0)) =
λi
ni

Tr(B) = λiτi(B)

for all B ∈Mni
(C) and all i = 1, . . . , r, whence

τ((B1, . . . , Br)) = τ((B1, 0, . . . , 0)) + · · ·+ τ((0, . . . , 0, Br)) =

r∑
i=1

λiτi(B1, . . . , Br)

for all (B1, . . . , Br) ∈ A as desired.
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The following theorem is immediate.

Theorem 5.7. Let A = Mn1(C) ⊕ · · · ⊕Mnr (C) be a finite-dimensional C∗-algebra and define τk
as before. Then ∂eT (A) = {τ1, . . . , τr} and T (A) is an (r − 1)-simplex. In particular, any finite-
dimensional Choquet simplex can be realized as the tracial simplex T (A) for some finite-dimensional
C∗-algebra A.

By Theorem 5.7, we know the tracial structure of finite-dimensional C∗-algebras. If ϕ : A→ B is
a *-homomorphism between finite-dimensional C∗-algebras and τ is a tracial state on B, what does
T (ϕ)(τ) look like? This is answered in the following lemma.

Lemma 5.8. Let A = Mn1(C)⊕· · ·⊕Mnr (C) and B = Mm1(C)⊕· · ·⊕Mms(C) be finite-dimensional
C∗-algebras, and let ϕ : A → B be a *-homomorphism. Let A(i, j) be the multiplicity of the *-
homomorphism

Mni
(C) ↪→ A

ϕ→ B �Mmj
(C).

Denote by {τA,i}ri=1 and {τB,j}sj=1 the extremal tracial states on A and B supported on the Mni
(C)

of A and Mmj (C) of B. Then,

T (ϕ)(τB,j) =

r∑
i=1

A(i, j)ni
mj

τA,i, j = 1, . . . , s.

Proof. Since A is a finite-dimensional C∗-algebra, such that T (A) = conv ({τA,1, . . . , τA,r}) by Theo-
rem 5.7, we must have T (ϕ)(τB,j) =

∑r
i=1 `i,jτA,i for some coefficients `i,j ∈ [0, 1], where

∑r
i=1 `i,j =

1. Denote for each i = 1, . . . , r the element e(i) ∈ A given by some one-dimensional projection on
Mni

(C), which is zero on every other factor in A. Then if TrB,j denotes the trace on the factor
Mmj

(C) of B, and TrA,i the trace on the factor Mni
(C) of A, we find — regarding e(i) naturally as

a projection in Mni
(C) — that

A(i, j) =
TrB,j(ϕ(e(i)))

TrA,i(e(i))
= mjτB,j(ϕ(e(i))) = mj

r∑
k=1

`k,jτA,k(e(i)) =
`i,jmj

ni

as desired.

As AF-algebras are inductive limits of finite-dimensional C∗-algebras, and taking tracial simplices
is a contravariant functor taking inductive limits to inverse limits, it follows immediately that the tra-
cial simplices of unital AF-algebras are inverse limits of n-simplices and are hence Choquet simplices.
As stated in Proposition 5.2, the tracial state space of any unital C∗-algebra is a Choquet simplex,
so it is not particularly remarkable. A more relevant question is what structure tracial simplices of
AF-algebras moreover may have, and whether or not they may be arbitrarily exotic. Our goal is to
prove that any metrizable Choquet simplex is the tracial state space of some simple AF-algebra. For
this we shall without proof use the following result due to Lazar and Lindenstrauss, see the Corollary
to Theorem 5.2 in [11].

Theorem 5.9 (Lazar-Lindenstrauss, 1971). Let ∆ be an infinite-dimensional, metrizable Choquet
simplex. Then there exists a sequence of affine surjective continuous maps fn : ∆n+1 → ∆n, where
∆n is an n-simplex, such that ∆ is the inverse limit of the sequence

∆0
f0←− ∆1

f1←− ∆2
f2←− · · · .

Since a finite-dimensional C∗-algebra A = Mn1 ⊕ · · · ⊕Mnr has a tracial simplex T (A) affinely
homeomorphic to an (r − 1)-simplex by Theorem 5.7, it is natural to ask whether or not we can use
the above description of infinite-dimensional metrizable Choquet simplices to write such structures
as tracial simplices of AF-algebras. We shall see in this section that it is possible, and we can even
describe a corresponding AF-algebra explicitly. We follow the exposition of [14].

Given an infinite-dimensional metrizable Choquet simplex ∆ and, by Theorem 5.9, a correspond-
ing inverse sequence (∆n, {fn}), we shall write

∂e∆n = {e(n)0 , e
(n)
1 , . . . , e(n)n }.

The connecting maps in this construction actually have a nice structure, as extreme points are lifted
to extreme points under affine surjections.
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Lemma 5.10. Let K,K ′ be non-empty compact convex subsets of a locally convex Hausdorff topo-
logical space. Let f : K → K ′ be a surjective affine continuous map, then extreme points of K ′ lift to
extreme points of K.

Proof. Let e′ ∈ ∂eK ′ be an arbitrary extreme point. Consider the preimage of e′, i.e.,

F = {x ∈ K | f(x) = e′}.

By surjectivity of f , we have that F 6= ∅. It is clear from affinity of f that F is convex; in fact, it is a
face in K. Suppose x, y ∈ K and λ ∈ (0, 1) satisfy that λx+ (1− λ)y ∈ F . Then affinity of f implies
that

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y) = λe′ + (1− λ)e′ = e′.

This proves that F is a face in K. In fact, F is compact by continuity of f , and the Krein-Milman
theorem, Theorem 1.9, ensures the existence of an extreme point e ∈ ∂eF . Assume that e = λx +
(1 − λ)y for some x, y ∈ K and 0 < λ < 1. Since F is a face and e ∈ F , this implies that x, y ∈ F ,
and as e ∈ ∂eF , we see that x = y = e. This proves that e is an extreme point of K, and since e ∈ F ,
we have that f(e) = e′. This completes the proof.

This lemma implies that if fn : ∆n+1 → ∆n is a surjective affine continuous map, then we can —
up to some relabelling — assume that

fn(e
(n+1)
j ) =

{
e
(n)
j if j = 0, . . . , n

ξ(n) if j = n+ 1
(5.1)

for some ξ(n) ∈ ∆n. We thus find that the maps in Theorem 5.9, and consequently the infinite-
dimensional metrizable Choquet simplex ∆, are determined by the sequence {ξ(n)}n∈N of elements
ξ(n) ∈ ∆n.

Recall from Lemma 2.17 that if two inductive sequences are intertwined, their inductive limits agree.
The same holds true for inverse limits as is easily verified by following the same ideas as in the proof
in the case of inductive limits. The commutative assumption can, however, be relaxed; we shall only
look at this for inverse limits. Let K and K ′ be compact metric spaces with metrics d and d′ respec-
tively. We equip, as usual, the set of functions from K to K ′ with the uniform metric d∞ defined
by

d∞(f, g) = sup
x∈K

d′(f(x), g(x))

for arbitrary f, g : K → K ′; this metric space is complete. Recall that a function f : K → K ′ between
metric spaces is called a contraction if d′(f(x), f(y)) ≤ d(x, y) for all x, y ∈ K.

Lemma 5.11. Let K0,K1, . . . and K ′0,K
′
1, . . . be compact and convex metric spaces, let fn : Kn+1 →

Kn and f ′n : K ′n+1 → K ′n be affine continuous contractions, and let K and K ′ be the respective
inverse limits. Suppose there exist sequences of affine continuous contractions ρn : Kn+1 → K ′n and
ρ′n : K ′n → Kn such that the diagram

K0 K1 K2 · · · K

K ′0 K ′1 K ′2 · · · K ′

f0 f1

f ′0 f ′1

ρ′0
ρ0

ρ′1
ρ1

ρ′2
ρ′ρ

approximately commutes in the sense that

∞∑
j=0

d∞(ρ′j ◦ ρj , fj) <∞, and

∞∑
j=0

d∞(ρj ◦ ρ′j+1, f
′
j) <∞. (5.2)

Then there exists an affine continuous homeomorphism ρ : K → K ′ with inverse ρ′. In particular, K
and K ′ are isomorphic as compact convex sets.
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Proof. Let fn,∞ : K → Kn and f ′n,∞ : K → K ′n be the canonical boundary maps of the inverse limits.

Define for 0 ≤ i < j the functions σ
(j)
i,∞ : K → K ′i and σ′

(j)
i,∞ : K ′ → Ki by

σ
(j)
i,∞ = f ′i,j ◦ ρj ◦ fj+1,∞, and σ′

(j)
i,∞ = fi,j ◦ ρ′j ◦ f ′j,∞.

We claim that the sequences {σ(j)
i,∞}∞j=i+1 and {σ′(j)i,∞}∞j=i+1 are Cauchy sequences. We prove it for

the non-primed sequence; the same method applies to the primed sequence.

We prove that
∑∞
j=i+1 d(σ

(j+1)
i,∞ , σ

(j)
i,∞) is convergent, which implies that {σ(j)

i,∞}∞j=i+1 is a Cauchy
sequence. Using the triangle inequality, and the fact that all the maps in the diagram are contractions,
we see that for any j > i,

d∞(σ
(j)
i,∞, σ

(j+1)
i,∞ ) = d∞(f ′i,j+1 ◦ ρj+1 ◦ fj+1,∞, f

′
i,j ◦ ρj ◦ fj+1,∞)

= d∞(f ′i,j ◦ f ′j ◦ ρj+1, f
′
i,j ◦ ρj ◦ fj+1)

≤ d∞(f ′j ◦ ρj+1, ρj ◦ fj+1)

≤ d∞(f ′j ◦ ρj+1, ρj ◦ ρ′j+1 ◦ ρj+1) + d∞(ρj ◦ ρ′j+1 ◦ ρj+1, ρj ◦ fj+1)

≤ d∞(f ′j , ρj ◦ ρ′j+1) + d∞(ρ′j+1 ◦ ρj+1, fj+1)

which by (5.2) implies that the series
∑∞
j=i+1 d(σ

(j+1)
i,∞ , σ

(j)
i,∞) is convergent, and consequently we find

that {σ(j)
i,∞}∞j=i+1 is a Cauchy sequence.

Since the uniform metric induces a complete metric space, these sequences are convergent. Denote

by σi,∞ : K → K ′i and σ′i,∞ : K ′ → Ki the limits of these two sequences. Since f ′i ◦ σ
(j)
i+1,∞ = σ

(j)
i,∞

and similarly fi ◦ σ′(j)i+1,∞ = σ′
(j)
i,∞ hold for all i < j, a simple application of the triangle inequality

proves that

d∞(σi,∞, f
′
i ◦ σi+1,∞) ≤ d∞(σi,∞, σ

(j)
i,∞) + d∞(σ

(j)
i,∞, f

′
i ◦ σ

(j)
i+1,∞) + d∞(f ′i ◦ σ

(j)
i+1,∞, f

′
i ◦ σi+1,∞)→ 0

in the limit as j → ∞. This implies that f ′i ◦ σi+1,∞ = σi,∞ and fi ◦ σ′i+1,∞ = σ′i,∞ holds for all i.
By the universal property of the inverse limit, there exist unique affine continuous maps ρ : K → K ′

and ρ′ : K ′ → K such that f ′i,∞ ◦ ρ = σi,∞ and fi,∞ ◦ ρ′ = σi,∞. For any x ∈ K, we have

fi,∞ ◦ ρ′ ◦ ρ(x) = σ′i,∞ ◦ ρ(x)

= lim
j→∞

σ′
(j)
i,∞ ◦ ρ(x)

= lim
j→∞

(fi,j ◦ ρ′j ◦ f ′j+1,∞ ◦ ρ(x))

= lim
j→∞

(fi,j ◦ ρ′j ◦ σj+1,∞(x))

= lim
j→∞

lim
k→∞

(fi,j ◦ ρ′j ◦ σ
(k)
j+1,∞(x))

= lim
j→∞

lim
k→∞

(
fi,j ◦ ρ′j ◦ f ′j+1,k ◦ ρk ◦ fk+1,∞(x)

)
.

In a similar manner as before, applying the triangle inequality to consider each triangle in the diagram
and using the fact that the maps in the diagram are contractions, we get that

d∞(ρ′j ◦ f ′j,k ◦ ρk, fj,k) ≤
k−1∑
`=j

d∞(ρ′` ◦ ρ`, f`) +

k−2∑
`=j

d∞(ρ` ◦ ρ′`+1, f
′
`).

In particular, the approximating intertwining property implies that

lim
j→∞

lim
k→∞

d∞(ρ′j ◦ f ′j,k ◦ ρk, fj,k) = 0.

Therefore, for arbitrary x ∈ K,

fi,∞ ◦ ρ′ ◦ ρ(x) = σ′i,∞ ◦ ρ(x)

= lim
j→∞

lim
k→∞

(
fi,j ◦ ρ′j ◦ f ′j+1,k ◦ ρk ◦ fk+1,∞(x)

)
= lim
j→∞

lim
k→∞

(fi,j ◦ fj,k ◦ fk+1,∞(x))

= fi,∞(x)

proving that ρ′ ◦ ρ = idK . Analogously it is shown that ρ ◦ ρ′ = idK′ completing the proof.
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The following corollary follows immediately from Lemma 5.11.

Corollary 5.12. Let K0,K1, . . . be compact convex metric spaces and let fn, f
′
n : Kn+1 → Kn be

affine continuous maps such that the following diagram

K0 K1 K2 · · · K

K0 K1 K2 · · · K ′

f0 f1 f2

f ′0 f ′1 f ′2

ρ ρ′

approximately commutes in the sense that
∑∞
j=0 d∞(fj , f

′
j) <∞. Then there exists an affine homeo-

morphism ρ : K → K ′ with inverse ρ′.

Now consider the unital AF-algebra A defined by the Bratteli diagram

•

• •

• • •

• • • •
...

...
...

...

A0 = Mk0(C)

A1 = Mk0(C)⊕Mk1(C)

A2 = Mk0(C)⊕Mk1(C)⊕Mk2(C)

A3 = Mk0(C)⊕Mk1(C)⊕Mk2(C)⊕Mk3(C)

with the following properties: The connecting maps ϕn : An → An+1 are unital and hence unique
up to unitary equivalence. The multiplicity of the dashed line connecting the (n, j) vertex to the

(n + 1, n + 1) vertex is denoted m
(n)
j , with the multiplicity of the non-broken lines being 1, and the

integers k0, k1, . . . are chosen such that k0 ≥ 1 is arbitrary and

kn+1 =

n∑
j=0

m
(n)
j kj

for each n > 0. These conditions ensure that A is a well-defined unital AF-algebra, and that it is
uniquely determined by the integers {kn}n∈N0

and the multiplicity vectors

m(n) = (m
(n)
0 , . . . ,m(n)

n ), n ≥ 0.

Now consider the inverse system

T (A0)← T (A1)← T (A2)← · · · ← T (A) (5.3)

with the inverse limit T (A) from Theorem 5.4. If τ
(n)
j denotes the extremal tracial state on An

supported in Mkj for j = 0, . . . , n, then it is easily verified that

T (ϕn)(τ
(n+1)
j ) = τ

(n)
j , for j = 0, . . . , n, and T (ϕn)(τ

(n+1)
n+1 ) =

n∑
j=0

m
(n)
j kj

kn+1
.

In particular, the connecting maps of (5.3) are surjective. By Theorem 5.7, we can identify T (An) with
an n-simplex ∆n through an affine homeomorphism χn : T (An) → ∆n. Define the affine continuous
map f ′n : ∆n+1 → ∆n by f ′n = χn ◦ T (ϕn) ◦ χ−1n+1, then

f ′n(e
(n+1)
j ) =

e
(n)
j j = 0, . . . , n(
m

(n)
0 k0
kn+1

, . . . ,
m(n)

n kn
kn+1

)
, j = n+ 1.

(5.4)

The maps fn, f
′
n : ∆n+1 → ∆n are contractions when equipping the simplices ∆n with the taxi cab

metric d1 inherited as a subspace of Rn+1. We shall only prove it for fn; the same argument works
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for f ′n. Note that if x, y ∈ ∆n+1, then we can write x =
∑n
j=0 tjej and y =

∑n+1
j=0 sjej , where∑n+1

j=0 tj =
∑n
j=0 sj = 1. Then,

f(x) =

n∑
j=0

tjej + tn+1ξ
(n), and f(y) =

n∑
j=0

sjej + sn+1ξ
(n).

Then

‖f(x)− f(y)‖1 ≤
n∑
j=0

|tj − sj |+ |tn+1 − sn+1| = ‖x− y‖1

using the triangle inequality, and that
∥∥ξ(n)∥∥ = 1.

We shall immediately use these maps in the following theorem.

Theorem 5.13. Let ∆ be an infinite-dimensional metrizable Choquet simplex, then there exists an
AF-algebra A with tracial simplex T (A) isomorphic to ∆ as compact convex sets.

Proof. Denote as usual the n-simplex by ∆n and express ∆ by the inverse limit

∆0
f0←− ∆1

f1←− ∆2
f2←− · · · ←− ∆

using Theorem 5.9. This is by (5.1) determined by the sequence {ξ(n)}n∈N0
⊆
∏
n∈N0

∆n. We
aim to construct an AF-algebra A with Bratteli diagram of the form as described previously for
which the inverse system of the tracial simplices is approximately intertwined with the inverse system
corresponding to ∆ above.
Given a sequence of multiplicity vectors m(n) and a sequence of integers {kn}n∈N0

∈ N, we can define
for n ≥ 0 the affine continuous map f ′n : ∆n+1 → ∆n given by (5.4). Using the method in the diagram
above, we can use these sequences of integers to construct finite-dimensional C∗-algebras An with
∆n = T (An). Denote by A the inductive limit lim→An with connecting maps f ′n : An+1 → An. Then
T (A) is the inverse limit of the inverse sequence

∆0
f ′0←− ∆1

f ′1←− ∆2
f ′2←− · · · ←− T (A).

With these maps we have a diagram similar to the one in Corollary 5.12

∆0 ∆1 ∆2 · · · ∆

T (A0) T (A1) T (A2) · · · T (A)

f0 f1 f2

f ′0 f ′1 f ′2

with the caveat that it is not immediate that it approximately commutes such that we can invoke
Corollary 5.12 and achieve that T (A) is affinely homeomorphic to ∆. Since the maps fn are fixed, as
the Choquet simplex ∆ is given, our only freedom is in choosing f ′n in a sufficiently smart way.

For notational purposes define

ζ(n) =

(
m

(n)
0 k0
kn+1

, . . . ,
m

(n)
n kn
kn+1

)
∈ ∆n

and ζ
(n)
j =

m
(n)
j kj

kn+1
the jth coordinate of ζ(n). It is clear that d∞(fn, f

′
n) = d1(ξ(n), ζ(n)), and we

previously showed that fn and f ′n are contractions. If we were to construct the sequence ζ(n) such
that d1(ξ(n), ζ(n)) < 2−n, then, by Corollary 5.12, ∆ would be isomorphic to T (A) as compact convex
sets. Note that ζ(n) is determined by the multiplicity vectors {m(n)}n∈N0 and integers {kn}n∈N0 .

Let m
(0)
0 be arbitrary and note that ξ(0) = ζ(0) = 1. Suppose we have constructed m

(r)
j for all

0 ≤ j ≤ r < n, then we aim to construct m
(n)
j for j = 0, . . . , n + 1. Note that we can define

k0, k1, . . . , kn by the identity kr+1 =
∑r
j=0m

(r)
j kj with k0 = 1. Find integers `0, `1, . . . , `n ∈ N with∣∣∣∣ `j∑n

i=0 `i
− ξ(n)j

∣∣∣∣ < 1

2nn
.
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Define K =
∏n
j=0 kj and set m

(n)
j = K

`j
kj

for j = 0, . . . , n and let kn+1 =
∑n
j=0m

(n)
j kj = K

∑n
j=0 `j .

Then,

ζ
(n)
j =

m
(n)
j kj

kn+1
=

`j∑n
i=0 `i

.

In particular,
∣∣∣ζ(n)j − ξ(n)j

∣∣∣ < 1
2nn for each j = 0, . . . , n and n ∈ N. Hence,

d1(ξ(n), ζ(n)) =

n∑
j=0

∣∣∣ξ(n)j − ζ(n)j

∣∣∣ =

n∑
j=0

∣∣∣∣ξ(n)j − `j∑n
i=0 `i

∣∣∣∣ < n∑
j=0

1

2nn
= 2−n

completing the proof.

Note that the proof states that if ∆ is an infinite-dimensional metrizable Choquet simplex, then
there are infinitely many AF-algebras A with T (A) = ∆; the easiest way to see this is to note that
we had an arbitrary choice when letting k0 = 1, which gives rise to an infinite number of different
AF-algebras with the same tracial simplex, but in fact there are uncountably many such distinct
AF-algebras. Thus there is nothing unique with the above construction; this is not surprising as any
AF-algebra can be made into a simple AF-algebra without disturbing the structure of the tracial
simplex. We shall only sketch the idea here.

Let A be an AF-algebra with inductive sequence (An, {ϕn}) and consider its Bratteli diagram. Let
Nn ∈ N be arbitrary for each n ∈ N, and disturb the Bratteli diagram as follows: Multiply the
dimension of the matrix algebras on the (n + 1)st row by Nn for all n, and likewise multiply the
number of edges connecting the nth row with the (n + 1)st row by Nn to preserve unitality of the
connecting maps. It follows from Lemma 5.8 that the tracial simplex of the new AF-algebra is ex-
actly the same as the one for the original AF-algebra, i.e., the above procedure does not disturb the
tracial simplex. One can then through an intertwining argument similar to Lemma 5.11 show that if
we perform this process for some sequence of sufficiently large numbers {Nn}n∈N, we can add edges
between vertices on subsequent rows with no edges connecting them, and consequently get a simple
AF-algebra, without changing the tracial simplex. Using this method, we get the following corollary
to Theorem 5.13 and Theorem 5.7.

Corollary 5.14. Let ∆ be a metrizable Choquet simplex, then there exists a simple AF-algebra A
with tracial simplex T (A) isomorphic to ∆ as compact convex sets.

This, together with Proposition 5.2, shows that AF-algebras can have arbitrary tracial simplices,
up to the tracial simplices being metrizable, even in the simple case.

5.2 Examples of metrizable Choquet simplices

Let ∆ be an infinite-dimensional metrizable Choquet simplex, and let fn : ∆n+1 → ∆n be the surjec-
tive affine continuous connecting maps of Theorem 5.9. By (5.1), ∆ is determined by the sequence
{ξ(n)}n∈N0

with ξ(n) ∈ ∆n for each n ∈ N0. Since we have no restrictions on the sequence {ξ(n)}n∈N0
,

one obvious case to examine is the one with f
(
nξ(n+1)) = ξ(n) for all n ∈ N; we call such sequences

stationary sequences. We shall see that there are two possibilities; either ∆ is affinely homeomorphic
to a specific infinite-dimensional Bauer simplex, or ∆ is not a Bauer simplex.
First we have a lemma regarding the extreme boundary on Choquet simplices as in Theorem 5.9.

Lemma 5.15. Suppose ∆ is a metrizable infinite-dimensional Choquet simplex with inverse sequence

(∆n, {fn}) of n-simplices. For each n ∈ N0, there exists a unique en ∈ ∆ such that fm,∞(en) = e
(m)
n

for each m ≥ n. Moreover, en ∈ ∂e∆ for each n ∈ N0, and the sequence {en}n∈N0 is dense in ∂e∆.

Proof. Existence of such en follows immediately from the definition of inverse limits, and uniqueness
follows from Lemma 2.21. Let n ∈ N0 and suppose en = λx+(1−λ)y for some x, y ∈ ∆ and λ ∈ [0, 1].
Then for any m ≥ n, we have

e(m)
n = f∞,m(en) = f∞,m(λx+ (1− λ)y) = λf∞,m(x) + (1− λ)f∞,m(y).
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Since e
(m)
n is an extreme point of ∆m, we find that e

(m)
n = f∞,m(x) = f∞,m(y) for all m ≥ n. By

Lemma 2.21, we conclude that en is an extreme point of ∆.
It only remains to be seen that {en}n∈N0

is dense in ∂e∆. By the partial converse to Krein-Milman,
Theorem 1.10, it suffices to prove that conv{en}n∈N0

is dense in ∆. Define C = conv{en}n∈N0
for

notational ease. Recall that ∆ is given the topology as a subspace of
∏
n∈N0

∆n, so an arbitrary open
set in ∆ can be written as U ∩ ∆, where U ⊆

∏
n∈N0

∆n is open. Suppose W = U ∩ ∆ 6= ∅ is a
non-empty open set in ∆. There exists a natural number N ∈ N and a topological basis element
V = V0 × V1 × · · · × VN ×∆N+1 × · · · ⊆ U such that V ∩∆ 6= ∅ and V ⊆ W . There consequently
exists an element (x1, x2, x3, . . .) ∈ ∆ ∩ V such that xj ∈ Vj for each j = 1, . . . , N . Then there
is y ∈ C with the property that f∞,N (y) = (x0, x1, . . . , xN ). and one finds that y is of the form
y = (x0, x1, . . . , xN , yN+1, . . .) such that y ∈ V ∩ C, proving that C is dense in ∆.

We now determine a necessary and sufficient condition for the sequence {ξ(n)}n∈N0 to be stationary.

Lemma 5.16. Let {tn}n∈N0
be a non-zero sequence of non-negative integers, and let n0 be the smallest

integer such that tn0 6= 0. Define

ξ(n) =
1∑n
j=0 tj

n∑
i=0

tiei ∈ ∆n (5.5)

for each n ≥ n0, and let ξ(n) ∈ ∆n be arbitrary for n < n0. Then {ξ(n)}n∈N0 is a stationary sequence,
and any stationary sequence arises in this manner.

Proof. The expression (5.5) makes sense, as it is a convex combination of the extreme points of
∆n. Let us first show that such sequences {tn}n∈N0 give rise to stationary sequences. Let n ∈ N0

be arbitrary, then we want to show that fn(ξ(n+1)) = ξ(n). For notational simplicity we define

α =
∑n
j=0 tj and β =

∑n+1
j=0 tj . Note in particular that β = α+tn+1, and that ξ(n) = α−1

∑n
i=0 tie

(n)
i .

Since fn is affine, we find that

fn(ξ(n+1)) = β−1
n+1∑
i=0

tifn(e
(n+1)
i ) = β−1

n∑
i=0

tie
(n)
i + β−1tn+1ξ

(n) = β−1αξ(n) + β−1tn+1ξ
(n) = ξ(n).

Now we show the converse claim. Suppose that fn(ξ(n+1)) = ξ(n) for each n ∈ N0. Write ξ(n) =∑n
i=0 t

(n)
i e

(n)
i and note that

n∑
i=0

t
(n)
i e

(n)
i = ξ(n) = fn(ξ(n+1)) =

n∑
i=0

t
(n+1)
i e

(n)
i + t

(n+1)
n+1 ξ(n) =

n∑
i=0

(
t
(n+1)
i + t

(n+1)
n+1 t

(n)
i

)
e
(n)
i

=

n∑
i=0

t(n+1)
i +

1−
n∑
j=0

t
(n+1)
j

 t
(n)
i

 e(n)i .

Since the e
(n)
i ’s are affinely independent, for each i = 0, . . . , n we have

t
(n)
i = t

(n+1)
i +

1−
n∑
j=0

t
(n+1)
j

 t
(n)
i

and consequently

0 = t
(n+1)
i − t(n)i

n∑
j=0

t
(n+1)
j

which immediately implies that the elements ξ(n) are of the form (5.5).

It is easily seen that two such sequences {tn}n∈N0 and {t′n}n∈N0 give rise to the same stationary
sequence if and only if the sequences are proportional. If

∑∞
j=0 tj < ∞, we can thus without loss

of generality assume that
∑∞
j=0 tj = 1. The aforementioned two different cases for the simplex ∆,

whose corresponding sequence {ξ(n)}n∈N0 is stationary, are exactly determined by whether the sum
of the sequence {tn}n∈N0 is convergent or not. Before we consider these two cases, we need a brief
example.
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Example 5.17. Consider the infinite-dimensional Choquet simplex ∆∞ with extreme boundary

∂e∆∞ = {e(∞)
j | 0 ≤ j ≤ ∞} equipped with the topology such that ∂e∆∞ is homeomorphic to the

one-point compactification N0 ∪ {∞} of N0. In particular, ∆∞ is a Bauer simplex with e
(∞)
j → e

(∞)
∞

as j → ∞. By Krein-Milman, each x ∈ ∆∞ is uniquely realized as an infinite convex combination

x =
∑

0≤j≤∞ λje
(∞)
j , where λj ≥ 0 with

∑
0≤j≤∞ λj = 1.

Note that we have not proven the existence of such a simplex — one way to prove existence would
be to show that the closed convex hull of the one-point compactification N0∪{∞} of N0 is a Choquet
simplex. We shall not do this here.

We are now able to state the proposition about the Choquet simplices with corresponding stationary
sequences.

Proposition 5.18. Let ∆ be an infinite-dimensional metrizable Choquet simplex, whose correspond-
ing sequence {ξ(n)}n∈N0

is stationary. Let {tn}n∈N0
be a sequence of non-negative integers generating

the sequence {ξ(n)}n∈N0 as in Lemma 5.16 with n0 ≥ 0 the smallest integer such that tn0 6= 0. Con-
sider the element e∞ ∈ ∆ determined by fn,∞(e∞) = ξ(n) for all n ≥ n0, and let {en}n∈N0 be the
dense subset of ∂e∆ as constructed in Lemma 5.15. Then there are two possibilities.

(i) If
∑
j∈N0

tj =∞, then ∆ is affinely homeomorphic to the Bauer simplex ∆∞ of Example 5.17,
and the extremal boundary is ∂e∆ = {en}n∈N0

. Moreover, en → e∞ as n→∞.

(ii) If
∑
j∈N0

tj = 1, then ∂e∆ = {en | 0 ≤ n <∞} and

lim
n→∞

en = e∞ =
∑
j∈N0

tjej .

In particular, ∆ is not a Bauer simplex.

Proof. We start by showing that, independently of the sequence {tj}∞j=0, there exists a continuous,

affine surjection g : ∆∞ → ∆ such that g(e
(∞)
j ) = ej for 0 ≤ j ≤ ∞. For each n ≥ n0 define the

function gn : ∆∞ → ∆n given by

gn(e
(∞)
j ) =

{
e
(n)
j if 0 ≤ j ≤ n
ξ(n) if n < j ≤ ∞

.

Extend this by continuity and affinity. An easy calculation shows that fn ◦ gn+1 = gn, and hence
universality of inverse limits implies that there exists a continuous affine map g : ∆∞ → ∆ satisfying
fn,∞ ◦ g = fn for each n ≥ n0. Using Lemma 5.15, we see that as

fn,∞(ej) = e
(n)
j = gn(e

(∞)
j ) = fn,∞(g(e

(∞)
j )),

for each n ≥ n0, we have ej = g(e
(∞)
j ) for each j ∈ N0. Moreover, as

fn,∞(e∞) = ξ(n) = gn(e(∞)
∞ ) = fn,∞(g(e(∞)

∞ )),

for all n ≥ n0, we also have g(e
(∞)
∞ ) = e∞. Lastly, g is surjective by continuity and the Krein-Milman

theorem. Continuity further implies that en → e∞ as n→∞, since

en = g(e
(∞)
j )→ g(e(∞)

∞ ) = e∞.

Having established such a g, we proceed by proving (i). Suppose that
∑∞
j=0 tj = ∞. We first show

that ∆ is affinely homeomorphic to the Bauer simplex ∆∞ of Example 5.17. For this we only need
to prove that g is injective, so assume x, y ∈ ∆∞ satisfy that g(x) = g(y). Write

x =
∑

0≤j≤∞

xje
(∞)
j and y =

∑
0≤j≤∞

yje
(∞)
j . (5.6)

For any n ≥ n0, we have by the factorization identity fn,∞ ◦ g = gn that gn(x) = gn(y). Writing this
out, one finds that

gn(x) = (x0, . . . , xn) +

1−
n∑
j=0

xj

 ξ(n) = (y0, . . . , yn) +

1−
n∑
j=0

yj

 ξ(n) = gn(y) (5.7)
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for each n ≥ n0. Note that the ith coordinate ξ
(n)
i of ξ(n) is

ξ
(n)
i =

ti∑n
j=0 tj

,

and as the series
∑∞
j=0 tj diverges to ∞, the ith coordinate of ξ(n) must converge to 0 as n tends to

∞. Fixing a coordinate i and taking the limit of n in (5.7) then implies that xi = yi for each i ∈ N0,
and as the sums in (5.6) are convex combinations, i.e.,∑

0≤i≤∞

xi = 1 =
∑

0≤i≤∞

yi

we conclude that xi = yi for each 0 ≤ i ≤ ∞. This proves injectivity of g, and hence ∆ is affinely
homeomorphic to ∆∞.
We now prove that ∂e∆ = {ej | 0 ≤ j ≤ ∞}. By Lemma 5.15, we find that ej ∈ ∂e∆ for each
j ∈ N. Moreover, as g is surjective, extreme points lift to extreme points by Lemma 5.10 and hence
∂e∆ ⊆ g(∂e∆∞) = {ej | 0 ≤ j ≤ ∞}. We thus only need to show that e∞ ∈ ∂e∆. Suppose that
e∞ = λz + (1− λ)w for some λ ∈ (0, 1) and z, w ∈ ∆. By surjectivity of g, find x, y ∈ ∆∞ such that
g(x) = z and g(y) = w, and then

g(e(∞)
∞ ) = e∞ = g(λx+ (1− λ)y)

such that e
(∞)
∞ = λx + (1 − λ)y by injectivity. Since e

(∞)
∞ belongs to the extreme boundary of ∆∞,

we conclude that x = y = e
(∞)
∞ , and hence that e∞ is an extreme point.

We now prove (ii), which provides an example of a non-Bauer simplex. Suppose that
∑∞
j=0 tj = 1.

We already know that ∂e∆ is contained in {ej | 0 ≤ j <∞} and that en →∞ as n→∞, so we only
need to prove that e∞ is not an extreme point of ∆. Noting that

∑∞
j=0 tjej ∈ ∆, we see that for any

n ≥ n0,

fn,∞

 ∞∑
j=0

tjej

 =

∞∑
j=0

tjf(ej) =

n∑
j=0

tje
(n)
j +

1−
n∑
j=0

tj

 ξ(n) = ξ(n) = fn,∞(e∞)

and consequently e∞ =
∑∞
j=0 tjej by Lemma 2.21. In particular, e∞ 6∈ ∂e∆, completing the proof.
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