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1 Introduction

In the late seventies, J. Cuntz introduced a class of particularly interesting C∗-alge-
bras, the so called Cuntz algebras On. Approximately twenty years later, E. Kirchberg
and N. C. Phillips published an article containing an embedding theorem for separable
exact C∗-algebras into the second Cuntz algebra. Not only is this result fascinating in
itself, it also entails numerous other important results. To these belong Kirchberg’s
A ⊗ O2 theorem, giving a characterization of simple, separable, unital and nuclear
C∗-algebras by means of an absorbing property, and the classification theorem for
Kirchberg algebras, proved independently by Kirchberg and Phillips. The core of this
thesis is Kirchberg’s exact embedding theorem.
My principal aim was to make this exposition as self contained and comprehensible as
possible. In view of the manifold material touched upon in order to prove the exact
embedding theorem and the fact that some of the material here gathered is rather
scattered over the literature, it will not come to surprise that this manuscript grew to
the present size.
The contents in this thesis are mainly the basics of purely infinite C∗-algebras, in-
cluding a rather detailed description of comparison theory, being necessary since I
tried to describe the rudiments of non-simple purely infinite C∗-algebras, as well as
facts needed about the real rank of C∗-algebras, discrete crossed products to the
extent required for the exact embedding theorem and, of course, a proof of the em-
bedding theorem itself, following closely the route described by M. Rørdam in [Rr1].
Results concerning ultrapower algebras and quasidiagonality have been banned to
the appendix, yet complete proofs are given, apart from Voiculescu’s theorem on the
homotopy invariance of quasidiagonality.
My principle reference is the excellent book by G. Murphy, which actually helped
me survive in operator theory for astonishingly long time, and naturally the very
readable, even though concise, book by M. Rørdam. I have tried to give references
to the original publications as often as possible; however, in the course of the proof
of the exact embedding theorem I have adopted the habit of refering to M. Rørdam’s
book and to the original paper – at least where some similarity was detectable. Apart
from that, I have tried to keep the number of references needed to a minimum.
I thank mainly Prof. M. Rørdam for giving me an interesting and topical field to work
on and for continuous help and encouragement over the last year. I am also grateful to
Prof. H. König for support on ‘the german’ side and for making a thesis in Denmark
possible. Thanks further appertain to my cousin for continuous interest in anything
new and many valuable discussions and questions.
I am further indepted to the German National Merit Foundation for funding numerous
trips to conferences and to Odense, as well as to the Christian-Albrechts-University
for covering my travel expenses to Canada.
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2 Preliminaries

In the sequel, A will always denote a C∗-algebra. We begin by recalling some defini-
tions and fixing notation.
Denote by σ(a), ρ(a) the spectrum and spectral radius of an element a ∈ A, respec-
tively, by P(A) the set of projections in A, by Asa the set of self adjoint elements in A,
and by A+ the cone of positive elements in A. The C∗-algebra of n× n matrices over
A will be denoted by Mn(A) and their settheoretic union as M∞(A) :=

⋃
n∈NMn(A),

for a unital algebra we write 1n for the unit in Mn(A), and we abbreviate Mn(C) to
Mn; hence, using the identification Mn ⊗ A ∼= Mn(A) we let 1n ⊗ a denote the ma-
trix in Mn(A) having diagonal entrys a and zeros elsewhere. Further, given another
C∗-algebra B, A⊗B will always mean the minimal or spatial tensor product (see [M]
for proofs concerning tensor products). The space of states on A will be denoted by
S(A), and the subspace of pure states by PS(A). Given a, b ∈ A, we write a ⊕ b for
the matrix in M2(A) with a and b on the diagonal and zeros elsewhere.
We call a map f : A → A between C∗-algebras a *-conjugation if there is an a ∈ A
such that f(x) = a∗xa for every x ∈ X, and then a∗xa will be called the *-conjugate
of x by a. We further use the notation N̄ = N ∪ {∞}.
We assume the reader is familiar with the notions of tensor products of C∗-algebras,
nuclearity and exactness as well as with completely positive and completely bounded
maps.
The next two sections contain general results which will be used in the sequel.

2.1 On Hilbert spaces

Remember that a closed subspace K of a Hilbert-space H is called invariant under
a bounded operator a on H if a(K) ⊆ K, and reducing for a if both K and K⊥ are
invariant under a.

Observation 2.1. Let H be a Hilbert space, K ⊆ H a closed subspace. Let a ∈ B(H)
and denote by p the orthogonal projection onto K.

(i) K is invariant for a iff pap = ap.

(ii) K is invariant for a iff K⊥ is invariant for a∗.

(iii) K is reducing for a iff p commutes with a.

Proof. (i) If K is invariant for a, i.e. aK ⊆ K, then paξ = aξ for all ξ ∈ K, therefore
we get for all ξ ∈ H : papξ = apξ.
Conversely, pap = ap implies pa|K = a|K, hence aξ ∈ K for all ξ ∈ K.

5



2 Preliminaries

(ii) Assume K is invariant for a, i.e. pap = ap by (i). Then

(1− p)a∗(1− p) = a∗ − pa∗ − a∗p+ pa∗p = a∗ − pa∗ − a∗p+ a∗p = a∗(1− p),

and consequently K⊥ = Im(1 − p) is invariant for a∗ by 1). As K is closed, we may
apply this to see that if K⊥ is invariant for a∗, then K⊥⊥ = K is invariant for a.
(iii) ⇒: Let K be reducing for a, i.e. K and K⊥ are a-invariant. Then K is a- and
a∗-invariant, implying by (i):

ap = pap = (pa∗p)∗ = (a∗p)∗ = pa.

⇐: Let pa = ap, then pap = ap and (1−p)a(1−p) = a(1−p) and by (i) K is reducing
for a.

Proposition 2.2. Let a1, . . . , an ∈ A. Then the following equalities hold:

(i) ||diag(a1, . . . , an)|| = max{||a1||, . . . , ||an||}

(ii) ||
(

0 a1

a2 0

)
|| = ||diag(a1, a2)||.

Proof. To see that (i) holds observe that

ϕ :
n⊕

k=1

A→Mn(A); (x1, . . . , xn) 7→ diag(x1, . . . , xn)

is an injective *- homomorphism and hence isometric (where we use the standard
sup-norm on the sum over A).
Concerning (ii) we have∣∣∣∣∣∣ ( 0 a1

a2 0

) ∣∣∣∣∣∣2 =
∣∣∣∣∣∣ ( 0 a∗2

a∗1 0

)(
0 a1

a2 0

) ∣∣∣∣∣∣
(i)
= max{||a∗1a1||, ||a∗2a2||}
=max{||a1||, ||a2||}2

as claimed.

Remark 2.3. Let a ∈ A and p ∈ P(A). Set

a1 := pap, a2 := pa(1− p) a3 := (1− p)ap, a4 := (1− p)a(1− p),

which entails

a1 + a2 + a3 + a4 = p(ap+ a(1− p)) + (1− p)(ap+ a(1− p)) = a.

As all of the subalgebras pAp, (1− p)A(1− p), (1− p)Ap, and pA(1− p) have empty
intersection, we have shown that A is isomorphic to the inner direct some of them (as
a vector space).
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2.2 Miscellaneous

Interpreting this in Hilbert space terms, that is, representing A faithfully on some
Hilbert spaceH which may be written as direct sum of Im(p) and Im(p)⊥, we have thus
decomposed a into parts a1 : Im(p) → Im(p), a2 : Im(p) → Im(p)⊥, a3 : Im(p)⊥ →
Im(p) and a4 : Im(p)⊥ → Im(p)⊥ and a may now be viewed as a matrix

�
a1 a2

a3 a4

�
which

again gives a bounded linear mapping under the identification of B(H) = B(Im(p)⊕
Im(p)⊥) with 2× 2-matrices having entries as above.
The above decomposition of elements in C∗-algebras with respect to some projection p
is a standard procedure the which will be used in the sequel without further comment.
As another demonstration of this technique we have:

Remark 2.4. If p ∈ P(A) we have for all a ∈ A:

||
[
a, p
]
|| = ||ap− pa|| = max{||(1− p)ap||, ||pa(1− p)||}.

This follows, since applying the above decomposition for a to
[
a, p
]
, we obtain a 2× 2

matrix with only off-diagonal entrys and may therefore use Proposition 2.2 (ii).

Let again a ∈ A and p ∈ P(A). Then if a ∈ pAp, a will be called an element in the
corner pAp. In fact, a will correspond to a matrix having only one entry in the upper
left corner when we use the decomposition as above. We will also refer to elements in
(1−p)Ap and pA(1−p) as elements in the corner (1−p)Ap and pA(1−p), respectively.
Note also that p is a unit for pAp.

2.2 Miscellaneous

Lemma 2.5. For projections p1, . . . , pn in a C∗-algebra A the following conditions
are equivalent:

(i) the projections p1, . . . , pn are mutually orthogonal

(ii)
∑n

k=1 pk is a projection

(iii)
∑n

k=1 pk ≤ 1

Proof. Obviously every condition implies the one below it. It remains to show that
(iii) implies (i). Let 1 ≤ i, j ≤ n and i 6= j. As pi + pj ≤ 1, we have pi(pi + pj)pi ≤ pi,
giving pipjpi ≤ 0. We deduce

||pipj ||2 = ||pipjpi|| = 0 ,

as desired.

Lemma 2.6. Let I be an algebraic ideal in A. Then for any projection p ∈ Ī we have
p ∈ I. In addition, there is an element a ∈ I such that p lies in the two sided ideal
AaA generated by a.

7



2 Preliminaries

Proof. Choose some a ∈ I such that ||p− a|| < 1. Then pap ∈ I and ||p− pap|| < 1,
implying invertibility of pap in pAp. Choose an inverse b ∈ pAp of pap in pAp. Then

p = bpap ∈ AaA.

Lemma 2.7. Let A,B be C∗-algebras. For every nonzero projection p ∈ P(B) there
is an embedding

ιp : A→ A⊗B, a 7→ a⊗ p .

Proof. ιp is linear as ⊗ is bilinear. Let a, b ∈ A. Then we have that

ιp(ab) = ab⊗ p = (a⊗ p)(b⊗ p) = ιp(a)ιp(b)

and
ιp(a∗) = a∗ ⊗ p = (a⊗ p)∗ = ιp(a)∗,

implying that ιp is a *-homomorphism. It remains to show injectivity. Assume that
(a− b)⊗ p = ιp(a) = 0, then

0 = ||(a− b)⊗ p|| = ||a− b|| ||p|| = ||a− b||

implies a = b.

Lemma 2.8. Let A, B be C∗-algebras and (a, b) ∈ A ⊕ B, f ∈ C
(
σ((a, b))

)
with

f(0) = 0. Then f((a, b)) = (f(a), f(b)).

Proof. We may approximate f uniformly by a sequence (pn)n of polynomials without
constant term, and for these the statement holds by definition of the operations in the
sum A⊕B, hence it holds for the limit f .

Proposition 2.9. Let A be unital, p ∈ P(A) and a ∈ A such that ap = a and
||a∗a− p|| < 1. Then, evaluating the functional calculus in pAp, v := a(a∗a)−1/2 gives
an element in A with v∗v = p. Moreover:

||v − a|| ≤ 1− (1− ||a∗a− p||)1/2 ≤ ||a∗a− p|| .

Proof. We have ap = a and pa∗ = a∗, hence we get a∗a = pa∗ap ∈ pAp. Now a∗a is
positive in A and σA(a∗a) ∪ {0} = σpAp(a∗a) ∪ {0} by [M, Theorem 1.2.8], so a∗a is
positive in pAp. Therefore (a∗a)1/2 exists and ||a∗a − p|| < 1 implies invertibility of
a∗a in pAp, whereby (a∗a)−1/2 exists in pAp. Then setting v := a(a∗a)−1/2 we have
v∗v = (a∗a)−1/2∗a∗a(a∗a)−1/2 = p and therefore v is a partial isometry in A.
To show the inequality. First observe

(v − a)∗(v − a) =v∗v − v∗a− a∗v + a∗a

=p− (a∗a)−1/2a∗a− a∗a(a∗a)−1/2 + a∗a

=p− p(a∗a)1/2 − (a∗a)1/2p+ a∗a

=(p− (a∗a)1/2)2 .

8



2.2 Miscellaneous

Set f(t) := t1/2 − 1 and observe that (a∗a)1/2 − p = f(a∗a), evaluating the functional
calculus in pAp. Define δ := ||a∗a−p|| and note further that σpAp(a∗a) ⊆ [1−δ, 1+δ].
We deduce:

||v − a|| = ||(a∗a)1/2 − p|| =||f |σ(a∗a)||∞ ≤ sup{|t1/2 − 1| | t ∈ [1− δ, 1 + δ]}

=1− (1− δ)1/2 = 1− (1− ||a∗a− p||)1/2,

and hence the first inequality holds. The second follows as (1−δ)1/2 ≥ 1−δ, implying:

1− (1− δ)1/2 ≤ δ .

We denote by T the unit sphere in the complex plane.

Proposition 2.10. Let A be a unital C∗-algebra containing a unitary u. Then there is
a unital *-homomorphism ϕ : C(T) → A which is injective if and only if the spectrum
of u is the full unit circle.

Proof. If K denotes the spectrum of u, then restriction to K is a unital *-homo-
morphism from C(T) onto C(K), which is clearly injective if and only if K = T. Now
the continuous functional calculus provides a unital *-homomorphism ψ : K → C∗(u),
where C∗(u) denotes the sub-C∗-algebra generated by u. The map sending f ∈ C(T)
to ψ(f |K) =: ϕ(f) therefore has the desired properties.

Lemma 2.11. Let A be a unital C∗-algebra containing a non-unitary isometry s.
Then σ(s+ s∗) = [−2, 2].

Proof. Assume without loss of generality, that A ⊆ B(H) for a Hilbert space H.
Let e0 ∈ Im(1 − ss∗) be a unit vector. Set en := sne0. Then s∗en = en−1, as s is an
isometry, and writing e0 as ξ−ss∗ξ for some ξ ∈ H, we see that s∗e0 = s∗ξ−s∗ss∗ξ = 0.
It follows

〈en | em〉 = 〈sne0 | sme0〉 = δn,m .

For every λ ∈ T, define

ξN,λ :=
1

N 1/2

N∑
j=1

λjej ,

and calculate

||ξN,λ||2 =
1
N

N∑
j=1

|λj |2 = 1 .

9



2 Preliminaries

We have

N
1/2
(
(s+ s∗)ξN,λ − 2 Re(λ)ξN,λ

)
=

N∑
j=1

λjsej +
N∑

j=1

λjs∗ej − 2 Re(λ)
N∑

j=1

λjej

=
N+1∑
j=2

λj−1ej +
N−1∑
j=0

λj+1ej −
N∑

j=1

λj+1ej −
N∑

j=1

λj−1ej

=λNeN+1 − e1 + λe0 − λN+1eN .

This shows that
ηn,λ := (s+ s∗)ξN,λ − 2 Re(λ)ξN,λ → 0

for N →∞. Assume now that a := (s+ s∗ − 2 Re(λ))−1 exists, and deduce

||ξn,λ|| = ||aηn,λ|| ≤ ||a|| ||ηn,λ|| → 0

for n→∞, and therefore a is not bounded, hence 2 Re(λ) ∈ σ(s+ s∗).

Proposition 2.12. Let A be a unital C∗-algebra containing a non-unitary isometry
s. Then C(T) embeds unitally into A.

Proof. As a := 1
2(s+ s∗) has spectrum [−1, 1] by Lemma 2.11, the element exp(iπa)

is a unitary with spectrum exactly T. By Proposition 2.10 we have an embedding of
C(T) into A.

10



3 Comparison theory and finiteness
conditions

3.1 Comparison theory

In the following we introduce a couple of relations between positive elements in C∗-
algebras and deduce some basic properties of these. They will be used to define the
notions of finite, infinite and properly infinite positive elements in the next section.
Afterwards we devote a section to relate these to the classical comparison theory for
projections introduced by Murray and von Neumann.
We will first remind the reader of the classical order relation ≤ on C∗-algebras and
related definitions. Of course, this has been used in section one, but we recall these
results here to stress the connections with more advanced comparison theory - the
context in which this subject naturally belongs.
An element a ∈ A is called positive (a ≥ 0), if σ(a) ⊆ R+, and we will denote byA+ the
cone of positive elements in A; a classical theorem then says that A+ = {a∗a | a ∈ A}
(see [M, Theorem 2.2.5] 2.2 for a proof). For every positive element a in A we may
use the Gel’fand theorem ([M, Theorem 2.1.13]) to construct the square root a1/2 of a
(note also that by construction a1/2 commutes with a). Therefore, if a is contained in
a C∗-subalgebra B of A, then a1/2 ∈ B also, and as a = (a1/2)∗a1/2 we deduce that a
is positive in B.
In addition, for every element a in A, we have a∗a ≥ 0, and may set |a| := (a∗a)1/2.
We quote the following standard theorem, proved, for example, in [M, Theorem 2.3.4],
for easy reference:

Theorem 3.1 (Polar decomposition). Let a be a bounded operator on a Hilbert
space H. Then there is a unique partial isometry v ∈ B(H) such that:

a = v|a|, Ker(v) = Ker(a),

further v∗a = |a| holds.

In the case where the operator a is invertible, the theorem has an easy proof and v is
a unitary: First observe that by functional calculus the element |a| is invertible too,
and the same holds for v := a|a|−1. Then obviously a = v|a| holds and

v∗v = |a|−1a∗a|a|−1 = 1 ,

implying that v is unitary (right and left inverse coincide, if they exist). By uniqueness,
this is the partial isometry in Theorem 3.1. Of course, we could have also used
Proposition 2.9.

11



3 Comparison theory and finiteness conditions

We will need the notion of approximate unit and hereditary C∗-subalgebra and there-
fore give a short account of their structure.
For any C∗-algebra A there is an increasing net uλ of positive elements in the closed
unit ball such that limλ(auλ−a) = 0 for all a ∈ A (in fact, the set of positive elements
contained in the closed unit ball itself will do). A net with these properties will be
called an increasing approximate unit; if the assumption that the net is increasing is
dropped, we will simply refer to it as an approximate unit.
A hereditary C∗-subalgebra H in A is C∗-subalgebra with the property that for all
a, b ∈ A+ such that a ≤ b and b ∈ H we have a ∈ H. There is a close relation between
closed left ideals L in A and hereditary C∗-subalgebras, namely that every hererditary
C∗-subalgebra H corresponds to exactly one such L and may be reobtained as L∩L∗.
Furthermore, if we denote the smallest hereditary C∗-subalgebra containing a subset
X of A by Her(X), then Her(a) = aAa for every positive element a ∈ A; the converse,
that is, all hereditary sub-C∗-algebras of A are of the form aAa, holds for separable
C∗-algebras. A proof for the following characterization, and likewise for the rest of
this short introduction, may be found in [M, chapter 3].

Theorem 3.2. Let H be a C∗-subalgebra of A. Then H is hereditary if and only if
bab′ ∈ H for all a ∈ A and b, b′ ∈ H.

The next lemma will be used to justify the definition following it:

Lemma 3.3 (cf. [Ped3, Lemma 3.1]). Let H be a Hilbert space and A a C∗-
subalgebra in B(H). If a ∈ Asa and va remains in A for some v ∈ B(H), then for
every f ∈ C(σ(a)) with f(0) = 0 the element vf(a) is an element of A.

Proof. Use the Weierstraß theorem ([Ped1, Theorem 4.3.3] to find a sequence of poly-
nomials pn such that pn converges uniformly to f on σ(a). As

|pn(0)| = |pn(0)− f(0)| → 0

for n → ∞, we may use the sequence p̃n := pn − pn(0) instead to obtain a sequence
of polynomials which still tends to f uniformly on σ(a) and has no constant term;
henceforth we may choose a sequence qn of polynomials such that p̃n(t) = tqn(t) for
all t ∈ R and n ∈ N. Then:

vf(a) = v lim
n→∞

pn(a) = lim
n→∞

vaqn(a) ∈ A .

Proposition 3.4 (cf. [Ped3, 5.2]). We define an equivalence relation on A+ by
setting a ∼ b for two positive elements a and b if there is an element x ∈ A such that
a = x∗x and b = xx∗. For positive elements a, b ∈M∞(A) we also write a ∼ b if there
is a matrix x in some Mn,m(A) with coefficients in A such that a = x∗x and b = xx∗.

Proof. Reflexivity follows as a = a1/2a1/2 and a1/2 ∈ Asa, symmetry is obvious. We
proceed to show transitivity, following the lines of [Ped3, Theorem 3.5].

12



3.1 Comparison theory

Without loss of generality we may assume A ⊆ B(H) for some Hilbert space H ([M,
Theorem 3.4.1]). Let a, b, c ∈ A+ with a ∼ b ∼ c and find x, y ∈ A such that a = xx∗,
b = x∗x = y∗y, c = yy∗ (and hence |x| = (x∗x)1/2 = (y∗y)1/2 = |y|). By Theorem 3.1
we may choose partial isometries u, v ∈ B(H) such that:

x = u|x|, y = v|y|.

Then, first of all:

(3.1) |x|v∗v|x| = (v|y|)∗v|y| = y∗y = x∗x = |x|2.

Now set z := vx∗. Calculate

z∗z = u|x|v∗v|x|u∗ 3.1= u|x|2u∗ = xx∗ = a

and
zz∗ = v|x|u∗u|x|v∗ = v|x|2v∗ = v|y|2v∗ = yy∗ = c ,

showing that it now suffices to show z ∈ A to get transitivity. As |x|1/2 = |y|1/2 we
may choose w ∈ A (by Theorem 3.1) with

|x|1/2 = w||x|1/2| = w|x|1/2 = w|y|1/2 ,

and deduce:
z∗ = u|x|v∗ = u|x|1/2w|y|1/4|y|1/4v∗.

Now all terms in this factorization are in A by 3.3, hence so is z.

Remark 3.5. Note that a, b ∈ A+ implies a⊕ b ∈ A+.

Proposition 3.6. The following properties hold for all a, b, a′, b′ ∈ A+:

(i) a⊕ 0 ∼ a

(ii) a⊕ b ∼ b⊕ a

(iii) if a ∼ b and a′ ∼ b′, then a⊕ b ∼ a′ ⊕ b′,

(iv) if a ⊥ b, then a⊕ b ∼ a+ b.

Proof. Setting v :=
(
a1/2 0

)
, we get:

v∗v = a⊕ 0 , vv∗ = a.

Hence (i) holds; (ii) follows from(
0 a1/2

b1/2 0

)(
0 a1/2

b1/2 0

)∗
= a⊕ b

and (
0 a1/2

b1/2 0

)∗(
0 a1/2

b1/2 0

)
= b⊕ a.

13



3 Comparison theory and finiteness conditions

To prove (iii), choose x, y ∈ A such that a = x∗x, a′ = xx∗, b = y∗y and b′ = yy∗.
Then it follows that(

0 x∗

y∗ 0

)(
0 y
x 0

)
= a⊕ b,

(
0 y
x 0

)(
0 x∗

y∗ 0

)
= b′ ⊕ a′

and therefore (iii) holds by (ii).
To show (iv), observe first that if a ⊥ b, then for any polynomial p with p(0) = 0 we
have p(a) ⊥ p(b). Approximating the square root function by such polynomials (cf.
the argument in Lemma 3.3), we see that a1/2 ⊥ b1/2 if a ⊥ b. Consequently(

a1/2

b1/2

)(
a1/2 b1/2

)
= a⊕ b

(
a1/2 b1/2

)(a1/2

b1/2

)
= a+ b

as desired.

Proposition/Definition 3.7. For all a, b ∈ A+ we set a - b if there is a sequence
(xn)n ∈ AN such that x∗nbxn → a as n→∞, thus defining an order relation on A+.

Proof. The relation - is reflexive, as, denoting the inclusion of σ(a) into C by ι

a1/naa1/n = (ι1/n ι ι1/n)(a) →n→∞ ι(a) = a,

using that σ(a) compact.
We show that - is also transitive. Let a, b, c ∈ A+ such that a - b - c. Choose
sequences (xn)n, (yn)n such that x∗nbxn → a and y∗ncyn → b. For every N ∈ N we may
then choose mN , nN ∈ N such that:

||x∗mN
bxmN − a|| ≤ 1

2N
, ||y∗nN

cynN − b|| ≤ 1
2||xmN ||2N

.

Setting zN := xmN ynN we obtain

||z∗NczN − a|| ≤ ||xmN ||
2||y∗nN

cynN − b||+ ||x∗mN
bxmN − a|| ≤ 1

N
,

and therefore z∗NczN →N→∞ a, implying a - c.

The next proposition shows that - is weaker than ≤:

Proposition 3.8 (cf. [Rr2, Lemma 2.3]). Let a, b ∈ A+. Then a ≤ b implies a - b.

Proof. For every δ > 0 let

gδ : R+ → R+; t 7→ min{t−1, δ−1}.

Define xδ := a1/2(gδ(b))
1/2 and yδ := a1/2(1− gδ(b) b )1/2. Then we have:

yδy
∗
δ = a

1/2(1− gδ(b) b )a1/2 = a− a
1/2gδ(b)ba

1/2 = a− xδbx
∗
δ ,

14



3.1 Comparison theory

and, using [M, Theorem 2.2.5] at (∗):

y∗δyδ = (1− gδ(b)b)
1/2a(1− gδ(b)b)

1/2
(∗)
≤(1− gδ(b)b)

1/2b(1− gδ(b)b)
1/2

=(1− gδ(b)b)b .

As for all t ∈ [0, δ] we have gδ(t) = 1
δ and gδ(t)t = 1 for all t ≥ δ, it follows that

||(1− gδ · id)|R+ ||∞ = 1

and
||(1− gδ(b)b)b|| = ||

(
(1− gδ · id) · id

)∣∣
[0,δ]

||∞ ≤ δ.

Therefore:

lim
δ→0

||a− x∗δbxδ|| = lim
δ→0

||yδy
∗
δ || = lim

δ→0
||(1− gδ(b)b)b|| = 0 .

Lemma 3.9. Let a ∈ A+, and let ϕ : σ(a) → R+ be a continuous function with
ϕ(0) = 0. Then ϕ(a) - a.

Proof. Use the Weierstraß theorem [Ped1, Theorem 4.3.3] to find a sequence of polyno-
mials without constant term pn(t) that converges uniformly to ϕ on σ(a) (cf. Lemma
3.3), and find a sequence p̃n of polynomials with pn(t) = tp̃n(t). Then p̃n(a)1/2 com-
mutes with a and therefore

p̃n(a)1/2ap̃n(a)1/2 = pn(a) → ϕ(a)

as n→∞, implying ϕ(a) - a.

Proposition/Definition 3.10. For all ε ≥ 0 set ϕε := max{0, id−ε} and define
(a− ε)+ := ϕε(a) for all a ∈ Asa. Then the following properties hold for all a ∈ Asa:

(i) 0 ≤ (a− ε)+ ≤ a if a ≥ 0,

(ii) ((a− ε1)+ − ε2)+ = (a− (ε1 + ε2))+ for all ε1, ε2 ≥ 0,

(iii) (a− ε)+ → a+ as ε→ 0,

(iv) a+ ⊥ (−a)+ and a = a+ − (−a)+, |a| = a+ + (−a)+,

(v) a ≥ 0 if and only if a = a+,

(vi) If A is unital and 0 /∈ σ(a), then there is a projection p ∈ A with pa = ap = a+,

(vii) If B is another C∗-algebra and (a, b) ∈ (A⊕B)sa, then:

((a, b)− ε)+ = ((a− ε)+, (b− ε)+) .

15



3 Comparison theory and finiteness conditions

Proof. (i) follows directly from the spectral mapping theorem ([M, Theorem 2.1.14]),
(ii) is easily seen as

((a− ε1)+ − ε2)+ = ϕε2(ϕε1(a)) = ϕε1+ε2(a),

and (iii) follows from

||(a− ε)+ − a+|| = ||(ϕε − ϕ0)(a)|| = ||ϕε − ϕ0||∞ →ε→0 0 .

(iv) is a consequence of ϕ0(·) ⊥ ϕ0(−·) = 0 and ϕ0(·) − ϕ0(−·) = id; (v) follows as
a ≥ 0 if and only if ϕ0|σ(a) is the inclusion of the spectrum of a. To prove (vi), take
f as the function being constant 1 on σ(a) ∩ R+ and constant 0 on σ(a) ∩ −R+, and
set p := f(a).
(vii) is a special case of Lemma 2.8.

In view of Lemma 3.10 one defines a− := ϕ0(−a) and calls a+, a− the positive and
negative part, respectively, of the element a.

Lemma 3.11 (cf. [Rr2, Lemma 2.2]). Let ε > 0 and a, b ∈ A+ such that ||a−b|| <
ε. Then (a− ε)+ ≤ xbx for some positive element x in A.

Proof. Set ||a− b|| := δ. Then δ − (a− b) ≥ 0, giving b ≥ a− δ. As ϕε(t) = 0 for all
t ≤ ε and ε− δ ≤ t− δ for all t ≥ ε we have (ε− δ)ϕε ≤ (id− δ)ϕε. We deduce:

(ε− δ)(a− ε)+ ≤ (a− δ)(a− ε)+ = (a− ε)
1/2
+ (a− δ)(a− ε)

1/2
+ ≤ (a− ε)

1/2
+ b(a− ε)

1/2
+ .

Now set x := (ε− δ)−1/2(a− ε)
1/2
+ to complete the proof.

Observation 3.12. For every ε > 0 one may define the function hε : R → R to be
used in the following lemma as being constant zero on [−∞, ε], constant one on [2ε,∞]
and linear on [ε, 2ε]. Observe that hε1hε2 = hε1 as long as ε1 ≥ 2ε2. Also for all
a ∈ Asa there is some x ∈ A+ such that hε1(a) = x(a − ε2)+ = x1/2(a − ε2)+x

1/2 as
long as ε1 ≤ ε2, and (a− ε1)+ = yhε2(a) = y1/2hε2(a)y

1/2 for some y ∈ A+.

We will further need the following Proposition:

Proposition 3.13 (cf. [Ped2, Proposition 1.4.5]). Let a and b be elements in a
C∗-algebra A such that a ≥ 0 and a∗a ≤ b. If 0 < α < 1

2 , then there is an element x
in A with ||x|| ≤ ||b1/2−α|| such that a = xbα.

The following lemma is one of the key results in this section:

Lemma 3.14 (cf. [KiRr2, Lemma 2.5]). Let a, b ∈ A+. If ε > 0 such that
δ := ||a− b|| < ε, then there exists x ∈ A with:

(a− ε)+ = x∗bx .

16



3.1 Comparison theory

Proof. (i): Assume without loss of generality, that A ⊆ B(H) for some Hilbert space
H. Choose ε′ such that δ < ε′ < ε. Combining Lemma 3.11 and Proposition 3.8 we
see (a − ε′)+ - b. By Proposition 3.10 (iii) and the definition of - there are γ > 0
and x1 ∈ A with

||(a− ε′)+ − x∗1(b− 2γ)+x1|| < ε− ε′,

and by Observation 3.12 we may replace (b− 2γ)+ by x∗2h2γ(b)x2 for some x2 ∈ A in
the above inequality. Using Lemma 3.11 again we may choose x3 ∈ A with:

(a− ε)+ = ((a− ε′)+ − (ε− ε′))+ ≤ x∗3x
∗
1x
∗
2h2γ(b)x2x1x3.

Now set y := h2γ(b)1/2x2x1x3, and decompose y∗ as y∗ = v|y∗| for some partial
isometry v ∈ B(H) (see Theorem 3.1) and apply Lemma 3.3 to deduce z := v|y∗|1/2 ∈
A. Now zhγ(b) = z by (∗) below and hence:

(zhγ(b)z∗)2 = (zz∗)2 = (y∗v∗)2 = y∗v∗y∗v∗
Th. 3.1= y∗|y∗|v∗ = y∗y ≥ (a− ε)+.

Now we apply Proposition 3.13, taking (a− ε)1/2
+ as a, (zhγ(b)z∗)2 as b and α = 1

4 , to
obtain x4 ∈ A such that

(a− ε)+ =
(
(a− ε)

1/2
+

)∗(a− ε)
1/2
+ = x4zhγ(b)z∗x4.

Now choose x5 ∈ A with x∗5bx5 = hγ(b) and set x := x5z
∗x4 to obtain (a−ε)+ = x∗bx.

Ad (∗): We show that already |y∗|1/2fγ(b) = |y∗|1/2 holds. As

f2γ(b)fγ(b) = (f2γfγ)(b) = f2γ(b) ,

the claim will follow, if we show, that |y∗|1/2 is an element of the hereditary C∗-
algebra generated by f2γ(b). This follows easily by the characterization of hereditary
C∗-algebras (3.2) and

|y∗|1/2 = (yy∗)1/4 =
(
h2γ(b)1/2x2x1x3x

∗
3x
∗
1x
∗
2h2γ(b)1/2

)1/4
,

finally completing the proof.

The above Lemma gives a stronger relation than - between close elements in a C∗-
algebra which is used in some papers also (see for example [LinZh]), but does not play
an important role in our treatment (see Proposition 4.13. (i) though).

Proposition 3.15 (cf. [KiRr2, Proposition 2.6]). Let a, b ∈ A+; then the following
conditions are equivalent:

(i) a - b

(ii) ∀ε > 0 : (a− ε)+ - b

(iii) ∀ε > 0 ∃δ > 0 : (a− ε)+ - (b− δ)+

17



3 Comparison theory and finiteness conditions

(iv) ∀ε > 0 ∃δ > 0 ∃x ∈ A : (a− ε)+ = x∗(b− δ)+x

Proof. (i)⇒(iv): Let a - b, ε > 0 and (xn)n ∈ AN with x∗nbxn → a. Then

||x∗n(b− δ)+xn − a|| ≤ ||xn||2||(b− δ)+ − b||+ ||x∗nbxn − a||

and therefore we may choose δ > 0 and k ∈ N with ||x∗k(b− δ)+xk − a|| < ε, and then
use Lemma 3.14 (i) to find x ∈ A with

(xkx)∗(b− δ)(xkx) = (a− ε)+ .

(iv)⇒(iii): This implication is obvious.
(iii)⇒(ii): Use (b− δ)+ - b (by Lemma 3.9 applied to ϕδ) and transitivity of - .
(ii)⇒(i): For every k ∈ N choose a sequence (xn)k

n ∈ AN from the definition of - with

||xk∗
n bx

k
n − (a− 1

k
)+|| −→ 0

as n→∞. Selecting for each k ∈ N some nk ∈ N with ||xk∗
nk
bxk

nk
− (a− 1

k )+|| < 1
k we

obtain a sequence (xk
nk

)k ∈ AN such that:

||xk∗
nk
bxk

nk
− a|| ≤ ||xk∗

nk
bxk

nk
− (a− 1

k
)+||+ ||(a− 1

k
)+ − a|| −→

k→∞
0 .

Observation 3.16. Observe that (b − δ)+ = x∗bx for some x ∈ A and therefore we
may also take δ to be 0 in 3.15 (iv). In particular, if a = p for some projection p in
A, then there is some x ∈ A such that p = x∗bx, because (p− 1

2)+ = 1
2p.

Definition 3.17. Let n ∈ N. For all a, b ∈Mn(A)+ we define an equivalence relation
≈ by setting a ≈ b if a - b and b - a hold.

Remark 3.18. If a, b ∈ A and a ∼ b, then by definition there is some x ∈ A such
that x∗x = a and xx∗ = b, consequently we have x∗bx = a2, implying a - a2 - b by
Lemma 3.9. Applying this twice gives a ≈ b.

Lemma 3.19 (cf. [KiRr2, Lemma 2.2]). Let H be a hereditary C∗-subalgebra of
A. Then for a, b ∈ H we have a - b with respect to H if and only if a - b with respect
to A.

Proof. Assume a, b ∈ H and a - b with respect to A. Then by Lemma 3.9 we have
a1/2 - b2, and by definition of - there is a sequence (xn)n ∈ AN such that x∗nb2xn →
a1/2. We define yn := b1/2xna

1/4 to obtain an element of H by the characterization of
hereditary C∗-algebras (Theorem 3.2) and deduce:

ynbyn = a1/4x∗nb
1/2bb

1/2xna
1/4 → a1/4a

1/2a1/4 = a ,

giving a - b with respect to H, as claimed.
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Lemma 3.20. Let a be a positive element of A. Then for all b ∈ aAa we have b - a.

Proof. We have b1/2 ∈ aAa, hence there is a sequence (xn)n such that axna → b1/2.
Set yn := xna

2x∗n, observe that the yn are positive and

ayna = axna (axna)∗ → b .

Further, ayna ≤ ||yn||a2 - a, therefore Proposition 3.8 implies ayna - a. As for all
ε > 0 we may choose n ∈ N with ||b− ayna|| ≤ ε and deduce (b− ε)+ - ayna - a by
Lemma 3.11, we have proved the lemma by Proposition 3.15.

3.2 Finiteness conditions on elements of
C∗-algebras

Observe that for any a, b ∈ A+ we have a⊕ 0 ≤ a⊕ b, hence a - a⊕ b , by combining
Proposition 3.6 (i), Remark 3.18 and Proposition 3.8. The following definitions are
taken from [KiRr2].

Definition 3.21 (Finite and infinite). Let a ∈ A+; then a is called infinite if there
exists a nonzero b ∈ A+ such that a⊕b ≈ a. If a⊕b - a does not hold for any nonzero
b ∈ A+, then a is called finite.

Definition 3.22 (Properly infinite). Let a ∈ A+; then a is called properly infinite
if a⊕ a ≈ a.

Remark 3.23. Note that if a, b ∈ A+ and a ≈ b, then a is (properly) infinite if and
only if b is.

Remark 3.24. We will now take a look at how - and finiteness conditions behave
with respect to homomorphisms.
The right notion of a morphism preserving the order ≤ of a C∗-algebra is a positive
map. In particular, any *-homomorphism is positive, hence it might be interesting
to know, what the order morphisms with respect to - are. If a - b and (xn)n ∈ AN

such that x∗nbxn → a as n → ∞, then ϕ(xn)∗ϕ(b)ϕ(xn) → ϕ(a). Consequently, *-
homomorphisms preserve -; as we use that ϕ preserves * and is continuous (already
as a consequence of being a morphism of C∗-algebras), it seems that we use the full
arsenal of *-homomorphism properties.
But in fact, the following property may be added to the list in Proposition 3.15:

(v) ∃(xn)n, (yn)n ∈ AN : xnbyn → a .

This condition is obviously implied by a - b; conversely, if xnbyn → a for sequences
(xn)n, (yn)n ∈ AN, then setting vn := xnb

1/2 and wn := b1/2yn we have:

vnwnw
∗
nv

∗
n = xnb yny

∗
nb x

∗
n → aa∗ = a2.
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3 Comparison theory and finiteness conditions

For ε > 0 choose n ∈ N with ||vnwnw
∗
nv

∗
n − a2|| < ε. Then Lemma 3.14 implies

(a2 − ε) - vnwnw
∗
nv

∗
n ≤ ||wn||2xnbx

∗
n - b ,

hence a ∼ a2 - b holds.
The condition (v) is then preserved under any continuous, multiplicative map between
C∗-algebras.
Now if a ∈ A+ and b ∈ A+ such that a ⊕ b - a, then ϕ(b) ∈ A+ and ϕ(a ⊕ b) =
ϕ(a) ⊕ ϕ(b) - ϕ(a) by the above arguments. Applying this in the case b = a we
obtain that properly infinite elements map to such under *-homomorphisms, but if a
is infinite and b ∈ A+ is nonzero such that a ⊕ b ≈ a, then b may map to zero and
hence the image of a might still be finite.

Lemma 3.25 (cf. [KiRr2, Proposition 3.3]). Let 0 6= a ∈ A+. Then the following
properties are equivalent:

(i) a is properly infinite.

(ii) For all ε > 0: (a− ε)+ ⊕ (a− ε)+ - a.

(iii) For all ε > 0 exist a1, a2 ∈ aAa such that a1 ⊥ a2 and (a− ε)+ - aj.

(iv) There are sequences (xn)n, (yn)n ∈ aAa
N such that: x∗nxn → a, y∗nyn → a and

x∗nyn → 0.

(v) For all ε > 0 there are x, y ∈ aAa such that x∗x = (a−ε)+ = y∗y and xx∗ ⊥ yy∗.

Proof. Obviously (i) and (ii) are equivalent by Proposition 3.15 and Lemma 2.8.
We show (i)⇒(v). Let n ∈ N and set ε := 1

n . By Observation 3.16 applied inside

M2(A) we may choose z =
0
B@
z1 z2
z3 z4

1
CA∈M2(A) with

(
(a− ε)+ 0

0 (a− ε)+

)
= z∗(a⊕ 0)z =

(
z∗1az1 z∗1az2
z∗2az1 z∗2az2

)
giving, in particular, z∗1az2 = 0. Setting xn := a1/2z1 and yn := a1/2z2 we obtain (v).
(v)⇒ (iv): Choose xn, yn as in (v) such that x∗nxn = (a− 1

n)+ = y∗nyn, obtaining

lim
n→∞

x∗nxn = lim
n→∞

(a− 1
n

)+ = a

by 3.10 (iii). It now suffices to show x∗nyn = 0 for all n ∈ N. We already have

|x∗n| = (xnx
∗
n)1/2 ⊥ (yny

∗
n)1/2 = |y∗n| .

Now take polar decompositions xn = |x∗n|vn and yn = |y∗n|wn, where vn and wn are
partial isometries (by Theorem 3.1). It follows

x∗nyn = v∗n|x∗n| |y∗n|wn = 0
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as desired.
(iv)⇒ (i): Let (xn)n, (yn)n be sequences in aAa such that x∗nxn → a, y∗nyn → a and
x∗nyn → 0. Then xn, yn ∈ a1/2A and we may thus choose, for every N ∈ N sequences
(sN

n )n, (tNn )n with:
a

1/2sN
n → xN , a

1/2tNn → yN .

Now choose nN ∈ N with

||a1/2sN
nN
− xN || <

1
N
, ||a1/2tNnN

− yN || <
1
N
,

implying, where uN := sN
nN

, vN := tNnN
:

||a1/2uN − xN || → 0, ||a1/2vN − yN || → 0 .

Now ||xn||2 = ||x∗nxn|| ≤ M for some M ∈ R+, as (x∗nxn)n is a convergent sequence,
and therefore (a1/2un)n is bounded also; similarly (a1/2vn)n is bounded. We thus obtain

||u∗naun − a|| ≤||u∗naun − x∗nxn||+ ||x∗nxn − a||
≤||u∗naun − u∗na

1/2xn + u∗na
1/2xn − x∗x||+ ||x∗nxn − a||

≤||a1/2un|| ||a
1/2sn − x||+ ||xn|| ||s∗na

1/2 − x∗n||+ ||x∗nxn − a|| → 0

and therefore unaun → a; similarly vnavn → a. Furthermore we have:

||u∗navn − x∗nyn|| ≤ ||u∗na
1/2|| ||a1/2vn − yn||+ ||yn|| ||u∗na

1/2 − x∗n|| ,

which again tends to 0. As x∗nyn → 0 we obtain u∗navn → 0.

Lemma 3.26. Let a ∈ A+ be a properly infinite, non-zero element. Then b - a for
all b in the closed two sided ideal AaA generated by a.

Proof. Let ε > 0. As the elements of the form
∑n

i=0 x
a
i yi form the algebraic ideal

generated by a, we may choose x1, . . . , xn, y1 . . . , yn ∈ A with

||b−
n∑

i=1

xiayi|| < ε .

Therefore

(b− ε)+-
n∑

i=1

xiayi =
(
x1 . . . xn

)
(a⊗ 1n)


y1

.

.

.
yn

 - a⊗ 1n - a,

using Lem. 3.14 (i) and 3.15, showing that b - a holds again by Proposition 3.15.

Remark 3.27. If B is abelian and b ∈ B+ properly infinite, then we may choose
x, y ∈ B as in (v) and deduce that ||(xx∗)||2 = ||(xx∗)(yy∗)|| = 0, and therefore b = 0.
In particular, a properly infinite element maps to a properly infinite element under
any quotient morphism, as noted in Remark 3.24, and will therefore map to zero in
any abelian quotient.
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3.3 Comparison theory and finiteness conditions
for projections

We now investigate how the above comparison theory applies to projections in C∗-
algebras. The relation ∼ restricted to the set of projections is the classical Murray-
von Neumann equivalence. Recall that a sub-projection q of p is a projection with
q ≤ p and is called a proper sub-projection if in addition p 6= q.

Lemma 3.28. Let p be a projection in A and v ∈ A such that v∗v = p. Then v = vv∗v
and vv∗ is a projection.

Proof. We have

0 ≤ v∗(1− vv∗)(1− vv∗)v = v∗v − v∗vv∗v − v∗vv∗v + v∗vv∗vv∗v = p− p− p+ p = 0

and hence (1− vv∗)v = 0, implying v = vp. We also obtain that vv∗ is a projection,
as vv∗vv∗ = vv∗.

The next proposition shows that - extends the classical comparison theory by Murray
and von Neumann for projections to arbitrary positive elements.

Proposition 3.29 (cf. [Rr2, Proposition 2.1]). Let p, q ∈ P(A). Then p - q if
and only if p is equivalent to a subprojection of q.

Proof. ⇒: For any projection p we have σ(p) ⊆ {0, 1} by the commutative Gel’fand
theorem (in fact, for normal elements this is equivalent to being a projection), therefore
we have for any ε ∈ (0, 1) that (p− ε)+ = εp. Application of Lemma 3.14 gives some
a ∈ A with εp = a∗qa and setting y := ε−1/2a we get p = y∗qy. Defining v := y∗q we
have vv∗ = p and consequently v∗v = qyy∗q is a projection by Lemma 3.28. As v∗v
commutes with q, [M, Theorem 2.3.2] implies v∗v ≤ q.
⇐: Let v ∈ A with v∗v = p and vv∗ ≤ q. Then p = v∗vv∗v ≤ v∗qv and Proposition
3.8 implies p - v∗qv - q.

Proposition 3.30 (cf. [KiRr2, Lemma 3.1]). A projection p ∈ A is infinite if and
only if it is Murray-vonNeumann equivalent to a proper sub-projection of itself.

Proof. ⇒: Assume that there is a ∈ A+ such that p ⊕ a - p. Let ε ∈ (0, 1); then by
Proposition 3.10 (vii) and Proposition 3.15 there is x ∈ A such that

(1− ε)p⊕ (a− ε)+ = (p− ε)+ ⊕ (a− ε)+ = ((p⊕ a)− ε)+ = x∗(1− ε)px

(see Observation 3.16). Set b := (1− ε)−1(a− ε)+; then we have shown that there are
x1, x2 ∈ A with: (

p 0
0 b

)
=
(
x∗1
x∗2

)
p
(
x1 x2

)
=
(
x∗1px1 x∗1px2

x∗2px1 x∗2px2

)
.
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Setting v := px1 we have v∗v = p, and from vv∗p = vv∗ we get q := vv∗ ≤ q. It
remains to show q 6= p. But otherwise:

b = x∗2px2 = x∗2px2 = x∗2vv
∗x2 = x∗2px1x

∗
1px2 = 0 .

⇐: Let p0 be a proper subprojection of p such that p0 ∼ p. Then 0 6= p − p0 ≥ 0,
p− p0 ⊥ p0, and

p⊕ (p− p0)
Prop. 3.6(iii)∼ p0 ⊕ (p− p0)

Prop. 3.6(iv)∼ p0 + p− p0 = p .

Remark 3.18 shows p⊕ (p− p0) - p .

Proposition 3.31. A projection p in A is properly infinite if and only if there are
pairwise orthogonal projections e, f ∈ A such that e ∼ p ∼ f and e ≤ p, f ≤ p .

Proof. ⇒: Assume that p is properly infinite. Then by Proposition 3.29 there are
v1, v2 ∈ A such that(

p 0
0 p

)
=
(
v∗1v1 v∗1v2
v∗2v1 v∗2v2

)
=
(
v∗1
v∗2

)(
v1 v2

)
∼
(
v1 v2

)(v∗1
v∗2

)
= v1v

∗
1 + v2v

∗
2 ≤ p ,

whereas we may set e := v1v
∗
1 and f := v2v

∗
2 to obtain orthogonal projections (see

Lemma 3.28) that are equivalent to p and such that e + f = p. Consequently, e ≤
e+ f ≤ p and f ≤ e+ f ≤ p.
⇐: Let e, f ∈ P(A) such that e ⊥ f and e ∼ p ∼ f , e ≤ p, f ≤ p. We will show
that Lemma 3.25 (v) holds. We may assume 1 > ε > 0 and use that in this case
εp = (a − ε)+; consequently it suffices to show p = x∗x = y∗y and xx∗ ⊥ yy∗ for
some x, y ∈ pAp. But this is obvious, choosing x and y as the partial isometries
implementing the equivalence between p and e, f respectively, and observing that
e, f ∈ pAp.

In the sequel we will utilize the above characterization for finiteness conditions when
dealing with projections rather than the more general definitions for arbitrary positive
elements.
As noted in Remark 3.23 infinity of positive elements is preserved under passing to
equivalent elements. We give another proof of this fact for projections using the
characterization of infiniteness via subprojections:

Proposition 3.32. Let p, q ∈ P(A) with p ∼ q. Then p is infinite if and only if q is.

Proof. We have v, w ∈ A such that

p = v∗v q = vv∗

p = w∗w p0 := ww∗ < p,

For q0 := vp0v
∗ we have

q20 = vp0v
∗vp0v

∗ = vp0pp0v
∗ = vp0v

∗,
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3 Comparison theory and finiteness conditions

and hence q0 is a projection, being obviously self adjoint. Also

qq0 = qvp0v
∗ Lem. 3.28= vp0v

∗ = q0

and therefore q0 ≤ q. Further q0 6= q as q0 = q would imply:

p0 = v∗vp0v
∗v = v∗qv = p .

Now let x := p0v
∗. Then we have

x∗x = vp0v
∗ = q0 xx∗ = p0v

∗vp0 = p0pp0 = p0 ∼ p ∼ q ,

implying q0 ∼ q by transitivity of ∼.

3.4 Dimension functions

We will need the following material on dimension functions and related definitions in
order to prove basic properties of so called purely infinite C∗-algebras to be introduced
in the next section.
Recall that the Pedersen ideal Ped(A) of A is the intersection over all dense algebraic
two sided ideals of A; as it is a dense algebraic two sided ideal itself, it is minimal with
respect to this property. Proofs of these facts can essentially be found in the section
on the minimal dense ideal in [Ped2].

Definition 3.33 (Dimension Function). Let A be a C∗-algebra and I an alge-
braic ideal in A. Then a dimension function on A with domain I is a function
d :
⋃

n∈NMn(I)+ → R subject to the following conditions:

(i) d(a⊕ b) = d(a) + d(b),

(ii) d(a) ≤ d(b) if a - b.

A dimension function is called faithful if for all a ∈ Ped(A)+\{0}∩I we have d(a) 6= 0.

For every *-homomorphism ϕ : A → B between C∗-algebras and every dimension
function d on B we get a dimension function ϕ∗d on A by setting ϕ∗d(a) := d(ϕ(a)).

Proposition 3.34. Let A be a C∗-algebra and d a nontrivial dimension function on
A. We have

(i) N := {x ∈ A | d(x∗x) = 0} is an algebraic ideal in A,

(ii) If A is algebraically simple, then d is faithful.

Proof. (i) For a ∈ N , x ∈ A we have x∗a∗ax - a∗a and hence:

d((ax)∗ax) ≤ d(a∗a) = 0.

That N is closed under addition and scalar multiplication follows, as a+ b - a⊕ b for
all a, b ∈ A and λ̄a∗a - a∗a.
(ii) is a consequence of (i).
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3.4 Dimension functions

Theorem 3.35 (cf. [BlaCu, Theorem 1.2]). Let A be a simple C∗-algebra such
that A⊗K(H) admits no non-trivial dimension function defined on its Pedersen ideal.
Then A⊗K(H) contains an infinite projection.
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4 Finiteness conditions on
C∗-algebras

4.1 Finite and infinite C∗-algebras

Definition 4.1 (Finite and infinite C∗-algebras). A unital C∗-algebra A is called
finite if its unit is finite, otherwise it is called infinite.

Proposition 4.2. Let A be a unital C∗-algebra, p a projection in A. Then:

(i) p is finite iff pAp is finite,

(ii) A is finite iff every isometry in A is unitary

(iii) A is infinite iff the unital Toeplitz algebra embeds unitally into A.

Proof. (i): That p is infinite if pAp is follows directly from the definition (noting that
p is a unit for pAp). Now let p be an infinite projection in A. Then there is, by
Proposition 3.30, a proper subprojection q ∈ A of p which is equivalent to p, hence
a partial isometry v ∈ A such that v∗v = p and vv∗ = q. It suffices to show that
v, q ∈ pAp ; by we then have p = pqp ∈ pAp and v = vp = pqvp ∈ pAp, implying that
p is infinite.
(ii): Now let A be finite, v an isometry in A. Then

1A = v∗v ∼ vv∗ ≤ 1A

and by finiteness of 1A we have vv∗ = 1 (in fact, the generalized Murray-van Neumann
equivalence class of 1A in K0(A) is the singleton 1A). Conversely, if every isometry in
A is unitary and v∗v = 1, then vv∗ = 1 and therefore 1A is finite.
(iii): The Toeplitz algebra is the universal C∗-algebra generated by a nonunitary
isometry (cf. [M, 3.5.18]), whence an algebra containing it up to isomorphism is infinite
by (ii). If A is infinite, then there is a nonunitary isometry in A by (ii), and therefore
there is an embedding of the Toeplitz algebra in A.

Proposition 4.3. Let A be a unital C∗-algebra. Then A is finite iff every projection
in A is finite.

Proof. Let p, q ∈ P(A) with p ∼ q. Choose v ∈ A such that p = v∗v and q = vv∗.
Then for u := v + (1− p) we get, applying Lemma 3.28 repeatedly, that

u∗u = v∗v + v∗(1− p) + (1− p)v + (1− p) = p+ v∗ − v∗qp+ v − pqv = 1
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4 Finiteness conditions on C∗-algebras

and
uu∗ = vv∗ + (1− p) + (1− p)v∗ + v(1− p) = 1 + (q − p),

as uu∗ = 1 by Proposition 4.2 we deduce p = q.
The converse is obvious.

4.2 Properly infinite C∗-algebras

Definition 4.4 (properly infinite). A unital C∗-algebra A is called properly infinite
if its unit is a properly infinite projection.

Lemma 4.5. Let A be a properly infinite C∗-algebra. Then A contains a sequence of
isometries (sn)n∈N with mutually orthogonal range projections.

Proof. By the definition of properly infinite there are isometries t1, t2 in A with
1A ∼ t1t

∗
1 ⊥ t2t

∗
2 ∼ 1A. As in Observation 4.14 we have t∗1 ⊥ t2 and setting sn := tn−1

2 t1
for all n ∈ N we have s∗nsm = t∗1(t

∗
2)

n−1tm−1
2 t1 = δnm for all m,n ∈ N.

4.3 Purely infinite C∗-algebras

In this section, we introduce the notion of purely infinite for C∗-algebras. This notion
is stronger than being properly infinite; we will spend a considerable amount of time
investigating equivalent conditions to being purely infinite. In the first section, condi-
tions that hold even for-non simple C∗-algebras are presented; the setting is somewhat
simplified in the case of simple purely infinite C∗-algebras, the which will be treated
in the second section.

4.3.1 Non-simple purely infinite C∗-algebras

Definition 4.6 (Purely Infinite). Consider the following two conditions on a C∗-
algebra A:
Condition I: Every nonzero positive element in A is properly infinite.
Condition II: A has no characters and for all a, b ∈ A+ with a ∈ AbA : a - b.
We will call A purely infinite if A satisfies Condition I.

The main task is to prove that the above condition I is equivalent to the less intuitive
condition II.
Having developed the necessary comparison theoretical techniques, it is easy to see
that Condition I implies Condition II:
If A satisfies condition I, then A can not have any non-zero abelian quotients by Re-
mark 3.24. If now ϕ : A→ C were a character on A, then we would have A/Ker(ϕ) '
C, which would be a contradiction. As the second part of condition II is implied by
Lemma 3.26, we see that Condition I implies Condition II.
One has to work harder to see that Condition II implies condition I. We only outline
the proof, the rigorous one is given in [KiRr2].
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4.3 Purely infinite C∗-algebras

One shows first that, given a short exact sequence of C∗-algebras

0 −→ I −→ A −→ B −→ 0

such that all nonzero positive elements in I and B are properly infinite, all nonzero
positive elements in A have to be properly infinite also.
Given a C∗-algebra satisfying Condition II, one considers the set I of those ideals in
A such that all their nonzero elements are properly infinite. For any two ideals I and
J in this set, one therefore has a short exact sequence

0 −→ I −→ I + J −→ (I + J)/I −→ 0

of C∗-algebras, and all nonzero positive elements in I are properly infinite by hy-
pothesis. As (I + J)/I ∼= J/(I ∩ J), and being properly infinite is preserved by
*-homomorphisms, all elements in (I + J)/I are properly infinite, we may now apply
the result on short exact sequences above, to see that I is upwards directed. An
application of Lemma 3.25 gives that the union I0 of all ideals in I is an element of I
(one could also use Zorn’s Lemma to obtain a maximal element in this set).
To finish the proof, one assumes I0 6= A. Then a version of Glimm’s Lemma shows
that M2

(
C0((0, 1])

)
embeds into the quotient A/I0, and every nonzero positive ele-

ment in the ideal generated by it’s image is properly infinite. Another application of
the result on short exact sequences gives a contradiction to the maximality of I0.

Proposition 4.7. Let A be a purely infinite C∗-algebra and H an hereditary C∗-
subalgebra. Then H is purely infinite.

Proof. For every element a ∈ H we have a⊕ a - a in A by the definition of properly
infinite. Now H is hereditary and therefore this statement also holds with respect to
H by Lemma 3.19.

4.3.2 Simple purely infinite C∗-algebras

In this section we will consider simple purely infinite C∗-algebras. From the last
section we already know that these are C∗-algebras containing only properly infinite
positive elements, and this is equivalent to Condition II above, i.e., a ≈ b for any two
nonzero a, b ∈ A+ in the case of simple C∗-algebras.

Observation 4.8. Let B be a stable C∗-algebra , i.e., B ∼= K(H) ⊗ B. Then B
contains a sequence (an)n of positive, pairwise orthogonal nonzero elements such that
aj ∼ ai for all i, j ∈ N.
One may construct this sequence as follows: Take an isomorphism ϕ : K(H)⊗B → B,
where H is some separable Hilbert space. Let eij be a set of standard matrix units
for K(H) and choose some h ∈ B+. Define

ai := ϕ(eii ⊗ h) .

Then aiaj = ϕ(eiiejj ⊗ h) = 0 for i 6= j and

ai = ϕ(eij ⊗ h2)ϕ(eji ⊗ h) ∼ ϕ(eji ⊗ h)ϕ(eij ⊗ h) = aj ,
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4 Finiteness conditions on C∗-algebras

implying pairwise equivalence of the ai.

Lemma 4.9. Let A be a purely infinite C∗-algebra. Then A has no nonzero dimension
function. If A is simple, then A ⊗ K(H) does not admit any dimension function on
its Pedersen ideal.

Proof. Let d be a dimension function on A; for every a ∈ A, which lies in the domain
of d and is therefore positive, we have a⊕a - a, yielding d(a)+d(a) = d(a⊕a) ≤ d(a),
in turn entailing a = 0 and triviality of d.
Note that A embeds into A⊗K(H) via ϕ = ιe11 , sending a to a⊗e11 (cf. Lemma 2.7).
Assume d is a dimension function on Ped(A⊗K(H)). We will show that the dimension
function ϕ∗d = dϕ has nontrivial domain, which is a contradiction to the first part
of the lemma. The finite rank operators are dense in K(H) ([M, Theorem 2.4.5]),
hence the algebraic ideal generated by A⊗e11 is dense in A⊗K(H), and consequently
contains the Pedersen ideal of A ⊗ K(H). If N = {x ∈ A ⊗ K(H) | d(x∗x) = 0}
contained A ⊗ e11, then the Pedersen ideal of A ⊗ K(H) would be a subset of N by
Proposition 3.34, thence d would have to be zero.

Lemma 4.10. Let A be a simple C∗-algebra such that for every a ∈ Ped(A)+ the
hereditary C∗-subalgebra aAa contains a nontrivial stable C∗-subalgebra. Then there
exists no non-zero dimension function on Ped(A).

Proof. Let a ∈ P (A)+. Then there is a sequence (an)n∈N as in Observation 4.8, and
n∑

i=1
ai - a for all n ∈ N by Lemma 3.20. Now let d be a dimension function on P (A),

then we have

nd(a) =
n∑

i=1

d(ai) = d(
n∑

i=1

ai) ≤ d(a),

and henceforth d(a) must be zero.

Lemma 4.11. Let A be a simple C∗-algebra containing an infinite projection p. Then
for any a ∈ A+ there is some x ∈ A with x∗px = a.

Proof. Find v ∈ A with vv∗ = p and v∗v ≤ p. By the last line of the proof of [BlaCu,
Proposition 2.6] applied to v we may choose x ∈ A such that xx∗ = a and px∗x = x∗x.
Then from

(px∗ − x∗)(px∗ − x∗)∗ = (p− 1)x∗x(p− 1) = 0

we deduce px∗ = x∗ and
xpx∗ = xx∗ = a.

We need one more definition for the proof of the next proposition:

Definition 4.12. Let a be an element in a C∗-algebra A. Then x will be called scaling
if a∗a 6= aa∗ and (a∗a)(aa∗) = aa∗.
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4.3 Purely infinite C∗-algebras

For example, if p is an infinite projection in A and q a proper subprojection of p which
is equivalent to p, then the partial isometry v such that v∗v = p and vv∗ = q is a
scaling element.

Proposition 4.13. Let A be a simple C∗-algebra. Then A is purely infinite if and
only if one of the following conditions holds:

(i) A is not isomorphic to C and for every pair of non-zero elements a, b ∈ A+ there
exists x ∈ A such that a = x∗bx,

(ii) Every non-zero hereditary C∗-subalgebra of A contains an infinite projection

(iii) Every non-zero hereditary C∗-subalgebra of A contains a non-trivial stable C∗-
subalgebra

Proof. We show: A purely infinite ⇒ (ii)⇒(iii) ⇒ (i) ⇒ A purely infinite.
Let A be a purely infinite simple C∗-algebra. By Lemma 4.9 there is no dimension
function on the Pedersen ideal of A; by 3.35 we obtain an infinite projection p ∈
A ⊗ K(H). Let B be a hereditary C∗-subalgebra of A, then B is also a hereditary
C∗-subalgebra of A ⊗ K(H) (by slight abuse of notation), and by simplicity, for any
b ∈ B+ the closed two sided ideal of A ⊗ K(H) generated by b contains p. Now b is
properly infinite, hence by Lemma 3.26 we deduce p - b, hence by Proposition 3.15
there is some x ∈ A ⊗ K(H) such that p = x∗bx. Setting v := x∗b1/2 we obtain an
infinite projection v∗v ∈ (A⊗K(H))b(A⊗K(H)) ⊆ B.
Assume (ii) holds. Let H be a hereditary C∗-subalgebra of A and p ∈ H an infinite
projection. Then pAp ⊆ H by [M, Corollary 3.2.4] and by Proposition 4.2 the Toeplitz
algebra, and hence the compact operators on some separable infinite dimensional
Hilbert space, embed into pAp, showing that pAp is a stable C∗-subalgebra of A.
Assume (iii) holds and let a, b ∈ A+. Then every hereditary C∗-subalgebra H of aAa
is also a hereditary C∗-subalgebra of A and therefore the hypothesis holds also for
aAa, as it is simple by [M, Theorem 3.2.8]. Consequently we may apply Lemma 4.10
combined with [BlaCu, Lemma 4.5] to see that aAa contains a scaling element. Now
applying [BlaCu, Theorem 3.1] gives an infinite projection p ∈ aAa. It follows from
Lemma 3.20 and Observation 3.16 that there is some x ∈ A with p = x∗ax, further
we may apply Lemma 4.11 to choose y ∈ A with b = y∗py and conclude:

b = y∗py = y∗x∗axy.

Assume (i) holds. Then all elements are ≈-equivalent in A and it suffices to show the
existence of a properly infinite element in A by Remark 3.23. Applying [RrLL, Lemma
7.1.4], we deduce that A has a maximal abelian C∗-subalgebra M not isomorphic to
C. Therefore M ∼= C0(X) via an isomorphism ϕ : C0(X) → M , where X is a
locally compact Hausdorff space with |X| > 1. We may thus choose nonzero positive
functions f, g ∈ C0(X) such that fg = 0 = gf and we have ϕ(f) ≈ a and ϕ(g) ≈ a
for any a ∈ A+. It follows:

a⊕ a - ϕ(f)⊕ ϕ(g) - ϕ(f + g) - a,
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4 Finiteness conditions on C∗-algebras

the which implies that a, and consequently every positive element in A, is properly
infinite.

4.4 Cuntz

4.4.1 The Cuntz algebras On

In this section we will introduce the so called Cuntz algebras, which will play a “dom-
inant” role in the proof of the exact embedding theorem. Apart from that, they are
an example of purely infinite C∗-algebras; in fact, they were the first example of a
purely infinite C∗-algebra. The algebras On were introduced by J. Cuntz in “Simple
C∗-algebras generated by Isometries” ([Cu1]) and are a somewhat natural generaliza-
tion of the Toeplitz algebra; later on, he defined in [Cu2] the notion of purely infinite
and proved that the algebras On have this property.
We start with a concrete realization of On. Let n ∈ N and set Hk := l2(N) for all
k = 1, . . . , n, define H :=

⊕n
k=1Hk. We denote the canonical inclusion of Hk into H

by ιk and the projection from H → Hk by πk. Then
∑n

k=1 ιk πk = idH and πk ιl = δk,l

(
⊕

is a categorical bi-product). Now let ξ ∈ H and η ∈ Hk, then

〈ξ | ιk(η)〉 =
n∑

j=1

〈πj(ξ) | πj ιk(η)〉Hj = 〈πk(ξ) | η〉H ,

that is, the adjoint of the k-th projection is the k-th inclusion.
Because H and l2(N) are isomorphic as Hilbert spaces, there is an isometric surjection,
hence a unitary operator, uk : H → Hk. Set sk := ιk uk. Then

s∗ksl = u∗k πk ιl ul = δk,l ,

and further
n∑

j=1

sks
∗
k =

n∑
j=1

ιk uk u
∗
k πk =

n∑
j=1

ιk πk = idH .

It is easy to see that one may also realize this algebra as a kind of shift operator an a
sum of Hilbert spaces.
For a unital C∗-algebra A, n ∈ N≥2 and s1, . . . , sn isometries in A, we say that
(si)1≤i≤n satisfies the Cuntz relation (or On-relation), if

n∑
i=1

sis
∗
i = 1.

Observation 4.14. Given n ∈ N (si)1≤i≤n as above, we may use Lemma 2.5 to
deduce

(sis
∗
i )(sks

∗
k) = δi,ksis

∗
i .

As isometries are left invertible and coisometries are right invertible, we immediately
deduce:

s∗i sk = δi,k.

32



4.4 Cuntz

An infinite sequence of isometries (si)i∈N is said to satisfy the Cuntz relation, if their
range projections sis

∗
i are mutually orthogonal.

The following definition makes sense by the construction above, and will be shown
below to be independent of the particular Hilbert space and isometries chosen:

Definition 4.15. For every n ∈ N≥2 let (si)1≤i≤n be isometries on a Hilbert space
H which satisfy the Cuntz relation. Then we define On := C∗H(s1, . . . , sn). That is,
On is the sub-C∗-algebra of B(H) generated by n partial isometries which satisfy the
Cuntz relation.
We define O∞ as the C∗-algebra generated by an infinite sequence of isometries satis-
fying the Cuntz relation.

We list the following properties of On without proof:

Theorem 4.16. For every n ∈ N the Cuntz algebra On is a separable, unital, simple,
purely infinite, nuclear C∗-algebra.

In addition, the Cuntz algebras, similar to the Toeplitz algebra, have the following
universal property :

Proposition 4.17. Let n ∈ N≥2. For every unital C∗-algebra A containing isometries
(ti)1≤i≤n satisfying the Cuntz relation, there is a unique unital *-homomorphism ϕ :
On → A such that ϕ(si) = ti.

Observation 4.18. For any isometries t1, . . . , tn satisfying the Cuntz relation, the
*-homomorphism from Proposition 4.17 must be an isomorphism by simplicity of On,
and therefore C∗(t1, . . . , tn) is isomorphic to On.

Corollary 4.19. Let p be a projection in a C∗-algebra A. Then p is properly infinite
if and only if O∞ embeds unitally into pAp. In particular, a unital C∗-algebra is
properly infinite if and only if it unitally contains O∞ (up to isomorphism).

Proof. By Lemma 3.19, p is properly infinite in pAp, which consequently is a purely
infinite C∗-algebra by definition. By Lemma 4.5, there is a sequence of isometries in
pAp satisfying the Cuntz relation, and by universality O∞ embeds in pAp.

Proposition 4.20. For every n ∈ N̄ we have On ⊆ O2.

Proof. As O2 is purely infinite, we see that O∞ embeds unitally into O2. Fix some
n ∈ N. Let s1, s2 be the generators of O2 and n ∈ N. Mimicking the proof of Lemma
4.5, we define new isometries by setting for all k = 1, . . . n:

tk := sk−1
1 s2 and tn+1 := sn

1 .
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4 Finiteness conditions on C∗-algebras

It then follows easily, that t∗ntm = δn,m, and

1−
n∑

k=1

tkt
∗
k = 1−

n∑
k=1

sk−1
1 s2s

∗
2s
∗k−1
1

= 1−
n∑

k=1

sk−1
1 (1− s1s

∗
1)s

∗k−1
1

= 1−
n∑

k=1

sk−1
1 s∗k−1

1 − sk
1s
∗k
1

= sn
1s
∗n
1 = tn+1t

∗
n+1 ,

and therefore t1, . . . , tn+1 satisfy the Cuntz relation. By universality, On+1 embeds in
O2.

We will need one more fact concerning On later on:

Lemma 4.21. For every n,m ∈ N, the matrix algebra Mnm embeds unitally into On.

Proof. For every m ∈ N we will show that On contains matrix units for Mnm . In order
to do so, we define for every µ ∈ {1, . . . , n}m:

sµ := sµ1sµ2 · · · sµm .

As |{1, . . . , n}m| = nm, we may choose a bijection τ : {1, . . . , nm} → {1, . . . , n}m and
set gij := sτ(i)s

∗
τ(j). We have s∗µsν = δµ,ν and hence gijgkl = 0 if j 6= k and gijgkl = gil

if j = k. Further, by rearranging

nm∑
i=1

gii =
nm∑
i=1

sτ(i)s
∗
τ(i) = 1 ,

showing that the gij form a set of matrix units for Mnm , and hence that On contains
a subalgebra isomorphic to Mnm .

The following will an ingredients to the proof of the O2-embedding theorem 7.24:

Theorem 4.22. The Cuntz algebra O2 is self absorbing, that is:

O2 ⊗O2
∼= O2 .

4.4.2 On the Cuntz sum

Remark 4.23. Let s be an isometry in a unital C∗-algebra A and consider the *-
conjugation V by s, i.e., a 7→ s∗as. Then it is plain to see that this is a unital linear
map, which is completely positive as Mn(V ) := Vn is *-conjugation by the isometry
1n ⊗ s; it follows, that ||V ||cb = ||V (1)|| = 1 (see for example [Rr1, Chapter 6]). Note
further that for all a ∈ A we have

||as∗|| ≤ ||a|| = ||as∗s|| ≤ ||as∗|| .
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4.4 Cuntz

As for all a ∈ A we have

V (a∗a)− V (a)∗V (a) = V (a∗a)− V (a∗ss∗a) = V (a∗(1− ss∗)a) ≥ 0 ,

where we used positivity of V and that (1− ss∗) is a projection, and hence
a∗(1− ss∗)a positive, to see that the last inequality holds. One might paraphrase this
by saying that V is supermultiplicative. In particular, given another isometry t and
denoting the associated *-conjugation by W we get

W (V (a)∗V (a))−WV (a)∗WV (a) > 0 .

Definition 4.24 (Cuntz sum). Let s1, s2 ∈ A be isometries in a unital C∗-algebra
satisfying the Cuntz relation. Then we define a binary operation, called the Cuntz
sum, by

⊕s1,s2 : A×A→ A, (a, b) 7→ s1as
∗
1 + s2bs

∗
2.

Remark 4.25. Note that for the Cuntz sum we have the following inequality:

||x⊕s1,s2 x− x|| ≤ ||
[
s1, x

]
||+ ||

[
s2, x

]
||.

Proof. We have s1s∗1 + s2s
∗
2 = 1 and hence:

||x⊕s1,s2 x− x|| = ||s1xs∗1 + s2xs
∗
2 − x(s1s∗1 + s2s

∗
2)||

= ||
[
s1, x

]
s∗1 +

[
s2, x

]
s∗2|| ≤ ||

[
s1, x

]
||+ ||

[
s2, x

]
|| .

Lemma 4.26 (cf. [KiRr1, Lemma 2.4]). Let A be a unital C∗-algebra and assume
that s, v1, v2 ∈ A are isometries such that v1, v2 satisfy the Cuntz relation. Let V
denote *-conjugation by s. Then

w1 := (1− ss∗) + sv1s
∗ and w2 := sv2

again satisfy the Cuntz relation and, for all a ∈ A:

(i) ||a⊕w1,w2 V (a)− a|| ≤ ||
[
v1, V (a)

]
||+ ||

[
v2, V (a)

]
||+ 2||

[
a, ss∗

]
||,

(ii) ||
[
a, ss∗

]
|| = max{||V (a∗a)− V (a)∗V (a)||1/2, ||V (aa∗)− V (a)V (a)∗||1/2}.

Proof. The element w2 is immediately seen to be an isometry, for w1 this follows from

w∗1w1 = (1− ss∗) + (1− ss∗)sv1s∗ + sv∗1s
∗(1− ss∗) + sv∗1v1s

∗ = (1− ss∗) + ss∗ = 1 .

That they satisfy the O2-relation is a consequence of

w1w
∗
1 + w2w

∗
2 = (1− ss∗) + sv1s

∗sv∗1s
∗ + sv2v

∗
2s
∗ = 1 .
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4 Finiteness conditions on C∗-algebras

Let
0
B@
a1 a2

a3 a4

1
CA be the decomposition of a with respect to ss∗ (see Remark 2.3). Em-

ploying Proposition 2.2 twice, gives (◦)

||
[
a, ss∗

]
||

=max{||(1− ss∗)as|| , ||s∗a(1− ss∗)||}
=max{||(1− ss∗)asv∗1s

∗|| , ||sv1s∗a(1− ss∗)||}
=||(1− ss∗)asv∗1s

∗ + sv1s
∗a(1− ss∗)|| .

We prove (i):

||a⊕w1,w2 V (a)− a|| ≤||(1− ss∗)a(1− ss∗) + sv1V (a)v∗1s
∗ + sv2V (a)v∗2s

∗ − a||
+ ||(1− ss∗)asv∗1s

∗ + sv1s
∗a(1− ss∗)||

(◦)
= ||(1− ss∗)a(1− ss∗) + ss∗ass∗ − a||

+ ||V (a)⊕v1,v2 V (a)− V (a)||+ ||
[
a, ss∗

]
||

≤2||
[
a, ss∗

]
||+ ||

[
v1, V (a)

]
||+ ||

[
v2, V (a)

]
|| ,

where we use Remark 4.25 to see the last inequality.
Ad (ii): Proposition 2.2 shows that

||a|| = max{||ss∗a(1− ss∗)|| , ||(1− ss∗)ass∗||} .

Using

||V (a∗a)− V (a)∗V (a)|| = ||s∗a∗as− s∗a∗ss∗as||
=||(1− ss∗)as||2 = ||(1− ss∗)ass∗||2

and

||V (aa∗)− V (a)V (a)∗|| = ||s∗aa∗s− s∗ass∗a∗s||
=||(1− ss∗)a∗ss∗||2 = ||ss∗a(1− ss∗)||2 ,

(ii) follows easily.
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5 Real rank for C∗-algebras

In this section we will define the real rank of a C∗-algebra A. It is shown in [BrPed,
Proposition 1.1] that for a compact Hausdorff space X the real rank of C(X) and
the covering dimension of X are the same, and hence the concept of real rank for
C∗-algebras may be regarded as noncommutative dimension theory. The name real
rank stems from the fact that the covering dimension of a compact Hausdorff space
may be characterized by properties of continuous mappings from the topological space
into Rn.

Definition 5.1 (Real rank). A unital C∗-algebra A has real rank n if for all k ≤ n+1
and (a1, . . . , ak) ∈ Ak

sa there is for every ε > 0 some (b1, . . . , bk) ∈ Ak
sa with the

property that
k∑

i=1
b2i is invertible and

||
k∑

i=1

(ai − bi)2|| < ε .

We will denote the real rank of a unital C∗-algebra A by RR(A) and for a non unital
C∗-algebra we set RR(A) := RR(Ã).

Even though we have defined real rank in full generality we will be concerned only
with the case of real rank zero from now on. In the sequel we will deduce numerous
conditions on a C∗-algebra that are equivalent to having real rank zero.

Lemma 5.2 (cf. [BrPed, Lemma 2.3]). Let A be unital, p a projection in A and

a an element in A with decomposition
0
B@
a1 a2

a3 a4

1
CA with respect to p (cf. Remark 2.3). If

a4 is invertible in (1−p)A(1−p), then a is invertible in A if and only if a1−a2a
−1
4 a3

is invertible in pAp.

Proof. Observe that

a =
(
a1 a2

a3 a4

)
=
(
p a2a

−1
4

0 (1− p)

)(
a1 − a2a

−1
4 a3 0

0 a4

)(
p 0

a−1
4 a3 1− p

)
.

Now(
p a2a

−1
4

0 (1− p)

)(
p a2a

−1
4

p (1− p)

)
=
(
p+ a2a

−1
4 p pa2a

−1
4 + a2a

−1
4 (1− p)

0 (1− p)

)
=
(
p 0
0 (1− p)

)
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5 Real rank for C∗-algebras

and invertibility of the right hand factor follows similarly. Therefore a is invertible if
and only if (

a1 − a2a
−1
4 a3 0

0 a4

)
is invertible, which is equivalent to invertibility of a1 − a2a

−1
4 a3, a4 being invertible

by hypothesis.

Recall that for every element a of a unital C∗-algebra A with ||1 − a|| < 1 we have

invertibility, as
( N∑

n=0
(1− a)n

)
N∈N is convergent to a−1, whereas

||a−1|| ≤ lim
N→∞

N∑
n=0

||1− a||n = (1− ||1− a||)−1 .

Theorem 5.3 (cf. [BrPed, Theorem 2.5]). Let A be a unital C∗-algebra with
real rank zero. Then for every projection p in A the unital C∗-algebras pAp and
(1− p)A(1− p) also have real rank zero.

Proof. Let a ∈ (pAp)sa, 1 > ε > 0 and b ∈ Asa invertible such that ||a+(1−p)−b|| < ε.
Decompose b with respect to p into b1, b2, b3 and b4; then b1 and b4 are self adjoint, as
b was, b2 = b∗3, and

||(1− p)− b4|| = ||(1− p)a(1− p) + (1− p)− (1− p)b(1− p)|| ≤ ε

implying invertibility of b4 in (1− p)A(1− p). This entails by Lemma 5.2 invertibility
of

c := b1 − b2b
−1
4 b3 ∈ pAp

because b was invertible by hypothesis, and c is self adjoint by the above. As (1−p) is
a unit for (1−p)A(1−p), we have, applying the approximation preceding the theorem
inside (1− p)A(1− p)

||b−1
4 || ≤ (1− ||b4 − (1− p)||)−1 ≤ (1− ε)−1,

and therefore

||a−c|| = ||a−b1||+||b2b−1
4 b3|| ≤ ||pap−pbp||+(1−ε)−1 ||pb(1−p)||2 ≤ ε+(1−ε)−1ε2 ,

as was to be shown.

Lemma 5.4. Let a and b be self adjoint elements in A and ε > 0 such that

a− ε ≤ b ≤ a+ ε .

Then ||a− b|| ≤ ε.
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Proof. We show that σ(a− b) ⊆ [−ε, ε], implying

||a− b|| = ρ(a− b) ≤ ε

by [M, Theorem 2.1.1]. To this end, let λ ∈ σ(a− b). By hypothesis,

λ− ε ∈ σ(a− b− ε) ⊆ R− and λ+ ε ∈ σ(a− b+ ε) ⊆ R+,

implying λ ≤ ε and λ ≥ −ε.

We cite the following Lemma:

Lemma 5.5 (cf. [BrPed, Lemma 2.2]). Let a and b be self adjoint elements of A
and assume ||a− b|| ≤ ε. Then

||a+ − b+|| ≤
1
2

((
(||a||+ ||b||)ε

)1/2 + ε
)
.

Lemma 5.6. Let A be a C∗-algebra. Assume that the following condition holds:
For all positive, orthogonal elements a and b in A and for every ε > 0 there is a
projection p ∈ A such that ||(1− p)a|| < ε and ||pb|| < ε.
Then for all t ∈ R the set Gt := {a ∈ Asa | t /∈ σ(a)} is a dense open subset of Asa.

Proof. Let t ∈ R; as the set of invertible elements is open in A, we see that Gt is open.
Furthermore let a ∈ Asa and ε > 0. Then (a − t)+ is orthogonal to (a − t)−, thence
there is a projection p in A such that ||(a− t)+p|| < ε and ||(a− t)−(1−p)|| < ε. This
entails

||a− pap− (1− p)a(1− p)|| = ||(1− p)ap+ pa(1− p)|| = ||(1− p)ap||
= ||(1− p)

(
(a− t)+ − (a− t)−)

)
p|| < 2ε

by Proposition 2.2. Further we have

(t− ε)p ≤ tp+ p((a− t)+ − ε)p ≤ tp+ p
(
(a− t)+ − (a− t)−

)
p = pap ,

and similarly (1− p)a(1− p) ≤ (t+ ε)(1− p). This shows that

pap+ 2εp ≥ (t+ ε)p and (1− p)a(1− p)− 2ε(1− p) ≤ (t− ε)(1− p) ,

whence the element

b := (pap+ 2εp) + ((1− p)a(1− p)− 2ε(1− p))

is in Gt, as otherwise

t ∈ σpAp(pap+ 2εp) or t ∈ σ(1−p)A(1−p)((1− p)a(1− p)− 2ε(1− p))

would have to hold, which is impossible by the above inequalities. Moreover

||a− b|| ≤ ||a− pap− (1− p)a(1− p)||+ ||2εp||+ ||2ε(1− p)|| ≤ 4ε .
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5 Real rank for C∗-algebras

Proposition 5.7 (cf. [BrPed, Theorem 2.6]). The following conditions on a C∗-
algebra A are equivalent:

(i) A has real rank zero

(ii) For all positive, orthogonal elements a and b in Ã and for every ε > 0 there is
a projection p ∈ Ã such that ||(1− p)a|| < ε and ||pb|| < ε.

(iii) For all positive elements a and b in Ã+ and for every ε > 0 with ||ab|| < ε2 there
is a projection p in A such that ||(1− p)a|| < ε and ||pb|| < ε.

Proof. We may assume that A is unital.
(i)⇒(iii): The idea is the following: We use the hypothesis on A to find an invertible
self adjoint element c which is close to a− b. Then we choose p from Proposition 3.10
such that pc = c+ and (1− p)c = c− and show that it does the job.
Let 1 > ε > 0. To begin with, note that

(
(2||a − b|| + ε1)ε1

)
+ ε1 → 0 for ε1 → 0,

hence we may choose ε1 > 0 with

||ab||1/2 − 1
2

((
(2||a− b||+ ε1)ε1

)1/2 + ε1

)
< ε .

Select an invertible self adjoint element c in A such that ||a− b− c|| < ε1. We have,
using Lemma 5.5 at (∗):

||a− c+|| ≤||a− (a− b)+||+ ||(a− b)+ − c+||
∗
≤ ||ab||1/2 +

1
2
(
(||a− b||+ ||c||)ε1 + ε1

)
≤||ab||1/2 =

1
2

((
||a− b||+ ||c− a− b||)ε1

)1/2 + ε1

)
≤ ε .

Now let p be the projection in A with pc = c+ and (1− p)c = c−, then

||(1− p)a|| =||(1− p)a+ (1− p)c+||
=||1− p|| ||a− c+|| < ε ,

replacing (1−p) with p, which is in turn orthogonal to c−, the which we may substitute
for c+, allows us to apply the above argument to b instead of a, obtaining ||pb|| < ε.
Finally, (iii) obviously implies (ii), and that (ii) implies (i) follows from Lemma 5.6,
as we see that G0, i. e. , the self adjoint and invertible elements, are dense in Ãsa,
which is exactly the definition of real rank zero.

Theorem 5.8 (cf. [Ped4, Proposition 14], [BrPed, Theorem 2.6]). The follow-
ing conditions on a C∗-algebra A are equivalent:

(i) A has real rank zero,

(ii) The self adjoint elements of A with finite spectra are dense in Asa,

(iii) Every hereditary C∗-subalgebra of A has an approximate unit consisting of pro-
jections.
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Proof. To show that (i) implies (ii), observe that if A has real rank zero, than we may
apply Lemma 5.6 by Proposition 5.7. Let a ∈ Asa and ε > 0. Observe that Asa is
a complete metric space in the metric induced by the norm on A, whence by Baire’s
theorem the set G :=

⋂
t∈εZGt is dense in Asa. We may therefore choose an element

b ∈ G with ||a− b|| < ε. Now construct an element close to b with finite spectrum as
follows: Define a function f : R → R by f(t) := nε for t ∈ [nε, (n+1)ε) and note that
f is continuous on σ(b). As a consequence

||f(b)− b|| = sup{|f(t)− t| | t ∈ σ(b)} ≤ ε ,

yielding ||a− f(b)|| ≤ 2ε. As σ(b) is bounded, f(b) has finite spectrum, as desired.
To see that (iii) implies (i), we show that condition (ii) in Proposition 5.7 holds. To
this end, let a, b ∈ A+ and ε > 0. As there is an approximate unit of projections in
the hereditary C∗-algebra generated by a, we may choose a projection p in aAa with
||pa − a|| = ||(1 − p)a|| < ε. As bc = 0 for all elements in the hereditary C∗-algebra
generated by a, even bp = 0 holds.
We refer the reader to [Ped4, Proposition 14] for a proof of the implication (ii)⇒(iii).

The proof of the following theorem is due to Mikael Rørdam:

Theorem 5.9. Let A be unital, simple and purely infinite. Then A has real rank zero.

Proof. Let a ∈ Asa; if a is invertible, then there is nothing to show. Hence we
assume that 0 ∈ σ(a) and a 6= 0. By Proposition 3.10 it further suffices to show that
(a − ε)+ ∈ Asa ∩Gl(A) holds for all ε > 0. As (a − ε)+ corresponds to a function
being zero on a neighborhood of zero or containing zero as an isolated point, we may
choose an element b in the C∗-algebra generated by (a− ε)+ and 1 such that ||b|| = 1
and (a− ε)+b = b(a− ε)+ = 0. By Proposition 4.13 (ii) there is an infinite projection
p ∈ bAb; observe that p(a− ε)+ = (a− ε)+p = 0.
Now, as A is simple, p is full, therefore we may choose a projection p0 with 1 − p ∼
p0 ≤ p, and take a partial isometry v ∈ A such that v∗v = 1 − p and vv∗ = p0. For
every δ > 0 we define cδ := (a − ε)+ + δ(p − p0) + δ(v + v∗). Then cδ is arbitrarily
close to (a− ε)+ and we show that it is invertible. Using the standard decomposition,
this time with respect to (1− p), p0 and p− p0, cδ corresponds to the matrix(a− ε)+ δv∗ 0

δv 0 0
0 0 δ(p− p0)

 .

Now δ(p − p0) is a scalar multiple of the unit in (p − p0)A(p − p0), and it therefore
suffices to show that the upper corner is invertible in (1 − p)A(1 − p) + p0Ap0, but
this follows from(

a δv∗

δv 0

)(
0 δ−1v∗

δ−1v −δ−2vav∗

)
=
(
v∗v δ−1av∗ − δ−1v∗vav∗

0 vv∗

)
=
(

(1− p) 0
0 p0

)
.
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6 Discrete crossed products

In this section we will study crossed products of C∗-algebras with discrete groups. We
start out with some background on representation theory.

6.1 Covariant representations

Definition 6.1. Let Γ be a group and H a Hilbert space; denote by U(H) the group
of unitary operators on H. Then a group homomorphism U : Γ → U(H), γ 7→ Uγ

which is continuous with respect to the strong operator topology is called a unitary
representation of Γ on H.

Definition 6.2. A triple (A,Γ, α) where A is a C∗-algebra, Γ a locally compact group
and α : Γ → Aut(A), γ 7→ αγ a group homomorphism which is continuous with respect
to the topology of pointwise convergence on Aut(A), is a called a (C∗-)dynamical
system. We call such a system discrete, if the group Γ is discrete, and countable,
given that Γ is countable.

Recall that continuity with respect to the topology of pointwise convergence on Aut(A)
in the definition above means, that for every a ∈ A the map γ 7→ αγ(a) is continuous.
We will be interested in unitary representations that "tie together" the representations
of a group acting on a C∗-algebra and the C∗-algebra itself. Such representations will
be used in order to define a norm on the crossed product to be constructed in the next
subsection.

Definition 6.3. A covariant representation of a C∗-dynamical system is a pair (π,U),
where π : A→ B(H) is a *-representation of A and U : Γ → U(H) a unitary represen-
tation of Γ on the same space such that for all γ ∈ Γ and a ∈ A we have:

Uγπ(a)U∗γ = π(αγ(a)) .

Observe that for a discrete group Γ and a C∗-algebra A the set of functions f : Γ → A
with compact support may be identified with the set AΓ of formal finite sums of the
form

∑
γ∈Γ aγγ, where only finitely many aγ are nonzero. In the sequel we will use

this identification without further comment.

Proposition 6.4. Let (A,Γ, α) be a discrete dynamical system. We define the follow-
ing operations for all a =

∑
γ∈Γ aγγ, b =

∑
β∈Γ bββ in AΓ:

(i) a+ b :=
∑
γ∈Γ

(aγ + bγ)γ
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6 Discrete crossed products

(ii) (a ∗ b) :=
∑
γ∈Γ

( ∑
β∈Γ

aγαγ(bγ−1β)
)
β

(iii) (λa) :=
∑
γ∈Γ

(λaγ)γ for all λ ∈ C

(iv) a∗ :=
∑
γ∈Γ

αγ(a∗γ−1)γ.

Then AΓ is a *-algebra with these operations.

We write a ∗ b as in the case of a non-discrete group this is the convolution of two
functions. However, we will use the convention to omit the ∗ when there is no ambi-
guity.

Proof. Instead of checking on the axioms of a C∗-algebra we use Proposition 6.6 below
to show that there is a faithful *-representation of AΓ on a Hilbert space H; this will
imply that the axioms hold in AΓ.

Recall that for every Hilbert space H and a discrete group Γ we may form the vector
space l2(Γ,H) of all square summable functions on Γ with values in H. We endow it
with a scalar product by setting for all x, y ∈ l2(Γ,H)

〈x|y〉 :=
∑
γ∈Γ

〈xγ |yγ〉 ,

thus defining a Hilbert space. The following proposition will prove the existence of
certain covariant representations of (A,Γ, α), the so called regular representations.

Proposition 6.5. Let (A,Γ, α) be a discrete dynamical system. For every represen-
tation of π : A→ B(H) of A there is a covariant representation (π̂, U) of (A,Γ, α) on
the Hilbert space l2(Γ,H) given by(

Uγ(x)
)
(β) : = x(γ−1β) for all x ∈ l2(Γ,H), γ, β ∈ Γ,(

π̂(a)(x)
)
(β) : = π(αβ−1(a))(x(β)) for all a ∈ A, x ∈ l2(Γ,H) and β ∈ Γ.

In addition, if π is faithful, so is π̂.

The representation U above is usually called the left regular representation of Γ. It is
clear that U is a faithful group representation, i.e., injective.

Proof. First we show that U is a unitary representation of Γ. As Γ is discrete, we do
not have to worry about continuity. Further for any x, y ∈ l2(Γ,H) and γ ∈ Γ we have

〈Uγx | y〉 =
∑
β∈Γ

〈x(γ−1β) | y(β)〉 =
∑
β∈Γ

〈x(β) | y(γβ)〉 = 〈x | Uγ−1y〉

and therefore Uγ is adjointable with U∗γ = Uγ−1 = U−1
γ , implying continuity at the

same time.
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6.1 Covariant representations

Now we show that π̂ is a representation of A on l2(Γ,H). To this end, let a, b ∈ A,
x ∈ l2(Γ,H) and γ ∈ Γ. That π̂ is a linear map follows directly from the definitions,
we only show multiplicativity and that π̂ commutes with *. This follows from(

π̂(ab)(x)
)
(γ) =π

(
αγ−1(ab)(x(γ)

)
=π(αγ−1(a)) ◦ π(αγ−1(b))(x(γ))
=π(αγ−1(a))

(
(π̂(b)(x))(γ)

)
=
(
π̂(a)π̂(b)(x)

)
(γ)

and (
π̂(a∗)(x)

)
(γ) = π(αγ−1(a∗))(x(γ))

=
(
π(αγ−1(a))

)∗(x(γ))
=
(
π̂(a)∗(x)

)
(γ) .

It now only remains to check on covariance of (π̂, U). For all x, a and γ as above we
calculate (

U∗γ π̂(a)Uγ(x)
)
(β) =

(
π̂(a)Uγ(x)

)
(γ−1β)

= π(α(γ−1β)−1(a))
(
Uγ(x)

)
(γ−1β)

= π(αβ−1γ(a))
(
x(γγ−1β)

)
=
(
π̂(αγ(a))(x)

)
(β) ,

which completes the proof. As H embeds into l2(Γ,H) by sending ξ ∈ H to the square
summable function on Γ which is nonzero only on e and sends e to ξ, we see that π̂ is
faithful when π is.

Proposition 6.6. Let (A,Γ, α) be a dynamical system with a covariant representation
(π,U). Then

(6.1) ρ(
∑
γ∈Γ

aγγ) :=
∑
γ∈Γ

π(aγ)Uγ

defines a *-representation of AΓ, the which we will denote by π o U .
If (π,U) is the covariant representation constructed in Proposition 6.5 with respect to
a faithful representation of A, then π o U is a faithful representation of AΓ.

The representation π oU obtained from (π,U) is usually called the integrated repre-
sentation or integrated form. This stems from the fact that in the more general case
of a locally compact group Γ we have to use the Haar measure and integrate π and U
over Γ in 6.1 in order to obtain a *-representation of Cc(Γ, A), which replaces AΓ in
this case.
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6 Discrete crossed products

Proof. It follows immediately from the definitions that ρ is a linear map. Let a =∑
γ∈Γ aγγ and b =

∑
β∈Γ bββ be elements of AΓ. Then we get

ρ(ab) =ρ
( ∑

γ,β∈Γ

aγαγ(bγ−1β)β
)

=
∑

γ,β∈Γ

π(aγ)π(αγ(bγ−1β))Uβ

=
∑

γ,β∈Γ

π(aγ)Uγπ(bγ−1β)U∗γUβ

=
∑

γ,β∈Γ

π(aγ)Uγπ(bβ)U∗γUγβ

= ρ(a)ρ(b) .

Concerning the involution we have

ρ(a)∗ =
∑
γ∈Γ

U∗γπ(aγ)∗UγU
∗
γ =

∑
γ∈Γ

π(αγ−1(aγ))Uγ−1 = ρ(a∗) ,

as desired.
Now let π : A → B(H) be a faithful representation and (π̂, U) the regular covariant
representation of (A,Γ, α) on l2(Γ,H) as defined in 6.5. Let 0 6= a =

∑
γ∈Γ aγγ ∈ AΓ;

then there is some γ ∈ Γ with aγ 6= 0. Choose ξ ∈ H such that π(aγ)ξ 6= 0. Define

f : Γ → H,

{
f(ν) = ξ for ν = e

f(ν) = 0 for ν 6= e
.

Now calculate(
π̂ o U(a)

)
(f)(γ) =

(∑
µ∈Γ

π̂(aµ)Uµ

)
(f)(γ) =

∑
µ∈Γ

π̂(aµ

)
(f)(µ−1γ)

=
∑
µ∈Γ

π(αγ−1µ(aµ))(f(µ−1γ)) = π(αγ−1γ(aγ))f(e) = π(aγ)(ξ) 6= 0 .

Observation 6.7. Observe that for any dynamical system (A,Γ, α) we have a *-
morphism ι : A → AΓ, a 7→ ae, called the canonical inclusion. A *-representation
ρ : AΓ → B(H) of AΓ therefore yields a *-representation π := ρ ι of A on H. For
every a ∈ A we thus get ||ρ(ae)|| = ||π(a)|| ≤ ||a||, implying for every γ ∈ Γ

||ρ(aγ)||2 = ||ρ(aγ)∗ρ(aγ)|| = ||ρ(a∗ae)|| = ||a||2 .

For every *-representation of AΓ and
∑

γ∈Γ aγγ ∈ AΓ this entails

||ρ(
∑
γ∈Γ

aγγ)|| ≤
∑
γ∈Γ

||aγ || .

Moreover we see that for a net (aλ)λ in A which is convergent to a ∈ A, the net(
ρ(aλγ)

)
λ

converges to ρ(aγ) for every γ ∈ Γ.
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6.1 Covariant representations

Proposition 6.8. Let (A,Γ, α) be a discrete dynamical system, ρ : AΓ → B(H) a
*-representation and (uλ)λ an approximate unit for A. Then setting

ρ|A : A→ B(H), a 7→ ρ(ae)
ρ|Γ : Γ → B(H), γ 7→ lim

λ
ρ(uλγ) ,

where the limit is taken with respect to the strong operator topology (see the proof
for convergence), defines a covariant representation (ρ|A, ρ|Γ) of (A,Γ, α), which is
independent of the choice of (uλ)λ.

Observe that the process of mapping a given covariant representation (π,U) to its
integrated form π o U and then “restricting” as above gives back the representation
we started with.

Proof. That ρ|A is a *-representation of A is contained in Observation 6.7. A simple
calculation, using the scalar product on H, shows that the definition of ρ|Γ is indepen-
dent of the choice of the approximate unit. We proceed to show that the strong limit
limλ ρ(uλγ) exists for every γ ∈ Γ. We denote by AΓH the linear span of elements of
the form ρ(a)ξ with a ∈ AΓ and ξ ∈ H and by [AΓH] the closure of this subspace. It
suffices to show that the limit exists pointwise on AΓ and is bounded; therefore it is
enough to show it exists on elements of the form ρ(aγ)ξ with a ∈ A, γ ∈ Γ and ξ ∈ H,
and is bounded on these. Let ξ′ = ρ(aµ)ξ be such an element. Then

ρ(uλγ)ξ′ = ρ(uλγ)ρ(aµ)ξ = ρ(uλαγ(a)γµ)ξ ,

and the latter converges by Observation 6.7, hence so does the first. As for all ξ ∈ AΓH

||ρ|Γ(γ)ξ|| ≤ lim
λ
||ρ(uλγ)|| ||ξ|| ≤ ||ξ|| ,

we may extend ρ|Γ(γ) by continuity to an operator on all of [AΓH] and set it as the
identity elsewhere. Using that the definition of ρ|Γ does not depend on the particular
choice of (uλ)λ, a simple calculation shows that ρ|Γ is in fact a group homomorphism
ρ|Γ indeed a unitary representation 1 by a straight forward calculation, showing that

〈ρ|Γ(γ−1)ξ | ξ′〉 = 〈ξ | ρ|Γ(γ)ξ′〉

for all ξ, ξ′ ∈ AΓH. It remains to check on covariance of (ρ|A, ρ|Γ). Let a ∈ A and
γ ∈ Γ. Then, as multiplication by a fixed operator is strongly continuous

ρ|Γ(γ)ρ|A(a)ρ|Γ(γ)∗ = lim
λ
ρ(uλγ)ρ(ae)ρ|Γ(γ)∗

= lim
λ
ρ(aλαγ(a)γ) lim

λ
ρ|Γ(γ)∗

= lim
λ

(αγ(a)uλγγ
−1)

= ρ|A(αγ(a)) .
1Recall that taking adjoints is not strongly continuous and therefore

�
lim

λ
ρ(uλγ)

�∗
= lim

λ
ρ(uλγ)∗ = lim

λ
ρ
�
(uλγ)∗

�

does not hold in general; thus a calculation is unavoidable.

47



6 Discrete crossed products

6.2 Discrete crossed products

Definition 6.9. Let (A,Γ, α) be a discrete C∗-dynamical system. Then we define the
crossed product Aoα Γ to be the completion of AΓ in the C∗-norm given by

||a|| := sup
ρ*-repr. of AΓ

||ρ(a)|| for all a ∈ AΓ.

The reduced crossed product Aoαr Γ is the completion in the norm formed by taking
the supremum above only over the regular representations.

By means of Proposition 6.6 we have a faithful regular representation if we use
the integrated form obtained from the universal representation of A, and therefore
||a||AoαΓ 6= 0 for every nonzero a in AΓ. Further we obtain from Observation 6.7 that
the supremum lies in R and hence we have, in fact, defined a norm.
Note that for a dynamical system (A,Γ, α), where Γ is countable and A separable,
the crossed product is again separable. This follows, as the set of finitely supported
functions from Γ into S, where S is a countable dense subset of A, is again countable,
and dense in AG, hence in Aoα Γ by Observation 6.7.

Proposition 6.10. Let (A,Γ, α) be a discrete dynamical system. Then the crossed
product Aoα Γ has the following property: For every covariant representation (π,U)
of (A,Γ, α) over H there is a *-representation ρ of A oα Γ on H such that ρ ι = π,
where ι is the canonical inclusion of A.

Proof. By Proposition 6.1, the integrated form of (π,U) is a *-representation of AΓ,
which we may extend to Aoα Γ, as it is a bounded linear map on AΓ by construction
of the norm on the crossed product. The definition of the integrated form yields

π o U ι(a) = π o U(ae) = π(a)U(e) = π(a) .

as was to be shown.

Observation 6.11. Note that we may use the embedding a 7→ ae already encountered
in Observation 6.7 to see that A embeds isometrically into A oα Γ. If A is unital,
then we further have an embedding κ : Γ → Aoα Γ by setting κ(γ) := 1Aγ. As there
is a faithful representation of Aoα Γ by the GNS-construction, and as A embeds into
AoαΓ, we may as well from now on fix a Hilbert space H such that A,AoαΓ ⊆ B(H).
If A is unital, then we also assume Γ ⊆ B(H).

Lemma 6.12. Let I be an ideal in a C∗-algebra A and π : I → B(H) a non-degenerate
representation of I on a Hilbert space H. Then there exists a canonical extension
π̂ : A→ B(H) of π to A.
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6.2 Discrete crossed products

Proof. We essentially pursue the same idea as in Proposition 6.8. Let (uλ)λ be an
approximate unit of I. For every a ∈ A and ξ′ ∈ H such that ξ′ = π(b)ξ for some
b ∈ I and ξ ∈ H, we get

π(auλ)ξ′ = π(auλ)π(b)ξ = π(auλb)ξ

and therefore limλ π(auλ)ξ exists on a dense subset of H, as π is non degenerate; we
further have

||π̂(a)ξ′|| = || lim
λ
π(auλ)ξ|| ≤ ||a|| ||ξ′||

showing that we may extend π̂(a) to all of H. Easy calculations show that π̂ is a
*-representation of A, which extends π by

π̂(a) = lim
λ
π(auλ) = π(a)

for all a ∈ I, because π is norm decreasing.

Proposition 6.13. Let (A,Γ, α) be a discrete dynamical system. Let I be an ideal in
A such that αγ(I) ⊆ I for all γ ∈ Γ (a Γ-invariant ideal). Then

IΓ||·||AoαΓ ∼= I oα|I Γ ,

that is, we may identify the crossed product of the dynamical system (I,Γ, α|I) with
the ideal in Aoα Γ generated by IΓ.

Proof. Let ι : IΓ → Aoα Γ be the inclusion map. Then this is clearly a *-morphism,
and it remains to show that ι extends isometrically to I oα|I Γ. As every *-repre-
sentation of AΓ yields a *-representation of IΓ by restriction, ι is norm decreasing
and extends to a *-homomorphism on the full crossed product I oα Γ. Given a non-
degenerate *-representation ρ of IΓ, we obtain a covariant representation (ρ|I , ρ|Γ)
by Proposition 6.8. Use Lemma 6.12 to extend ρ|I to a representation ρ̂|I of A
and manufacture a covariant representation (ρ̂|I , ρ|Γ) of (A,Γ, α). Tracing back the
definitions of the representations involved, we see that

ρ|Γ(γ)ρ̂|I(a)ρ|Γ(γ)∗ = ρ|Γ lim
λ
ρ|I(uλa)ρ|Γ(γ)∗ = lim

λ
ρ|I(αγ(uλa)) = ρ̂|I(αγ(a)) .

Therefore the integrated form ρ̂|I o ρ|Γ of (ρ̂|I , ρ|Γ) gives a *-representation of AΓ,
and consequently ι is an isometric embedding of I oα|I Γ into Aoα Γ.

Example 6.14. Let τ be a *-automorphism of A. Then we define an action α of Z
on A by

αn(a) := τn(a) for all n ∈ Z and a ∈ A.
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6 Discrete crossed products

In this situation, we write Aoα Z = Aoτ Z. Consequently, the formula U1aU
∗
1 = τ(a)

implies that there is a unitary, namely U1, in B(H) such that Un
1 aU

n∗
1 = τn(a). The

unitary U1 is called the unitary implementing (the action of) τ . By construction,

{
N∑

n=−N

anu
n | N ∈ N, an ∈ A}

is then a dense subset of Aoτ Z. Further, by [M][Theorem 3.1.8] it follows that u is
an element of the multiplier algebra M(A) of A.
In case that A is not unital, we may extend τ to an automorphism τ̃ of Ã by functo-
riality of ·̃ and use the above argument on Ã, and by Proposition 6.13 we may then
view Aoτ Z as an ideal to again obtain a unitary as above.
The universality for crossed products translates in this special case to:

Proposition 6.15. Let A be a unital C∗-algebra, τ an automorphism of A imple-
mented by a unitary u. If B is another unital C∗-algebra such that there is a *-
homomorphism ϕ : A → B and a unitary v ∈ B such that ϕ(τ(a)) = v∗ϕ(a)v, then
there is a *-homomorphism ϕ̄ : Aoτ Z → B such that ϕ̄|A = ϕ and ϕ̄(u) = v, that is,
we have a commutative diagram:

A A

Ao Z

B B
��

ϕ

//τ

��

ϕ

� t

''OOOOO ι

ww ϕ̄//
Ad(v)

6.2.1 The circle action

Lemma 6.16. Let (A,Z, τ) be a C∗-algebra and u the unitary implementing the action
of τ . For every t ∈ T denote by α̂t the automorphism of Aoτ Z defined by extending

α̂t(
∑
n∈Z

anu
n) :=

∑
n∈Z

an(tu)n (finite sums).

Then (Aoτ Z,T, α̂) is a C∗-dynamical system.

Proof. Let a =
∑

n∈Z anu
n, b =

∑
n∈Z bnu

n ∈ AZ. Then for every t ∈ T

α̂t(a+ b) = (
∑
n∈Z

(an + bn)(tu)n) = (
∑
n∈Z

an(tu)n) + (
∑
n∈Z

bn(tu)n) = α̂t(a) + α̂t(b) ,

α̂t(ab) = α̂t(
∑

n,m∈Z
anbmu

n+m) =
∑

n,m∈Z
anbm(tu)n(tu)m = α̂t(a)α̂t(b) ,

α̂t(a∗) = α̂t(
∑
n∈Z

u∗na∗n) = α̂t(
∑
n∈Z

τ−n(a∗n)u∗n) =
∑
n∈Z

τ−n(a∗n)(tu)∗n

=
∑
n∈Z

τ−n(a∗n)t̄nu∗n =
∑
n∈Z

t̄nu∗n(a∗n) = α̂t(a)∗ .
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6.2 Discrete crossed products

As α̂t has clearly norm one, it extends to a *-isomorphism on A oτ Z. A simple
calculation shows, that α̂ : T → Aoτ Z is a group homomorphism. It remains to show
that α̂ is continuous with respect to the topology of pointwise convergence. If tk → t
for k →∞ in T, then we have

||α̂tk(a)− α̂t(a)|| ≤
∑
n∈Z

||ant
n
ku

n − ant
nun|| =

∑
n∈Z

|tnk − tn| ||anu
n|| → 0 .

Definition 6.17. Let B be a sub-C∗-algebra of a C∗-algebra A. An expectation of A
onto B is a linear positive map E : A → B, such that E2(a) = E(a) for all a ∈ A.
The expectation E is called faithful, if, whenever a is a positive element in A, then
E(a) = 0 if and only if a = 0.

We quote the following Proposition from [Dav] without proof, where the integral is
the usual Banach-space-valued one:

Proposition 6.18 (cf. [Dav, Theorem VIII.2.1]). Let (A,Z, τ) be a C∗-dynamical
system and (Aoτ Z,T, α̂) be as in Lemma 6.16. Then

E : Aoτ Z → A, a 7→
∫

t∈T
α̂t(a)dt

defines a faithful conditional expectation, called the canonical expectation onto A.

Theorem 6.19. Let (A oτ Z,T, α̂) be as in Lemma 6.16 and u the unitary imple-
menting the action of τ . Let B be a C∗-algebra, ϕ : A → B a *-homomorphism, v
a unitary in B such that ϕ(τ(a)) = vϕ(a)v∗, and denote by ϕ̄ the induced morphism
(see Proposition 6.15). If there is a group homomorphism β : T → Aut(B) such that
(B,T, β) is a C∗-dynamical system and the following diagram commutes for all t ∈ T

Aoτ Z B

Aoτ Z B
��
� �
� �
� �
� �
�

α̂t

//
ϕ̄

��
� �
� �
� �
� �
�

βt

//
ϕ̄

then ϕ̄ is injective if and only if ϕ is.

Note that in the category of C∗-dynamical systems, this is just existence of an induced
morphism (i.e., a morphism coming from an equivariant *-homomorphism) between
the systems (Aoτ Z,T, α̂) and (B,T, β).

Proof. Set

F : B → B, b 7→
∫

t∈T
βt(b) d t .
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6 Discrete crossed products

For all a ∈ Aoτ Z this definition entails

F ϕ̄(a) =
∫

t∈T
αt(ϕ̄(a)) d t =

∫
t∈T

ϕ̄(α̂t(a)) d t
(∗)
= ϕ̄

∫
t∈T

α̂t(a) d t = ϕ̄ E(a) ,

where (∗) follows from the fact that ϕ̄ is a *-homomorphism and from the definition
of the integral. Note that ϕ̄|A = ϕ.
In other “words”, we have commutativity of

Aoτ Z B

A B
��
� �
� �
� �
� �
�

E

//
ϕ̄

��
� �
� �
� �
� �
�

F

//
ϕ

Now let a ∈ Ker(ϕ̄). Then by multiplicativity of ϕ̄ we get a∗a ∈ Ker(ϕ̄), hence

0 = F ϕ̄(a∗a) = ϕ̄ E(a∗a) = ϕE(a∗a) ,

and if ϕ is injective, then E(a∗a) = 0. But E is faithful, hence a∗a = 0, and by the
C∗-equation, a = 0 follows. As the restriction of ϕ̄ to A is ϕ, it is clearly a necessary
condition that ϕ is injective.

The next Lemma will be an ingredient of the embedding theorem Theorem 7.24.
Roughly speaking, it forces an injective *-homomorphism from a crossed product by
Z into an arbitrary algebra to be injective, by tensoring the latter one with C(T).

Lemma 6.20. Let A oτ Z be a crossed product, where τ is an automorphism of A
induced by a unitary u, further ϕ : A → B a *-homomorphism such that there is a
unitary v ∈ B with ϕ(τ(a)) = vϕ(a)v∗ for all a ∈ A. Denote the canonical circle
action on Aoτ Z again by α̂. If z is the canonical generator of C(T), then

ψ : Aoτ Z → B ⊗ C(T),
∑
n∈Z

anu
n 7→

∑
n∈Z

ϕ(an)vn ⊗ zn

defines a *-homomorphism, which is injective if and only if ϕ is.

Proof. First of all, ψ is induced by the map ϕ′ obtained by composing ϕ with the
embedding d 7→ d⊗ 1 of B into B ⊗ C(T), which satisfies

ϕ′(τ(a)) = ϕ(τ(a))⊗ 1 = vnϕ(a)v∗n ⊗ znz∗n = vn ⊗ zn(ϕ′(a))(vn ⊗ zn)∗ .

Next, note that T acts naturally on C(T), namely by rotation γt(z) := tz, where z is
the canonical generator. Define βt := idB ⊗ γt for all t ∈ C(T), to obtain an action of
T on B ⊗ C(T). Furthermore, letting a =

∑
n∈Z anu

n ∈ AZ

βtψ(a) =
∑
n∈Z

ϕ(an)vn ⊗ tnzn =
∑
n∈Z

tnϕ(an)vn ⊗ zn = ψα̂t(a) .

The claim is now a consequence of Theorem 6.19.
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6.2 Discrete crossed products

We have the following proposition concerning tensor products and crossed products:

Proposition 6.21. Let A and B be C∗-algebras and τ an automorphism of A. Then

(A⊗max B) oα⊗idB
Z ∼= (Aoα Z)⊗max B .

Proof. Let u be the unitary implementing the action of α. The map ϕ : A⊗max B →
(Aoα Z)⊗max B induced by a 7→ a⊗ 1 and b 7→ 1⊗ b has the property required for
an application of the universal property, namely

ϕ(τ ⊗ idB(a⊗ b)) = ϕ(uau∗ ⊗ b) = uau∗ ⊗ b = (u⊗ 1)(a⊗ b)(u⊗ 1)∗

Denote by ϕ̄ the induced map. As there is a canonical circle action on Aoτ Z⊗maxB
given by α̂t ⊗ idB for all t ∈ T which commutes with ϕ̄, we see that ϕ̄ is injective by
Theorem 6.19

The projection mentioned in the next proposition is called the Rieffel projection.

Proposition 6.22. Let τ be the automorphism of C0(R) given by τ(f)(t) := f(1 + t)
for all f ∈ C0(R) and t ∈ R. Then there is a nonzero projection p in C0(R) oτ Z.

Proof. We define functions f, g ∈ C0(R) by f(t) := 1−|t| for t ∈ [−1, 1] and f(t) := 0
elsewhere. Further set g(t) :=

√
f(t)− f(t)2 for t ∈ [0, 1] and g(t) := 0 elsewhere.

Then we have for all t ∈ [−1, 0]

τ(g)(t)2 = g(1 + t)2 = f(1 + t)− f(1 + t)2 = 1− |1 + t| − (1− |1 + t|)2

= −(t+ t2) = 1− |t| − (1− |t|)2 = f(t)− f(t)2 = g(t)2

implying(
τ(g2) + f2 + g2

)
(t) =

{
f(t) for 0 ≤ t ≤ 1
τ(g)(t)2 − f2(t) = g(t)2 − f2(t) = f(t) for − 1 ≤ t ≤ 0

.

Hence τ(g2) + f2 + g2 = f . Let u be the unitary implementing the action and set
p := ug+f+gu∗; we show that p is a projection. Note first, that by an easy calculation
using the definition of f and g we get (ug)2 = 0 and ug(f + τ−1(f)) = ug. As p is
clearly self adjoint, it follows that p is a projection from

p2 = (ug)2 + ugf + uggu∗ + fug + f2 + fgu∗ + gu∗ug + gu∗f + gu∗gu∗

= ug(f + τ−1(f)) + τ(g2) + f2 + g2 + (f + τ−1(f))gu∗

= ug + f + gu∗ .

Proposition 6.23. Let τ be the automorphism of C0(R) defined in 6.22. Then there
is an embedding of A in C0(R, A) oτ Z.

Proof. By Proposition 6.21 we have

C0(R, A) oτ Z ∼=
(
C0(R)⊗A

)
oτ⊗idA

Z ∼= (C0(R) oτ Z)⊗A,

hence we may use the embedding a 7→ p⊗a, where p is the projection from Proposition
6.22.
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7 Kirchberg algebras

Definition 7.1. A Kirchberg algebra is a separable, simple, nuclear, and purely infinite
C∗-algebra.

7.1 Stinespring revisited

In this section we give a characterization similar to the Stinespring characterization for
completely positive maps in the special case of a unital, completely positive, nuclear
map ρ from a unital Kirchberg algebra A to itself. This will be achieved by first
proving some properties (Proposition 7.4 and 7.8) for certain maps from A into C and
from Mn into A, and then applying these to the factorization, by nuclearity, of the
map ρ (see 7.12).
The reader has probably seen the following preparatory lemma as part of the Gel’fand-
Naimark-Segal construction.

Lemma 7.2. Let µ : A→ C be a positive linear functional on a C∗-algebra. Then the
left kernel Nl(µ) := {a ∈ A | µ(a∗a) = 0} is a left ideal in A.

Proof. Let a, b ∈ Nl(µ) and z ∈ A. Then (x, y) 7→ µ(x∗y) is a positive sesquilinear
form (as x∗x ≥ 0 for all x ∈ A and µ is positive) and hence we may apply the
Cauchy-Schwarz inequality, giving

|µ(a∗b)| ≤ µ(a∗a)1/2µ(b∗b)1/2 = 0,

which implies that Nl(µ) is closed under addition by

µ((a+ b)∗(a+ b)) = µ(a∗a) + µ(b∗b) + µ(a∗b) + µ(b∗a) = 0 .

We deduce from z∗z ≤ ||z∗z|| = ||z||2 (for example by functional calculus) that
a∗z∗za ≤ ||z||2a∗a. As a consequence we have

0 ≤ µ((za)∗za) ≤ µ(||z||2a∗a) = ||z||2µ(a∗a) = 0

which implies za ∈ Nl(µ), and so Nl(µ) is a left ideal in A.

Remark 7.3. Let ω ∈ S(A) (the space of states on A). Then we have ω(1) = 1.
This follows immediately as 1 constitutes a constant approximate unit and therefore
ω(1) = ||ω|| = 1 (see [M, Theorem 3.3.3]). In the converse direction, we know that a
unital positive map ω : A → C is a state, as ||ω|| = ω(1) = 1 again by [M, Theorem
3.3.3]. Hence a positive map on a unital C∗-algebra is a state iff it is unital.
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7 Kirchberg algebras

Proposition 7.4 (cf. [Rr1, Proposition 6.3.1]). Let A be a unital, simple, purely
infinite C∗-algebra and ω : A→ C a state on A. Let F ⊆ A be finite and ε ≥ 0. Then
there is a nonzero projection p ∈ A with ||pap− ω(a)p|| ≤ ε for all a ∈ F .

The idea is to approximate ω by a net (µx)x∈X of pure states on F , and for each of
these to construct a net (py)y∈Y of projections with limy ||pyapy−µx(a)py|| = 0 on F ;
having done so we approximate ω by a pure state and the according net of projections.

Proof. The set of pure states is weak*-dense in the states on A by [Dix, Lemme 11.2.4],
and so one finds a net (µx)x∈X of pure states which is weak*-convergent to ω on F .
Choose x0 ∈ X with ||µx0(a)− ω(a)|| ≤ ε

2 for all a ∈ F .
Now set N := Nl(µx0) ∩ Nl(µx0)

∗, thus obtaining an hereditary C∗-subalgebra of A
by Lemma 7.2 and [M, Theorem 3.2.1]. By Theorem 5.9, A has real rank zero, so
there exists an approximate unit (qy)y∈Y of projections (see Theorem 5.8) in N . Then
we have µx0(qy) = µx0(q

∗
yqy) = 0 for all y ∈ Y and setting py := 1 − qy we obtain

a net of projections with µx0(py) = µx0(1) − µx0(qy) = µx0(1) = 1 by Remark 7.3,
and therefore py 6= 0 for all y ∈ Y (as the states give rise to representations via the
GNS-construction and hence, the universal representation being faithful, an element
a ∈ A is zero if a∗a maps to zero under all states; alternatively use [M, Theorem
3.3.6]).
We will show that limy ||pyapy − µx0(a)py|| = 0 for all a ∈ A. To this end, let
c ∈ Nl(µx0). Then we obtain c∗c ∈ N , as Nl(µxo) is a left ideal, and

||cpy||2 = ||(cpy)∗cpy|| = ||p∗yc∗cpy|| ≤ ||py|| ||c∗cpy||(7.1)

= ||c∗c(1− qy)|| = ||c∗c− c∗cqy|| −→ 0(7.2)

for (qy)y∈Y was chosen as an approximate unit. If c∗ ∈ Nl(µx0), we get cc∗ ∈ N and
pyc→ 0.
Let a ∈ A. We then have N (µx0) := ker(µx0) = Nl(µx0) + Nl(µx0)

∗ by [Ped2,
Proposition 3.13.6] for the pure state µx0 , and as a − µx0(a) · 1A ∈ N (µx0) we may
choose u, v ∈ Nl(µx0) with a− µx0(a) · 1A = u+ v∗. Hence we have

pyapy − µx0(a)py = py(a− µx0(a))py = py(u+ v∗)py = py(upy + (pyv)∗) −→ 0 .

Now choose y0 ∈ Y with ||py0apy0 − µx0(a)py0 || ≤ ε
2 for all a ∈ A.

We deduce for all a ∈ F that

||py0apy0 − ω(a)py0 || = ||py0apy0 − µx0(a)py0 + µx0(a)py0 − ω(a)py0 ||

≤ ||py0apy0 − µx0(a)py0 ||+ ||µx0(a)− ω(a)|| ||py0 || ≤ ε,

which is the assertion.

Observation 7.5. The element pn := 1√
n

n∑
i,j=1

eij ⊗ eij ∈Mn⊗Mn is a projection for

all n ∈ N.
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Proof. Let n ∈ N. Then pn is obviously self adjoint, and

(
√
n · pn)2 =

n∑
i,j,k,l=1

(eij ⊗ eij)(ekl ⊗ ekl) =
n∑

i,j,k,l=1

eijekl ⊗ eijekl

=
n∑

i,j,l=1

eijejl ⊗ eijejl =
n∑

i,j,l=1

eil ⊗ eil = n · pn ,

as claimed.

Lemma 7.6. Let A be a unital C∗-algebra and n ∈ N. Furthermore let η : Mn → A
be a completely positive map. Then there exists an element v ∈ Mn ⊗Mn ⊗ A such
that e11 ⊗ e11 ⊗ η(x) = v∗(x⊗ 1n ⊗ 1A)v.
In particular, if η is unital:

v∗v = v∗(1n ⊗ 1n ⊗ 1A)v = e11 ⊗ e11 ⊗ η(1n) = e11 ⊗ e11 ⊗ 1A.

Proof. Let {eij | i, j = 1, . . . , n} be a system of matrix units in Mn. By definition the
map idMn ⊗ η is positive and hence

y := (idMn ⊗ η)(pn) =
n∑

i,j=1

eij ⊗ η(eij) ∈ (Mn ⊗A)+

by the preceding Lemma. Therefore we may take the square root y1/2 of y and find
aij , i, j = 1, . . . , n, with y1/2 =

∑n
i,j=1 eij ⊗ aij , as {eij | i, j = 1, . . . , n} constitutes a

basis for Mn. It follows that

n∑
i,j=1

eij ⊗ η(eij) = y = y
1/2y

1/2 = (y1/2)∗y1/2 =

 n∑
k,i=1

eki ⊗ aki

∗
n∑

l,j=1

elj ⊗ alj

=
n∑

i,k,l,j=1

eikelj ⊗ a∗kialj
k=l=

n∑
i,j,k=1

eij ⊗ a∗kiakj =
n∑

i,j=1

eij ⊗

(
n∑

k=1

a∗kiakj

)
,

implying (∗): η(eij) =
∑n

k=1 a
∗
kiakj . Now set v :=

∑n
i,j=1 ei1 ⊗ ej1 ⊗ aji. Then for all

i, j = 1, . . . , n

v∗(eij ⊗ 1n ⊗ 1A)v =

 n∑
k,l=1

e∗k1eij ⊗ e∗l1 ⊗ a∗lk

 v =

(
n∑

l=1

e1j ⊗ e1l ⊗ a∗li

)
v

=
n∑

l,r,s=1

e1jer1 ⊗ e1les1 ⊗ a∗liasr
(r=j,s=l)

=
n∑

l=1

e11 ⊗ e11 ⊗ a∗lialj

= e11 ⊗ e11 ⊗
n∑

l=1

a∗lialj
(∗)
= e11 ⊗ e11 ⊗ η(eij) ,

and consequently the two linear maps are equal.
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7 Kirchberg algebras

Lemma 7.7. Let A be a unital and properly infinite C∗-algebra. Then there are a
*-homomorphism ψ : Mn ⊗Mn ⊗A→ A and an isometry s̃ ∈ A such that

ψ(e11 ⊗ e11 ⊗ a) = s̃as̃∗

for all a ∈ A.

Proof. Let {gij | i, j = 1, . . . , n2} be the standard matrix basis for Mn ⊗Mn ' Mn2

with g11 = e11 ⊗ e11. As A is properly infinite, we may choose isometries (ti)i=1,...,n2

with orthogonal range projections by Lemma 4.5 and Observation 4.14.
We set ψ(gij ⊗ a) := tiat

∗
j for all i, j = 1, . . . , n2. Then this gives a linear map, and

further for i, j, k, l = 1, . . . , n2 and a, a′ ∈ A:

ψ
(
(gij ⊗ a)(gkl ⊗ a′)

)
= ψ(gijgkl ⊗ aa′)

=

{
ψ(0n ⊗ 0n ⊗ aa′) = 0A = tiat

∗
j tka

′tl for j 6= k

ψ(gil ⊗ aa′) = tiaa
′tl = tiat

∗
j tka

′tl for j = k

}
= ψ(gij ⊗ a)ψ(gkl ⊗ a′) ,

As
(ψ(gij ⊗ a))∗ = (tiat∗j )

∗ = tja
∗t∗i = ψ (gji ⊗ a∗) = ψ ((gij ⊗ a)∗)

we see that ψ is a *-homomorphism and hence is continuous. Taking t1 as s̃ now gives
the Lemma.

Proposition 7.8 (cf. [Rr1, Lemma 6.3.2]). Let A be a unital, simple, purely
infinite C∗-algebra, n ∈ N, and η : Mn → A a completely positive map. Then there
exists a ∗−homomorphism ϕ : Mn → A and an isometry s ∈ A with η(x) = s∗ϕ(x)s
for all x ∈Mn.

Proof. Choose v as in Lemma 7.6 and ψ, s̃ as in Lemma 7.7. Note that

(7.3) s̃s̃∗ = ψ(e11 ⊗ e11 ⊗ 1A) = ψ(v∗v) .

Set s := ψ(v)s̃ and ϕ := ψ ◦ ι1n⊗1A(x) (see Lemma 2.7).
Then ϕ is a *-homomorphism as composition of such and s is an isometry by

s∗s = s̃∗ψ(v)ψ(v∗)s̃ = s̃∗ψ(vv∗)s̃ 7.3= s̃∗s̃s̃∗s̃ = 1 .

It follows for all x ∈Mn:

s∗ϕ(x)s =s̃∗ψ(v)∗ψ(x⊗ 1n ⊗ 1A)ψ(v)s̃ = s̃∗ (ψ(v∗(x⊗ 1n ⊗ 1A)v)) s̃
=s̃∗ (ψ(e11 ⊗ e11 ⊗ η(x))) s̃ = s̃∗s̃η(x)s̃∗s̃ = η(x) .

The next Lemma gives us the possibility to transform a matrix-valued linear map into
a functional in a “sensible” way, i.e., without spoiling positivity; this process will be
shown to be reversible.
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7.1 Stinespring revisited

Lemma 7.9. Let A be a unital C∗-algebra and X ⊆ A an operator system in A,
further σ : X → Mn a bounded linear map. Denote by πij : Mn → C the projection
onto the (i, j)−th component of a matrix and set:

ω : Mn ⊗X → C,
n∑

i,j=1

eij ⊗ aij 7→
1
n

n∑
i,j=1

πijσ(aij) .

Then ω is a bounded linear map with σ(a) = n
∑n

i,j=1 ω(eij⊗a)eij for all a ∈ X which
is unital if σ was unital and positive if σ was completely positive.

Proof. Let a, b ∈ Mn ⊗X and a =
n∑

i,j=1
eij ⊗ aij , b =

n∑
i,j=1

eij ⊗ bij where aij , bij ∈ X

for all i, j = 1, . . . , n. Then:

ω(a+ b) = ω

 n∑
i,j=1

eij ⊗ aij + bij

 =
n∑

i,j=1

πijσ(aij + bij)

=
n∑

i,j=1

πijσ(aij) +
n∑

i,j=1

πijσ(bij) = ω(a) + ω(b) ,

and ω(λa) = λω(a) for all λ ∈ C is obvious. Therefore ω is linear and it is clearly
continuous; moreover we have:

σ(a) =
n∑

i,j=1

πij(σ(a))eij = n

n∑
i,j=1

ω(eij ⊗ a)eij

for all a ∈ A. Now let σ(1A) = 1n. Then

ω(
n∑

i,j=1

eij ⊗ 1A) =
1
n

n∑
i,j=1

πijσ(1A) = 1n .

A map ϕ : X → Y between normed spaces will be called the point-norm limit of a set
Ψ of maps from X to Y if for every finite F ⊆ X and ε > 0 there is a ψ ∈ Ψ such
that ||ψ(x)− ϕ(x)|| ≤ ε for all x ∈ F .

Lemma 7.10. Let A be a unital, simple, purely infinite C∗-algebra, σ : A→Mn unital
completely positive and ϕ : Mn → A a *-homomorphism. Then ϕ◦σ is the point-norm
limit of *- conjugations.

Proof. Let ε ≥ 0 and F ⊆ A finite. Use Lemma 7.9 and Remark 7.3 to produce
a state ω : Mn ⊗ A → C from σ, and find a nonzero projection p ∈ Mn ⊗ A with
||p(eij ⊗ a)p − ω(eij ⊗ a)p|| < ε on F from Proposition 6.3.1. In the sequel, we will
construct an element u from p such that ϕ ◦ σ is, at least on F , approximately given
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7 Kirchberg algebras

by *-conjugation with u. As Mn ⊗ A is purely infinite, we have e11 ⊗ ϕ(e11) - p
for the projection e11 ⊗ ϕ(e11) (see the section on simple purely infinite C∗-algebras
or Definition 4.6), and hence there is a partial isometry v ∈ Mn ⊗ A with v∗v =
e11 ⊗ ϕ(e11) and vv∗ ≤ p by Proposition 3.29. We now show that v =

∑n
i,j=1 ej1 ⊗ vj

for some v1, . . . , vn ∈ A, that is , the matrix corresponding to v has nonzero entries
only in the first column. This follows from

e11 ⊗ ϕ(e11) = v∗v(k, k) =

(
n∑

r=1

v∗rmvrn

)
m,n

(k, k) =
n∑

r=1

v∗rkvrk ≥ 0

for all k 6= 0, implying
n∑

r=1
|vrk|2 = 0, and therefore vrk = 0 for all k 6= 1 and

r = 1, . . . , n. Note that

v∗v = v∗vv∗v = v∗vv∗pv = v∗pv .

Using 2.2, it follows for all i, j = 1, . . . , n and a ∈ A:

||v∗i avj − ω(eij ⊗ a)ϕ(e11)||
=||e11 ⊗ v∗i avj − ω(eij ⊗ a)e11 ⊗ ϕ(e11)||

=||
n∑

r,s=1

e1reijes1 ⊗ v∗ravs − ω(eij ⊗ a)v∗v||

=||(
n∑

r=1

e1r ⊗ v∗r )(eij ⊗ a)(
n∑

s=1

es1 ⊗ vs)− ω(eij ⊗ a)v∗pv||

=||v∗p(eij ⊗ a)pv − v∗ω(eij ⊗ a)pv||
≤||v∗|| ||p(eij ⊗ a)p− ω(eij ⊗ a)p|| ||v|| ≤ ε .

Now set u :=
√
n
∑n

j=1 vjϕ(e1j). Then we obtain for all a ∈ A

||u∗au− ϕ(σ(a))|| = ||n
n∑

i,j=1

ϕ(e1i)∗v∗i avjϕ(e1j)− ϕ
(
n

n∑
i,j=1

ω(eij ⊗ a)eij
)
||

= ||n
n∑

i,j=1

ϕ(e∗1i) v
∗
i avjϕ(e1j)− n

n∑
i,j=1

ω(eij ⊗ a)ϕ(eij)||

= n||
n∑

i,j=1

ϕ(ei1)v∗i avjϕ(e1j)− ϕ(ei1)ω(eij ⊗ a)ϕ(e11)ϕ(e1j)||

= n||
n∑

i,j=1

ϕ(ei1)
(
v∗i avj − ω(eij ⊗ a)ϕ(e11)

)
ϕ(e1j)||

≤ n
n∑

i,j=1

||ϕ(ei1)|| ||v∗i avj − ω(eij ⊗ a)ϕ(e11)|| ||ϕ(e1j)|| ≤ n3ε ,

whereby the proof is complete.
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7.1 Stinespring revisited

Note, however, that in addition we have the following equality

uϕ(1n) =
(√
n

n∑
i=1

viϕ(e1i)
)
ϕ(1n) =

√
n

n∑
i=1

viϕ(e1i) = u .

Lemma 7.11. Let ϕ,ψ : A→ B be continuous maps between C∗-algebras, and X ⊆ A
bounded. Assume that ϕ is the point-norm limit of *-conjugations (with elements of
X) of ψ, that is, for every finite subset F of A and ε > 0 there is some x ∈ X with
||x∗ψ(a)x− ϕ(a)|| < ε for all a ∈ F .
Then if A is separable, there is a sequence (xn)n∈N in X such that ϕ is the pointwise
limit of (x∗nψxn)n∈N.

Proof. Let F1, F2, F3 . . . be a sequence of finite subsets of A such that their union is
dense in A. For every n ∈ N choose xn ∈ X such that ||x∗nψ(a)xn − ϕ(a)|| < 1

n for all
a ∈ Fn. Then we get for any a ∈

⋃
i∈N

Fi, choosing k ∈ N with a ∈ Fk:

lim
n→∞

||x∗nψ(a)xn − ϕ(a)|| = lim
k≤n→∞

||x∗nϕ(a)xn − ψ(a)|| ≤ lim
k≤n→∞

1
n

= 0.

The following argument, which extends this result to the whole of A, is used frequently;
it will be worked out in detail only this time:
Let a ∈ A and (ak)k a sequence of elements converging to a, where ak ∈

⋃
i∈N Fi for

all k ∈ N. We derive

lim
n→∞

||x∗iϕ(a)xi − ψ(a)|| = lim
n→∞

||x∗nψ( lim
k→∞

ak)xn − ϕ( lim
k→∞

ak)||

= lim
k→∞

lim
n→∞

||x∗nψ(ak)xn − ϕ(ak)|| = 0.

The following proposition gives the characterization mentioned at the beginning of
this section and will go into Lemma 7.21, which in turn is an ingredient to the proof
of the exact embedding theorem 7.24.

Proposition 7.12 (cf. [KiPhi, Proposition 1.4]; [Rr1, Proposition 6.3.3]).
Let A be unital, simple and purely infinite, and ρ : A→ A a unital nuclear completely
positive map. Then ρ is the point-norm limit of *-conjugations by isometries.
If A is a Kirchberg algebra, then ρ is the pointwise limit of *-conjugations with isome-
tries.

Proof. Let F ⊆ A be finite and 0 < ε ≤ 1. By scaling, we may assume without loss
of generality that 1A ∈ F and ||a|| ≤ 1 for all a ∈ F .
Find unital completely positive maps σ : A→Mn, η : Mn → A with

(7.4) ||ρ(a)− η σ(a)|| ≤ ε

2
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7 Kirchberg algebras

for all a ∈ F as in the definition of nuclearity, and find an isometry s ∈ A and a
*-homomorphism ϕ : Mn → A with

(7.5) η(x) = s∗ϕ(x)s

for all x ∈ Mn by virtue of Lemma 7.8. Next find, by means of Lemma 7.10, an
element u ∈ A with

(7.6) ||u∗au− ϕσ(a)|| ≤ ε

2
for all a ∈ F . As σ is unital and 1A ∈ F , we have

||ϕ(1n)− u∗u|| = ||ϕσ(1A)− u∗u|| ≤ ε

2
and it will be shown below that we may even assume u∗u = ϕ(1n). Thence setting
t := us yields an isometry by t∗t = s∗ϕ(1n)s = 1 with

||ρ(a)− t∗at|| ≤||ρ(a)− η σ(a)||+ ||η σ(a)− t∗at||
7.4
≤
7.5

ε

2
+ ||s∗(ϕσ)(a)s− t∗at||

=
ε

2
+ ||s∗|| ||ϕσ(a)− u∗au|| ||s||

7.6
≤ε.

We proceed to show the assumption on u, first checking on the hypothesis of Lemma
2.9. We have

||u∗u− ϕ(1)|| ≤ ε
2 < 1 and uϕ(1n) = ϕ(1n)

by definition of u, as noted at the end of the proof of Lemma 7.10. The norm of u is
further controlled, as it is close to a projection, by

||u||2 = ||u∗u|| ≤ ||u∗u− p||+ ||p|| ≤ ε+ 1.

Therefore we may apply Lemma 2.9 to the projection ϕ(1n) and u to get an element
v ∈ A with v∗v = ϕ(1n) and ||v − u|| ≤ ||u∗u− ϕ(1n)|| < ε. Hence

||u∗au− v∗av|| = ||u∗au− u∗av + u∗av − v∗av||
≤ ||u− v||(||u∗a||+ ||av||)
≤ ||u− v|| ||a||

(
||u||+ ||v||

)
≤ ||u− v|| ||a||

(
||u||+ ||v − u||+ ||u||

)
< ε(2 + 3ε) .

We estimate

||v∗av − ϕσ(a)|| ≤ ||v∗av − u∗au||+ ||u∗au− ϕσ(a)|| < ε+ ε(2 + 3ε) ,

which proves the first part of the lemma.
The second part follows directly from Lemma 7.11, taking X as the set of isometries
in A and ψ as the identity.
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7.2 Extension

7.2 Extension

The next theorem is a kind of approximate completely positive extension theorem as,
boldly speaking, we might identify E with its image under the injective map ρ and
then view the new map η as an approximate extension of σ to B1.

Proposition 7.13 (cf. [KiPhi, Proposition 1.7]; [Rr1, Proposition 6.3.4]).
Let E be a finite dimensional operator system in a unital separable exact C∗-algebra A
and ε > 0. Then there exists an n ∈ N such that for all unital separable C∗- algebras
B1, B2 with B2 nuclear and ρ : E → B1, σ : E → B2 unital completely positive maps
subject to

(i) ρ is injective and,

(ii) ||ρ−1
n || ≤ 1 + ε/2 with ρ−1 : ρ(E) → E,

there is a unital completely positive map η : B1 → B2 with ||η ρ− σ|| < ε.

E

ρ(E) B1 B2

��

��
� �
� �
� �
� �

ρ

��
??

??
??

??
??

?

σ

??�����������

ρ−1

� � //i //
η

Proof. The proof will be obtained by constructing the following almost commutative
diagram:

E E

ρ(E) B1 Mn Mr B2

ww

wwoooooooooooooooooooo

ρ ucp

��

σ1 ucp

//
idE

��

σ2 ucp

''OOOOOOOOOOOOOOOOOOOOO

σ ucp

� � //

i
//

τ1 ucp
//

τ2 ucp

77

η1 ucb

//
η2 ucp

and then taking η := η2 τ2 τ1.
Second triangle: We apply [Rr1, 6.1.12]. Hence there is n ∈ N such that we can choose
a unital completely positive map σ1 : E →Mn and a unital completely bounded map
η1 : σ1(E) → E as with ||η1||cb ≤ 1 + ε/4 and σ1 η1 = idE

Fourth triangle: The map σ is nuclear by [Rr1, 6.1.3] as B2 is; we may thus take r ∈ N
and unital completely positive maps σ2 : E → Mr, η2 : Mr → B2 from the definition
of nuclearity such that ||σ − η2 σ2|| ≤ ε/4, using the fact that E is finite dimensional.
Third triangle: Set F := σ1(E) and consider the map σ2 ◦ η1 : F → Mr. We check
on the hypothesis of [Rr1, Lemma 6.1.7]: As σ1 is unital completely positive we have
||σ1||cb = 1, and obtain

||σ2 η1||cb = sup
n∈N

||idMn ⊗ σ2 η1|| = sup
n∈N

||(idMn ⊗ σ2) (idMn ⊗ η1)||

≤ sup
n∈N

||idMn ⊗ σ2|| sup
n∈N

||idMn ⊗ η1|| = ||η1||cb = 1 + ε/4 ,
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7 Kirchberg algebras

whereas σ2 η1 is a unital completely bounded map. Extension by [Rr1, Lemma 6.1.7]
gives a unital completely positive map τ2 : Mn →Mr with

||τ2|F − σ2 η1||cb ≤ ||σ2 η1||cb − 1 ≤ ε/4 .

First triangle:
Put G := ρ(E). Then σ1 ρ

−1 is a linear map from G → Mn and hence has, by [Pa,
Proposition 7.9], cb-norm equal to

||idMn ⊗ σ1 ρ
−1|| = ||(idMn ⊗ σ1)(idMn ⊗ ρ−1)|| ≤ ||idMn ⊗ ρ−1|| ≤ 1 + ε/2 .

By [Rr1, Lemma 6.1.7] and we may choose an extension τ1 : B1 → Mn such that
||τ1|G − σ1 ρ

−1|| ≤ ε/2. Note that

||τ1 ρ− σ1|| ≤ ||τ1|G − σ ρ−1|| ||ρ|| ≤ ε/2 .

Conclusion: To complete the proof, set η := η2 τ2 τ1 we now obtain

||η ρ− σ|| ≤||η2 τ2 τ1 ρ− η2 σ2||+ ||η2 σ2 − σ||
≤||η2|| ||τ2 τ1 ρ− σ2 η1 σ1||+ ε/4
≤||(τ2 τ1 ρ− τ2 σ1) + (τ2 σ1 − σ2 η1 σ1)||+ ε/4
≤||τ2|| ||τ1 ρ− σ1||+ ||σ1|| ||τ2|F − σ2η1||+ ε/4 ≤ ε,

as was to be shown.

Corollary 7.14 (cf. [Rr1, 6.3.5]). Let A, B1, B2 be a unital, separable C∗-algebras,
and A exact, B1 nuclear.
(i) Let ρ : A→ B1 and σ : A→ B2 be unital *-homomorphisms and ρ injective. Then
there is a sequence (ηn)n∈N of unital completely positive maps B1 → B2 such that for
all a ∈ A:

(ηn ρ)(a) → σ(a) for n→∞.

If in addition B1 = B2 is a Kirchberg algebra, then we can even choose the maps ηn

to be *-conjugations by isometries.
(ii) Let w be a free ultrafilter on N and (ρn)n∈N a sequence of unital completely positive
maps A → B1, (σn)n∈N a sequence of unital completely positive maps from A →
B2. Assume further that the map ρ : A → (B1)ω, a 7→ πω(ρn(a)) is an injective *-
homomorphism.
Then there is a sequence of unital completely positive maps (ηn)n∈N such that:

lim
ω
||(η ◦ ρn(a)− σn(a)|| = 0

for all a ∈ A. If in addition B1 = B2 is a Kirchberg algebra, then there exists a
sequence of isometries (sn)n∈N such that for all a ∈ A

lim
ω
||s∗nρn(a)sn − σn(a)|| = 0.
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Proof. (i) Recall first that *-homomorphisms are completely positive and injective *-
homomorphisms are isometric. Choose an increasing sequence of finite dimensional
operator systems (Ei)i with dense union in A. For every n ∈ N find a unital completely
positive map ηn as in 7.13 such that ||(ηn ◦ ρ− σ)|En || ≤ 1

n . Then for any a ∈
⋃

n∈N
En

there is a k ∈ N such that a ∈ Ek and it follows that

lim
n→∞

||(ηn ◦ ρ− σ)(a)|| = lim
k≤n→∞

||(ηn ◦ ρ− σ)|Ek
(a)|| ≤ lim

k≤n→∞

||a||
n

= 0,

as all maps involved are continuous and
⋃

n∈N
En is dense in A this holds for all a ∈ A.

Let now B1 = B2 be a Kirchberg algebra. Then take for every n ∈ N an isometry sn

for ηn by virtue of Proposition 7.12 with ||s∗nasn − ηn(a)|| < 1
n to obtain

lim
n→∞

(
s∗nρ(a)sn − σ(a)

)
= lim

n→∞

(
s∗nρ(a)sn − ηn ◦ ρ(a) + ηn ◦ ρ(a))− σ(a)

)
= lim

n→∞

(
s∗nρ(a)sn − ηn(ρ(a))

)
+ lim

n→∞

(
ηn ◦ ρ(a))− σ(a)

)
= 0 .

The proof of (ii) is contained in the proof of Lemma 7.21 below, therefore we omit it
here.

7.3 The O2-embedding theorem

Lemma 7.15. Let A be a unital C∗-subalgebra of a unital C∗-algebra D, s ∈ D
an isometry. If the *- conjugation by s is multiplicative then s∗s commutes with all
elements in A, and if it is the identity on A then s commutes with all elements in A.

Proof. Assume that a 7→ s∗as is multiplicative and set p := ss∗. To begin with, let
u ∈ U(A). We have

(pup)∗(pup) = s(s∗u∗s)(s∗us)s∗ = s(s∗u∗us)s∗ = ss∗ss∗ = p.

We may without loss of generality suppose that A ⊆ B(H) for some Hilbert space H.
Let ξ ∈ p(H) be a unit vector. Then

1 = ||uξ||2 = ||upξ||2 = ||pupξ + (1− p)upξ||2 = ||pupξ||2 + ||(1− p)upξ||2

= ||(pup)∗(pup)ξ||2 + ||(1− p)upξ||2 = ||pξ||2 + ||(1− p)upξ||2 = 1 + ||(1− p)upξ||2

by Pythagoras and the above equality.
Now we get

0 = (1− p)up = up− pup and (1− p)u∗p = u∗p− pu∗p = 0,

therefore u and p commute by Observation 2.1.
For an arbitrary element u ∈ A with ||u|| ≤ 1 we may decompose u into unitaries in
A, and these commute with p. Hence, scaling an arbitrary element, we get the first
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7 Kirchberg algebras

part of the theorem.
Finally, given s∗as = a for all a ∈ A, then

as = aps = pas = ss∗as = sa

as claimed.

We cite the following theorem for further reference:

Theorem 7.16. Let A be a unital separable C∗-algebra. Then the following conditions
are equivalent:

(i) A is O2-absorbing (i.e. A ' A⊗O2)

(ii) There is a sequence (ϕn)n∈N of unital *-homomorphisms O2 → A such that for
all a ∈ A and x ∈ O2 we have lim

n→∞
||
[
ϕn(x), a

]
|| = 0 (in the sequel called an

approximately central sequence).

Lemma 7.17 (cf. [KiPhi, Lemma 1.12]; [KiRr1, Lemma 2.5]). Let A be a
unital separable O2-absorbing C∗-algebra, s, t ∈ A isometries, and denote by V , W
respectively the according *-conjugations. Let F be a finite subset of A and set

κ := κs,t
F∪F ∗ := max

a∈F∪F ∗
{||V (a∗a)− V (a)∗V (a)||1/2,||WV (a∗a)−WV (a)∗WV (a)||1/2,

||WV (a)− a||}.

For every ε > 0 there exists a unitary u in A such that

||u∗V (a)u− a|| ≤ 5κ+ ε

for all a ∈ F .

Proof. By Theorem 7.16 there exists an asymptotically central sequence of unital *-
homomorphisms (ϕn)n∈N. Let s̄1 and s̄2 be the generators of O2.
Choose n ∈ N such that for all a ∈ F :

(7.7) ||[ϕn(s̄1), V (a)]||+ ||[ϕn(s̄2), V (a)]|| ≤ ε

2
,

and

(7.8) ||[ϕn(s̄1),WV (a)]||+ ||[ϕn(s̄2),WV (a)]|| ≤ ε

2
,

using that (ϕn)n∈N is asymptotically central. Also observe that r1 := ϕn(s̄1) and r2 :=
ϕn(s̄2) are isometries satisfying the O2-relation (as ϕn is a unital *-homomorphism).
Now set

s1 := (1− ss∗) + s∗r1s, s2 := sr2, and t1 := (1− tt∗) + t∗r1t, t2 := tr2 .
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Then by Lemma 4.26 s1, s2 and t1, t2 are isometries satisfying the Cuntz relation.
Define u := t1s

∗
2 + t2s

∗
1. We will show that u has the desired properties.

To see that u is a unitary is easy, as

u∗u = s2t
∗
1u+ s1t

∗
2u = s2s

∗
2 + s1s

∗
1 = 1, uu∗ = us2t

∗
1 + us1t

∗
2 = t1t

∗
1 + t2t

∗
2 = 1.

The rest requires some more work and we will use:

u∗(a⊕t1,t2 b)u = u∗t1at
∗
1u+ u∗t2at

∗
2u = s2as

∗
2 + s1bs

∗
1 = a⊕s2,s1 b = b⊕s1,s2 a,

giving the kind of twisting relation u∗(a⊕t1,t2 b)u = b⊕s1,s2 a for all a, b ∈ A.
Applying the above at (◦) below we therefore obtain for all a ∈ A:

||u∗V (a)u− a|| = ||u∗V (a)u−
(
WV (a)⊕s1,s2 V (a)

)
+
(
WV (a)⊕s1,s2 V (a)

)
− a||

(◦)
= ||u∗V (a)u− u∗

(
V (a)⊕t1,t2 WV (a)

)
u+

(
WV (a)⊕s1,s2 V (a)

)
− a||

≤||u∗
(
V (a)−

(
V (a)⊕t1,t2 WV (a)

))
u||+ ||

(
WV (a)⊕s1,s2 V (a)

)
− a||

=||V (a)−
(
V (a)⊕t1,t2 WV (a)

)
||+ ||s1WV (a)s∗1 + s2V (a)s∗2 − a||

=||V (a)−
(
V (a)⊕t1,t2 WV (a)

)
||+ ||s1as∗1 + s2V (a)s∗2 − a+ s1WV (a)s∗1 − s1as

∗
1||

≤ ||V (a)−
(
V (a)⊕t1,t2 WV (a)

)
||︸ ︷︷ ︸

=:x

+ ||a⊕s1,s2 V (a)− a||︸ ︷︷ ︸
=:y

+ ||WV (a)− a||︸ ︷︷ ︸
=:z

Fix some a ∈ F . To begin with, z ≤ κ by the very definition of κ. Concerning y we
use (i) and (ii) from Lemma 4.26 to see that

y
(i)

≤ ||[r1, V (a)]||+ ||[r2, V (a)]||+ 2||[a, ss∗]||
(ii)

≤ ε

2
+ 2κ,

Remark 4.23 and Lemma 4.26 (ii) give (∗):

||[V (a), ss∗]||
(ii)

≤ max{||W (V (a)∗V (a))−WV (a)∗WV (a)||1/2,
||W (V (a)V (a)∗)−WV (a)WV (a)∗||1/2}

≤ max{||WV (a∗a)−WV (a)∗WV (a)||1/2,
||WV (aa∗)−WV (a)WV (a)∗||1/2} ≤ κ.

Again by virtue of 4.26 we have

x
(i)

≤ ||[r1,WV (a)]||+ ||[r2,WV (a)]||+ 2||[V (a), ss∗]||
(∗)
≤ ε

2
+ 2κ.

All together we get:

||u∗V (a)u− a|| ≤ ε

2
+ 2κ+

ε

2
+ 2κ+ κ = 5κ+ ε.
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Definition 7.18. Let ϕ,ψ : A → B be *-homomorphisms between unital C∗-algebras
A and B. Then ϕ and ψ are said to be approximately unitarily equivalent if for every
finite subset F ⊆ A and ε > 0 there is a unitary u ∈ A such that

||u∗ϕ(a)u− ψ(a)|| ≤ ε

for all a ∈ F ; that is, ϕ is the point norm limit of *-conjugations of ψ by unitaries.

By means of Lemma 7.11, we see that in the case where A is separable, and ϕ and ψ
are approximately unitarily equivalent, one may choose a sequence (un)n of unitaries
such that u∗nϕun converges to ψ pointwise.

Lemma 7.19 (cf. [KiPhi, Lemma 1.10]; [Rr1, Lemma 6.3.7]). Let A and B
be unital C∗-algebras, B separable and O2-absorbing; assume that ϕ,ψ : A → B are
unital *-homomorphisms such that there are sequences of isometries (sn)n∈N, (tn)n∈N
in B such that

||s∗nϕ(a)sn − ψ(a)|| → 0, ||t∗nψ(a)tn − ϕ(a)|| → 0.

for all a ∈ A. Then ϕ and ψ are approximately unitarily equivalent.

Proof. Let Vn, Wn be the *-conjugations by sn, tn respectively. Let ε > 0 and F ⊆ A
finite. Without loss of generality F is a subset of the unit sphere by scaling.
The idea is to use the above Lemma to approximate ψ with a *-conjugation of ϕ by
a unitary, first pointwise, and then on all of F ; it then suffices to show that κ (cf.
Lemma 7.17) tends to zero given an appropriate choice of isometries.
We show that we may assume κsk,tk

ϕ(F )∪ϕ(F ∗) ≤
ε
15 for all k ≥ n for some n ∈ N. First

we prove that for every ϕ(a) ∈ ϕ(F ) there is an na ∈ N with κsn,tn
{a} ≤ ε/15 for all

n ∈ N≥na , afterwards we obtain n as n := max{na | a ∈ F ∪ F ∗} <∞.
1) Choose n1 ∈ N such that for all n ∈ N≥n1 :

max{||Vn(ϕ(a∗a))− ψ(a∗a)||, ||Vn(ϕ(a))− ψ(a)||} ≤ ε

3 · 15
.

Then
||Vn(ϕ(a)∗ϕ(a))− Vn(ϕ(a))∗Vn(ϕ(a))||

≤ ||Vnϕ(a∗a)− ψ(a∗a)||+ ||ψ(a)∗ψ(a)− Vn(ϕ(a))∗Vn(ϕ(a))|| ≤ ε

3 · 15
+ 2

ε

3 · 15
= ε

for all n ∈ N≥n1 .
2) Choose n2 ∈ N≥n1 such that for all n ∈ N≥n2 :

max{||Vn(ϕ(a∗a))− ψ(a∗a)||, ||Wn(ψ(a∗a))− ϕ(a∗a)||,

||Wn(ψ(a))− ϕ(a)||, ||Vn(ϕ(a))− ψ(a)||} ≤ ε

6 · 15
.
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It follows:

||WnVn(ϕ(a)∗ϕ(a))−WnVn(ϕ(a)∗)WnVn(ϕ(a))||
≤||WnVn(ϕ(a∗a))− ϕ(a∗a)||

+ ||ϕ(a∗a)−WnVn(ϕ(a)∗)WnVn(ϕ(a))||
≤||WnVn(ϕ(a∗a))−Wn(ψ(a∗a))||

+ ||Wn(ψ(a∗a))− ϕ(a∗a)||
+ ||ϕ(a)∗ϕ(a)−Wn(ψ(a)∗)Wn(ψ(a))||
+ ||Wn(ψ(a)∗)Wn(ψ(a))−WnVn(ϕ(a)∗)WnVn(ϕ(a))||

≤ ε

15
,

for all n ∈ N≥n2 , and:

||WnVn(a)− a|| ≤ ||WnVn(ϕ(a))−Wn(ψ(a))||+ ||Wn(ψ(a))− ϕ(a)|| ≤ ε

15
.

Now setting na := max{n1, n2} will give the desired approximation; define n :=
max{na | a ∈ F ∪ F ∗}.
Now we may take a unitary u ∈ B as in Lemma 7.17 such that for all a ∈ F

||u∗Vn(ϕ(a))u− ϕ(a)|| ≤ 5κsn,tn
ϕ(F )∪ϕ(F ∗) + ε/3 ,

and as n ≥ na for all a ∈ F :

||u∗ψ(a)u− ϕ(a)|| ≤ ||u∗ψ(a)u− u∗Vn(ϕ(a))u||+ ||u∗Vn(ϕ(a))u− ϕ(a)||

≤ 5κsn,tn
ϕ(F )∪ϕ(F ∗) + ε/3 + ε/3 ≤ ε .

One could also prove the above Lemma in a more elegant fashion as follows: Let ω be
a free filter, denote by πω : l∞(B) → (B)ω the quotient map onto the ultrapower of B
and set s := πω((si)i), t := πω((ti)i), yielding two isometries in (B)ω. Then, viewing
ϕ and ψ as maps into (B)ω, we have s∗ϕs = ψ and t∗ψt = ϕ, and may now apply
Lemma 7.17, even assuming that κ is zero. This gives a sequence of unitaries (un)n in
the ultrapower of B such that u∗nϕun tends to ψ pointwise. A close inspection of the
proof of Lemma 7.21 below shows that in case A is separable, approximate unitary
equivalence of ϕ and ψ as maps into the ultrapower of B is equivalent to approximate
unitary equivalence as maps in B.
Viewing the sequence implementing approximate unitary equivalence as an element
of the ultrapower, ϕ and ψ are even unitarily equivalent in (B)ω. Hence, if A is
separable, unitary equivalence and approximate unitary equivalence for maps into
some ultrapower are equivalent.
One can deal similarly with the case where A is not separable (in order not to loose
any generality), and choose for every finite subset of A a unitary u ∈ (B)ω such that
u∗ϕu ≈ ψ on F , lift this unitary to a sequence of unitaries (un)n, and choose a unitary
un in this sequence such that u∗nϕun ≈ ψ on F .
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7 Kirchberg algebras

Theorem 7.20 (cf. [Rr1, Theorem 6.3.8]). Let A be a unital, separable, exact
C∗-algebra.

(i) Let B be a simple, separable, unital and nuclear C∗-algebra. Then any two injec-
tive, unital *-homomorphisms from A into B ⊗ O2 are approximately unitarily
equivalent.

(ii) Any two invective, unital *-homomorphisms A→ O2 are approximately unitarily
equivalent.

Proof. Note that the second statement follows from the first and Theorem 4.22.
To prove the first, let ϕ,ψ : A → B ⊗O2 be two unital, injective *-homomorphisms.
By [Rr1, Theorem 4.1.10] we have that B ⊗O2 is simple and purely infinite, further
it is clear that the minimal tensor product of nuclear C∗-algebras is nuclear, hence
B ⊗O2 is a Kirchberg algebra. By 4.22 we have that B ⊗O2 is O2-absorbing, hence
by Corollary 7.14 there are sequences of isometries (sn)n, (tn)n such that

||s∗nϕ(a)sn − ψ(a)|| → 0 and ||t∗nψ(a)tn − ϕ(a)|| → 0

as n→∞. Therefore we may apply Lemma 7.19 to see that ϕ and ψ are approximately
unitarily equivalent.

Lemma 7.21. Let A be a separable, unital, exact C∗-algebra and ω an ultrafilter on
N. Let ϕ : A→ (O2)ω be a unital, injective *-homomorphism with a unital, completely
positive lift ρ : A→ l∞(O2); that is, we have a commutative diagram

l∞(O2)

A (O2)ω

��
� �
� �
� �
� �

πω

??�����������

ρ

//
ϕ

Then there is a unital embedding of A into O2.

A rough outline of the proof is as follows: First, we use that the component functions
ρk of ρ tend to ϕ, which is isometric, to control the norms of a subsequence of the ρk

(which we assume to be the ρk themselves). Then we are able to apply Proposition
7.13 to these ρk and find a σk : O2 → O2 such that σk ◦ρk ≈ ρk+1, and this σk may in
turn be approximated by a *-conjugation with an isometry sk such that s∗kρksk ≈ ρk+1.
Viewing all these maps as maps in (O2)∞, we will be able to apply Lemma 7.19 and
choose a sequence of unitaries such that u∗kρk(a)uk converges sufficiently fast to define
a *-homomorphism by ψ(a) := limk→∞ Ad(u1 · · ·uk)ρk(a). However, matters are not
quite that simple in the end, as we have to take care in order to choose the subsequence
in a way that preserves approximate multiplicativity.

Proof. First observe that the projection πk onto the k-th component of l∞(O2) is
a unital *-homomorphism and therefore completely positive, as a consequence, all
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the ρk := πk ◦ ρ : A → O2 are unital completely positive maps with ||ρk||cb = 1
and ρ(a) = (ρk(a))k for every a ∈ A. Choose an increasing sequence Ej of finite
dimensional operator spaces in A with dense union in A. Set εj := 1/j and choose nj

for every j ∈ N as in Proposition 7.13 according to E = Ej and ε = εj . Observe that
for all j ∈ N the mapMnj (ϕ) is an injective, and therefore isometric *-homomorphism,
whence

(7.9) lim
k→ω∞

||Mnj (ρk)(a)|| = ||Mnj (πω ◦ ρ)(a)|| = ||ϕ(a)|| = 1

and

(7.10) lim
k→ω∞

||ρk(ab)− ρk(a)ρk(b)|| = ||ϕ(ab)− ϕ(a)ϕ(b)|| = 0 .

For all j ∈ N fix some δj ∈ R with (1 − εj

2 ) < δj < 1, and choose, using that the
unit sphere S1(E) of a finite dimensional, normed vector space E is compact, an εj-
dense subset Fj ⊆ S1(Ej). Set δ′j := (δj − (1 + εj

2 )−1) and choose a δ′j-dense subset
Gj ⊆ S1

(
Mnj (Ej)

)
. Then we may choose, by the definition of convergence along

a filter and equations 7.9 and 7.10, for every j ∈ N some Xj ∈ ω such that for all
k ∈ Xj , a, b ∈ Fj and c ∈ Gj :

(7.11) ||ρk(ab)− ρk(a)ρk(b)|| < εj .

(7.12) ||Mnj (ρk)(c)|| ≥ δj ,

Equation 7.12 implies for all k ∈ Xj and an arbitrary d ∈ S1
(
Mnj (Ej)

)
, choosing

d ∈ Gj with ||c− d|| < δ′j , that

(7.13) ||Mnj (ρk)(d)|| ≥ ||Mnj (ρk)(c)|| − ||Mnj (ρk)(c− d)||
(∗)
≥ δj − δ′j = (1 +

εj
2

)−1 ,

where the inequality at (∗) follows from ||ρ||cb = 1. It follows that for all k ∈ Xk the
linear map ρk|Ej is injective (as A embeds as the upper right corner in Mnj (A)) and

||Mnj (ρk)−1(c)|| ≤ (1 +
εj
2

)

for all c ∈ S1
(
Mnj (Ej)

)
. Now choose for j ∈ N some kj ∈ Xj∩Xj+1 inductively. Then

we obtain a sequence (ρk1 , ρk2 , . . .) such that for all j ∈ N we can apply Proposition
7.13 to Ej , εj , first taking ρ = ρkj

, and σ = ρkj+1
, and then ρ = ρkj+1

, σ = ρkj
. In

order to keep the notation simple, we assume without loss of generality, that ρkj
= ρj

for all j ∈ N. We hence have unital completely positive maps σj , τj : O2 → O2 making
the following diagrams

Ej

O2 O2

����
��
��
��
��
��
�

ρj

��
//

//
//

//
//

//
/

ρj+1

//
σj

Ej

O2 O2

����
��
��
��
��
��
�

ρj

��
//

//
//

//
//

//
/

ρj+1

oo
τj
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7 Kirchberg algebras

commute within εj . In addition, all the ηj , τj are nuclear by [Rr1, 6.1.3], and Propo-
sition 7.12 allows us to choose isometries sj , tj ∈ A for all j ∈ N such that

||s∗jρj(a)sj − σj(ρj(a))|| < εj and ||t∗jρj+1(a)tj − τj(ρj+1(a))|| < εj

for all a ∈ Fj . For an arbitrary a ∈ S1(Ej) we choose b ∈ Fj such that ||a− b|| < εj
and deduce

||s∗jρj(a)sj − ρj+1(a)|| ≤ ||s∗jρj(a)sj − s∗jρj(b)sj ||+ ||s∗jρj(b)sj − σjρj(b)||
+||σjρj(b)− ρj+1(b)||+ ||ρj+1(b)− ρj+1(a)|| ≤ 4εj .

Hence s∗jρj(a)sj → ρj+1(a) for j →∞ for all a ∈ ∪j∈NEj , and by continuity the same
statement holds for all a ∈ A. Similarly t∗jρj+1(a)tj → ρj(a) as j →∞ for all a ∈ A.
Set s := (sj)j , t := (tj)j , ρ′ := (ρj+1)j and denote the quotient map from l∞(O2) onto
(O2)∞ by π∞. Hence

π∞(s∗ρ(a)s) = π∞(ρ′(a)) and similarly π∞(t∗ρ′(a)t) = π∞(ρ(a)) ,

further π∞ ◦ ρ and π∞ ◦ ρ′ are multiplicative by equation 7.11, and therefore the
conditions of Lemma 7.19 are met. Now choose, combining Lemma 7.11 and Lemma
A.8, a sequence (u(k))k =

(
(u(k)

j )j

)
k

of unitaries in l∞(O2) such that

π∞(u(k))∗(π∞ ◦ ρ) π∞(u(k)) → π∞ ◦ ρ′

pointwise as k → ∞. We will now construct a sequence (ui)i of unitaries and a
subsequence (ρji)i of ρ such that ||u∗i ρji(a)ui − ρji+1(a)|| ≤ 1

2i for all a ∈ S1(Ei), and
it suffices to do this for a finite subset Fi = {a1, . . . , an} of the unit sphere of Ei (using
the same techniques as in the construction of the ρj above). To begin with, choose
k ∈ N such that

||π∞(u(k))∗
(
π∞(ρ(a))

)
π∞(u(k))− π∞(ρ′(a))|| < 1

2i

for all a ∈ Fi. Taking a(m) = πω

(
(u(k))∗ρ(am)u(k) − ρ′(am)

)
for all m = 1, . . . , n in

Proposition A.7 (iii) we see that there is a subset Yi ∈ ω∞ such that

||(u(k)
j )∗ρj(a) u

(k)
j − ρj+1(a)|| ≤

1
2i

for all j ∈ Yi. Choosing some ji ∈ Yi with ji ≥ ji−1 inductively and setting ui := u
(k)
ji

we thus obtain a sequence as desired.
Now let a ∈ S1(Ei) for some i ∈ N, n,m ∈ N≥i with n ≥ m and calculate

||Ad(u1 · · ·um)ρjm(a)−Ad(u1 · · ·un)ρjn(a)|| = ||ρjm(a)−Ad(um+1 · · ·un)ρjn(a)||

≤
n−1∑
l=m

||ρjl
(a)−Ad(ul+1)ρjl+1

(a)|| ≤
n−1∑
l=m

1
2l

−→
m,n→∞

0 .
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This entails existence of ψ(a) := lim
i→∞

Ad(u1 · · ·ui)ρji(a) for all a ∈ Ei by scaling, and
hence for all a ∈ A by continuity; it remains to show that ψ is a unital embedding,
i.e., a unital, injective *-homomorphism. It is clear that ψ is linear and unital, as all
the ρji are. But (ρji)i is a subsequence of an approximately multiplicative sequence,
hence

||ψ(ab)− ψ(a)ψ(b)|| = lim
i→∞

||ρji(ab)− ρji(a)ρji(b)|| ≤ lim
i→∞

εj = 0

or all a in the unit sphere of some Ej ; we further have, recalling equation 7.13

||ψ(a)|| = lim
i→∞

||ρji(a)|| ≥ lim
i→∞

(1 +
εji

2
)−1 = 1 ,

and therefore ϕ is isometric, because it is norm decreasing as a *-homomorphism.

Of course, one could again apply Lemma 7.17 directly to the sequences ρ and ρ′;
this would mean choosing the subsequence of (ρk)k from the beginning such that the
constant κ in Lemma 7.17 tends to zero.
The following embedding theorem for separable, quasidiagonal, exact C∗-algebras will
be used in the proof of the exact embedding theorem. In the proof of the lemma, we
will have to embed a quotient of a product of matrix algebras in (O2)ω; the natural
map from this quotient is not always injective though; this may be circumvented
by embedding the quasidiagonal C∗-algebra in a product of matrix algebras factored
through ω-zero sequences in the product. Details are given in the appendix.

Lemma 7.22 (cf. [Rr1, Lemma 6.3.10]). Every quasidiagonal, separable, unital ,
exact C∗-algebra is a sub-C∗-algebra of O2 up to isomorphism.

Proof. Let ω be a free ultrafilter on the natural numbers. To begin with, choose
a sequence (kj)j of natural numbers, a unital completely positive map β̃ such that
ϕ = π̃ω β̃ is an injective, unital *-homomorphism as in Lemma A.20. Next observe
that every matrix algebra Mkj

has a unital embedding into O2 by Lemma 4.21 and
Proposition 4.20, hence the product of the Mkj

has an embedding ι in l∞(O2). We
therefore have a commutative diagram

∞∏
j=1

Mkj l∞(O2)

A

∞∏
j=1

Mkj

/ ∞⊕
j=1

ωMkj (O2)ω

��
� �
� �
� �
� �
� �
�

π̃ω

//ι

��
� �
� �
� �
� �
� �
� �
� �
� �

πω

77ooooooooooooooooooooooooooooooooooooo

β̃

//
ϕ

//
ῑ

where ῑ is obtained by factoring πω ι over π̃ω. As ι is an injective, hence isometric,
*-homomorphism, a sequence in the domain of ι converges to zero along ω if and only
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7 Kirchberg algebras

if its image under ι converges to zero along ω, showing that ῑ is injective. Now ι◦ β̃ is a
completely positive unital map as composition of such and ῑ ◦ϕ is an injective, unital
*-homomorphism, consequently we may invoke Lemma 7.21 to see that A embeds into
O2.

We will also need the following theorem by Choi and Effros in the proof of the em-
bedding theorem:

Theorem 7.23 (Choi-Effros lifting theorem, cf. [Lin, Theorem 5.4.4]). Let
A be a separable C∗-algebra, B a C∗-algebra and I an ideal of B and denote by
π : B → B/I the quotient map . Then for every nuclear, contractive completely positive
map ϕ : A → B/I there is a contractive completely positive linear map ψ : A → B
such that π ◦ ψ = ϕ.

We are now prepared to address the main theorem:

Theorem 7.24 (Kirchberg’s exact embedding theorem). Every separable exact
C∗-algebra is a sub C∗-algebra of the Cuntz algebra O2.

Proof. We only prove the case where A is nuclear, the general case is proved in [KiPhi,
Theorem 2.8].
We have to show that there is an injective *-homomorphism from A into O2. Let again
τ denote the *-automorphism on C0(R) given by τ(f)(t) = f(t + 1). As A embeds
into C0(R, A)oτ Z by Proposition 6.23, it suffices to show that the latter embeds into
O2. Setting B := ˜C0(R, A), we will construct the following sequence

C0(R, A) oτ Z B oτ Z (O2)ω ⊗ C(T) (O2)ω
� � //

(1) � � //
(2) � � //

(3)

Ad (1): Use the isomorphism from Proposition 6.13.
Ad (2): We construct a *-homomorphism as needed for an application of 6.20. First
of all, C0(R, A) is exact as it is isomorphic to the tensor product of the nuclear C∗-
algebra C0(R) and the exact C∗-algebra A, therefore Boτ Z is exact by [Rr1, Propo-
sition 6.1.10]. Further C0(R, A) ∼= C0

(
(0, 1), A

)
, and the latter is a sub-C∗-algebra of

C0

(
(0, 1], A

)
, which is quasidiagonal by Example A.23, hence quasidiagonal itself; it

follows that B is quasidiagonal as the unitization of a quasidiagonal C∗-algebra. We
may therefore apply Lemma 7.20 and obtain a unital embedding ι of B into O2; for
simplicity, we assume that ι is the inclusion map. Let ω be a free ultrafilter. As any
two injective, unital *-homomorphisms from B into O2 are approximately unitarily
equivalent by Theorem 7.11, so are ι and ι◦ τ . Hence we may find a sequence (un)n of
unitaries in O2 such that unbu

∗
n → τ(b) for all b ∈ B. Setting u := πω((un)n) and de-

noting by ι′ the canonical inclusion of O2 into (O2)ω, we get uι′(b)u∗ = ι′(τ(b)) for all
b ∈ B, that is, as maps in (O2)ω, τ and the inclusion are unitarily equivalent. Thence
we may apply Lemma 6.20 to the canonical inclusion i′|B to obtain the embedding
(2).
Ad (3) By Proposition 2.12, C(T) embed into O2. Combining Lemma A.10 and The-
orem 4.22, we see that (O2)ω ⊗ C(T) embeds into (O2)ω.
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7.3 The O2-embedding theorem

Now, if A is nuclear, then by [Rr1, Proposition 2.1.2] we have that: C0(R) is nuclear,
hence so is C0(R) ⊗ A and also B, being an extension of C0(R) ⊗ A by C, and as Z
is abelian, hence amenable, B oτ Z is also nuclear. Thus we can use the Choi-Effros
lifting theorem (Theorem 7.23) to lift the embedding ῑ obtained by combining all the
embeddings in the diagram above to one unital, completely positive map into l∞(O2).
Therefore, invoking Lemma 7.21 gives an embedding of B oτ Z in O2, as desired.

Remark 7.25. In case where A is unital, the image of A under the embedding con-
structed above contains a projection p, namely the image of 1A. As O2 has trivial
K-theory (cf. [Rr1, Equation 4.2.6] or [RrLL, Exercise 4.5]), one may apply [Rr1,
Proposition 4.1.4] (or [RrLL, Exercise 4.9]) by simplicity of O2 to see that p is equiva-
lent to 1O2 . Hence there is a partial isometry v ∈ O2 such that vv∗ = p and v∗v = 1O2 .
As the map a 7→ v∗av from O2 onto pO2p is a unital *-homomorphism, we see that
the embedding may be chosen to be unital.
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A Appendix

A.1 Ultrapower algebras

We quickly recall the definitions of filters and ultrapower algebras:
A filter in a set S is a set ω of subsets of S which does not contain the empty set,
is closed under finite intersections and has the property that for any G ⊆ S with
F ⊆ G ⊆ S for some F ∈ ω we have G ∈ ω. By Zorn’s Lemma every filter on a set S
is contained in a maximal filter (with respect to inclusion), and such a maximal filter
is called an ultrafilter on S. Further ω is called free if

⋂
F∈ω

F = ∅.

We have the following standard characterization for ultrafilters:

Lemma A.1. A filter ω on a set S is an ultrafilter if and only if for every subset X
of S either X or Xc is an element of ω.

We collect some properties of filters on N for further reference in the next proposition:

Proposition A.2. Let ω be a filter on N. If ω is free, then:

(i) For every k ∈ N we have N≥k ∈ ω,

(ii) All X ∈ ω are infinite.

Proof. If k ∈ N, then for every i ∈ N≤k there is, by freeness, some Xi ∈ ω not
containing i and therefore the intersection of all these Xi is a subset of N≥k, hence (i)
follows.
If X ∈ ω now were finite, then we could choose X ′ ∈ ω with X ′ ⊆ N≥sup X and deduce
∅ = X ∩X ′ ∈ ω, which contradicts the defining properties of a filter.

Example A.3. Consider the filter ω∞ of all cofinite subsets of N, that is, of all subsets
of N with finite complement. This is a free filter, by Lemma A.1, which it is not an
ultrafilter (take even and odd natural numbers). Note though that every free filter
contains ω∞ by Proposition A.2 (i), hence the cofinite filter is a minimal element in
the set of free filters on N. Even more is true, it is a lower bound.
The filters ωn, n ∈ N, of subsets of N containing n, are obviously not free; a fact that
might also be deduced from Proposition A.2. ωn is called the neighborhood filter of
N.

Definition A.4. Let ω be a filter on N and (sn)n a sequence in a topological space
S. Then (sn)n is said to converge to s ∈ S along ω if for every neighborhood U of
s in S there is some X ∈ ω such that sn ∈ U for all n ∈ X. If (sn)n has a unique
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limit s ∈ S, then we write lim
ω
vn = v or lim

n→ω∞
vn = v if we want to emphasize the

parameter in question.
A cluster point along ω of (sn)n is an element s ∈ S such that for every neighborhood
U of s in S and X ∈ ω there is an n ∈ X with sn ∈ U .

Proposition A.5. Let ω be a filter on N.

(i) Every sequence in a compact topological space K has a cluster point along ω.

(ii) If ω is an ultrafilter, then any sequence with a cluster point converges along ω.

(iii) Every sequence in a compact topological space K converges along any ultrafilter.

Proof. Let K be a compact topological space and (sn)n a sequence in K. Then the
sets KX := {sn | n ∈ X} contain a common point s ∈ S by the finite intersection
property (observe that ∅ 6= KX∩Y ⊆ KX ∩KY ). This point is then a clusterpoint by
definition.
Now assume that (sn)n is a sequence in an arbitrary topological space S which has a
clusterpoint s ∈ S and that ω is an ultrafilter. Then for any neighborhood U of s in
S the set {n | sn ∈ U} has to be in ω, as otherwise its complement would be in ω by
A.1, which contradicts the definition of a clusterpoint. Finally (iii) follows from (i)
and (ii).

Hence convergence of a sequence along ω∞ is just the usual notion of convergence.
We further define l∞(A) to be the N-fold product over A (i.e., the set of bounded
sequences over A with ∞-norm), and denote for every filter ω on N by cω0 (A) the set
of sequences (an)n over A tending to zero along ω. We show that cω0 (A) is a closed,
two sided ideal in l∞(A): As the product of a bounded sequence with a sequence
converging to zero along a filter ω again converges to zero along ω and as cω0 (A) is
closed under addition and scalar multiplication by continuity, it only remains to show
that for a sequence

(
(x(i)

n )n

)
i

in cω0 (A) which converges against (xn)n ∈ l∞(A) with
respect to the supremum norm, the limit is again in cω0 (A). To do so, choose some
i ∈ N with ||(x(i)

n )n − (xn)n||∞ ≤ ε and Xε ∈ ω with ||x(i)
n || ≤ ε. Then for all n ∈ Xε

we have

||xn|| ≤ ||xn − x(i)
n ||+ ||x(i)

n || ≤ ||(xn)n − (x(i)
n )n||∞ + ||x(i)

n || ≤ 2ε ,

and therefore we see that cω0 (A) is a closed two sided ideal in l∞(A). On behalf of
this fact we go on to define the ultrapower of A with respect to ω as

(A)ω := l∞(A)/cω0 (A)

and the following maps:

δA
∞ : A→ l∞(A), a 7→ (a)n ,

πA
ω : l∞(A) → (A)ω, (an)n 7→ (an)n + cω0 (A) ,

iAω : A→ Aω, a 7→ πA
ω ◦ δA

∞(a) ,



and write πω, iω if there is no ambiguity.
We further define, for every filter ω on N and sequence (rn)n of real numbers, the
limes superior of (rn)n along ω as

lim sup
ω

rn := inf
X∈ω

sup
n∈X

rn .

Remark A.6. We will use the following argument in the next proof: Assume that
A is a *-algebra admitting a complete C∗-norm || · ||. Then || · || is even the unique
pre-C∗-norm on A. For if ||| · ||| is a pre-C∗-norm on A, then the inclusion ι of A into
the completion B of A with respect to ||| · ||| is isometric, and therefore A is complete
with respect to ||| · ||| and the two norms coincide.

Proposition A.7. We have the following properties for sequences along filters:

(i) Let (rn)n be a sequence of real numbers converging to r ∈ R along some filter ω
on N. Then lim supω rn = r.

(ii) Let ω be a filter on N and a = (an)n ∈ l∞(A). Then

||πω(a)|| = lim sup
ω

||an||

and if, in addition, ω is a free ultrafilter, then

||πω(a)|| = lim
ω
||an|| .

(iii) Let ε > 0 and a(1) = (a(1)
j )j , . . . , a

(n) = (a(n)
j )j be elements of l∞(A) with

||πω(a(m)
j )j)|| < ε for all m = 1, . . . , n. Then there is X ∈ ω with ||a(m)

j || < ε
for all j ∈ X and m = 1, . . . , n.

Proof. Ad (i): For every i ∈ N choose some Xi ∈ ω with |rn − r| < 1
i for all n ∈ Xi;

we may assume that the sequence (Xi)i is decreasing by intersecting. It is easy to see
that

(A.1) r = inf
i∈N

sup
n∈Xi

rn

and certainly
r = inf

i∈N
sup
n∈Xi

rn ≥ inf
X∈ω

sup
n∈X

rn = lim sup
ω

rn

holds, as the set we take the infimum of is smaller on the left hand side. To see that
the opposite inequality, and hence equality, holds, observe that for any ε > 0 we have
some X ∈ ω such that supn∈X rn < lim supω rn + ε. Hence setting all X ′

i := X ∩Xi

and using equation A.1 again we obtain r ≤ lim supω rn.
Ad (ii): In the following we denote by ā the class πω(a) in (A)ω of a bounded sequence
over A. We show that the map

||| · ||| : (A)ω → R+, πω((an)n) 7→ lim sup
ω

||an||



is a C∗-norm on (A)ω and therefore has to be equal to the quotient norm on (A)ω. It
suffices by the above remark to show that this is a pre-C∗-norm. Let a = (an)n, b =
(bn)n ∈ l∞(A) and λ ∈ C; then we have

|||ā+ b̄||| =|||(a+ b)||| = lim sup
ω

||an + bn|| = inf
X∈ω

sup
n∈X

||an + bn||

≤ inf
X∈ω

sup
n∈X

||an||+ ||bn|| = lim sup
ω

||an||+ lim sup
ω

||bn|| = |||ā|||+ |||b̄||| ,

submultiplicativity follows similarly; further

|||λa||| = inf
X∈ω

sup
n∈X

|||λan||| = |λ| |||ā|||

and
|||ā∗||| = lim sup

ω
||a∗n|| = |||ā||| ,

|||ā∗ā||| = |||ā|||2 follows similarly.
If ω is a free ultrafilter, then we get for every (an)n ∈ l∞(A) by (i)

|||(an)n||| = lim sup
ω

||an|| = lim
ω
||an|| .

Ad (iii): If we have

inf
X∈ω

sup
j∈X

||a(m)
j || = lim sup

ω
||a(m)

j || = ||πω

(
(a(m)

j )j

)
|| < ε

for all m = 1, . . . , n, then we may choose X1, . . . , Xn ∈ ω with supj∈Xm
||a(m)

j || < ε

for all m = 1, . . . , n. Hence for all j ∈ X1 ∩ . . . ∩ Xn we have ||a(m)
j || < ε for all

m = 1, . . . , n.

Lemma A.8. Let ω be a filter on N. Every unitary in the ultrapower (A)ω of a unital
C∗-algebra lifts to a unitary in l∞(A).

Proof. Let πω

(
(an)n

)
be a unitary in (A)ω, that is

lim
ω
||a∗nan − 1|| = lim

ω
||ana

∗
n − 1|| = 0 ,

and choose X ∈ ω such that ||a∗nan − 1||, ||ana
∗
n − 1|| < 1 for all n ∈ X. Then for all

n ∈ X the elements a∗nan and ana
∗
n are invertible (see the paragraph above 5.3), and

hence so is an, as it is left and right invertible. For every n ∈ X, define a unitary by
un = an|an|−1), set un := 1 for all n ∈ Xc and define a unitary in l∞(A) by u := (un)n.
We have to show that limω ||an−un|| = 0, whereby πω

(
(an)n

)
= πω

(
(un)n

)
. Let ε > 0,

choose Xε ∈ ω with ||a∗nan−1||, ||ana
∗
n−1|| < ε for all n ∈ Xε, and set X ′

ε := Xε∩X.
Then, for every n ∈ X ′

ε we have ||an − un|| < ε by Lemma 2.9 (applied with p = 1),
and the claim follows.



Remark A.9. Observe that for a sequence converging along a filter ω we do not au-
tomatically have convergence of every subsequence, not even if ω is a free ultrafilter.
For example, take the sequence (xn)n with xn = 0 for n even and xn = n for n odd.
Let en denote the set of even natural numbers above n. Then this generates a filter
ωe, which is free as for any n ∈ N we have n /∈ en+1, and by Zorn’s Lemma we may
choose an ultrafilter ωE containing ωe, which clearly remains free. Now obviously
(xn)n converges along ωe, and hence along the ultrafilter containing it. On the other
hand we have the subsequence (x2n−1)n = (1, 3, 5, . . .), and for every X ∈ ωE we know
that X is infinite by freeness, hence (x2n−1)n can not converge along ωE .
Further, the above example shows that a sequence which is convergent along an arbi-
trary filter does not have to converge along in the ordinary sense, that is, along the
filter of cofinite sets ω∞ defined in Example A.3.

Lemma A.10. Let ω be a free ultrafilter. For every unital simple purely infinite
C∗-algebra A and simple unital nuclear C∗-algebra B there is an embedding

ι : (A)ω ⊗B → (A⊗B)ω .

Proof. (A)ω is simple and purely infinite by [Rr1, Proposition 6.2.6], therefore the
minimal tensor product (A)ω ⊗ B is simple, and coincides with the maximal tensor
product by nuclearity. It therefore suffices to show existence of pointwise commuting
*-homomorphisms from (A)ω × B into (A ⊗ B)ω, and then to apply universality of
the maximal tensor product; these are given by

ϕ : (A)ω → (A⊗B)ω , π
A
ω

(
(ai)i

)
7→ πA⊗B

ω ((ai ⊗ 1)i) ,

ψ : B → (A⊗B)ω, b 7→ πA⊗B
ω

(
(1⊗ b)n

)
.

By simplicity, the induced map ϕ⊗ ψ on the tensor product is an embedding.



A.2 Quasidiagonal C∗-algebras

In this section we collect the material on quasidiagonal C∗-algebras needed in the
proof of the embedding theorem in section 7.3.
Recall that a net (aλ)λ∈Λ of bounded operators on some Hilbert space H converges
in the strong operator topology (s.o.t.) to an operator a if and only if for all ξ ∈ H
we have a(ξ) = limλ aλ(ξ). In this section, all limits taken are strong limits, except
where noted otherwise. Recall further that a bounded operator a ∈ B(H) is positive
if and only if the sesquilinear form ξ 7→ 〈a(ξ)|ξ〉 is positive, implying that the strong
limit of positive operators is positive.
Let (Hj)j be a sequence of Hilbert spaces. For every bounded sequence (aj)j of
bounded operators, where aj ∈ B(Hj) for every j ∈ N, we define an operator with
diagonal (aj)j by

∆(aj)j :
∞∏

j=1

Hj →
∞∏

j=1

Hj , (ξj)j 7→ (aj(ξj))j .

Then
∞∑

j=1

||ajξj ||2 ≤
∞∑

j=1

||aj ||2||ξj ||2 ≤ sup
j
||aj ||2

∞∑
j=1

||ξj ||2 ,

showing that ∆(aj)j is a well defined bounded operator. Let (kj)j be a sequence of
natural numbers. We define

∞⊕
j=1

ωMkj
:= {(aj)j | (aj)j ∈

∞∏
j=1

Mkj
, lim

ω
aj = 0} .

Definition A.11. Let A be a separable C∗-algebra. Then A is called quasidiagonal
(QD) if there exists a faithful representation π : A → B(H) as bounded operators on
some Hilbert space H such that there is an increasing sequence (with respect to ≤)
(pn)n of finite dimensional projections in B(H) subject to

(i) (pn)n is approximately central, i.e., ||[π(a), pn]|| → 0 as n→∞ for all a ∈ A

(ii) The sequence (pn)n converges strongly to the identity I ∈ B(H).

We will call a representation π of A quasidiagonal, if π(A) is quasidiagonal.

Remark A.12. Observe that the unitization functor ·̃ maps quasidiagonal C∗-
algebras to such, as for A quasidiagonal we may set p̃i := (pi, 1) to obtain for all
ã = (a, λ) ∈ Ã

||[p̃i, ã]|| = ||(pia+ λpi + a, λ)− (api + λpi + a, λ)|| = ||[pi, a]|| → 0 .

Further it is obvious that every sub-C∗-algebra of a quasidiagonal C∗-algebra is qua-
sidiagonal.



Proposition A.13. Let A be a separable quasidiagonal C∗-algebra, π a faithful repre-
sentation on a Hilbert space H such that there is an increasing, approximately central
sequence of finite dimensional projections from the definition of quasidiagonality. Then
there is a sequence (qj)j of pairwise orthogonal, finite rank projections in B(H) such
that

(i)
∑∞

j=1 qj = 1,

(ii) for all a ∈ A we have π(a)−
∑∞

j=1 qjπ(a)qj ∈ K(H),

(iii) for all a ∈ A,
∑∞

j=1 ||[π(a), qj ]|| is convergent.

In addition, given such a sequence (qj)j as above, the map β : A → B(H) defined by
a 7→

∑∞
j=1 qjπ(a)qj is essentially a *-homomorphism, i.e., a *-homomorphism as a

map in Q(H) := B(H)/K(H).

Proof. For simplicity, we assume A ⊆ B(H). As A is separable, we may choose an
increasing sequence Ej of finite dimensional operator spaces in A with dense union
in A; further let (pi)i be an increasing, approximately central sequence of finite rank
projections in B(H) and set p0 := 0. We choose inductively, using the same standard
arguments as for example in Lemma 7.21, a subsequence (pij )j of (pi)i so that for
qj := pij − pij−1 we have ||[qj , a]|| ≤ 1

2j for all a ∈ S1(Ej), where S1(Ej) is again the
unit sphere of Ej . Then it is clear that the qj are pairwise orthogonal and that (i)
and (iii) holds for this sequence. We show that β is well defined; if ξ ∈ H and a ∈ A,
then as the qj are pairwise orthogonal we have

||
∞∑

j=1

qjaqjξ||2 =
∞∑

j=1

||qjaqjξ||2 ≤ ||a||2
∞∑

j=1

||qjξ||2 = ||a||2 ||ξ||2

implying that the limit in the strong operator topology exists. For all n ∈ N and
a ∈Mn(A)+ we have

Mn(β)(a) = lim
k→∞

k∑
j=1

(1n ⊗ qj)a(1n ⊗ qj) ≥ 0

as the sum and strong limit of positive elements is positive; this implies that β is
completely positive, and therefore continuous with respect to the norm topology. We
show that a − β(a) is compact for every a ∈ A. To begin with, let a ∈ S1(Ej) for
some j ∈ N. Then

a− β(a) = a

∞∑
j=1

qj −
∞∑

j=1

qjaqj =
∞∑

j=1

aqj − qjaqj =
∞∑

j=1

[a, qj ]qj .(A.2)

But as

(A.3) ||
n∑

j=m

[a, qj ]qj || ≤
n∑

j=m

|| [a, qj ] || ≤
n∑

j=m

1
2j

−→
n,m→∞

0 ,



we see that the limit in A.2 is actually a norm limit of compact operators, and therefore
compact. As noted before, β is continuous with respect to the norm topology, and
therefore the result holds for all a ∈ A by the usual density arguments. Now it
remains to show that β is essentially multiplicative: Let a, b ∈ A. Then we have to
show β(ab)− β(a)β(b) ∈ K(H), but this follows from

β(ab)− β(a)β(b) = β(ab)− ab+ a(b− β(b)) + (a− β(a))β(b)

as all terms in this sum are compact operators by (ii).

Remark A.14. Note that the subsequence (pij )j of the sequence (pi)i as chosen in
the proof above again has the properties stated in the definition of quasidiagonality.
Hence we may always assume that the sequence of orthogonal projections defined
above is given by qi := pi − pi−1, where p0 := 0.

Definition A.15. Let a be a bounded linear operator on a Hilbert space H. Then a
is called block diagonal, if there is a sequence (pi)i of pairwise orthogonal, finite rank
projections in B(H) such that [a, pi] = 0 for all i ∈ N and such that

∑∞
i=1 pi = 1 with

respect to the strong operator topology.

Note that an increasing sequence as above is necessarily an approximate unit (see the
paragraph above 3.2) for the compact operators. Hence C∗(a) +K(H) is a quasidiag-
onal C∗-algebra for every quasidiagonal operator a.

Corollary A.16. Let A be a C∗-algebra with representation π : A→ B(H) for some
Hilbert space H. Then the following properties are equivalent:

(i) π is quasidiagonal.

(ii) There is a sequence (qj)j of pairwise orthogonal, finite rank projections in B(H)
with

∑∞
j=1 qj = 1 and κ(a) := π(a)−

∑∞
j=1 qjaqj ∈ K(H).

Proof. The forward implication follows from Proposition A.13. Assume (ii) holds.
Then setting pi :=

∑i
j=1 qj we have an increasing sequence of finite rank projections

by Lemma 2.5, which converges strongly to the identity. Set β(a) := π(a) − κ(a).
Then

[π(a), pi] = [β(a), pi]− [κ(a), pi] = −[κ(a), pi] → 0

by the preceding paragraph.

Corollary A.17. An operator a ∈ B(H) on a Hilbert space H is quasidiagonal if and
only if it is the sum of a block diagonal operator with a compact operator.

Proof. Proposition A.13 proves the one implication, as β decomposes a into its block
diagonal and compact part; the other is obvious by the discussion above.

Definition A.18. A representation π : A→ B(H) of A on a Hilbert space H is called
essential if π(A) ∩ K(H) = {0}.



There are some subtleties concerning representations of quasidiagonal C∗-algebras:
The existence of a quasidiagonal representation does not imply, that every represen-
tation will be quasidiagonal. We have the following easy lemma though, concerning
quasidiagonality and being essential:

Lemma A.19. Let A be a C∗-algebra with a representation π : A → B(H) on some
Hilbert space H. Then the derived diagonal representation

π̃ : A→ B(
∞∏

j=1

H), a 7→ ∆π(a) = ∆
(
(π(a))i∈N

)
is an essential representation, which is quasidiagonal, faithful, unital if π was quasidi-
agonal, faithful, unital, respectively.

Proof. The representation is obviously essential, and faithful, if π was. That the
representation is quasidiagonal if π was follows easily if, given an approximately central
and increasing sequence of projections (pi) which converges strongly to the identity,
we define p̃i := ∆(pi, . . . , pi, 0 . . .) as a new such sequence for π̃(A). Then the p̃i are
an increasing sequence of finite dimensional projections, and approximately central,
as

||[p̃i,∆π(a)]|| = ||∆[pi, π(a)]|| = ||[pi, π(a)]|| ,

and the latter tends to zero. Further, let ξ ∈
∏∞

j=1H, then

||p̃i(ξ)− idQH(ξ)|| = ||p̃i(ξ)−∆((idH)j)(ξ)||2 =
i∑

m=1

||pi(ξm)− ξm||2 +
∞∑

m=i+1

||ξm||2 .

Let ε > 0. Choose I ∈ N such that for all i ≥ I we have
∑∞

l=i+1 ||ξl|| ≤ ε, and J ∈ N
such that ||pjξi|| ≤ ε/I for all i ≤ I and j ≥ J . Then for all N > max{I, J} we get

N∑
k=1

||pNξk − ξk||+
∞∑

l=N+1

||ξl|| ≤
I∑

k=1

ε/I +
N∑

k=I+1

||pNξk − ξk||+
∞∑

l=N+1

||ξl||

≤
I∑

k=1

ε/I +
∞∑

k=I+1

||ξk|| ≤ 2ε .

Hence the sequence (p̃i)i converges strongly to the identity.

Lemma A.20. Let A be a unital quasidiagonal C∗-algebra and ω a free ultrafilter
on N. Then there exists a sequence (kj)j of natural numbers and a unital, injective
*-homomorphism

ϕ : A→
∞∏

j=1

Mkj

/ ∞⊕
j=1

ωMkj



with a unital, completely positive lift β̃ : A→ Π∞
j=1Mkj

; that is, the following diagram,
where π̃ω denotes the quotient map

∞∏
j=1

Mkj

A

∞∏
j=1

Mkj

/ ∞⊕
j=1

ωMkj

��
� �
� �
� �

π̃ω

77ooooooooooooooooooooooooo

β̃

//
ϕ

commutes.

Proof. Choose a quasidiagonal, faithful representation π of A on some Hilbert space
H and a sequence (pi)i as in the definition of quasidiagonality. We obtain a new
quasidiagonal faithful representation ∆π from A to B := B(

∏∞
j=1H) as in Lemma

A.19 and a new sequence of projections p̃i as in the according proof. Define the map
β : B → β(B) with respect to q̃i := p̃i − p̃i−1 as in Proposition A.13 by a 7→

∑
q̃iaq̃i

(convergence follows as in A.13). Further set ki := dim q̃i and denote by ∆ the
isomorphism from

∏∞
j=1Mkj

to β(B), by π̃ω the quotient map

π̃ω :
∞∏

j=1

Mkj
→

∞∏
j=1

Mkj

/ ∞⊕
j=1

ωMkj
.

Now set β̃ := ∆−1β∆π. We show injectivity of π̃ωβ̃. Assume that π̃ωβ̃(a) = 0 for
some 0 6= a ∈ A. Then β̃(a) is a sequence of matrices converging to zero along ω in
norm, hence ∆β̃(a) = β∆π(a) is a blockdiagonal operator whose diagonal sequence
has this property. Denoting by K the compact operators in B, we may use Corollary
A.16 to choose K ∈ K such that ∆π(a) = β∆π(a) + K. The sequence (q̃i)i is an
approximate unit for K, hence we see that

lim
i→ω∞

||(q̃iβ∆π(a)q̃i + q̃iKq̃i)|| = lim
i→ω∞

||β̃(a)(i)|| = 0 .

We also have by Proposition 2.2 and the definition of p̃i

||q̃i∆π(a)q̃i|| = ||(p̃i − p̃i−1)∆π(a)(p̃i − p̃i−1)|| ≥ ||piπ(a)pi|| ,

and therefore, again by Proposition 2.2

0 = lim
i→ω∞

||q̃i(β∆π(a)−K)q̃i|| ≥ lim
i→ω∞

||piπ(a)pi|| ≥ 0 .

But as (p̃i)i converges in the strong operator topology to the identity and multiplika-
tion is strongly continuous on the unit ball, piπ(a)pi converges strongly to π(a), which
is a contradiction.
It remains to show that ϕ := π̃ωβ̃ is a *-homomorphism, but this follows easily, as β is
essentially multiplicative, as shown in Proposition A.13, and ∆ is a *-isomorphism



One could also rephrase this proof more conceptually by introducing some terminol-
ogy: Call an operator which is the sum of a compact operator and an operator of the

form ∆(aj)j for some (aj)j ∈
∞⊕

j=1

ωMkj
an ω-compact operator, and the representa-

tion ∆π ω-essential, if its image does not contain any ω-compact operators (hence,
the ω-compact operators are exactly the compact perturbations of images of β whith
ω-zero convergent diagonal sequence). Then we have shown above, that the repre-
sentation ∆π is even ω-essential. Denote these ω-compact operators by Kω and by
πω : B → B

/
Kω the quotient map. Observe also that πω ιβ ∆ factors as ∆̄ π̃ω, where

∆̄ is injective. Hence the proof may be given as a diagram chase in the following
diagram, which commutes on the outside only though, as the upper triangle does not
commute (but it does ω-essentially commute, that is, up to an ω-compact operator)

A ∆π(A) B B/Kω

β(B)

A

∞∏
j=1

Mkj

∞∏
j=1

Mkj

/ ∞⊕
j=1

ωMkj

//∆π

��
??

??
??

?

β|∆π(A)

� � //
ι∆π //

πω

/�

??��������
ιβ

//

β̃

OO

∆

//

π̃ω

OO

∆̄

Note that the key to this proof was, in fact, the mere existence of an ω-essential
representation.

Definition A.21. Let ϕ,ψ : A→ B be *-homomorphisms between C∗-algebras. Then
ϕ and ψ are called homotopic if there is a path of *-homomorphisms ϕt : A→ B such
that for every a ∈ A the map t 7→ ϕt(a) is continuous.

We cite the following theorem by Voiculescu, which shows that quasidiagonality is
homotopy invariant:

Theorem A.22 (cf. [Vo, Theorem 5]). Let A and B be C∗-algebras such that there
are *-homomorphisms ϕ : A → B and ψ : B → A with ψ ϕ homotopic to idA and B
quasidiagonal. Then A is quasidiagonal.

Example A.23. For every C∗-algebra A the cone C0

(
(0, 1], A

)
is quasidiagonal. This

follows, as C0

(
(0, 1]) is zero homotopic, hence so is C0

(
(0, 1])⊗ A ∼= C0

(
(0, 1], A

)
, as

the spatial norm is a cross norm (i.e., multiplicative with respect to ⊗).
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