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Abstract

The main theme of this project is the concept of differentiation of a signed or complex
measure with respect to a positive measure on the same σ-algebra. A central theorem is
the Lebesgue-Radon-Nikodym Theorem, which proves the decomposition of a signed or
complex measure into measures that are respectively absolutely continuous and singular
with respect to a positive measure. The Radon-Nikodym Theorem follows directly and
provides an abstract notion of the derivative of a signed or complex measure. The
Lebesgue-Radon-Nikodym Theorem has many applications; one of which is the result that
the dual space of Lp(µ), for 1 ≤ p < ∞ and a σ-finite positive measure µ, is isometrically
isomorphic to Lq(µ), where q is the conjugate exponent to p, which can be obtained as
a consequence of the Lebesgue-Radon-Nikodym Theorem for complex measures, and in
particular, the Radon-Nikodym Theorem.

The project initializes with the theory and elementary properties of signed and com-
plex measures. Following, the concept of differentiation of signed or complex measures is
introduced in different successive levels of abstraction. This begins with the Lebesgue-
Radon-Nikodym Theorem and the very abstract notion of the Radon-Nikodym derivative,
and then letting (X,A) = (Rn,B(Rn)) leads to a more refined result of differentiation of
signed or complex measures with respect to the Lebesgue measure on (Rn,B(Rn)). The
theory will lead to a proof of the Fundamental Theorem of Calculus for Lebesgue inte-
grals, which derives from the special case of n = 1. This includes the theory of functions
of bounded variation and their very significant connection to complex Borel measures on
(R,B(R)). In the final part of the project, the theory is used to construct an example
of a non-atomic measure, which is singular with respect to the Lebesgue measure. This
includes the theory of the Cantor ternary set and the Cantor function. The example ties
the theories from several parts of this project together in a very beautiful way.
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1 Introduction

The goal of this project is to showcase the work I have done with my advisor, Mikael, in
order to gain a general understanding of the concept of differentiation of measures.

The reader is assumed to be familiar with elementary notions from measure theory and
functional analysis. In particular, the reader should be comfortable with measures and the
theory behind, as well as bounded linear functionals on normed vector spaces, i.e., dual
spaces. Standard textbooks and references are Schilling 2017 and Folland 1999. More-
over, the reader should have an understanding of the basic topological concepts presented in
Munkres 2008. However, as the perspective of the project is not basically topological, these
concepts are thoroughly referenced and explained. The project is mostly self-contained.
When prerequisite results are needed, the results are stated with a reference. In particular,
some results from functional analysis are stated without proof, as they are well-known to
everyone who has done any fundamental functional analysis.

In the initial chapter, signed measures as well as the elementary properties and theory
behind, are introduced. This section follows Folland 1999 (section 3.1) proving the Hahn
Decomposition Theorem and the Jordan Decomposition Theorem, which leads to a general
understanding of signed measures as a unique decomposition into positive measures.

In the following chapter, complex measures are presented. This is based on Rudin 1987
(chapter 6). As complex measures can be decomposed into a real and imaginary part, both
of which are finite signed measures, the elementary properties follow more of less directly
from the theory of signed measures.

This leads to the chapter in which the Lebesgue-Radon-Nikodym Theorem is proved,
first for signed measures and next for complex measures. The chapter follows Folland 1999
(section 3.2) in the proof of the Lebesgue-Radon-Nikodym Theorem and the introduction of
the Radon-Nikodym derivative as well as elementary properties hereof.

Next, an application of the Lebesgue-Radon-Nikodym Theorem is showcased, as the
theory of bounded linear functionals on Lp(µ)-spaces is presented. The chapter follows Rudin
1987 (chapter 6) and Schilling 2017 (chapter 21) in the proof of an isometrical isomorphism
between the dual space, (Lp(µ))∗, and the vector space, Lq(µ), for 1 ≤ p < ∞ and q the
conjugate exponent to p. Moreover, this result is used to show that Lp(µ) is in fact reflexive
for 1 < p < ∞. The special case of p = 2 follows from the theory of Hilbert spaces, which is
presented following Folland 1999 (section 5.5.).

The following chapter revolves around differentiation on an Euclidean space, Rn. Fol-
lowing Folland 1999 (section 3.4), the definition of the pointwise derivative of a complex or
signed measure with respect to the Lebesgue measure is introduced. The theory includes
three successively sharper versions of the Fundamental Differentiation Theorem ending with
the Lebesgue Differentiation Theorem. Moreover, it is proven that the pointwise derivative
coincides with the Radon-Nikodym derivative under certain regularity conditions.

Thus, letting n = 1 and considering (R,B(R)), leads to the theory of functions of bounded
variation, which is presented following Folland 1999 (section 3.5). In this chapter, the goal is
to examine functions of bounded variation and their role in the characterization of complex
Borel measures on (R,B(R)). The chapter shows how the Fundamental Theorem of Calculus
can be proved rather easily as a consequence of this particular theory.

Finally, the Cantor ternary set and the Cantor function are constructed based on various
exercises from Schilling 2017 (chapter 6, 7 & 20). This chapter includes main theory and
remarkable properties of the Cantor set and the Cantor function in order to handle this with
the respect deserved. Personally, I think that this final chapter concludes the project very
beautifully by showing how to construct an example of a non-atomic singular measure using
the theory presented in the project.
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2 Signed measures

The purpose of this chapter is to introduce and characterize signed measures. A general
understanding of signed measures is obtained through two main examples, which by the
Jordan Decomposition Theorem turn out to be the only examples. The theory of this
chapter is based on Folland 1999 (section 3.1).

2.1 Definition and elementary properties

This section introduces the definition and elementary properties of signed measures, as well
as some examples hereof.

Definition 2.1. Let (X,A) be a measurable space. A signed measure is a map ν∶A →
[−∞,∞] such that

(i) ν(∅) = 0.

(ii) ν(⊍∞i=1Ei) = ∑
∞
i=1 ν(Ei) for every sequence of disjoint sets {Ei}i≥1 ⊆ A.

(iii) ν assumes at most one of the values ∞ and −∞.

Remark 2.2. One may notice that the definition of a signed measure is a generalization of
measures allowing negative values. It is clear that a measure fulfils the definition, hence a
measure is in particular a signed measure. To avoid confusion, measures shall forwardly be
referred to as positive measures.

Example 2.3. Let µ1, µ2 be positive measures with at least one of them being finite. Then
ν ∶= µ1 − µ2 is a signed measure.

Proof. (i) By the definition of positive measures, ν(∅) = µ1(∅) − µ2(∅) = 0.
(ii) Let {Ei}i ⊆ A be a sequence of disjoint sets. Then by countable additivity of µ1, µ2,

ν(
∞
⊍
i=1
Ei) = µ1(

∞
⊍
i=1
Ei) − µ2(

∞
⊍
i=1
Ei) =

∞
∑
i=1
µ1(Ei) −

∞
∑
i=1
µ2(Ei)

=
∞
∑
i=1
µ1(Ei) − µ2(Ei) =

∞
∑
i=1
ν(Ei),

since at least one of the series ∑∞
i=1 µ1(Ei) and ∑∞

i=1 µ2(Ei) converges.
(iii) By assumption at most one of µ1 and µ2 assumes infinite values, thus ν = µ1 − µ2

assumes at most one of the values ∞ and −∞. Furthermore, note that ν assumes the value
∞ if and only if µ1 is infinite, and similarly ν assumes −∞ if and only if µ2 is infinite.

Definition 2.4. Let (X,A, µ) be a measure space. A measurable function f ∶X → [−∞,∞]

is extended µ-integrable if ∫X f
+dµ < ∞ or ∫X f

−dµ < ∞.

Example 2.5. The preceding definition gives rise to yet an example of a signed measure: If f
is an extended µ-integrable function, then ν defined by ν(E) ∶= ∫E fdµ = ∫E f

+dµ − ∫E f
−dµ

for every E ∈ A is a signed measure. Note that f being extended µ-integrable implies that at
least one of f+, f− lies in L1(µ), where f+, f− are positive, measurable functions, so ∫E f

+dµ
and ∫E f

−dµ are positive measures with at least one of them being finite. Hence, this is
simply a special case of Example 2.3 with µ1(E) = ∫E f

+dµ and µ2(E) = ∫E f
−dµ for every

E ∈ A, thus, it is already proven that ν is a signed measure.

Remark 2.6. Not only are these some of the most obvious examples of signed measures;
as a matter of fact, they are the only examples of a signed measure. In particular, every
signed measure can be expressed in either one of these forms by the Jordan Decomposition
Theorem, which is proven in a later section.
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Proposition 2.7. Let ν be a signed measure on (X,A). Then the following properties hold.

(i) If {Ei}i≥1 ⊆ A is an increasing sequence, then

ν(
∞
⋃
i=1
Ei) = lim

i→∞
ν(Ei). (Continuity from below)

(ii) If {Ei}i≥1 ⊆ A is a decreasing sequence, and ν(E1) is finite, then

ν(
∞
⋂
i=1
Ei) = lim

i→∞
ν(Ei). (Continuity from above)

Proof. (i) Let {Ei}i≥1 ⊆ A be an increasing sequence. Set E0 ∶= ∅. Thus, the union may be
written as a disjoint union, ⋃∞i=1Ei = ⊍

∞
i=1(Ei Ei−1). Then

ν(
∞
⋃
i=1
Ei) =

∞
∑
i=1
ν(Ei Ei=1) = lim

n→∞

n

∑
i=1
ν(Ei Ei−1)

= lim
n→∞

n

∑
i=1
ν(Ei) − ν(Ei−1) = lim

n→∞ν(En).

(ii) Let {Ei}i≥1 ⊆ A be a decreasing sequence. Set Fi ∶= E1 Ei for every i ≥ 1. Thus,
{Fi}i≥1 ⊆ A is increasing, ν(E1) = ν(Fi ⊍ Ei) = ν(Fi) + ν(Ei), and ⋃∞i=1 Fi = E1 (⋂∞i=1Ei).
Then by (i),

ν(E1) = ν(
∞
⋃
i=1
Fi) + ν(

∞
⋂
i=1
Ei) = lim

i→∞
ν(Fi) + ν(

∞
⋂
i=1
Ei)

= lim
i→∞

(ν(E1) − ν(Ei)) + ν(
∞
⋂
i=1
Ei) = ν(E1) − lim

i→∞
ν(Ei) + ν(

∞
⋂
i=1
Ei),

and since ν(E1) is finite, subtracting it from both sides yields that ν(⋂∞i=1Ei) = limi→∞ ν(Ei).

2.2 The Hahn Decomposition Theorem

In this section the theory of positive, negative and null sets is introduced in order to prove
the Hahn Decomposition Theorem, which states that for any signed measure ν on (X,A),
the space X can be decomposed into disjoint positive and negative sets with respect to ν.
This result proves to be very important in the theory of signed measures.

Definition 2.8. Let ν be a signed measure on (X,A). Then a set E ∈ A is called positive,
negative and null, respectively, if ν(F ) ≥ 0, ν(F ) ≤ 0, ν(F ) = 0 for every F ∈ A with F ⊆ E.

Remark 2.9. The definition above yields that a null set is a set that is both positive and
negative. Moreover, any measurable subset of a positive/negative/null set is positive/nega-
tive/null respectively. This follows directly from the definition.

Lemma 2.10. The union of a countable family of positive or negative sets is positive or
negative, respectively.

Proof. The proof is given for positive sets only, as it follows analogously for negative sets.
Let {Pi}i≥1 be a countable family of positive sets, and set Qn ∶= Pn ⋃n−1i=1 Pi for n ∈ N. Then
clearly, Qn ⊆ Pn for every n ∈ N, hence each Qn is a positive set by Remark 2.9. Note also
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that ⊍∞i=1Qi = ⋃
∞
i=1 Pi, where ⊍∞i=1Qi is a disjoint union, since Qi ∩ Qj = ∅ for each i ≠ j.

Now, let E ∈ A such that E ⊆ ⋃∞i=1 Pi. Then E = E ∩ (⋃∞i=1 Pi) = E ∩ (⊍∞i=1Qi). Hence

ν(E) = ν(E ∩ (
∞
⊍
i=1
Qi)) = ν(

∞
⊍
i=1
E ∩Qi) =

∞
∑
i=1
ν(E ∩Qi) ≥ 0,

since E ∩Qi ⊆ Qi. Thus, ⋃∞i=1 Pi is positive as wanted.

Theorem 2.11 (The Hahn Decomposition Theorem). Let ν be a signed measure on (X,A).
Then there exist P and N , respectively positive and negative sets for ν, such that P ⊍N =X,
where P ∩N = ∅. Moreover, P and N are unique up to null sets, i.e., if P ′,N ′ is another
such pair, then P △ P ′ = N △N ′ is null for ν.

Proof. Assume without loss of generality that ν does not assume the value ∞. Note that
this is sufficient, since otherwise one considers the signed measure −ν, and the proof follows
analogously. Let m ∶= sup{ν(E) ∶ E ∈ A is a positive set}. Then there exists a sequence
{Qi}i≥1 ⊆ A of positive sets with limi→∞ ν(Qi) = m. Let Pn ∶= ⋃ni=1Qi for each n ∈ N.
Thus, {Pn}n≥1 ⊆ A is an increasing sequence with limn→∞ ν(Pn) =m. Now let P ∶= ⋃∞n=1 Pn.
Then by Lemma 2.10, P is positive, and by Proposition 2.7 (i) (continuity from below),
ν(P ) = ν(⋃∞n=1 Pn) = limn→∞ ν(Pn) =m. Note that in particular 0 ≤ ν(P ) =m < ∞. Now, the
aim is show that N ∶=X P is a negative set. Assume by contradiction that N is not negative,
i.e., there exists E ⊆ N such that ν(E) > 0. Let E ⊆ N be such a set, and assume first that E
is positive. Then E ⊍P is positive by Lemma 2.10, and ν(E ⊍P ) = ν(E) + ν(P ) >m, which
is a contradiction. Hence, N cannot contain any positive, nonnull sets. Moreover, if A ⊆ N
such that ν(A) > 0, there exists B ⊆ A with ν(B) > ν(A): Since A cannot be positive, there
exists C ⊆ A with ν(C) < 0. Let B ∶= A C. Then ν(B) = ν(A) − ν(C) > ν(A) as wanted.

Define a sequence of sets in N inductively: Let n1 ∶= inf {n ∈ N ∶ ∃B ⊆ N ∶ ν(B) > n−1}
and let A1 ⊆ N be such a set, i.e., ν(A1) > n

−1
1 . Similarly, let n2 ∶= inf {n ∈ N ∶ ∃B ⊆ A1 ∶

ν(B) > ν(A1)+n
−1} and let A2 be such a set. This is possible since for A ⊆ N with ν(A) > 0

there exists B ⊆ A with ν(B) > ν(A). Continuing this way, one obtains a decreasing sequence
{Ai}i≥1 ⊆ N , for which ν(Ai) > ν(Ai−1) + n−1i > ∑ij=1 n−1j . Let A ∶= ⋂∞i=1Ai. By assumption

n−11 < ν(A1) < ∞, so by Proposition 2.7 (ii) (continuity from below),

∞ > ν(A) = ν(
∞
⋂
i=1
Ai) = lim

i→∞
ν(Ai) ≥ lim

i→∞

i

∑
j=1

n−1j =
∞
∑
j=1

n−1j ,

which implies that n−1j → 0 as j → ∞, or equivalently, nj → ∞ as j → ∞. Once again, as

A ⊆ N with ν(A) > 0, there exists B ⊆ A such that ν(B) > ν(A) + n−1 for some n ∈ N. Note
that B ⊆ A implies that also B ⊆ Aj for each j ∈ N. By choosing j large enough, n < nj , so

ν(B) > ν(A) + n−1 > ν(Aj−1) + n−1j ,

but this contradicts with the construction of nj . Hence, N cannot contain any set E ∈ A

with ν(E) > 0, i.e., N is negative.
Now, suppose P ′ and N ′ is another set of respectively positive and negative sets for ν

with P ′ ⊍N ′ =X. First, observe that P △ P ′ = N △N ′:

P △ P ′ = (P P ′) ∪ (P ′ P )

= ((X N) (X N ′)) ∪ ((X N ′) (X N))

= (N ′ N) ∪ (N ∖N ′) = N ′△N = N △N ′.

Thus, it suffices to show that P △ P ′ is null for ν. Since P P ′ ⊆ P and also P P ′ =
P (X N ′) = P ∩N ′ ⊆ N ′, P P ′ is both positive and negative, i.e., P P ′ is null. By an
analogous argument, P ′ P is also null, and thus P △ P ′ is null for ν as wanted.
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Remark 2.12. This decomposition of X into a disjoint union of a positive and negative set
is called a Hahn decomposition of ν. As proven, it is unique up to null sets, however, it is
usually not unique in general: Note that if U is a ν-null set and U ⊆ P , then P ′ ∶= P U is a
positive set, N ′ = N ⊍U is a negative set, and also P ′⊍N ′ =X with P ′∩N ′ = ∅. Thus, ν-null
sets can be transferred from P to N (or from N to P ). Although, a Hahn decomposition
of ν is not unique, it gives rise to a canonical representation of ν as the difference of two
positive measures, as it shall be proven in the following.

2.3 The Jordan Decomposition Theorem

The purpose of this section is prove the Jordan Decomposition Theorem, which provides a
complete characterization of the decomposition of signed measures into positive measures.
The result builds upon the Hahn Decomposition Theorem from the preceding section.

Definition 2.13. Let ν and µ be signed measures on (X,A). Then ν is singular with respect
to µ, if there exist E,F ∈ A such that E ⊍ F =X, where E is null for ν, and F is null for µ.
This is denoted ν ⊥ µ.

Remark 2.14. One might think of this as ν and µ being perpendicular, which agrees with
the notation. Note that if ν is singular with respect to µ, then µ is also singular with respect
to ν. For this reason, the term that ν and µ are mutually singular is often used. For an
intuitive understanding, the definition translates to ν and µ ‘living on disjoint sets’. The
concept of ‘support’ of measures might spring to mind with this definition. One should be
aware of this, as this understanding would consequently imply that no measure on (R,B(R))

is singular with respect to the Lebesgue measure, as the Lebesgue measure is supported on
the whole space, R. This is however not the case.

Example 2.15. Let δx be the Dirac measure on (R,B(R)) defined by

δx(E) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 if x ∈ E

0 if x ∉ E
,

for every E ∈ B. Then (R {x})⊍{x} = R, where {x} is a Lebesgue null set, as it is a singleton,
and R {x} is a Dirac null set. Thus, every discrete measure living on singletons, such as the
Dirac measure, is singular with respect to the Lebesgue measure on (R,B(R)). This example
is quite obvious, and for this reason it is also not very interesting. As it turns out, it is a
lot more cumbersome to come up with an example of a non-atomic measure that is singular
with respect to the Lebesgue measure on (R,B(R)). However, there are examples hereof;
one of which is displayed in the very last chapter, ‘Singularity and the Lebesgue measure’.

Theorem 2.16 (The Jordan Decomposition Theorem). Let ν be a signed measure on (X,A).
Then there exist unique positive measures ν+ and ν− such that ν = ν+ − ν− and ν+ ⊥ ν−.

Proof. For the existence part, let P ⊍ N = X be a Hahn decomposition of X, and define
ν+(E) ∶= ν(E ∩ P ) and ν−(E) ∶= −ν(E ∩N) for every E ∈ A. Thus,

ν+(E) − ν−(E) = ν(E ∩ P ) + ν(E ∩N)

= ν((E ∩ P ) ⊍ (E ∩N)) = ν(E).

Note that for every E ⊆ N , it holds that ν+(E) = ν(E ∩ P ) = ν(∅) = 0, hence N is null for
ν+; similarly, P is null for ν−. Thus, ν+ ⊥ ν− as wanted.

For the uniqueness, let µ+, µ− be another such pair of positive measures with ν = µ+ −µ−

and µ+ ⊥ µ−. Let E,F ∈ A be such that E ⊍ F = X with µ+(E) = µ−(F ) = 0. Clearly,
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E is ν-positive and F is ν-negative, hence E ⊍ F = X is another Hahn decomposition, and
therefore, P △E = N △ F is ν-null. Then for every A ∈ A,

µ+(A) = µ+(A ∩E) = ν(A ∩E)

= ν((A ∩ (E ∩ P )) ⊍ (A ∩ (E P ))) = ν(A ∩E ∩ P ) + ν(A ∩ (E P ))

= ν(A ∩E ∩ P ) + ν(A ∩ (P E)) = ν((A ∩E ∩ P ) ⊍ (A ∩ (P E)))

= ν(A ∩ P ) = ν+(A),

since A ∩ (E P ),A ∩ (P E) ⊆ P △E. Thus, µ+ = ν+. Analogously, µ− = ν−.

Definition 2.17. The measures ν+ and ν− are called the positive and negative variation of
ν, respectively. The total variation of ν is defined as ∣ν∣ ∶= ν+ + ν−.

Remark 2.18. The total variation ∣ν∣ is a well-defined positive measure. A signed measure
ν is said to be finite, respectively, σ-finite, if the total variation ∣ν∣ is finite, respectively
σ-finite.

Example 2.19. Let ν be a signed measure and µ a positive measure on (X,A). If ν is given
by ν(E) ∶= ∫E fdµ for f an extended µ-integrable function, then the total variation of ν is
given by ∣ν∣(E) = ν+(E) + ν−(E) = ∫E f

+dµ + ∫E f
−dµ = ∫E ∣f ∣dµ for every E ∈ A.

Proof. Define P ∶= {A ⊆ X ∶ f ∣A≥ 0} and N ∶= {A ⊆ X ∶ f ∣A< 0}. Clearly, P ∩N = ∅, and
since for every A ⊆X, either f ∣A≥ 0 or f ∣A< 0, one obtains that P ⊍N =X. Now, for every
E′ ∈ A with E ⊆ P , it holds that ν(E) = ∫E fdµ ≥ 0, hence P is ν-positive. Similarly, one
obtains that N is ν-negative. Thus, P ⊍N = X is a Hahn decomposition. Note that also
P ′ ∶= {A ⊆ X ∶ f ∣A> 0} and N ′ ∶= {A ⊆ X ∶ f ∣A≤ 0} construct a Hahn decomposition, since

P △P ′ = {A ⊆X ∶ f ∣A= 0} is null for ν, and ν-null sets can be transferred from P to N and
vice versa.

Now, let ν1(E) ∶= ∫E f
+dµ and ν2(E) ∶= ∫E f

−dµ for every E ∈ A. Note that ν1 and
ν2 are well-defined, positive measures on (X,A), since f+ and f− are positive, measurable
functions. This definition of ν1 and ν2 implies that ν1(N) = ∫N f

+dµ = 0 and similarly,
ν2(P ) = ∫P f

−dµ = 0. Thus, ν1 ⊥ ν2. Moreover, ν(E) = ∫E fdµ = ∫E f
+dµ − ∫E f

−dµ =

ν1(E) − ν2(E), for every E ∈ A, entailing exactly that ν1 is the positive variation of ν, and
ν2 the negative variation of ν. Thus, for every E ∈ A the total variation of ν is given by

∣ν∣(E) = ∫
E
f+dµ + ∫

E
f−dµ = ∫

E
∣f ∣dµ.

The following proposition is based on exercises 2, 4, 5 and 7 (Folland 1999, section 3.1).

Proposition 2.20. Let ν be a signed measure on (X,A), and let E ∈ A. Then the following
properties hold.

(i) E is ν-null if and only if ∣ν∣(E) = 0.

(ii) If λ,µ are positive measures such that ν = λ − µ, then λ ≥ µ+ and µ ≥ ν−.

(iii) If ν1 and ν2 are signed measures that both omit ∞ or −∞, then ∣ν1 + ν2∣ ≤ ∣ν1∣ + ∣ν2∣.

(iv) ν+(E) = sup{ν(F ) ∶ F ∈ A, F ⊆ E} and ν−(E) = − inf {ν(F ) ∶ F ∈ A, F ⊆ E}.

(v) ∣ν∣(E) = sup{∑ni=1 ∣ν(Ei)∣ ∶ n ∈ N,E1, ...,En disjoint and ⊍ni=1Ei = E}.
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Proof. (i) Suppose first that ∣ν∣(E) = ν+(E)+ν−(E) = 0. Then for every A ⊆ E, monotonicity
of positive measures yields that 0 = ∣ν∣(A) = ν+(A)+ν−(A) implying that ν+(A) = ν−(A) = 0.
Hence, ν(A) = ν+(A) − ν−(A) = 0, i.e., E is ν-null as wanted.

Conversely, suppose E is ν-null. Let P ⊍N = X be a Hahn decomposition of ν. Then
E = (E ∩ P ) ⊍ (E ∩N), and since E ∩ P ⊆ E, one obtains that 0 = ν(E ∩ P ) = ν+(E), and
likewise, ν−(E ∩N) = 0. Hence, ∣ν∣(E) = ν+(E) + ν−(E) = 0 as wanted.

(ii) Let ν = ν+−ν− be the Jordan decomposition of ν such that ν+ ⊥ ν−, and let X = P ⊍N
be a Hahn decomposition for ν. By assumption, ν = ν+−ν− = λ−µ. Thus, ν+(E) = ν+(E∩P ) =

ν(E∩P ) = λ(E∩P )−µ(E∩P ), for every E ∈ A, hence λ(E) ≥ λ(E∩P ) = ν+(E)+µ(E∩P ) ≥

ν+(E). Similarly, it is obtained that µ ≥ ν−.
(iii) Assume without loss of generality that ν1, ν2 both omit the value +∞. Let ν1 = ν

+
1 −ν

−
1 ,

and ν2 = ν
+
2 − ν

−
2 be the Jordan decompositions for ν1 and ν2 respectively. By assumption,

ν+1 , ν
+
2 are finite positive measures. Thus, ν1 +ν2 = ν

+
1 +ν

+
2 −(ν−1 +ν

−
2 ) is a well-defined signed

measure. Now, let ν1 + ν2 = (ν1 + ν2)
+ − (ν1 + ν2)

− be the Jordan decomposition for ν1 + ν2.
Then by (ii) ν+1 + ν

+
2 ≥ (ν1 + ν2)

+, and ν−1 + ν
−
2 ≥ (ν1 + ν2)

−, and thus,

∣ν1 + ν2∣ = (ν1 + ν2)
+ + (ν1 + ν2)

− ≤ ν+1 + ν
+
2 + ν

−
1 + ν

−
2 = ∣ν1∣ + ∣ν2∣.

(iv) Let ν = ν+−ν− be the Jordan decomposition for ν. Then for every F ∈ A with F ⊆ E, it
holds that ν(F ) = ν+(F )−ν−(F ) ≤ ν+(F ) ≤ ν+(E), hence ν+(E) ≥ sup{ν(F ) ∶ F ∈ A, F ⊆ E}.
For the other inequality, letX = P⊍N be a Hahn decomposition for ν. Then ν+(E) = ν(E∩P )

for every E ∈ A. Since E ∩ P ⊆ E, it follows that ν+(E) ≤ sup{ν(F ) ∶ F ∈ A, F ⊆ E}. Thus,

ν+(E) = sup{ν(F ) ∶ F ∈ A, F ⊆ E}. The proof follows analogously for ν−.
(v) As before, let X = P ⊍N be a Hahn decomposition for ν. For every E ∈ A

∣ν∣(E) = ν+(E) + ν−(E) = ν+(E ∩ P ) + ν−(E ∩N)

= ∣ν(E ∩ P )∣ + ∣ν(E ∩N)∣,

since ν+(E ∩ N) = ν−(E ∩ P ) = 0. This yields the inequality, ∣ν∣(E) ≤ sup{∑ni=1 ∣ν(Ei)∣ ∶
n ∈ N,E1, ...,En disjoint and ⊍ni=1Ei = E}. For the reverse inequality, note that for every
E = ⊍ni=1Ei, with E1, ...,En disjoint, it holds that

n

∑
i=1

∣ν(Ei)∣ =
n

∑
i=1

∣ν+(Ei) − ν−(Ei)∣ ≤
n

∑
i=1

∣ν+(Ei)∣ + ∣ν−(Ei)∣

=
n

∑
i=1

∣ν∣(Ei) = ∣ν∣(
n

⊍
i=1
Ei) = ∣ν∣(E).

Hence, also ∣ν∣(E) ≥ sup{∑ni=1 ∣ν(Ei)∣ ∶ n ∈ N,E1, ...,En disjoint and ⊍ni=1Ei = E}, thus the
equality follows.

2.4 Integration and absolute continuity of signed measures

In this section, integration with respect to signed measures is introduced, as well as the
notion of absolutely continuity of signed measures with respect to positive measures.

Definition 2.21. Let ν be a signed measure. Then integration with respect to ν is defined
as

∫ fdν ∶= ∫ fdν+ − ∫ fdν−,

for f ∈ L1(ν) ∶= L1(ν+) ∩L1(ν−), where ∫ fdν
± = ∫ R(f)dν± + i ∫ I(f)dν±.

The following proposition is based on exercise 3 (Folland 1999, section 3.1).
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Proposition 2.22. Let ν be a signed measure on (X,A). Then the following properties
hold.

(i) L1(ν) = L1(∣ν∣).

(ii) Let f ∈ L1(ν). Then ∣ ∫ fdν∣ ≤ ∫ ∣f ∣ d∣ν∣.

(iii) Let E ∈ A. Then ∣ν∣(E) = sup{∣ ∫E fdν∣ ∶ ∣f ∣ ≤ 1}.

Proof. (i) Since the total variation ∣ν∣ is a positive measure, it is clear that f ∈ L1(∣ν∣) if
and only if ∫ ∣f ∣d∣ν∣ ∶= ∫ ∣f ∣dν+ + ∫ ∣f ∣dν− < ∞, i.e., ∫ ∣f ∣dν+ < ∞ and ∫ ∣f ∣dν− < ∞. Thus,
f ∈ L1(∣ν∣) if and only if f ∈ L1(ν+) and f ∈ L1(ν−), equivalently f ∈ L1(ν+)∩L1(ν−). Hence
L1(∣ν∣) = L1(ν) as wanted.

(ii) Let f ∈ L1(ν). Then

∣ ∫ fdν∣ = ∣ ∫ fdν+ − ∫ fdν−∣ ≤ ∣ ∫ fdν+∣ + ∣∫ fdν−∣

≤ ∫ ∣f ∣dν+ + ∫ ∣f ∣dν− = ∫ ∣f ∣d∣ν∣.

(iii) Let E ∈ A. Then for every measurable function f with ∣f ∣ ≤ 1, it holds that

∣ν∣(E) = ∫
E
d∣ν∣ ≥ ∫

E
∣f ∣d∣ν∣ ≥ ∣ ∫

E
fdν∣,

hence ∣ν∣(E) ≥ sup{∣ ∫E fdν∣ ∶ ∣f ∣ ≤ 1}. For the other inequality, let X = P ⊍N be a Hahn
decomposition for ν. Then for every E ∈ A,

∣ν∣(E) = ν+(E) + ν−(E) = ν(E ∩ P ) − ν(E ∩N)

= ∫
E
1Pdν − ∫

E
1Ndν = ∫

E
1P − 1Ndν = ∣∫

E
1P − 1Ndν∣,

and since, ∣1P − 1N ∣ ≤ 1, the inequality ∣ν∣(E) ≤ sup{∣ ∫E fdν∣ ∶ ∣f ∣ ≤ 1} is obtained.

Definition 2.23. Let ν be a signed measure and µ a positive measure on (X,A). Then ν
is absolutely continuous with respect to µ if ν(E) = 0, whenever µ(E) = 0 for every E ∈ A.
This is denoted ν ≪ µ.

The following proposition is based on exercises 8 and 9 (Folland 1999, section 3.2).

Proposition 2.24. Let let ν be a signed measure and µ a positive measure on (X,A). Then
the following properties hold.

(i) ν ⊥ µ if and only if ∣ν∣ ⊥ µ if and only if ν+ ⊥ µ and ν− ⊥ µ.

(ii) ν ≪ µ if and only if ∣ν∣ ≪ µ if and only if ν+ ≪ µ and ν− ≪ µ.

(iii) Let {νi}i≥1 be a sequence of positive measures. If νi ⊥ µ for all i ∈ N, then ∑∞
i=1 νi ⊥ µ,

and if νi ≪ µ for all i ∈ N, then ∑∞
i=1 νi ≪ µ.

Proof. (i) Assume ν ⊥ µ. Then there exist E,F ∈ A with X = E ⊍F such that µ(E) = 0 and
F is a ν-null set. Then by Proposition 2.20 (i), ∣ν∣(F ) = 0, hence ∣ν∣ ⊥ µ.

Assume ∣ν∣ ⊥ µ, such that µ(E) = ∣ν∣(F ) = 0. Then

0 = ∣ν∣(F ) = ν+(F ) + ν−(F ),

so ν+(F ) = 0 and ν−(F ) = 0, since ν+,ν− are positive measures. Hence, ν+ ⊥ µ and ν− ⊥ µ.
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Assume ν+ ⊥ µ and ν− ⊥ µ. Then there exist E1, F1 with X = E1 ⊍ F1 such that
µ(E1) = ν

+(F1) = 0, and there exist E2, F2 with X = E2 ⊍ F2 such that µ(E2) = ν
−(F2) = 0.

Since countable unions of null sets are null sets, µ(E1 ∪E2) = 0. Since F1 ∩ F2 ⊂ F1, F2,

ν(F1 ∩ F2) = ν
+(F1 ∩ F2) − ν

−(F1 ∩ F2) = 0.

Now, clearly X = (E1 ∪E2) ⊍ (F1 ∩ F2). Hence ν ⊥ µ, which completes the proof.
(ii) Assume ν ≪ µ. If µ(E) = 0 for some E ∈ A, then ν(E) = 0. Now, let X = P ⊍N

be a Hahn decomposition for ν, and let ν = ν+ − ν− be its Jordan decomposition. Suppose
µ(E) = 0. Then E ∩ P,E ∩N ⊆ E, hence µ(E ∩ P ) = µ(E ∩N) = 0, which yields

0 = ν(E ∩ P ) = ν+(E ∩ P ) = ν+(E),

and similarly for ν−. Hence, ν+(E) = ν−(E) = 0, and thus, ν+ ≪ µ and ν− ≪ µ.
Clearly, ν+ ≪ µ and ν− ≪ µ is equivalent to ∣ν∣ ≪ µ, since

∣ν∣(E) = ν+(E) + ν−(E),

hence ∣ν∣(E) = 0 if and only if ν+(E) = ν−(E) = 0.
Now, assume ν+ ≪ µ and ν− ≪ µ. Suppose µ(E) = 0 for some E ∈ A. Then

ν(E) = ν+(E) − ν−(E) = 0 − 0 = 0,

hence ν ≪ µ, which completes the proof.
(iii) Let {νi}i≥1 be a sequence of positive measures. Assume νi ⊥ µ for every i ∈ N. Then

for each i ∈ N, there exist Ei, Fi ∈ A such that X = Ei ⊍ Fi with µ(Ei) = 0 and Fi a νi-null
set. Define E ∶= ⋃∞i=1Ei and F ∶= ⋂∞i=1 Fi. Note that F ⊆ Fi for each i ∈ N, thus E ∩ F = ∅.
Then, also X = E⊍F . And µ(E) = 0, since the countable union of null sets a null set
by Lemma 2.10. Also, F ⊆ Fi yields that F is a νi-null set for each i ∈ N. Thus, F is a

∑∞
i=1 νi-null sets. Hence, ∑∞

i=1 νi ⊥ µ as wanted.
Assume νi ≪ µ for each i ∈ N. Suppose µ(E) = 0 for some E ∈ A. Then by assumption,

νi(E) = 0 for each i ∈ N. Hence, ∑∞
i=1 νi(E) = 0, and thus ∑∞

i=1 νi ≪ µ.

Remark 2.25. One may think of absolute continuity as being the antithesis of mutual singu-
larity, as ν ⊥ µ and ν ≪ µ yields that ν = 0: Assume ν ⊥ µ and ν ≪ µ. Let X = E ⊍F . Then
µ ⊥ ν is equivalent to µ ⊥ ∣ν∣ by the preceding proposition. Thus, suppose µ(E) = ∣ν∣(F ) = 0.
Then µ(E) = 0 yields that also ∣ν∣(E) = 0, implying exactly that ν = 0.

The motivation behind the notion ‘absolute continuity’ is not immediately obvious, how-
ever it becomes more clear in the following theorem.

Theorem 2.26. Let ν be a finite signed measure and µ a positive measure on (X,A). Then

ν ≪ µ⇔∀ε > 0∃δ > 0 ∶ µ(E) < δ⇒ ∣ν(E)∣ < ε.

Proof. Note that by Proposition 2.24 (ii), ν ≪ µ if and only ∣ν∣ ≪ µ, and for every E ∈ A

∣ν(E)∣ = ∣ν+(E) + ν−(E)∣ ≤ ν+(E) + ν−(E) = ∣ν∣(E).

Thus, it suffices to assume that ν = ∣ν∣, i.e., ν is a positive measure.
Assume first that µ(E) = 0, and given ε > 0 there exists δ > 0 such that ∣ν(E)∣ < ε,

whenever µ(E) < δ. Then µ(E) = 0 < δ for every δ > 0, so by assumption, ∣ν(E)∣ < ε for every
ε > 0, and thus, ∣ν(E)∣ = 0. Hence, ∣ν∣ ≪ µ.
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Conversely, assume by contradiction that there exists ε > 0 such that for every n ∈ N there
exists En ∈ A with µ(En) < 2−n and ν(En) ≥ ε. Now, define Fk ∶= ⋃

∞
n=kEn and F ∶= ⋂∞k=1 Fk.

Then F ⊆ Fk for each k ∈ N, hence

µ(F ) ≤ µ(Fk) ≤
∞
∑
n=k

µ(En) <
∞
∑
n=k

2−n = 21−k,

which yields that µ(F ) < 21−k for every k ∈ N, i.e., µ(F ) = 0. But ν(Fk) ≥ ε for every k ∈ N,
hence by Proposition 2.7 (ii) (continuity from above),

ν(F ) = ν(
∞
⋂
k=1

Fk) = lim
k→∞

ν(Fk) ≥ ε,

since {Fk}k≥1 is a decreasing sequence with ν(F1) finite, as ν assumed to be finite. Thus,
ν(F ) cannot be equal to zero, which yields that ν cannot be absolutely continuous with
respect to µ, which is a contradiction.

Corollary 2.27. Let µ be a positive measure, and let f ∈ L1(µ). Then

∀ε > 0∃δ > 0 ∶ µ(E) < δ⇒ ∣∫
E
fdµ∣ < ε.

Proof. Let f ∈ L1(µ). Then ∫ fdµ ∶= ∫ R(f)dµ + i ∫ I(f)dµ, and f ∈ L1(µ) if and only if
R(f) ∈ L1(µ) and I(f) ∈ L1(µ). Define ν1, ν2 signed measures by

ν1(E) ∶= ∫
E
R(f)dµ, and ν2(E) ∶= ∫

E
I(f)dµ

for every E ∈ A. Now clearly, µ(E) = 0 implies that

ν1(E) ∶= ∫
E
R(f)dµ = 0, and ν2(E) ∶= ∫

E
I(f)dµ = 0,

hence ν1 ≪ µ and ν2 ≪ µ. Note that ν1 is finite if and only if R(f) ∈ L1(µ), since for every
E ∈ A,

∣ν1∣(E) = ∫
E
R(f)+dµ + ∫

E
R(f)−dµ = ∫

E
∣R(f)∣dµ.

Similarly, for ν2. Thus, ν1, ν2 are both finite. Then by the preceding theorem, given ε > 0,
there exist δ1, δ2 > 0 such that

∣ν1(E)∣ = ∣∫ R(f)dµ∣ < ε,

whenever µ(E) < δ1, and

∣ν2(E)∣ = ∣∫ I(f)dµ∣ < ε,

whenever µ(E) < δ2. Let δ ∶= min{δ1, δ2}. Then µ(E) < δ implies that

∣ ∫
E
fdµ∣ = ∣ ∫

E
R(f)dµ + i∫

E
I(f)dµ∣ ≤ ∣ ∫

E
R(f)dµ∣ + ∣∫

E
I(f)dµ∣ < 2ε,

and since ε > 0 was arbitrary, this completes the proof.

This concludes the preliminary theory of signed measures. With this theory presented,
the following chapter proceeds with the theory of complex measures, which utilizes signed
measures.
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3 Complex measures

The purpose of this chapter is to introduce complex measures, as well as the elementary
theory behind. In particular, the concepts from the theory of signed measures are introduced
according to complex measures. The theory of this chapter is based on Folland 1999 (section
3.3) and Rudin 1987 (chapter 6).

3.1 Complex measures and the total variation

Definition 3.1. Let (X,A) be a measurable space. A complex measure is a map λ∶A → C
such that

(i) λ(∅) = 0.

(ii) λ(⊍∞i=1Ei) = ∑
∞
i=1 λ(Ei) for every sequence of disjoint sets {Ei}i≥1 ⊆ A.

Example 3.2. Note that complex measures are finite, hence every finite positive measure is
in particular a complex measure. Thus, also the measure, λ, defined by λ(E) = ∫E fdµ for
every E ∈ A for some positive measure µ and some f ∈ L1(µ) is a complex measure.

Remark 3.3. The finiteness of complex measures requires the series from (ii) to be convergent.
Moreover, permutations of the subscript do not change the value, hence every reordering of
the series converge implying that the series is in fact absolutely convergent.

Definition 3.4. The total variation of a complex measure λ is defined by

∣λ∣(E) ∶= sup{
∞
∑
i=1

∣λ(Ei)∣ ∶ E1,E2, ... disjoint, and
∞
⊍
i=1
Ei = E}.

Remark 3.5. As is proven in the following, the total variation ∣λ∣ is in fact a positive measure
on (X,A), and not only is it a measure, it is also finite. The proof of finiteness of the total
variation requires a lemma.

Lemma 3.6. Let z1, ..., zN ∈ C. Then there exists S ⊆ {1, ...,N} such that

∣ ∑
k∈S

zk∣ ≥
1

π

N

∑
k=1

∣zk∣.

Proof. Let zk = ∣zk∣e
iαk for k = 1, ...,N and N ∈ N. Let Sθ ∶= {k ∈ {1, ...,N} ∶ cos(αk − θ) > 0}

for θ ∈ [−π,π]. Then ∣e−iθ ∣ = 1, and thus

∣ ∑
k∈Sθ

zk∣ = ∣ ∑
k∈Sθ

∣zk∣e
i(αk−θ)∣ ≥R( ∑

k∈Sθ
∣zk∣e

i(αk−θ))

= ∑
k∈Sθ

∣zk∣ cos(αk − θ) =
N

∑
k=1

∣zk∣ cos+(αk − θ),

where cos+(x) ∶= max{cos(x),0}. Now, choose θ0 ∈ [−π,π] to maximize the last sum, and let
S ∶= Sθ. This sum is bigger than or equal to the average value, hence

∣ ∑
k∈S

zk∣ ≥
N

∑
k=1

∣zk∣ cos+(αk − θ0) ≥
N

∑
k=1

∣zk∣
1

2π
∫

π

−π
cos+(α − θ)dθ

=
N

∑
k=1

∣zk∣
1

2π
∫

π
2

−π
2

cos+(α − θ)dθ =
1

π

N

∑
k=1

∣zk∣.
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Proposition 3.7. The total variation ∣λ∣ of a complex measure λ on (X,A) is a finite
positive measure on (X,A).

Proof. Note that the only partition of ∅ ∈ A is ⊍∞i=1∅, hence ∣λ∣(∅) = sup{∑∞
i=1 ∣λ(∅)∣} = 0

is clear, since λ(∅) = 0. Now, it is proven that ∣λ∣ is countably additive. Let E ∈ A be given.
Let {Ei}i≥1 be a partition of E such that E = ⊍∞i=1Ei. For every i ∈ N, one may choose ai ∈ R
such that ai < ∣λ∣(Ei). Then for each Ei, there is a partition {Aij}j≥1 such that

ai <
∞
∑
j=1

∣λ(Aij)∣.

Now, {Aij}j≥1 is a partition of Ei, so {Aij}i,j≥1 is in particular a partition of E, hence

∞
∑
i=1
ai ≤

∞
∑
i=1

∞
∑
j=1

∣λ(Aij)∣ ≤ ∣λ∣(E).

Taking the supremum over all possible choices of {ai}i≥1 thus yields that∑∞
i=1 ∣λ∣(Ei) ≤ ∣λ∣(E).

It then suffices to show that also ∑∞
i=1 ∣λ∣(Ei) ≥ ∣λ∣(E). Let {E′

j}j≥1 be an arbitrary partition
of E. Then for any fixed i ∈ N, {E′

j ∩Ei}j≥1 satisfies that

∞
⊍
j=1

(E′
j ∩Ei) =

∞
⊍
j=1

E′
j ∩Ei = E ∩Ei = Ei,

thus {E′
j ∩Ei}j≥1 is a partition of Ei. Then

∞
∑
j=1

∣λ(E′
j)∣ =

∞
∑
j=1

∣
∞
∑
i=1
λ(E′

j ∩Ei)∣ ≤
∞
∑
j=1

∞
∑
i=1

∣λ(E′
j ∩Ei)∣

=
∞
∑
i=1

∞
∑
j=1

∣λ(E′
j ∩Ei)∣ ≤

∞
∑
i=1

∣λ∣(Ei).

Now, since the partition {E′
j}j≥1 of E was arbitrarily chosen, ∑∞

j=1 ∣λ(E′
j)∣ ≤ ∑

∞
i=1 ∣λ∣(Ei) holds

for any partition of E, and thus ∣λ∣(E) ≤ ∑∞
i=1 ∣λ∣(Ei), which completes the proof of countable

additivity of ∣λ∣. Thus, ∣λ∣ is indeed a positive measure. To prove that ∣λ∣ is finite, suppose
by contradiction that there exists an E ∈ A such that ∣λ∣(E) = ∞. Let a ∶= π+π∣λ(E)∣. Since
∞ = ∣λ∣(E) > a, a partition {Ei}i≥1 can be chosen such that ∑Ni=1 ∣λ(Ei)∣ > a for some N ∈ N.
Now, λ(Ei) ∈ C, hence by Lemma 3.6 there is a set S ⊆ {1, ...,N} such that for A ∶= ⊍i∈S Ei,

∣λ(A)∣ = ∣∑
i∈S
λ(Ei)∣ ≥

1

π
∑
i∈S

∣λ(Ei)∣ >
a

π
> 1.

Now, let B ∶= E A. Then ∣λ(B)∣ = ∣λ(E) − λ(A)∣ ≥ ∣λ(A)∣ − ∣λ(E)∣ > a
π − ∣λ(E)∣ = 1. Thus,

E = A ⊍B and ∣λ(A)∣, ∣λ(B)∣ > 1. Since ∣λ∣ is a positive measure, and in particular holds the
property of countable additivity, ∞ = ∣λ∣(E) = ∣λ∣(A⊍B) = ∣λ∣(A)+∣λ(B)∣, hence at least one of
∣λ∣(A) and ∣λ(B)∣ must assume the value ∞. Therefore, if ∣λ∣(X) = ∞, there exist A1,B1 ∈ A

such that X = A1 ⊍B1 where ∣λ(A1)∣, ∣λ(B1)∣ > 1 and ∣λ∣(B1) = ∞ without loss of generality.
So by this argument, also B1 = A2 ⊍ B2 for some A2,B2 ∈ A with ∣λ(A2)∣, ∣λ(B2)∣ > 1 and
∣λ∣(B2) = ∞. Continuing this way, one obtains a disjoint collection of countably infinitely
many sets {Ai}i≥1 with ∣λ(Ai)∣ > 1 for every i ∈ N. Now, since λ is a complex measure, thus,
in particular, is countably additive,

λ(
∞
⊍
i=1
Ai) =

∞
∑
i=1
λ(Ai),

where λ(⊍∞i=1Ai) ∈ C, so the series must converge. But ∣λ(Ai)∣ > 1 for every i ∈ N implies
that λ(Ai) ↛ 0 as i→∞, so the series cannot converge, thus a contradiction. Hence, it must
hold that ∣λ∣(X) < ∞ as wanted.
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Remark 3.8. Note that ∣λ(E)∣ ≤ ∣λ∣(E) for every E ∈ A. Thus, the fact that ∣λ∣ is finite,
yields that ∣λ(E)∣ ≤ ∣λ∣(E) ≤ ∣λ∣(X) < ∞ for every E ∈ A, hence the range of λ is bounded.
This is sometimes referred to as λ being of bounded variation.

Definition 3.9. Let λ and µ be complex measures on (X,A). Define

(λ + µ)(E) ∶= λ(E) + µ(E)

(cλ)(E) ∶= c(λ(E))

for every E ∈ A and c ∈ C.

Remark 3.10. With the definition above, λ + µ and cλ are in fact complex measures, and
thus, the space C ∶= {λ ∶ A → C complex measure} is a vector space. This is in particular a
result of complex measures being finite. Moreover, if one defines ∥λ∥ ∶= ∣λ∣(X), this forms a
well-defined norm, hence C becomes a normed vector space.

3.2 Mutual singularity and absolute continuity

This section is devoted to defining the concepts known from the theory of signed measures
according to complex measure. As it turns out, there is a natural way of doing this.

Notation. For a complex measure λ, the real and imaginary parts are denoted λR and λI,
respectively. Thus, every complex measure can be written (uniquely) as the decomposition,
λ = λR + iλI, where λR, λI are finite signed measures.

From this notation, the concepts of signed measures generalize easily:

Definition 3.11. Let λ be a complex measure. Then integration with respect to λ is defined
by

∫ fdλ ∶= ∫ fdλR + i∫ fdλI

for f ∈ L1(λ) ∶= L1(λR) ∩L1(λI).

Definition 3.12. Let λ and µ be complex measures on (X,A). Then λ is singular with
respect to µ, denoted λ ⊥ µ, if λi ⊥ µj for every i, j =R,I.

Definition 3.13. Let λ be a complex measure and µ a positive measure on (X,A). Then
λ is absolutely continuous with respect to µ, denoted λ≪ µ, if λR ≪ µ, and λI ≪ µ.

Proposition 3.14. Let λ1, λ2 be complex measures and µ a positive measure on (X,A).
Then the following properties hold.

(i) If λ1 ⊥ λ2, then ∣λ1∣ ⊥ ∣λ2∣.

(ii) If λ1 ⊥ µ and λ2 ⊥ µ, then λ1 + λ2 ⊥ µ.

(iii) If λ1 ≪ µ and λ2 ≪ µ, then λ1 + λ2 ≪ µ.

(iv) If λ≪ µ then ∣λ∣ ≪ µ.

(v) If λ1 ≪ µ and λ1 ⊥ µ, then λ1 = 0.

Proof. The proofs are similar to the proofs for signed measures.

Thus, the elementary theory of complex measures is presented, and the following chapter
proceeds with the proof of The Lebesgue-Radon-Nikodym Theorem for signed and complex
measures, respectively.
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4 The Lebesgue-Radon-Nikodym Theorem

The purpose of this chapter is to prove the Lebesgue-Radon-Nikodym Theorem, which pro-
vides a complete picture of the relationship between a signed or complex measure and a
given positive measure. The theory of this chapter is based on Folland 1999 (section 3.2).

4.1 The proof of the Lebesgue-Radon-Nikodym Theorem

In this section, the Lebesgue-Radon-Nikodym Theorem is proved for signed and complex
measures, respectively. This commences with a lemma needed in order to prove the theorem
for signed measures. From here on, the theorem is proven for complex measures.

Notation. Let ν be a signed measure on (X,A) defined by ν(E) ∶= ∫E fdµ for a positive
measure µ and an extended µ-integrable function, f . This relationship between ν and µ is
from now on be described with the notation dν = fdµ.

Lemma 4.1. Let ν and µ be finite positive measures on (X,A). Then either ν ⊥ µ, or there
exist ε > 0 and E ∈ A such that µ(E) > 0 and ν(A) ≥ εµ(A) for every A ∈ A with A ⊆ E, i.e.,
E is a positive set with respect to ν − εµ.

Proof. For each n ∈ N, let X = Pn⊍Nn be a Hahn decomposition for the signed measure
ν − n−1µ. Define P ∶= ⋃∞n=1 Pn and N ∶= ⋂∞n=1Nn = X P . Then N is (ν − n−1µ)-negative for
every n ∈ N. Hence, 0 ≤ ν(N) ≤ n−1µ(N), and since it holds for every n ∈ N, this implies
that ν(N) = 0. Now, either µ(P ) = 0 or µ(P ) > 0, as µ is a positive measure. If µ(P ) = 0,
then µ(P ) = ν(X P ) = ν(N) = 0 with X = P ⊍N , and thus ν ⊥ µ. Conversely, if µ(P ) > 0,
then 0 < µ(P ) = µ(⋃∞n=1 Pn) ≤ ∑∞

n=1 µ(Pn), hence µ(Pn) > 0 for some n ∈ N, and Pn is a
(ν − n−1µ)-positive set. This completes the proof with ε = n−1 and E = Pn.

Theorem 4.2 (The Lebesgue-Radon-Nikodym Theorem for signed measures). Let ν be a
σ-finite signed measure and µ a σ-finite positive measure on (X,A). Then there exist unique
σ-finite signed measures ψ and ρ on (X,A) such that

ψ ⊥ µ, ρ≪ µ, ν = ψ + ρ.

Moreover, dρ = fdµ for an extended µ-integrable function f ∶X → R, which is unique µ-a.e.

Proof. Case I: Suppose ν and µ are finite positive measures. Define a set F by

F ∶= {f ∶X → [0,∞] measurable ∶ ∫
E
fdµ ≤ ν(E), ∀E ∈ A}.

Note that 0 ∈ F , so F is non-empty. Let f, g ∈ F , and define a function h∶X → [0,∞] by
h(x) ∶= max{f(x), g(x)}. Then h is measurable. Let A ∶= {x ∈X ∶ f(x) > g(x)}. Then

∫
E
hdµ = ∫

E∩A
fdµ + ∫

E A
gdµ ≤ ν(E ∩A) + ν(E A) = ν(E),

hence h ∈ F . Now, let a ∶= sup{ ∫X fdµ ∶ f ∈ F}. Then a ≤ ν(X) < ∞, since ν is finite by
assumption. Choose a sequence {fn}n≥1 of functions in F such that limn→∞ ∫X fn = a. Define
gn by gn(x) = max{f1(x), ..., fn(x)} for each n ∈ N. Then gn ∈ F by the previous argument.
Moreover, gn ≥ fn for every n ∈ N, so ∫X gndµ ≥ ∫X fndµ, and thus, limn→∞ ∫X gndµ = a. Let
f be a function defined by f(x) ∶= supn fn(x). Since gn converges to f pointwise as n →∞,
i.e., limn→∞ gn = supn fn = f , and gn ≤ gn+1 for every n, the Monotone Convergence Theorem
(Theorem 2.14 Folland 1999) yields that

∫
X
fdµ = ∫

X
lim
n→∞ gndµ = lim

n→∞∫X
gndµ = a.
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Furthermore, f ∈ F , since gn ∈ F for every n ∈ N. Now, ∫X fdµ = a < ∞ implies that f < ∞

µ-a.e., so f can be taken to be real-valued everywhere, i.e., f ∶X → [0,∞). Also, f ∈ L1(µ),
hence f is in particular extended µ-integrable, as wanted. Thus, define measures ρ and ψ by
dρ ∶= fdµ and dψ ∶= dν −fdµ, i.e., ψ = ν −ρ. Note that f ∈ L1(µ) with f being positive yields
that ρ(E) = ∫E fdµ is finite and positive for every E ∈ A, so ρ is a finite positive measure.
Moreover, f ∈ F yields that ψ too is a positive measure, since ψ(E) = ν(E) − ∫E fdµ ≥ 0,
for every E ∈ A, and ψ is finite, since ν and ρ are finite measures. It thus suffices to show
that ψ ⊥ µ. Assume by contradiction that ψ Ù µ. Then by Lemma 4.1, there exists ε > 0
and E ∈ A such that µ(E) > 0 and ψ(A) ≥ εµ(A) = εµ(E ∩A) for every A ⊆ E. If A ∈ A is
arbitrary, then A = B ⊍C, where B ⊆ E and C ∩E = ∅, hence by additivity of the positive
measures ψ,µ,

ψ(A) = ψ(B) + ψ(C) ≥ ψ(B) ≥ εµ(B) = ε(µ(B ∩E) + µ(C ∩E)) = εµ(E ∩A),

so ψ(A) ≥ εµ(E ∩ A) for every A ∈ A, or equivalently, dν − fdµ = dψ ≥ ε1Edµ. Thus,
dν ≥ (f + ε1E)dµ, implying that ν(A) ≥ ∫A(f + ε1E)dµ for every A ∈ A, hence f + ε1E ∈ F .
But

∫
X
f + ε1dµ = ∫

X
fdµ + ∫

X
ε1Edµ = a + εµ(E) > a,

since µ(E) > 0, which contradicts the definition of a. Hence, it must hold that ψ ⊥ µ, and
thus, dν = dψ + fdµ = dψ + dρ, where ψ ⊥ µ and ρ≪ µ, as wanted.

For uniqueness, suppose that also dν = dψ′ + f ′dµ, where ψ′ ⊥ µ. Then

dψ − dψ′ = f ′dµ − fdµ = (f ′ − f)dµ.

Note that since dψ, dψ′ and fdµ, f ′dµ are finite measures, the above is a well-defined finite
signed measure. By assumption ψ ⊥ µ and ψ′ ⊥ µ, hence following the proof of Proposi-
tion 2.24 (iii) analogously, one obtains that also ψ − ψ′ ⊥ µ. Also clearly, (f ′ − f)dµ ≪ dµ,
which means that the measure is both singular and absolutely continuous with respect to
µ, hence dψ − dψ′ = (f ′ − f)dµ = 0. This implies exactly that ψ = ψ′ and f = f ′ µ-a.e. by
Theorem 2.23 (Folland 1999). This proves uniqueness of ψ and ρ, when ψ and ρ are finite.

Case II: Suppose ν and µ are σ-finite positive measures. Then X can be written as a
countable disjoint union of non-empty sets, each of which has finite measure under ν and µ:
By the assumption of ν being σ-finite, X = ⊍∞i=1Bi, where ν(Bi) < ∞, and similarly by the
assumption of µ being σ-finite, X = ⊍∞i=1B

′
i, where µ(B′

j) < ∞, so X = ⊍∞i=1⊍
∞
j=1Bi ∩ B

′
j ,

thus, by re-indexing one obtains that, X = ⊍∞i=1Ai with ν(Ai), µ(Ai) < ∞. Now define νi
and µi for every i ≥ 1 by νi(E) ∶= ν(E ∩Ai) and µi(E) ∶= µ(E ∩Ai) for every E ∈ A. Note
that each νi and µi are finite positive measures. Then by the first part of this proof, each νi
can be decomposed as dνi = dψi + fidµi for (unique) positive measures dψi, and fidµi, where
fidµi ≪ dµi and ψi ⊥ µi. Now since, νi(X Ai) = µi(X Ai) = 0,

ψi(X Ai) = νi(X Ai) − ∫
X Ai

fidµi = 0

and it is justified to assume that fi ∣X Ai= 0. Define ψ ∶= ∑∞
i=1ψi and f ∶= ∑∞

i=1 fi. Then

ν(E) =
∞
∑
i=1
νi(E ∩Ai) =

∞
∑
i=1
ψi(E ∩Ai) +

∞
∑
i=1
∫
E∩Ai

fidµi

= ψ(E) + ∫
E

∞
∑
i=1
fidµ = ψ(E) + ∫

E
fdµ,

for every E ∈ A, where the third equality follows from f ∣X Ai= 0 and µi(E) = µ(E ∩ Ai).
Thus, dν = dψ + fdµ. Moreover, defining ρ by dρ ∶= fdµ, ψ and ρ are σ-finite measures by
construction, so Proposition 2.24 (iii) yields that ψ = ∑∞

i=1ψi ⊥ ∑
∞
i=1 µi = µ as wanted.
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For uniqueness, suppose that also dν = dψ′ + f ′dµ, where ψ′ ⊥ µ. Let X = ⊍∞i=1Ai with
ν(Ai) < ∞ as before. Then dψ + fdµ = dν = dψ′ + f ′dµ, and thus for every Ai ∈ A and i ∈ N,

∞ > ν(Ai) = ψ(Ai) + ∫
Ai
fdµ = ψ′(Ai) + ∫

Ai
f ′dµ

which implies that ψ(Ai) −ψ
′(Ai) = ∫Ai(f

′ − f)dµ. Define κi(E) ∶= ψ(E ∩Ai) −ψ
′(E ∩Ai) =

∫E∩Ai(f
′ − f)dµ for each i ∈ N and for every E ∈ A. Then κi is a well-defined (finite) signed

measure. By previous arguments, κi ⊥ µ and also κi ≪ µ, hence κi = 0 for every i ∈ N. Then
using countable additivity,

0 =
∞
∑
i=1
κi(E) =

∞
∑
i=1
ψ(E ∩Ai) − ψ

′(E ∩Ai) =
∞
∑
i=1
∫
E∩Ai

(f ′ − f)dµ

= ψ(E) − ψ′(E) = ∫
E
(f ′ − f)dµ

for every E ∈ A, implying that ψ = ψ′ and f = f ′ µ-a.e.
To complete the proof, suppose ν is a σ-finite signed measure and µ a σ-finite positive

measure. Let ν = ν+−ν− be the Jordan decomposition of ν. Suppose without loss of generality
that ν+ is finite and ν− σ-finite. Then there exist unique finite positive measures ψ+ and ρ+

such that ν+ = ψ+ + ρ+, where ψ+ ⊥ µ and ρ+ ≪ µ, and there exist unique σ-finite positive
measures ψ− and ρ− such that ν− = ψ− + ρ−, where ψ− ⊥ µ and ρ− ≪ µ. Hence,

ν = ν+ − ν− = ψ+ + ρ+ − (ψ− + ρ−) = ψ+ − ψ− + (ρ+ − ρ−),

where ψ ∶= ψ+ − ψ− and ρ ∶= ρ+ − ρ− are well-defined σ-finite signed measures. By Proposi-
tion 2.24 (i),(ii), ψ+ ⊥ µ and ψ− ⊥ µ implies that also ψ ⊥ µ, and ρ+ ≪ µ and ρ− ≪ µ implies
that ρ≪ µ. The decomposition is unique by the uniqueness of the decompositions ν = ν+−ν−

and ν+ = ψ+ + ρ+ and ν− = ψ− + ρ−.

Theorem 4.3 (The Lebesgue-Radon-Nikodym Theorem for complex measures). Let λ be
a complex measure and µ a σ-finite positive measure on (X,A). Then there exist unique
complex measures ψ and ρ such that

ψ ⊥ µ, ρ≪ µ, λ = ψ + ρ,

where dρ = fdµ for a unique f ∈ L1(µ).

Proof. The proof follows by applying Theorem 4.2 to the real and imaginary part of λ, since
λ = λR + iλI, where λR, λI are finite signed measures. Uniqueness follows as before.

Remark 4.4. The noticeable difference in the Lebesgue-Radon-Nikodym Theorem for signed
and complex measures is that f ∈ L1(µ), when λ, thus also ρ, is a complex measure.

Definition 4.5. The decomposition of a complex or σ-finite signed measure, ν = ψ + ρ, into
measures that are respectively absolutely continuous and singular with respect to µ, is called
the Lebesgue decomposition of ν with respect to µ.

4.2 The Radon-Nikodym derivative

The Lebesgue-Radon-Nikodym Theorem gives rise to an abstract notion of the derivative of
a signed or complex measures with respect to a positive measure. For ease, the following
results are stated and proved only for σ-finite signed measures, but generalize to complex
measures by applying them to the real and imaginary parts respectively.
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Theorem 4.6 (The Radon-Nikodym Theorem). Let ν be a σ-finite signed measure and
µ a σ-finite positive measure on (X,A) with ν ≪ µ. Then dν = fdµ for some extended
µ-integrable function f ∶X → R. Moreover, f is unique µ-a.e.

Proof. The result follows from Theorem 4.2: Let dν = dψ + fdµ be the Lebesgue decompo-
sition of ν with respect to µ. Then fdµ ≪ dµ, and by assumption ν ≪ µ. Thus, µ(E) = 0
implies that ∫E fdµ = 0 and also ν(E) = 0 for every E ∈ A. Then, ψ(E) = ν(E) − ∫E fdµ = 0
for every E ∈ A with µ(E) = 0. Hence, ψ ≪ µ. But also, ψ ⊥ µ, implying that ψ = 0. Thus,
dν = fdµ for some f ∶X → R extended µ-integrable function, and f is unique µ-a.e.

Definition 4.7. The class of functions equal to f µ-a.e. is called the Radon-Nikodym deriva-
tive of ν with respect to µ. This is denoted dν = dν

dµdµ.

Nonexample 4.8. The Lebesgue decomposition and the Radon-Nikodym derivative can only
be guaranteed to exist for σ-finite measures. Let µ be the counting measure and m the
Lebesgue measure on ([0,1],B([0,1])). Then m≪ µ, but dm ≠ fdµ for any f . Moreover, µ
has no Lebesgue decomposition with respect to m.

Proof. If µ(E) = 0 for some E ∈ B([0,1]), then E = ∅, and hence, m(E) = 0. Thus, m≪ µ.
Assume by contradiction that dm = fdµ for some f ∶ [0,1] → [0,∞]. Then, since the Lebesgue
measure is non-atomic, 0 =m({x}) = ∫{x} f(x)dµ = f(x), so f = 0. But then dm = 0dµ, which
implies that m = 0. This is a contradiction, hence dm ≠ fdµ for any f . Now, assume by
contradiction that µ = ψ + ρ with ψ ⊥ m and ρ ≪ m. Then for every x ∈ [0,1] it holds that
m({x}) = 0, which implies that ρ({x}) = 0, thus ψ({x}) = µ({x}) = 1. Then ψ = µ, hence
m≪ µ = ψ. Thus, ψ ⊥m yields that m = 0, but this is a contradiction.

Remark 4.9. If ν1 and ν2 are σ-finite signed measures with dν1 = f1dµ and dν2 = f2dµ, then

d(ν1 + ν2)

dµ
=
dν1
dµ

+
dν2
dµ

.

In general, this very abstract notion of a derivative can be shown to fulfil many of the known
properties of derivatives; some of which are proven in the following.

Proposition 4.10. Let ν be a σ-finite signed measure and µ, ψ σ-finite positive measures
on (X,A), such that ν ≪ µ and µ≪ ψ. Then the following properties hold.

(i) Let g ∈ L1(µ). Then g dνdµ ∈ L1(µ) and ∫X gdν = ∫X g
dν
dµdµ.

(ii) It holds that ν ≪ ψ and dν
dψ = dν

dµ
dµ
dψ , ψ-a.e.

Proof. It suffices to prove the result for σ-finite positive measures by considering the Jordan
decomposition of σ-finite signed measures. The assumption that ν ≪ µ and µ ≪ ψ yields
that ν = dν

dµdµ and µ = dµ
dψdψ by Theorem 4.6 (The Radon-Nikodym Theorem).

(i) Suppose g = 1E for some E ∈ A. Then

∫
X
1Edν = ν(E) = ∫

E

dν

dµ
dµ = ∫

X
1E

dν

dµ
dµ

for every E ∈ A. Thus, by linearity, (i) therefore holds for every simple function u. Now,
suppose g is a nonnegative measurable function. Then g is the pointwise limit of simple
functions, i.e., limn→∞ un = g. By the Monotone Convergence Theorem (Theorem 2.14,
Folland 1999),

∫
X
gdν = lim

n→∞∫X
undν = lim

n→∞∫X
un
dν

dµ
dµ = ∫

X
lim
n→∞un

dν

dµ
dµ = ∫

X
g
dν

dµ
dµ.
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Now, suppose g ∈ L1(µ). Then g = g+ − g−, where g+ and g− are nonnegative measurable
functions, hence by linearity

∫
X
gdν = ∫

X
g+dν − ∫

X
g−dν = ∫

X
g+
dν

dµ
dµ − ∫

X
g−
dν

dµ
dµ

= ∫
X
(g+ − g−)

dν

dµ
dµ = ∫

X
g
dν

dµ
dµ.

And so if g ∈ L1(µ), then also g dνdµ ∈ L1(µ), and (i) holds.

(ii) That ν ≪ ψ follows from the assumptions ν ≪ µ and µ ≪ ψ: If ψ(E) = 0 for
some E ∈ A, then µ(E) = 0, which implies that also ν(E) = 0. Hence, ν ≪ ψ, so by
Theorem 4.6 (The Radon-Nikodym Theorem), dν = dν

dψdψ. The result now follows from part

(i) by replacing ν and µ with ψ and µ and letting g = 1E
dν
dµ for E ∈ A, such that

ν(E) = ∫
E

dν

dµ
dµ = ∫

X
1E

dν

dµ
dµ = ∫

X
1E

dν

dµ

dµ

dψ
dψ

for every E ∈ A, and thus, dν
dµ = dν

dµ
dµ
dψ ψ-a.e. as wanted.

Corollary 4.11. If µ≪ ψ and ψ ≪ µ, then dψ
dµ

dµ
dψ = 1 a.e. with respect to either µ or ψ.

Proof. The result follows directly from Proposition 4.10, as µ ≪ ψ implies that dµ = dµ
dψdψ

by Theorem 4.6 (The Radon-Nikodym Theorem), so ∫E 1dµ = µ(E) = ∫E
dµ
dψdψ = ∫E

dµ
dψ

dψ
dµdµ,

for every E ∈ A, hence dµ
dψ

dψ
dµ = 1 µ-a.e. Similarly, one obtains that dµ

dψ
dψ
dµ = 1 ψ-a.e.

Lemma 4.12. Let ν be a signed or complex measure and µ a positive measure on (X,A)

with ν ≪ µ such that dν = fdµ. Then the total variation of ν is given by d∣ν∣ = ∣f ∣dµ.

Proof. For signed measures, the equality has already been established in Example 2.19.
Suppose ν is a complex measure. Since∑∞

i=1 ∣ν(Ei)∣ = ∑
∞
i=1 ∣ ∫Ei fdµ∣ ≤ ∑

∞
i=1 ∫Ei ∣f ∣dµ = ∫E ∣f ∣dµ

for every E ∈ A and every partition {Ei}i≥1 ⊆ A, it is clear that ∣ν∣(E) ≤ ∫E ∣f ∣dµ. To prove
the reverse inequality, let ε > 0 be given. By Theorem 2.26 (Folland 1999), there is a simple
function u ∈ L1(µ) such that ∫ ∣f − u∣dµ < ε. Then there exist disjoint sets E1, ...,En ∈ A

such that E = ⊍ni=1Ei and u ∣E= ∑
n
i=1 ci1Ei for ci ∈ C. Then

∣ν∣(E) ≥
n

∑
i=1

∣ν(Ei)∣ =
n

∑
i=1

∣ ∫
Ei
fdµ∣ ≥

n

∑
i=1

∣ ∫
Ei
udµ∣ −

n

∑
i=1

∣ ∫
Ei
u − fdµ∣

= ∫
E
∣u∣dµ −

n

∑
i=1

∣ ∫
Ei
u − fdµ∣ ≥ ∫

E
∣u∣dµ −

n

∑
i=1
∫
Ei

∣u − f ∣dµ

= ∫
E
∣u∣dµ − ∫

E
∣u − f ∣dµ ≥ ∫

E
∣u∣dµ − ε ≥ ∫

E
∣f ∣dµ − 2ε,

with equality in line two, since ∑ni=1 ∣ ∫Ei udµ∣ = ∑
n
i=1 ∣ci∣µ(Ei) = ∫E∑

n
i=1 ∣ci∣1Eidµ = ∫E ∣u∣dµ,

and where the last inequality follows from ∣ ∫E ∣u∣ − ∣f ∣dµ∣ ≤ ∫E ∣∣u∣ − ∣f ∣∣dµ ≤ ∫E ∣u − f ∣dµ ≤ ε,

so ∫E ∣u∣ − ∣f ∣dµ ≥ −ε. Hence, ε > 0 being arbitrary completes the proof.

Remark 4.13. The preceding lemma provides an alternative definition of the total varia-
tion measure, namely the measure that satisfies that if dν = fdµ, then d∣ν∣ = ∣f ∣dµ. With
this result, it can easily be verified that for a signed or complex measure ν with Lebesgue
decomposition dν = dψ + fdµ, the total variation of ν is given by d∣ν∣ = d∣ψ∣ + ∣f ∣dµ.

The following chapter shows a connection between the Lebesgue-Radon-Nikodym Theo-
rem and the dual space of Lp(µ), as the Radon-Nikodym Theorem is used to give a complete
characterization of the bounded linear functionals on Lp(µ).
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5 Bounded linear functionals on Lp

The purpose of this chapter is to prove that the dual space of Lp(µ), denoted (Lp(µ))∗, is
isometrically isomorphic to Lq(µ) for µ a σ-finite positive measure, 1 ≤ p < ∞ and q the
conjugate exponent to p. This result can be obtained as a consequence of the Lebesgue-
Radon-Nikodym Theorem. The theory of this chapter is based on Rudin 1987 (chapter 6)
and Schilling 2017 (chapter 21).

5.1 The dual space of Lp

In this section, it is proven that (Lp(µ))∗ is isometrically isomorphic to Lq(µ) for every
1 ≤ p < ∞, and as a result that Lp(µ) is reflexive for every 1 < p < ∞.

Remark 5.1. Let g ∈ Lq(µ), and let Φg ∶L
p(µ) → C be defined by Φg(f) ∶= ∫X fgdµ for

f ∈ Lp(µ). Clearly, Φg is linear by linearity of the integral. Note that by Hölder’s inequality,

∣Φg(f)∣ = ∣∫
X
fgdµ∣ ≤ ∥fg∥1 ≤ ∥g∥q∥f∥p,

hence ∥Φg∥ = sup{∣Φg(f)∣ ∶ ∥f∥p = 1} ≤ ∥g∥q, and Φg is in fact bounded and linear, i.e.,
Φg ∈ (Lp(µ))∗. Hence, the space of such functionals Φg for g ∈ Lq(µ) is a subset of (Lp(µ))∗.
The question is whether every Φ ∈ (Lp(µ))∗ is of this form for some g ∈ Lq(µ), and whether
this representation is unique. The following theorem answers this question. The theorem
requires some preliminary lemmas, which are stated and/or proved in the following. To begin
with, the definition of an isometrical isomorphism is given.

Definition 5.2. Let X and Y be normed vector spaces over a field, K, and let T ∶X → Y
be a linear map. Then T is an isometry, if ∥Tx∥ = ∥x∥ for every x ∈ X. Moreover, T is a an
isomorphism, if T is invertible with bounded inverse. Thus, T is an isometrical isomorphism,
if T is an isomorphism that is also an isometry.

Lemma 5.3. (Theorem 1.40 Rudin 1987). Let µ be a finite positive measure on (X,A), let
f ∈ L1(µ), and let S be a closed set in the complex plane. If AE(F ) = 1

µ(E) ∫E fdµ ∈ S for

every E ∈ A with µ(E) > 0, then f(x) ∈ S for µ-a.e. x ∈X.

Lemma 5.4. Let (X,A) be a measurable space, and let f ∶X → C be a measurable function.
Then there exists a measurable function α∶X → C such that ∣α∣ = 1 and ∣f ∣ = αf .

Proof. Let E ∶= {x ∈ X ∶ f(x) = 0}. Define α∶X → C by α(x) ∶=
∣f(x)+1E ∣
f(x)+1E for every x ∈ X.

Then

α(x) =

⎧⎪⎪
⎨
⎪⎪⎩

1, x ∈ E
∣f(x)∣
f(x) , x ∉ E

.

Since {0} is a measurable set, and E = f−1({0}), E is measurable. Thus, α being measurable

follows from f being measurable, and the map z ↦
∣z∣
z being continuous on C {0}. Now it

is clear that α satisfies that ∣α∣ = 1, and ∣f ∣ = αf , which completes the proof.

Lemma 5.5. Let µ be a σ-finite positive measure on (X,A). Then there exists w ∈ L1(µ)
such that 0 < w(x) < 1 for every x ∈X.

Proof. By assumption, X = ⋃∞i=1Ei for sets Ei ∈ A for which µ(Ei) < ∞. Define

wn(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0, x ∈X En
2−n

1+µ(En) , x ∈ En
,

and let w(x) ∶= ∑∞
n=1wn(x). Then clearly, w ∈ L1(µ), and 0 < w(x) < 1 as wanted.
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Theorem 5.6 (The Dual Space of Lp Characterization Theorem). Let µ be a σ-finite positive
measure on (X,A), and let Φ be a bounded linear functional on Lp(µ), i.e., Φ ∈ (Lp(µ))∗.
Then there exists a unique g ∈ Lq(µ), where q is the exponent conjugate to p, such that

Φ(f) = ∫
X
fgdµ

for f ∈ Lp(µ). Moreover ∥Φ∥ = ∥g∥q.

Proof. For the uniqueness, suppose that g and g′ both satisfy that Φ(f) = ∫X fgdµ = ∫X fg
′dµ

for every f ∈ Lp(µ). Then 0 = ∫X f(g − g
′)dµ for every f ∈ Lp(µ), thus in particular,

0 = ∫
X
1E(g − g

′)dµ = ∫
E
g − g′dµ

for every E ∈ M with µ(E) < ∞ such that 1E ∈ Lp(µ). Thus, since µ is σ-finite by assump-
tion, X can be covered with at most countably many of such sets implying that g − g′ = 0
µ-a.e. and thus, g = g′ µ-a.e. This completes the uniqueness of g ∈ Lq(µ).

Now, existence is proven. Note that if ∥Φ∥ = 0, hence Φ = 0, then 0 = g ∈ Lq(µ) satisfies
that Φ(f) = ∫X fgdµ = 0 for every f ∈ Lp(µ), and moreover, ∥g∥q = 0 = ∥Φ∥. Therefore,
assume now that ∥Φ∥ > 0. The proof is given by splitting into two cases of µ.

Case I: Suppose µ is finite, i.e., µ(X) < ∞. Define λ∶A → C by λ(E) ∶= Φ(1E) for every
E ∈ A, which is well-defined, since Φ∶Lp(µ) → C, and 1E ∈ Lp(µ) for every E ∈ A, since
µ is assumed to be finite. It is now proven that λ is in fact a complex measure. Clearly,
λ(∅) = Φ(1∅) = Φ(0) = 0 by linearity of Φ. Now, let A,B ∈ A be disjoint such that A∩B = ∅.
Then 1A⊍B = 1A+1B, hence λ(A⊍B) = λ(A)+λ(B) for every such pair, i.e., λ is additive. To
prove that λ is countably additive, let E = ⊍∞n=1En be a countable union of disjoint sets, and
let Ak = ⊍

k
n=1En. Then ∥1E − 1Ak∥p = µ(E Ak)

1/p → µ(∅)1/p = 0 as k →∞, since 1 ≤ p < ∞,
and clearly, Ak → E as k →∞. By continuity of Φ, it thus holds that ∣Φ(1Ak) −Φ(1E)∣ → 0
as k →∞, i.e., Φ(1Ak) → Φ(1E) as k →∞. Hence,

k

∑
n=1

λ(En) = λ(Ak) → λ(E) = λ(
∞
⊍
n=1

En) as k →∞,

which yields that ∑∞
n=1 λ(En) = λ(E) as wanted. Thus, λ is a complex measure. Now, the

claim is that λ is absolutely continuous with respect to µ. For E ∈ A, then 0 = µ(E) =

∫X 1Edµ yields that ∥1E∥p = 0, which implies that λ(E) = Φ(1E) = 0 by boundedness of Φ.
Then by Theorem 4.6 (The Radon-Nikodym Theorem) applied to the complex measure λ,
there exists g ∈ L1(µ) such that

Φ(1E) = λ(E) = ∫
E
gdµ = ∫

X
1Egdµ

for every E ∈ A. Thus, by linearity of Φ, it holds that Φ(u) = ∫X ugdµ for every simple
function u ∈ Lp(µ). Now, since the set of simple functions in Lp(µ) is dense in Lp(µ), every
f ∈ Lp(µ) is the limit of simple functions un ∈ L

p(µ). Thus, by the Dominated Convergence
Theorem (Theorem 2.24 Folland 1999),

lim
n→∞∫X

ungdµ = ∫
X

lim
n→∞ungdµ = ∫

X
fgµ,

implying that Φ(f) = Φ(limn→∞ un) = ∫X fgdµ by continuity of Φ.
Now, it is proven that g ∈ Lq(µ) and ∥Φ∥ = ∥g∥q. Note that by Hölder’s inequality,

∣Φ(f)∣ ≤ ∥f∥p∥g∥q, which establishes the inequality, ∥Φ∥ ≤ ∥g∥q. The reverse inequality is split
into two cases; p = 1 and 1 < p < ∞. If p = 1, then

∣ ∫
E
gdµ∣ = ∣Φ(1E)∣ ≤ ∥Φ∥∥1E∥1 = ∥Φ∥µ(E)
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for every E ∈ A. Thus, since µ is assumed to be finite, and g ∈ L1(µ), Lemma 5.3 yields that
∣g∣ ≤ ∥Φ∥ µ-a.e., implying that ∥g∥∞ ∶= inf {c > 0 ∶ µ({∣g∣ ≥ c}) = 0} ≤ ∥Φ∥, hence g ∈ L∞(µ) and
∥g∥∞ = ∥Φ∥ as wanted. Now, suppose 1 < p < ∞. Since g ∈ L1(µ) is a complex, measurable
function, there exists a measurable function α∶X → C with ∣α∣ = 1 such that αg = ∣g∣ by
Lemma 5.4. Let En ∶= {x ∈ X ∶ ∣g(x)∣ ≤ n}. Define f ∶X → C by f ∶= 1En ∣g∣

q−1α. Note

that ∣f ∣p = ∣α∣p∣g∣p(q−1) = ∣g∣q on En for every n ∈ N, hence f is bounded, and thus since µ is
assumed to be finite, f ∈ Lp(µ). Then using Hölder’s inequality, and the fact that p and q
are conjugate exponents,

∫
En

∣g∣qdµ = ∫
X
1En ∣g∣

qdµ = ∫
X
1En ∣g∣

q−1∣g∣dµ = ∫
X
1En ∣g∣

q−1αgdµ

= ∫
X
fgdµ = Φ(f) ≤ ∥Φ∥∥f∥p ≤ ∥Φ∥(∫

En
∣g∣qdµ)

1/p
= ∥Φ∥(∫

En
∣g∣qdµ)

1−1/q

implying that ( ∫En ∣g∣qdµ)
1/q

≤ ∥Φ∥ and thus ∫En ∣g∣qdµ ≤ ∥Φ∥q for every n ∈ N. Thus, since
1En ∣g∣

q is increasing with 1En ∣g∣
q → 1X ∣g∣q as n → ∞, the Monotone Convergence Theorem

(Theorem 2.14 Folland 1999) yields that

∫
En

∣g∣qdµ→ ∫
X

∣g∣qdµ = ∥g∥qq

as n → ∞, implying that ∥g∥qq ≤ ∥Φ∥q, hence ∥g∥q ≤ ∥Φ∥. Thus, ∥g∥q = ∥Φ∥, and g ∈ Lq(µ) as
wanted. This completes the existence part of the proof in the case, where µ is finite.

Case II: Suppose µ(X) = ∞, but µ is σ-finite. Then by Lemma 5.5, there exists w ∈ L1(µ)
such that 0 < w < 1 for every x ∈ X. Define dµ̃ ∶= wdµ. Then µ̃ is clearly a finite positive
measure on (X,A). Now, let ψ∶Lp(µ̃) → Lp(µ) be defined by ψ(F ) ∶= w1/pF for every
F ∈ Lp(µ̃). Then ψ is clearly linear. Moreover, it is an isometry, since

∥F ∥p = (∫
X

∣F ∣pdµ̃)
1/p

= (∫
X

∣F ∣pwdµ)
1/p

= (∫
X

∣w1/pF ∣pdµ)
1/p

= ∥w1/pF ∥p.

Then Ψ∶Lp(µ̃) → C defined by Ψ(F ) ∶= Φ(w1/pF ) is a bounded linear function on Lp(µ̃),
i.e., Ψ ∈ (Lp(µ̃))∗, with ∥Ψ∥ = ∥Φ∥. Now, by the first part of this proof, Case I, since µ̃ is
finite, there exists a G ∈ Lq(µ̃) such that Ψ(F ) = ∫X FGdµ̃ and ∥G∥q = ∥Ψ∥. Suppose p = 1.
Let g = G. Then ∥g∥∞ = ∥G∥∞ = ∥Ψ∥ = ∥Φ∥, hence ∥g∥q = ∥Φ∥, and so g ∈ Lq(µ). Moreover,

Φ(f) = Ψ(w−1/pf) = ∫
X
w−1/pfGdµ̃ = ∫

X
w−1fgwdµ = ∫

X
fgdµ

as wanted. Conversely, suppose 1 < p < ∞. Let g ∶= w1/qG. Then

∥g∥qq = ∫
X

∣g∣qdµ = ∫
X

∣w1/qG∣qdµ = ∫
X

∣G∣qdµ̃ = ∥G∥qq = ∥Ψ∥q = ∥Φ∥q,

hence g ∈ Lq(µ) and ∥g∥q = ∥Φ∥ as wanted. Moreover, Gdµ̃ = Gwdµ = w1−1/qgdµ = w1/pgdµ,
thus

Φ(f) = Ψ(w−1/pf) = ∫
X
w−1/qfGdµ̃ = ∫

X
w−1/pfw1/pgdµ = ∫

X
fgdµ,

completing the proof.

Remark 5.7. If Φ and g are related as in Theorem 5.6, then Φ is denoted by Φg. The map
Lq(µ) ∋ g ↦ Φg ∈ (Lp(µ))∗ is an isometry, since ∥Φg∥ = ∥g∥q, and is an isomorphism, since
the inverse (Lp(µ))∗ ∋ Φg ↦ g ∈ Lq(µ) exists by the one to one correspondence between
g and Φg and is clearly also bounded. Thus, Theorem 5.6 proves that (Lp(µ))∗ is in fact
isometrically isomorphic to Lq(µ). From this result, the question arises: For which 1 ≤ p < ∞
is the space Lp(µ) reflexive?. This question is answered in the following, which initializes
with some prerequisite theory behind reflexivity. In particular, the following proposition is
stated in order to establish notation.
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Proposition 5.8 (Theorem 5.8 (d) Folland 1999). Let X be a normed vector space. Let
f ∈ X, and define f̂ ∶X → C by f̂(Φ) = Φ(f) for every Φ ∈ X∗. Then Λ∶ f ↦ f̂ is a linear
isometry from X into X∗∗.

Definition 5.9. A Banach space X is called reflexive if Λ(X) =X∗∗, i.e., if Λ is surjective.

Remark 5.10. The map Λ is isometric, so x ∈X is usually identified with the image Λ(x) = x̂ ∈
X∗∗, and thus, X being reflexive corresponds to X and X∗∗ being isometrically isomorphic.

Theorem 5.11. Lp(µ) is reflexive for every 1 < p < ∞.

Proof. Let ϕ ∈ (Lp(µ))∗∗, ϕ∶ (Lp(µ))∗ → C be given. The goal is to show that there exists
f ∈ Lp(µ) such that Λ(f) = f̂ = ϕ. Define a map ϕ̃∶Lq(µ) → C by ϕ̃(g) ∶= ϕ(Φg) for every
g ∈ Lq(µ). This is well-defined, since the map Lq(µ) ∋ g ↦ Φg ∈ (Lp(µ))∗ is an (isometrical)
isomorphism by Theorem 5.6. Note that since the map Lq(µ) ∋ g ↦ Φg ∈ (Lp(µ))∗ is linear,

ϕ̃(α1g1 + α2g2) = ϕ(Φα1g1+α2g2) = ϕ(α1Φg1 + α2Φg2) = α1ϕ(Φg1) + α2ϕ(Φg2)

for every α1, α2 ∈ C and g1, g2 ∈ L
q(µ), hence ϕ̃ is linear. Moreover, the isometrical isomor-

phism Lq(µ) ∋ g ↦ Φg ∈ (Lp(µ))∗ is in particular surjective and ∥g∥q = ∥Φg∥, hence

∥ϕ̃∥ = sup{∥ϕ̃(g)∥ ∶ ∥g∥q = 1} = sup{∥ϕ(Φg)∥ ∶ ∥g∥q = 1}

= sup{∥ϕ(Φg)∥ ∶ ∥Φg∥ = 1} = ∥ϕ∥,

thus, since ϕ is bounded, so is ϕ̃. Hence, ϕ̃ ∈ (Lq(µ))∗. Now, by Theorem 5.6, there exists a
unique f ∈ Lp(µ) such that ϕ̃(g) = ∫X fgdµ for every g ∈ Lq(µ). Then for every g ∈ Lq(µ),

f̂(Φg) = Φg(f) = ∫
X
fgdµ = ϕ̃(g) = ϕ(Φg),

hence f̂ = ϕ, which completes the proof.

Remark 5.12. The proof of the preceding theorem uses that for 1 < p < ∞, the dual space of
Lq(µ), for q the exponent conjugate, is isometrically isomorphic to Lp(µ), applying Theo-
rem 5.6 to Lq(µ). Thus, as for p = 1, the exponent conjugate is q = ∞, and so Theorem 5.6
does not apply to L∞(µ), i.e., (L∞(µ))∗ is not isometrically isomorphic to L1(µ). For this
reason, the result cannot be used to prove that L1(µ) and L∞(µ) are reflexive.

5.2 The dual space of L2

This section follows Folland 1999 (section 5.5) and displays the theory of dual spaces and
reflexitivity of Hilbert spaces. Unlike for any other 1 ≤ p < ∞, L2(µ) is a Hilbert space, hence
the results from the preceding section follow from this. Let H denote a Hilbert space with
inner product ⟨ ⋅ , ⋅ ⟩.

Theorem 5.13 (The Riesz Representation Theorem (Theorem 5.25, Folland 1999)). For
every Fy ∈ H

∗, there exists a unique y ∈ H such that Fy(x) = ⟨x, y⟩ for all x ∈ H.

Remark 5.14. In other words, the preceding theorem states that H∗ = {Fy ∶ y ∈ H}. The
Cauchy-Schwartz’ inequality yields that ∣⟨x, y⟩∣ ≤ ∥x∥∥y∥ with equality if (and only if) x = ay
for some a ∈ C. Thus, for every y ∈ H, one may choose x = 1

∥y∥y ∈ H. Then ∥x∥ = 1,

and ∣⟨x, y⟩∣ = ∥x∥∥y∥ = ∥y∥ and thus ∥Fy∥ = sup{∣⟨x, y⟩∣ ∶ ∥x∥ = 1} = ∥y∥. Hence, the map
H ∋ y ↦ Fy ∈ H

∗ is in fact a conjugate-linear isometrical isomorphism implying that H ≅ H∗,
i.e., H is isometrically isomorphic to its dual space.
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Proposition 5.15. H is a reflexive Banach space.

Remark 5.16. The proof of the preceding proposition follows similarly to the proof of Theo-
rem 5.11. The results show that Hilbert spaces, H, possesses a very strong form of reflexivity,
where not only is H isomorphic to H∗∗; H is isometrically isomorphic to H∗. In particular,
the self-duality of L2(µ) can be used to prove the Lebesgue-Radon-Nikodym Theorem, as
seen in the following, where the result is proven for finite positive measures using Theo-
rem 5.13 (The Riesz Representation Theorem).

The following theorem is based on exercise 18 (Folland 1999, section 6.2).

Theorem 5.17. Let ν and µ be finite positive measures on (X,A). Then there exist (unique)
finite positive measures ψ and ρ such that

ψ ⊥ µ, ρ≪ µ, ν = ψ + ρ.

Moreover, dρ = fdµ for some f ∈ L1(µ).

Proof. Define a finite, positive measure λ on (X,A) by λ ∶= ν + µ, and let L2(λ) ∶= {f ∶X →

R measurable ∶ ∥f∥2 < ∞} and (L2(λ))∗ ∶= {T ∶L2(λ) → R ∶ T is bounded and linear}. Let
g ∈ L2(λ), and let Φ∶L2(λ) → R be defined by Φ(g) ∶= ∫X gdν. Then by the triangle inequality
for integrals and Hölder’s inequality,

∣ ∫
X
gdν∣ ≤ ∫

X
∣g∣dν ≤ ∫

X
∣g∣dλ ≤ λ(X)1/2∥g∥2 < ∞,

so Φ is bounded, hence Φ ∈ (L2(λ))∗. Then by Theorem 5.13 (The Riesz Representation
Theorem), there exists a unique h ∈ L2(λ) such that Φ(g) = ∫X gdν = ⟨g, h⟩ = ∫X ghdλ. Thus,

∫
X
gdν = ∫

X
ghdλ = ∫

X
ghdν + ∫

X
ghdµ,

which yields that ∫X g(1 − h)dν = ∫X ghdµ. Now, it is proven that 0 ≤ h(x) ≤ 1 for λ-a.e.
x ∈ X. Let E ∶= {x ∈ X ∶ h(x) < 0}. Then ν(E) = ∫E dν ≤ ∫E 1 − hdν = ∫E hdµ ≤ 0, hence
ν(E) = 0, as ν is assumed to be positive. Then also, µ(E) = 0, so λ(E) = ν(E) + µ(E) = 0.
Let F ∶= {x ∈ X ∶ h(x) > 1}. Then µ(F ) = ∫F dµ ≤ ∫F hdµ = ∫F 1 − hdν ≤ 0, hence by similar
arguments, µ(F ) = ν(F ) = 0, thus λ(F ) = 0. Then 0 ≤ h(x) ≤ 1 for λ-a.e. x ∈ X, so h can be
taken as h∶X → [0,1]. Now, let A ∶= {x ∈X ∶ h(x) < 1} and B ∶= {x ∈X ∶ h(x) = 1} such that
X = A⊍B. Define positive finite measures ρ and ψ by ρ(E) ∶= ν(E∩A) and ψ(E) ∶= ν(E∩B)

for every E ∈ A. Then ν(E) = ψ(E) + ρ(E) for every E ∈ A, hence the goal is to show that
ψ ⊥ µ and ρ≪ µ. Clearly, ψ(A) = ν(∅) = 0, and

µ(B) = ∫
B
dµ = ∫

B
hdµ = ∫

B
1 − hdν = 0,

which proves that ψ ⊥ µ. To prove ρ≪ µ, it suffices to prove that dρ = fdµ. Let An ∶= {x ∈X ∶

h(x) < 1− 1
n
} for every n ∈ N. Now, µ being finite implies that L2(µ) ⊇ L∞(µ) by Proposition

6.12 (Folland 1999). Thus, (1−h)−11An being bounded, implies that (1−h)−11An ∈ L∞(µ) ⊆
L2(µ) for every n ∈ N. As {An}n≥1 is decreasing with ⋂∞n=1An = A, and {(1 − h)−11An}n≥1
is increasing with limn→∞(1 − h)−11An = (1 − h)−11A, the Monotone Convergence Theorem
(Theorem 2.14 Folland 1999) and continuity from above yields that

ρ(E) = ν(E ∩A) = lim
n→∞ν(E ∩An) = lim

n→∞∫E∩An
dν = lim

n→∞∫E
(1 − h)−1(1 − h)1Andν

= lim
n→∞∫E

h(1 − h)−11Andµ = ∫
E

lim
n→∞h(1 − h)

−11Andµ = ∫
E
h(1 − h)−11Adµ,

thus, setting f ∶= h(1−h)−11A completes the argument. As ρ is a positive, finite measure, it
is clear that f ∈ L1(µ) as wanted. The uniqueness follows as in Theorem 4.2.

This wraps up the chapter showing how the theory of bounded linear functionals on Lp(µ)
is linked to the Lebesgue-Radon-Nikodym Theorem.
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6 Differentiation on a Euclidean space

In this chapter, the concept of differentiation of signed or complex measures is examined in
the case (X,A, µ) = (Rn,B(Rn),m), where m denotes the Lebesgue measure. The theory of
this chapter is based on Folland 1999 (section 3.4).

6.1 The Hardy-Littlewood maximal function and the Maximal Theorem

The purpose of this section is to introduce the Hardy-Littlewood maximal function and to
prove the Maximal Theorem, which will be used to prove theorems leading to the Lebesgue
Differentation Theorem. The section begins with a definition of the pointwise derivative of
a signed or complex measure with respect to the Lebesgue measure.

Definition 6.1. Let ν be a signed or complex measure on (Rn,B(Rn)). When the limit
exists, the pointwise derivative of ν with respect to m is defined as

F (x) ∶= lim
r→0

ν(B(x, r))

m(B(x, r))
,

where B(x, r) = {y ∈ Rn ∶ ∣y − x∣ < r} is the open ball with center x ∈ Rn and radius r > 0.

Remark 6.2. The open balls, B(x, r), have a very nice behaviour of ‘shrinking to x’ when
r → 0. For this reason, B(x, r) is chosen in the definition of the pointwise derivative. One
could also replace B(x, r) by other suitable sets which ‘shrink nicely to x’ as r → 0. The
definition of ‘shrinking nicely to x’ is to be examined later on.

Example 6.3. Let ν be a signed or complex measure with ν ≪ m such that dν = fdm by
Theorem 4.6 (The Radon-Nikodym Theorem). Then ν(B(x, r)) = ∫B(x,r) fdm, which implies
that

ν(B(x, r))

m(B(x, r))
=
∫B(x,r) fdm

m(B(x, r))
,

i.e., this is simply the average value of f on B(x, r). Thus, when the limit exists,

F (x) = lim
r→0

ν(B(x, r))

m(B(x, r))
= lim
r→0

∫B(x,r) fdm

m(B(x, r))
= f(x),

so one would hope that with the definition above, F = f m-a.e. As it turns out, this is the
case, when ν(B(x, r)) is finite for every x ∈ Rn and r > 0. This may be considered to be a
generalization of the Fundamental Theorem of Calculus, which yields that the derivative of

∫ fdm is exactly f .

The section is now proceeded with some prerequisite results needed to prove the Maximal
Theorem beginning with a result regarding the regularity properties of the Lebesgue measure.

Theorem 6.4 (Theorem 2.40 a., Folland 1999). Let E ∈ B(Rn). Then

m(E) = inf {m(U) ∶ U open, U ⊇ E} (Outer regularity)

= sup{m(K) ∶K compact, K ⊆ E}. (Inner regularity)

Lemma 6.5. Let C be a collection of open balls in Rn, and let U = ⋃B∈C B. If m(U) > c
for some c > 0, then there exist disjoint B1, ...,Bk ∈ C such that ∑ki=1m(Bi) > 3−nc.

Proof. Assume m(U) > c. Then by Theorem 6.4, m(U) = sup{m(K) ∶ K ⊆ U,K compact}

implying that there exist a compact set K ⊆ U = ⋃B∈C B such that also m(K) > c. Clearly,
U is an open covering of K, hence by compactness of K, there exists a finite subcover
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A1, ...,Am such that K ⊆ ⋃mi=1Ai, where Ai ∶= B(xi, ri) is the open ball with center xi and
radius ri > 0. Now, choose B1 ∶= {Ai ∶ ri ≥ rj for every j = 1, ..,m}, i.e., let B1 be the Ai
with the largest radius for i ∈ {1, ...,m}. Choose B2 to be the largest (meaning with largest
radius) of the remaining Ai’s that is also disjoint from B2. Choose B3 to be the largest of
the remaining Ai’s that is disjoint from both B1 and B2. Continue this way until the list
of Ai’s is exhausted. Now, if Ai ≠ Bj for every j ∈ {1, ..., k}, there must exist a Bj such
that Ai ∩Bj ≠ ∅. Moreover, if j is the smallest integer with this property, then the radius
of Ai must be smaller than or equal to Bj , since otherwise Ai = Bj . If Bj = B(xj , rj), let
B∗
j ∶= B(xj ,3rj), such that B∗

j is the open ball concentric with Bj with radius thrice as big

as the radius of Bj . Then Ai ⊆ B
∗
j . But then K ⊆ ⋃mi=1Ai ⊆ ⋃

k
j=1B

∗
j , and thus,

c <m(K) ≤
k

∑
j=1

m(B∗
j ) = 3n

k

∑
j=1

m(Bj),

implying exactly that ∑kj=1m(Bj) > 3−nc as wanted.

Definition 6.6. Let f ∶Rn → C be a Borel measurable function. Then f is locally integrable
with respect to m, if ∫K ∣f(x)∣dm < ∞ for every compact set K ∈ B(Rn). Let L1

loc(m) denote
the space of such functions.

Definition 6.7. Let f ∈ L1
loc(m), and let x ∈ Rn and r > 0. The average value of f on

B(x, r) is the function Arf ∶Rn ×R+ → C defined by

Arf(x) ∶=
1

m(B(x, r))
∫
B(x,r)

f(y)dm(y).

Definition 6.8. Let A1, ...,An be topological spaces. A function f ∶A1×⋯×An → C is jointly
continuous if f is continuous with respect to the product topology on A1 ×⋯ ×An.

Lemma 6.9. Let f ∈ L1
loc(m). Then Arf is jointly continuous in (x, r) ∈ Rn ×R+.

Proof. Note that the product topology on Rn × R+ equals the standard metric topology
on Rn+1. Also, note that m(B(x, r)) = rnm(B(0,1)). Moreover, 1B(x,r) → 1B(x0,r0) as

(x, r) → (x0, r0) on Rn S(x0, r0), where S(x0, r0) ∶= {y ∈ Rn ∶ ∣y − x0∣ = r0}. Thus, 1B(x,r) →
1B(x0,r0) m-a.e., since m(S(x0, r0)) = 0. Moreover, if r < r0 +

1
2 and ∣x − x0∣ <

1
2 , one obtains

that ∣1B(x,r)∣ ≤ ∣1B(x0,r0+1)∣. Now, f ∈ L1
loc(m) implies that 1B(x,r)f ∈ L1(m), hence by the

Dominated Convergence Theorem (Theorem 2.24 Folland 1999),

lim
(x,r)→(x0,r0)∫

1B(x,r)(y)f(y)dm(y) = ∫ 1B(x0,r0)(y)f(y)dm(y) = ∫
B(x0,r0)

f(y)dm(y),

thus ∫B(x,r) f(y)dm(y) is continuous in (x, r) ∈ Rn ×R+, which proves that

Arf(x) =
1

m(B(x, r))
∫
B(x,r)

f(y)dm(y) =
1

m(B(0,1))rn
∫
B(x,r)

f(y)dm(y)

is jointly continuous, as wanted.

Definition 6.10. Let f ∈ L1
loc. Then the Hardy-Littlewood maximal function, is the function

Hf ∶Rn → R+ defined by

Hf(x) ∶= sup
r>0

{Ar ∣f ∣(x)} = sup
r>0

{
1

m(B(x, r))
∫
B(x,r)

∣f(y)∣dm(y)}.
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Remark 6.11. By the preceding lemma, (Hf)−1((a,∞)) = ⋃r>0(Ar ∣f ∣)−1((a,∞)) is open,
since Arf is continuous with respect to the product topology, and arbitrary unions of open
sets are open, hence Hf is a Borel measurable function.

Theorem 6.12 (The Maximal Theorem). There exists a constant C > 0 such that for every
f ∈ L1(m) and every α > 0,

m({x ∈ Rn ∶Hf(x) > α}) ≤
C

α
∫
Rn

∣f(x)∣dm(x) =
C

α
∥f∥1.

Proof. Let Eα ∶= {x ∈ Rn ∶ Hf(x) > α}. For every x ∈ Eα, one may choose rx > 0 such that
Arx ∣f ∣(x) > α. Then the open balls B(x, rx) cover Eα, i.e., Eα ⊆ ⋃∞i=1B(xi, rxi). Thus, by
Lemma 6.5, if m(Eα) > c, then there exist disjoint B(x1, rx1), ...,B(xk, rxk), i.e., x1, ..., xk ∈
Eα, such that ∑ki=1m(B(xi, rxi) > 3−nc. Then

c < 3n
k

∑
i=1
m(B(xi, rxi) ≤ 3n

k

∑
i=1

1

α
∫
B(xi,rxi)

∣f(y)∣dm(y) ≤
3n

α
∫
Rn

∣f(y)∣dm(y),

and thus, letting c→m(Eα), one obtains that m(Eα) ≤
3n

α ∫Rn ∣f(y)∣dm(y), as wanted.

This concludes the section with the proof of the Maximal Theorem, from which the
following section proceeds to prove the Lebesgue Differentiation Theorem.

6.2 The Lebesgue Differentiation Theorem

In this section, three consecutive stronger versions of the Fundamental Differentiation The-
orem are presented, ending with the Lebesgue Differentiation Theorem. The purpose of
this section of is prove that the pointwise derivative of a signed or complex measure ν with
respect to m is in fact equal to the Radon-Nikodym derivative, dν

dm , m-a.e. under certain
assumptions. The section is initialized with a lemma needed to prove the first theorem.

Lemma 6.13. (Theorem 2.41 (Folland 1999)). Let f ∈ L1(m). Then for every ε > 0, there
exists a continuous function g such that ∫X ∣f − g∣dm < ε.

Theorem 6.14. Let f ∈ L1
loc(m). Then limr→0Arf(x) = f(x) for m-a.e. x ∈ Rn.

Proof. Note that it suffices to prove that Arf(x) → f(x) as r → 0 for almost every x ∈ Rn
with ∣x∣ ≤ N for some N ∈ N, since for every x ∈ Rn, there exists N ∈ N such that ∣x∣ ≤ N .
Thus, assume ∣x∣ ≤ N . Assume also that r ≤ 1, which is justified as r → 0. Then for
∣y∣ ≤ N + r ≤ N + 1 the values of Arf(x) depend only on f(y). Thus, by replacing f with
f1B(0,N+1), one may assume that f ∈ L1(m). Now, by Lemma 6.13, given ε > 0, there exists
a continuous function g such that ∫X ∣f − g∣(x)dm(x) < ε. Continuity of g implies that for
every x ∈ Rn and for every δ > 0, there exists an r > 0, such that ∣g(y) − g(x)∣ < δ, whenever
∣y − x∣ < r. Hence,

∣Arg(x) − g(x)∣ =
1

m(B(x, r))
∣∫

B(x,r)
g(y) − g(x)dm(y)∣ < δ

implying that Arg(x) → g(x) as r → 0 for every x ∈ Rn. Then

lim sup
r→0

∣Arf(x) − f(x)∣ = lim sup
r→0

∣Arf(x) − f(x) − (Arg(x) − g(x)) + (Arg(x) − g(x))∣

= lim sup
r→0

∣Ar(f − g)(x) + (g − f)(x) +Arg(x) − g(x)∣

≤H(f − g)(x) + ∣f(x) − g(x)∣ + δ.
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Let Pα ∶= {x ∈ Rn ∶ lim supr→0 ∣Arf(x) − f(x)∣ > α}, Eα ∶= {x ∈ Rn ∶ H(f − g)(x) > α} and

Fα ∶= {x ∈ Rn ∶ ∣f(x) − g(x)∣ > α}. Now, the goal is to show that Pα is a Lebesgue null set.
Note that Pα ⊆ Eα

2
∪ Fα

2
, where

α
2m(Fα

2
) = ∫

Fα
2

α
2 dm(x) ≤ ∫

Fα
2

∣f(x) − g(x)∣dm(x) < ε,

hence by Theorem 6.12,

m(Pα) ≤m(Eα
2
) +m(Fα

2
) ≤ 2C

α ∫ ∣f(x) − g(x)∣dm(x) + 2
αε ≤ (2C

α + 2
α
)ε.

Thus, m(Pα) = 0 for every α > 0, and lim supr→0 ∣Arf(x) − f(x)∣ = 0 for every x ∉ ⋃∞n=1 P1/n.
Hence, it is concluded that Arf(x) → f(x) for m-a.e. x ∈ Rn, as wanted.

Remark 6.15. The preceding theorem yields that for f ∈ L1
loc(m), and for m-a.e. x ∈ Rn,

0 = lim
r→0

Arf(x) − f(x) = lim
r→0

1

m(B(x, r))
∫
B(x,r))

f(y) − f(x)dm(y).

But, as proven in the following theorem, something even stronger holds.

Theorem 6.16. Let Lf ∶= {x ∈ Rn ∶ limr→0
1

m(B(x,r)) ∫B(x,r)) ∣f(y) − f(x)∣dm(y) = 0}. If

f ∈ L1
loc(m), then m(Rn Lf) = 0.

Proof. Let c ∈ C be arbitrary. By applying Theorem 6.14 to g(x) ∶= ∣f(x)− c∣, it is concluded
that

lim
r→0

1

m(B(x, r))
∫
B(x,r)

∣f(y) − c∣dm(y) = ∣f(x) − c∣

for m-a.e. x ∈ Rn, i.e., every x ∈ Rn Pc, where Pc is a Lebesgue null set. Let D denote a
countable dense subset of C, and let P ∶= ⋃c∈D Pc. Then m(Pc) = 0 yields that also m(P ) = 0.
Let x ∉ P , and let ε > 0 be given. Then one may choose c ∈D with ∣f(x) − c∣ < ε such that

∣f(y) − f(x)∣ = ∣f(y) − (f(x) − c) + (f(x) − c) − f(x)∣ ≤ ∣f(y) − c∣ + ε

implying that

lim sup
r→0

1

m(B(x, r))
∫
B(x,r)

∣f(y) − f(x)∣dm(y) ≤ ∣f(x) − c∣ + ε < 2ε

hence lim supr→0
1

m(B(x,r)) ∫B(x,r) ∣f(y)−f(x)∣dm(y) = 0 for every x ∉ P , which completes the
proof.

The preceding theory considers families of open balls B(x, r). However, these may be
replaced by families of more general sets, which ‘shrink nicely to x’, as is defined below.

Definition 6.17. A family {Er}r>0 of sets Er ∈ B(Rn) shrinks nicely to x ∈ Rn as r → 0, if
the following conditions hold.

(i) Er ⊆ B(x, r) for each r > 0.

(ii) There exists an α > 0, independent of r, such that m(Er) > αm(B(x, r)).

Example 6.18. Let U ∈ B(Rn) with U ⊆ B(0,1) and m(U) > 0, and let Er ∶= {x + ry ∶ y ∈ U}

for r > 0. Then the family {Er}r>0 shrinks nicely to x as r → 0.
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Proof. (i) Clearly, Er ⊆ B(x, r)), since ∣y∣ < 1 implies that ∣x − x + ry∣ < r.

(ii) Let α ∶=
m(U)

m(B(0,1))+1 . Then since the Lebesgue measure is invariant under translation,

m(Er) = r
nm(U) = rnm(B(0,1))

m(U)

m(B(0,1))
=m(B, r)

m(U)

m(B(0,1))
> αm(B, r).

Remark 6.19. This example shows that for a family {Er}r>0 that shrinks nicely to x, the
sets Er need not contain x itself, as one may notice that if 0 ∉ U , then x ∉ Er for any r > 0.

Theorem 6.20 (The Lebesgue Differentiation Theorem). Let f ∈ L1
loc. Then for every

x ∈ Lf ,

lim
r→0

1

m(Er)
∫
Er

∣f(y) − f(x)∣dm(y) = 0, and lim
r→0

1

m(Er)
∫
Er
f(y)dm(y) = f(x)

for every family {Er}r>0 that shrinks nicely to x as r → 0.

Proof. By assumption Er ⊆ B(x, r) and m(Er) > αm(B(x, r)) for some α > 0, hence

1

m(Er)
∫
Er

∣f(y) − f(x)∣dm(y) ≤
1

m(Er)
∫
B(x,r)

∣f(y) − f(x)∣dm(y)

≤
1

αm(B(x, r))
∫
B(x,r)

∣f(y) − f(x)∣dm(y),

thus by Theorem 6.16, limr→0
1

m(Er) ∫Er ∣f(y) − f(x)∣dm(y) = 0 for every x ∈ Lf . Applying
the triangle inequality of integrals, one obtains that

lim
r→0

1

m(Er)
∫
Er
f(y) − f(x)dm(y) = 0,

hence

lim
r→0

1

m(Er)
∫
Er
f(y)dm(y) = f(x)

for x ∈ Lf as wanted. In particular, the equalities hold for m-a.e. x ∈ Rn.

Thus, the proof of the Lebesgue Differentiation Theorem is concluded. The section is now
proceeded with the definition of regular Borel measures needed in order to prove the main
result of the section, namely that the pointwise derivative of a signed or complex measure ν
with respect to m, where ν has Lebesgue descomposition dν = dψ+fdm, is equal to f m-a.e.,
if ν is regular.

Definition 6.21. Let ν be a positive Borel measure on (Rn,B(Rn)). Then ν is regular if
the following conditions hold.

(i) ν is finite on every compact K ∈ B(Rn).

(ii) ν(E) = inf{ν(U) ∶ U open, E ⊆ U} for every E ∈ B(Rn). (Outer regularity)

Remark 6.22. Condition (i) actually implies condition (ii). However, as this shall not be
proven here, condition (ii) is assumed explicitly. Also, note that condition (i) implies that
every regular measure is σ-finite.

Example 6.23. Let f ∶Rn → [0,∞] be Borel measurable, and let ν be a positive measure
defined by dν ∶= fdm. Then ν is regular if and only if f ∈ L1

loc(m).
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Proof. Note that ν(K) = ∫K ∣f(x)∣dm(x) for every compact K ∈ B(Rn), thus condition (i)
is clearly equivalent to f ∈ L1

loc(m). Now assume condition (i) holds. Suppose E ∈ B(Rn) is
bounded. Then given δ > 0, there is a bounded, open set U ⊇ E such that m(U) <m(E) + δ
by Theorem 6.4. Then m(U E) < δ. By Corollary 2.27 for given ε > 0, there exists
δ > 0 such that ∣ ∫E fdm∣ < ε whenever µ(E) < δ. Thus, there is U ⊇ E satisfying that
m(U E) < δ, which implies that ∣ ∫U E fdm∣ < ε, which then again implies that ν(U) =

∫U fdm < ∫E fdm + ε = ν(E) + ε. Now E ⊆ U implies that also ν(E) ≤ ν(U), and the result
follows. Suppose now that E is unbounded. Let Ei = (E ∩ B(0, i)) ⋃ij=1B(0, j) for each
i ∈ N, such that E = ⊍∞i=1Ei, where Ei is bounded. Thus, given δ, there exists a bounded,
open set Ui ⊇ Ei such that m(Ui Ej) < δ for each Ei. Hence, given 2−iε > 0, there is an open
set Ui ⊇ Ei such that ∣ ∫Ui Ei fdm(y)∣ < 2−iε, which implies that ∫Ui fdm < ∫Ei fdm+2−iε. By
continuity from above, ν(E) = ν(⊍∞i=1Ei) = ∑

∞
i=1 ∫Ei fdm. Letting U = ⋃∞i=1Ui, one obtains

U ⊇ E open, and

ν(U) ≤
∞
∑
i=1
ν(Ui) =

∞
∑
i=1
∫
Ui
fdm ≤

∞
∑
i=1
∫
Ei
fdm + 2−iε = ν(E) + ε

as wanted.

Proposition 6.24. Let λ,µ be positive Borel measures on (Rn,B(Rn)). If λ + µ is regular,
then λ and µ are regular.

Proof. (i) Let K ∈ B(Rn) be compact. Then ∞ > (λ + µ)(K) = λ(K) + µ(K), which clearly
implies that λ(K), µ(K) < ∞.

(ii) By the assumption that λ + µ is a regular measure, given εi > 0, there exist an open
set Ui ∈ B(Rn) such that A ⊆ Ui and (λ+µ)(Ui) < (λ+µ)(A)+ εi for every A ∈ B(Rn). Now,
let {Ui}i≥1 be a decreasing sequence such that

lim
i→∞

(λ + µ)(Ui) = (λ + µ)(A)

and (λ + µ)(Ui) ≥ (λ + µ)(A) for every i ∈ N. Note that µ(A) ≤ µ(Ui) and λ(A) ≤ λ(Ui) by
monotonicity of the positive measures µ and λ, hence

εi > (λ + µ)(Ui) − (λ + µ)(A) = λ(Ui) + µ(Ui) − λ(A) − µ(A)

= λ(Ui) − λ(A) ≥ 0,

hence, λ(Ui) < λ(A) + εi, and thus limi→∞ µ(Ui) = µ(A), as wanted. Similarly for µ.

Definition 6.25. Let ν be a signed or complex Borel measure on (Rn,B(Rn)). Then ν is
regular, if the total variation ∣ν∣ is regular.

Theorem 6.26 (The Pointwise Derivative Theorem). Let ν be a regular signed or complex
Borel measure on (Rn,B(Rn)), and let dν = dψ + fdm be the Lebesgue decomposition of ν
with respect to m. Then

lim
r→0

ν(Er)

m(Er)
= f(x)

for m-a.e. x ∈ Rn and every family {Er}r>0 that shrinks nicely to x as r → 0.

Proof. By Lemma 4.12 and the following remark, d∣ν∣ = d∣ψ∣ + ∣f ∣dm. Hence Proposition 6.24
yields that ∣ψ∣ and ∣f ∣dm are regular, since ∣ν∣ is regular by assumption. In particular, ∣f ∣dm
being regular yields that f ∈ L1

loc(m) by Example 6.23. Note that

ψ(Er)

m(Er)
=
ν(Er) − ∫Er f(y)dm(y)

m(Er)
=
ν(Er)

m(Er)
−

1

m(Er)
∫
Er
f(y)dm(y).
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Therefore, by Theorem 6.20 it suffices to show that if ψ is regular and ψ ⊥m, then
ψ(Er)
m(Er) → 0

as r → 0, when {Er}r>0 shrinks nicely to x. Furthermore, note that

∣
ψ(Er)

m(Er)
∣ ≤

∣ψ∣(Er)

m(Er)
≤

∣ψ∣(B(x, r))

m(Er)
≤

∣ψ∣(B(x, r))

αm(B(x, r))
,

for some α > 0. Thus, it suffices to assume Er = B(x, r) and that ψ is a positive measure.
Let A ∈ B(Rn) such that ψ(A) = m(Rn A) = 0 using the assumption that ψ ⊥ m. Define

Fk ∶= {x ∈ A ∶ lim supr→0
ψ(B(x,r))
m(B(x,r)) >

1
k
} for each k ∈ N. The goal is to show that m(Fk) = 0

for every k ∈ N. By regularity of ψ, given ε > 0, there exists an open set Uε ⊇ A such that
ψ(Uε) < ε, since ψ(A) = 0. Now each x ∈ A is the center of an open ball B(x, r) ⊆ Uε such that

ψ(B(x, r)) >
m(B(x,r))

k . Let Vε ∶= ⋃x∈Fk B(x, r). Suppose by contradiction that m(Vε) > c for
some c > 0. Then by Lemma 6.5, there exist disjoint open balls B(x1, r1), ...,B(xl, rl) in Vε
such that ∑li=1m(Bi) > 3−nc. Then

c < 3n
l

∑
i=1
m(B(xi, ri)) ≤ 3nk

l

∑
i=1
ψ(B(xi, ri)) = 3nkψ(

l

⊍
i=1
B(xi, ri))

≤ 3nkψ(Vε) ≤ 3nkψ(Uε) ≤ 3nkε,

where the inequalities in the second line follows from ⊍li=1B(xi, ri) ⊆ Vε, monotonicity of
ψ, and B(x, r) ⊆ Uε for every x ∈ Fk, which implies that Vε ⊆ Uε. Thus, m(Vε) ≤ 3nkε,
since the above yields that for every c > 0 with m(Vε) > c, it holds that c < 3nkε, hence
if m(Vε) > 3nkε, then 3nkε < 3nkε, but this is a contradiction. Since ε > 0 was arbitrarily
chosen and since Fk ⊆ Vε, one obtains that m(Vε) = 0 implying that also m(Fk) = 0 for every
k ∈ N, as wanted.

This concludes the theory of differentiation on a Euclidean space proving that the point-
wise derivative of a signed or complex measure with respect to the Lebesgue measure on
(Rn,B(Rn)) is in fact equal to f m-a.e. Moreover, if ν ≪ m such that dν = dν

dµdµ, this

indeed proves that the pointwise derivative agrees with the Radon-Nikodym derivative, dν
dm ,

m-a.e. as wanted. This leads to the theory of functions of bounded variation, where complex
Borel measures on (R,B(R)) are to be considered. This theory will lead to a proof of the
Fundamental Theorem of Calculus.
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7 Functions of bounded variation and complex Borel mea-
sures

This chapter revolves around functions of bounded variation, which turn out to play a sig-
nificant role in the characterization of complex Borel measures on (R,B(R)). One purpose
of the chapter is to prove the ultimate version of the Fundamental Theorem of Calculus for
Lebesgue integrals. The theory of this chapter is based on Folland 1999 (section 3.5).

7.1 Lebesgue-Stieltjes measures

In this section, Lebesgue-Stieltjes measures are introduced as a preliminary to the theory of
functions of bounded variation, as increasing and right-continuous functions correspond to
positive Borel measures the same way functions of normalized bounded variation correspond
to complex Borel measures. The section is based on Schilling 2017 (chapter 6) and Folland
1999 (section 1.5).

Theorem 7.1 (Carathédory). Let S ⊆ P(X) be a semiring, and let µ∶S → [0,∞] be a pre-
measure. Then µ has an extension to a measure µ on σ(S ). Furthermore, if S contains
an exhausting sequence {Sn}n≥1 ⊆ S , i.e., {Sn}n≥1 is increasing with ⋃∞n=1 Sn =X, such that
µ(Sn) < ∞ for every n ∈ N, then the extension is unique.

Theorem 7.2 (Lebesgue-Stieltjes measures). Let F ∶R → R be an increasing and right-
continuous function. Then

µF ((a, b]) ∶= F (b) − F (a), for every a ≤ b ∈ R,

has a unique extension to a positive Borel measure on (R,B(R)). Conversely, if µF is a
Borel measure on (R,B(R)), and µF is finite on all bounded Borel sets, then

F (x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

µF ((0, x]), x ≥ 0

−µF ((x,0]), x < 0

is increasing and right-continuous.

Proof. Let S ∶= {(a, b], a ≤ b ∈ R} such that σ(S ) = B(R). It is proven that S is a semi-ring.
(i) Since (a, a] = ∅ for every a ∈ R, it is clear that ∅ ∈ S .
(ii) Let S,T ∈ S . If S = ∅ or T = ∅, then S ∩ T = ∅ ∈ S . Thus, suppose S = (a1, b1],

and T = (a2, b2] are non-empty, and assume without loss of generality that a1 ≤ a2. If also,
b1 ≤ a2, then S∩T = ∅ ∈ S . On the other hand, if a2 < b1, then S∩T = (a2,min{b1, b2}] ∈ S .

(iii) Let S,T ∈ S . If S = ∅, then S T = ∅, which can be written as a finite disjoint union
of the set ∅ ∈ S . If T = ∅, then S T = S = ∅⊍S. Now, suppose S = (a1, b1], T = (a2, b2] ≠ ∅.
Note that if S ⊆ T , then S T = ∅ ∈ S . Otherwise,

S T = (a1, b1] (a2, b2] = (a1, b1] ∩ ((−∞, a2] ∪ (b2,∞))

= (a1,min{b1, a2}] ⊍ (max{a1, b2}, b1],

with (a1,min{b1, a2}] ∈ S and (max{a1, b2}, b1] ∈ S .
By Theorem 7.1, it thus suffices to check that νF is a premeasure on S in order to prove

existence. Note that S is not a σ-algebra, hence νF is not a measure.
(i) It is clear that νF (∅) = νF ((a, a]) = F (a) − F (a) = 0.
(ii) Let {Sn}n≥1 be a sequence of disjoint sets Sn = (an, bn] ∈ S with ⊍∞n=1 Sn = (a, b] =

S ∈ S . Let δ1, δ2 > 0 be given. Observe that ⋃∞n=1(an, bn + δ1) ⊃ [a + δ2, b] is an open cover
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of the set [a + δ2, b]. Now, [a + δ2, b] is closed and bounded, hence compact by the Heine-
Borel Theorem, thus there exists a finite open subcover, i.e., there exists N ∈ N such that

⋃Nn=1(an, bn + δ1) ⊃ [a+ δ2, b], implying that ⋃Nn=1(an, bn + δ1] ⊃ (a+ δ2, b]. The goal is to show
that νF ((a, b]) = ∑

∞
n=1 νF ((an, bn]) by showing limN→∞(νF ((a, b]) − ∑

N
n=1 νF ((an, bn])) = 0.

Now, choose a′n ≤ an and b′n ≥ bn such that a′n = a for some n ∈ {1, ..,N}, and likewise b′n = b
for some n ∈ {1, ...,N}. Then (a, b] = ⊍Nn=1(a

′
n, b

′
n] ⊇ ⊍

N
n=1(an, bn]. Thus,

0 = νF ((a, b]) −
N

∑
n=1

νF ((a
′
n, b

′
n]) ≤ νF ((a, b]) −

N

∑
n=1

νF ((an, bn])

= νF ((a + δ2, b]) + νF ((a, a + δ2]) − (
N

∑
n=1

(νF ((an, bn + δ1]) −
N

∑
n=1

νF ((bn, bn + δ1]))

≤ νF ((a, a + δ2]) +
N

∑
n=1

νF ((bn, bn + δ1]),

since (a+ δ2, b] ⊆ ⋃
N
n=1(an, bn + δ1], hence νF ((a+ δ2, b])−∑

N
n=1 νF ((an, bn + δ1]) ≤ 0. Now, by

right-continuity of F , given ε > 0, one may choose δ1 > 0 and δ2 > 0 such that νF ((a, a+ δ2) =
F (a) − F (a + δ2) <

ε
2 and νF ((bn, bn + δ1]) = F (bn) − F (bn + δ1) <

ε
2n+1

. Then

0 ≤ νF ((a, b]) −
N

∑
n=1

νF ((an, bn] ≤ νF ((a, a + δ2]) +
N

∑
n=1

νF ((bn, bn + δ1]) <
ε

2
+

N

∑
n=1

ε

2n+1

hence letting N →∞, one obtains that 0 ≤ νF ((a, b]) −∑
∞
n=1 νF ((an, bn]) ≤ ε, and since ε > 0

was arbitrary, this completes the proof of existence.
For uniqueness, note that the sequence {(−n,n]}n≥1 ⊆ S is an exhausting sequence, since

(−n,n] ⊆ (−(n + 1), n + 1] and ⋃∞n=1(−n,n] = R. This completes the uniqueness of µ.
Now, let µF be a Borel measure on (R,B(R)). Then F is increasing, since for y < x < 0,

then (x,0] ⊆ (y,0], hence F (y) = −µF ((y,0]) ≤ −µF ((x,0]) = F (x), and for 0 ≤ y < x, then
(0, y] ⊆ (0, x], hence F (y) = µF ((0, y]) ≤ µF ((0, x]) = F (x) by monotonicity of the positive
measure µF and for y < 0 ≤ x, it holds that F (y) = −µF ((y,0]) ≤ µF ((0, x]). Let x ≥ 0. Then
{(0, x + 1

n]}n≥1 is a decreasing sequence of sets (0, x + 1
n] ∈ B(R) with ⋂∞n=1(0, x +

1
n] = (0, x],

and µF ((0, x+1]) < ∞, since µ is assumed to be finite on bounded sets, hence for y ∈ [x,x+1],
by continuity from above,

lim
y→x+

F (y) = lim
n→∞µF ((0, x +

1
n]) = µF (

∞
⋂
n=1

(0, x + 1
n]) = µF ((0, x]) = F (x).

Similarly, if x < 0, then {(x + 1
n ,0]}n≥1 is an increasing sequence with ⋃∞n=1(x,0], hence for

y ∈ [x,x + 1], by continuity from below,

lim
y→x+

F (y) = lim
n→∞µF ((0, x +

1
n]) = µF (

∞
⋃
n=1

En) = µF ((x,0]) = F (x).

This completes the proof.

Remark 7.3. The measure µF is called the Lebesgue-Stieltjes measure associated to F . If µ
is a finite Borel measure on (R,B(R)), then µ = µF with F (x) = µ((−∞, x]), and F is the
cumulative distribution function of µ. Note that if F̃ is the function specified in Theorem 7.2,
then F (x) = F̃ (x) +µ((−∞,0]), i.e., F differs from F̃ by a constant µ((−∞,0]). The results
from the previous section about differentiation on Euclidean spaces apply in particular to
R, and thus, by the correspondence between positive Borel measures on (R,B(R)) and
increasing, right-continuous functions from Theorem 7.2, these results are in particular results
about differentiation and integration of such functions. Lebesgue-Stieltjes measures hold
some nice regularity properties, which are to be examined.
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Proposition 7.4. Let µ be a Lebesgue-Stieltjes measure on (R,B(R)). Then

µ(E) = inf {µ(U) ∶ U open, U ⊇ E} (Outer regularity)

= sup{µ(K) ∶K compact, K ⊆ E}. (Inner regularity)

Proof. It is clear that for every E ∈ B(R), it holds that

µ(E) = inf {
∞
∑
i=1
F (bi) − F (ai) ∶ E ⊆

∞
⋃
i=1

(ai, bi]} = inf {
∞
∑
i=1
µ((ai, bi]) ∶ E ⊆

∞
⋃
i=1

(ai, bi]}.

To prove outer regularity of µ, it is proven that µ(E) = inf {∑∞
i=1 µ(ai, bi)) ∶ E ⊆ ⋃∞i=1(ai, bi)}

and then this is generalized to the wanted equality. Let E ∈ B(R) and suppose that E ⊆

⋃∞i=1(ai, bi). Note that (ai, bi) = ⊍
∞
n=1 (ai −

(bi−ai)
n + (bi − ai), bi −

(bi−ai)
n+1 ] for each i ∈ N. Thus,

µ(
∞
⋃
i=1

(ai, bi)) =
∞
∑
i=1
µ((ai, bi)) =

∞
∑
i=1

∞
∑
n=1

µ((ai −
(bi−ai)
n + (bi − ai), bi −

(bi−ai)
n+1 ]) ≥ µ(E).

Conversely, given ε > 0, there exists {(ai, bi]}i≥1 with E ⊆ ⋃∞i=1(ai, bi] and ∑∞
i=1 µ((ai, bi]) ≤

µ(E)+ ε. Then by right-continuity of F , one may choose δi > 0 such that F (bi + δi)−F (bi) ≤
ε + 2−i. Then E ⊆ ⋃∞i=1(ai, bi + δi) and

∞
∑
i=1
µ((ai, bi + δi)) ≤

∞
∑
i=1
µ((ai, bi]) + ε ≤ µ(E) + 2ε,

which proves the equality with open intervals. Let U = ⋃∞i=1(ai, bi). Then U is open with
E ⊆ U and µ(U) ≤ µ(E) + ε. Since also µ(U) ≥ µ(E), this proves that µ is outer regular.

To prove that µ is inner regular, suppose first that E ∈ B(R) is bounded. Then if E is
also closed, E is compact, in which case the equality is obvious. Suppose E is not closed.
Let ε > 0 be given. Then one may choose U ⊇ E E open such that µ(E) ≤ µ(E E) + ε.
Now, set K ∶= E U . Then K is clearly compact and K ⊆ E. Thus,

µ(K) = µ(E) − µ(U) = µ(E E) + µ(E) − µ(U) ≥ µ(E) − ε,

which proves the equality in the case, where E ∈ B(R) is bounded. Suppose E is unbounded.
Let Ei ∶= E ∩ (i, i + 1] for each i ∈ N such that E = ⊍∞i=−∞Ei. Then each Ei is bounded,
so for every ε > 0 there exists a compact set Ki ⊆ Ei such that µ(Ki) ≥ µ(Ei) − ε2

−∣i∣. Let
Hn ∶= ⊍

n
i=−nKi. Then Hn is compact, Hn ⊆ E and

µ(E) ≥ µ(Hn) =
n

∑
i=−n

µ(Ki) ≥
n

∑
i=−n

µ(Ei) − ε2
−∣i∣ = µ(

n

⊍
i=−n

Ei) − ε,

and since {(⊍ni=−nEi)}n≥1 is an increasing sequence with µ(E) = limn→∞ µ(⋃ni=−nEi), the
equality follows as wanted.

Remark 7.5. As the Lebesgue measure, m, on (R,B(R)) is the Lebesgue-Stieltjes measure
given by m((a, b]) = F (a)−F (b), where F (x) = x for every x ∈ R, this also proves Theorem 6.4
in the case where n = 1. Moreover, as every right-continuous and increasing function is
bounded on closed and bounded intervals, i.e., compact subsets of R, it is clear that Lebesgue-
Stieltjes measures are finite on compact sets K ∈ B(R), thus, the preceding proposition proves
that Lebesgue-Stieltjes measures are in fact regular.
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7.2 Functions of bounded variation

Let (X,A, µ) = (R,B(R),m). In this section, functions of bounded variation are introduced,
as well as the theory behind.

Theorem 7.6. Let F ∶R → R be an increasing function, and let G∶R → R be defined by
G(x) = F (x+) ∶= limy→x+ F (y) for every x ∈ R. Then

(i) The set A ∶= {x ∈ R ∶ F is discontinuous} is countable.

(ii) F and G are differentiable m-a.e. with F ′ = G′ m-a.e.

Proof. (i) Note that F is continuous in x ∈ R if and only if F (x+) = F (x−). The assump-
tion that F is increasing yields that the intervals (F (x−), F (x+)) are disjoint for every
x ∈ R. Moreover, if ∣x∣ < N for some N ∈ N, the intervals are contained in the interval
(F (−N), F (N)). Thus,

∑
∣x∣<N

(F (x+) − F (x−)) ≤ F (N) − F (−N) < ∞,

which implies that AN ∶= {x ∈ (−N,N) ∶ F (x+) ≠ F (x−)} is countable, since if F (x+) ≠

F (x−), i.e., F (x+) − F (x−) > 0 for uncountably many x ∈ (−N,N), there would exist n ∈ N
such that Sn ∶= {x ∈ (−N,N) ∶ (F (x+) − F (x−)) ≥ 1

n
} is infinite, and thus ∑∣x∣<N(F (x+) −

F (x−)) ≥ ∑x∈Sn
1
n = ∞. Since AN is countable for every N ∈ N, A is countable as wanted.

(ii) The assumption that F is increasing together with the definition of G(x) ∶= F (x+)
yields that G is increasing and right-continuous. Moreover, G(x) = F (x) for every x ∈ R A.
Thus, if µG is the Lebesgue-Stieltjes measure associated to G, then

G(x + h) −G(x) =

⎧⎪⎪
⎨
⎪⎪⎩

µG((x,x + h]), h ≥ 0

−µG((x + h,x]), h < 0
.

Note that the families {Er}r>0 = {(x− r, x]}r>0 and {Er}r>0 = {(x,x+ r]}r>0 shrink nicely to
x ∈ R as r → 0: Clearly, (x− r, x], (x,x+ r] ⊆ B(x, r) for every r > 0, and m(B(x, r)) = 2r, so
m((x − r, x]) = r =m((x,x + r]) > 2

3r =
1
3m(B(x, r)). Thus, letting ∣h∣ = r → 0 yields that

G′(x) = lim
∣h∣→0

G(x + h) −G(x)

∣h∣
= lim
r→0

µG(Er)

m(Er)
.

Since µG is regular, Theorem 6.26 yields that G′ exists for m-a.e. x ∈ R. Now, let H(x) ∶=
G(x) − F (x). Thus, the goal is to show that H ′ exists and equals zero m-a.e. Note that
H(x) = G(x) − F (x) = F (x+) − F (x), and thus, the assumption that F is increasing yields
that F (x+) ≥ F (x), hence H(x) ≥ 0. Let A′ ∶= {x ∈ R ∶ H(x) > 0}. Then A′ ⊆ A. Now, let
{xi}i≥1 be an enumeration of the x ∈ R for which H ≠ 0. Then H(xi) > 0 for every xi, and

∑
∣xi∣<N

H(xi) = ∑
∣xi∣<N

F (xi+) − F (xi) ≤ F (N) − F (−N) < ∞,

since (F (xi), F (xi+)) are disjoint intervals contained in the interval (F (−N), F (N)) for
every ∣xi∣ < N . Let µ be a measure on (R,B(R)) defined by µ(E) ∶= ∑i≥1H(xi)δxi(E), where
δxi is the Dirac measure. Then µ is finite on compact sets K ⊆ (−N,N), and µ((−∞,0]) =

∑xi≤xH(xi), where ∑xi≤xH(xi) is clearly increasing and right-continuous, thus µ is regular
by Theorem 7.2. Moreover, m(A′) = 0, since A′ ⊆ A, and µ(R A′) = 0, so µ ⊥m. Then

lim
∣h∣→0

RRRRRRRRRRR

H(x + h) −H(x)

h

RRRRRRRRRRR

≤ lim
∣h∣→0

H(x + h) +H(x)

∣h∣
≤ lim

∣h∣→0

µ((x − 2∣h∣, x + 2∣h∣))

∣h∣

= lim
∣h∣→0

4
µ((x − 2∣h∣, x + 2∣h∣))

4∣h∣
= lim

∣h∣→0
4
µ((x − 2∣h∣, x + 2∣h∣))

m((x − 2∣h∣, x + 2∣h∣))
= 0,
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for m-a.e. x ∈ R by Theorem 6.26, letting r = 2∣h∣, since the family {(x − r, x + r)}r>0 shrinks
nicely to x as r → 0. Hence, H ′ exists and H ′ = 0 for m-a.e. x ∈ R, as wanted.

Definition 7.7. Let F ∶R→ C. The total variation function of F is defined by

TF (x) ∶= sup{
n

∑
i=1

∣F (xi) − F (xi−1)∣ ∶ n ∈ N,−∞ < x0 < ⋯ < xn = x}.

Remark 7.8. Note that TF ∶R → [0,∞] is an increasing function. Adding more subdivision
points in the sum only increases the value of the sums in the definition of TF , thus for a < b,
one may assume that a is always a subdivision point. Hence, the total variation of F on
[a, b] is defined as follows.

Definition 7.9. The total variation of F on [a, b] is defined by

TF (b) − TF (a) = sup{
n

∑
i=1

∣F (xi) − F (xi−1)∣ ∶ n ∈ N, a = x0 < ⋯ < xn = b}.

Remark 7.10. In the case where TF (b) = TF (a) = ∞, the definition should be interpreted as

TF (b) = TF (a) + sup{∑ni=1 ∣F (xi) − F (xi−1)∣ ∶ n ∈ N, a = x0 < ⋯ < xn = b}.

Definition 7.11. Let F ∶R → C. Then F is of bounded variation on R, if TF (∞) ∶=

limx→∞ TF (x) < ∞, and F is of bounded variation on [a, b] if TF (b) − TF (a) < ∞. Moreover,
let BV ∶= {F ∶ R→ C ∶ TF (∞) < ∞} and BV ([a, b]) ∶= {F ∶ [a, b] → C ∶ TF (b) − TF (a) < ∞}.

Remark 7.12. If F ∈ BV , then restricting F to [a, b] yields that F ∣[a,b] ∈ BV ([a, b]). Con-

versely, if F ∈ BV ([a, b]), then extending F by setting F (x) ∶= F (a) for every x < a and
F (x) ∶= F (b) for every x > b yields that F ∈ BV .

Example 7.13. The following are examples of functions of bounded variation.

(i) Let F ∶R→ R be bounded and increasing. Then F ∈ BV .

(ii) Let F,G ∈ BV , and let a, b ∈ C. Then aF + bG ∈ BV .

(iii) Let F ∶R → R be differentiable with F ′ bounded. Then F ∈ BV ([a, b]) for every
−∞ < a < b < ∞.

Proof. (i) Consider TF (x) for x ∈ R. Since F is increasing,

TF (x) = sup{
n

∑
i=1

∣F (xi) − F (xi−1)∣ ∶ n ∈ N,−∞ < x0 < ⋯xn = x}

= sup{
n

∑
i=1
F (xi) − F (xi−1) ∶ n ∈ N,−∞ < x0 < ⋯xn = x}

= sup{F (x) − F (x0)} = F (x) − F (−∞).

Now, since F is bounded, there exists M ∈ N such that ∣F (x)∣ ≤ M for all x ∈ R. Then
TF (x) = F (x) − F (−∞) ≤ 2M < ∞, hence T (∞) < ∞.

(ii) Consider the sums in the definition of TaF+bG:

n

∑
i=1

∣aF (xi) + bG(xi) − (aF (xi−1) + bG(xi−1))∣

≤
n

∑
i=1

∣aF (xi) − aF (xi−1)∣ +
n

∑
i=1

∣bG(xi) − bG(xi−1)∣

=∣a∣
n

∑
i=1

∣F (xi) − F (xi−1)∣ + ∣b∣
n

∑
i=1

∣G(xi) −G(xi−1)∣,
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hence TaF+bG(x) ≤ ∣a∣TF (x) + ∣b∣TG(x) for every x ∈ R. Thus, F,G ∈ BV yields that
TaF+bG(∞) ≤ ∣a∣TF (∞) + ∣b∣TG(∞) < ∞.

(iii) Let x ∈ [a, b]. For every [xi−1, xi] ⊆ [a, b], the Mean Value Theorem yields that
there exists c ∈ [xi−1, xi] such that ∣F (xi) − F (xi−1)∣ = ∣F ′(c)∣∣xi − xi−1∣. Moreover, since F ′

is bounded, there exists M ∈ N such that ∣F (xi) − F (xi−1)∣ = ∣F ′(c)∣∣xi − xi−1∣ ≤M ∣xi − xi−1∣
for every c ∈ R. Thus,

TF (b) − TF (a) = sup{
n

∑
i=1

∣F (xi) − F (xi−1)∣ ∶ n ∈ N, a = x0 < ⋯ < xn = b}

≤ sup{
n

∑
i=1
M ∣xi − xi−1∣ ∶ n ∈ N, a = x0 < ⋯ < xn = b} =M(b − a) < ∞.

Lemma 7.14. Let F ∶R→ R be in BV . Then TF ±F are bounded and increasing functions.

Proof. Suppose x < y ∈ R. Let ε > 0 be given, and choose a partition x0 < ⋯ < xn = x such
that ∑ni=1 ∣F (xi) − F (xi−1)∣ ≥ TF (x) − ε. Then TF (y) can be approximated by ∑ni=1 ∣F (xi) −
F (xi−1)∣ + ∣F (y) − F (x)∣, so

TF (y) ± F (y) ≥
n

∑
i=1

∣F (xi) − F (xi−1)∣ + ∣F (y) − F (x)∣ ± F (y)

=
n

∑
i=1

∣F (xi) − F (xi−1)∣ + ∣F (y) − F (x)∣ ± (F (y) − F (x) + F (x))

≥
n

∑
i=1

∣F (xi) − F (xi−1)∣ ± F (x) ≥ TF (x) − ε ± F (x),

hence TF (y) ± F (y) ≥ TF (x) ± F (x), so TF ± F are increasing. Then for x < y ∈ R,

∣F (y) − F (x)∣ ≤ TF (y) − TF (x) ≤ TF (∞) − TF (−∞) < ∞,

which implies that F is bounded, and hence TF ± F are bounded.

Theorem 7.15. The following hold.

(i) F ∈ BV if and only if R(F ) ∈ BV and I(F ) ∈ BV .

(ii) Let F ∶R → R. Then F ∈ BV if and only if F is the difference of two bounded and
increasing functions.

(iii) Let F ∈ BV . Then the limits F (x+) and F (x−) exists for every x ∈ R, and also the
limits F (±∞) exists.

(iv) Let F ∈ BV . Then A ∶= {x ∈ R ∶ F is discontinuous} is a countable set.

(v) Let F ∈ BV and G(x) ∶= F (x+) for every x ∈ R. Then F ′,G′ exist, and F ′ m−a.e.= G′.

Proof. (i) If F = R(F ) + iI(F ) ∈ BV , then ∣R(F )∣ ≤ ∣F (x)∣ for every x ∈ R yields that
TR(F )(x) ≤ TF (x) for every x ∈ R, hence TR(F )(∞) ≤ TF (∞) < ∞, so R(F ) ∈ BV . Similarly
for I(F ). Conversely, if R(F ),I(F ) ∈ BV , then ∣F (x)∣ ≤ ∣R(F )(x)∣ + ∣I(F )(x)∣ for every
x ∈ R yields that TF (x) ≤ TR(F )(x) + TI(F )(x) for every x ∈ R, hence TF (∞) ≤ TR(F )(∞) +

TI(F )(∞) < ∞.
(ii) Suppose F = G−H, where G,H ∶R→ R are bounded and increasing. Then by Example

7.13 (i), G,H ∈ BV , and thus by Example 7.13 (ii), F = G −H ∈ BV . Conversely, suppose
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F ∶R → R and F ∈ BV . Then F = 1
2(TF + F ) − 1

2(TF − F ), where TF ± F are bounded and
increasing by Lemma 7.14.

(iii) Let F ∈ BV . Then also R(F ),I(F ) ∈ BV by (i), hence by (ii), each of the functions
R(F ),I(F )∶R → R is the difference of two bounded and increasing functions, i.e., R(F ) =

F1 −F2 and I(F ) = F3 −F4. Then F = F1 −F2 + i(F3 −F4), where Fi bounded and increasing
for i ∈ {1, ...,4}. Therefore, the limits Fi(x+) and Fi(x−) exist and are finite for every x ∈ R
and i ∈ {1, ...,4}. Moreover, Fi being bounded yields that Fi(±∞) < ∞ for i ∈ {1, ...,4}, so

F (x+) = F1(x+) − F2(x+) + i(F3(x+) − F4(x+)),

so F (x+) exists. Similarly for F (x−). And also

F (±∞) = F1(±∞) − F2(±∞) + i(F3(±∞) − F4(±∞)),

so the limits F (±∞) exists.
(iv) As in (iii), F ∈ BV yields that F = F1 − F2 + i(F3 − F4), where each Fi is bounded

and increasing. Then by Theorem 7.6 (i), the sets Ai ∶= {x ∈ R ∶ Fi is discontinuous} are

countable for i ∈ {1, ..,4}. Now, clearly, A ∶= {x ∈ R ∶ F is discontinuous} ⊆ ⋃4
i=1Ai, and

thus, since every finite union of countable sets is countable, #A ≤ #⋃4
i=1Ai yields that A is

countable as wanted.
(v) For F ∈ BV with F = F1 − F2 + i(F3 − F4) for Fi bounded and increasing, define

Gi(x) ∶= Fi(x+) for each i ∈ {1, ...,4}. Thus, G(x) = F (x+) = F1(x+) − F2(x+) + i(F3(x+) −
F4(x+)) = G1(x+) −G2(x+) + i(G3(x+) −G4(x+)), and by Theorem 7.15 (i), G′

i = F
′
i m-a.e.

for each i = 1, ...,4. Hence, G′ = F ′ m-a.e. as wanted.

Definition 7.16. Let F ∶R → R be in BV . The representation F = 1
2(TF + F ) − 1

2(TF − F )

is called the Jordan decomposition of F , and 1
2(TF ± F ) are called the positive, respectively

negative, variations of F .

Proposition 7.17. Let F ∶R→ R be in BV . Then the positive and negative variations are

1
2(TF ± F )(x) = sup{

n

∑
i=1

(F (xi) − F (xi−1))± ∶ n ∈ N ∶ −∞ < x0 < ⋯ < xn = x} ±
1
2F (−∞).

Proof. Note that x± ∶= max(±x,0) = 1
2(∣x∣ ± x) for x ∈ R. Thus, since ∑ni=1 F (xi) − F (xi−1) =

F (xn) − F (x0), one obtains that

1/2(TF ± F )(x) = sup{
n

∑
i=1

1/2(∣F (xi) − F (xi−1)∣ ± F (x)) ∶ −∞ < x0 < ⋯ < xn = x}

= sup{
n

∑
i=1

(F (xi) − F (xi−1))± ± 1/2F (x0) ∶ −∞ < x0 < ⋯ < xn = x} (∗)

= sup{
n

∑
i=1

(F (xi) − F (xi−1))± ∶ −∞ < x0 < ⋯ < xn = x} ±
1
2F (−∞). (∗∗)

To justify that (∗) = (∗∗), let ε > 0 be given. There exists x0 such that F (−∞)−ε < F (x0) <
F (−∞)+ ε. Assume without loss of generality that x0 is a subdivision point. Then for every
partition,

n

∑
i=1

(F (xi) − F (xi−1))± ± 1/2F (−∞) ≤
n

∑
i=1

(F (xi) − F (xi−1))± ± 1/2F (x0) ±
ε

2
≤ (∗) +

ε

2
,

n

∑
i=1

(F (xi) − F (xi−1))± ± 1/2F (x0) ≤
n

∑
i=1

(F (xi) − F (xi−1)+ ± 1/2F (−∞) ±
ε

2
≤ (∗∗) +

ε

2
,

for every partition, which implies that also (∗) ≤ (∗∗).
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7.3 Characterization of complex Borel measures

The theory of functions of bounded variation rises the question: Which functions of bounded
variation correspond to a complex Borel measure on (R,B(R))? In this section, an answer to
this question is provided. Initially, functions of normalized bounded variation are introduced.

Definition 7.18. Define the space of functions of normalized bounded variation by

NBV ∶= {F ∈ BV ∶ F is right-continuous and F (−∞) = 0}.

Example 7.19. Let F ∈ BV . Then G∶R→ C defined by G(x) ∶= F (x+)−F (−∞) lies in NBV .

Proof. Since F (−∞) is just a constant, non-dependent of x ∈ R, it is clear from Theorem
7.15 that G ∈ BV . Moreover, G is right-continuous by definition, since limy→x+ G(y) =

F (x+) − F (−∞) = G(x), and G(−∞) = limy→−∞ F (y+) − F (−∞) = F (−∞) − F (−∞) = 0.

Lemma 7.20. Let F ∈ BV . Then TF (−∞) = 0. Moreover, if F is right-continuous, then so
is TF .

Proof. Let ε > 0 be given. Let x ∈ R, and choose −∞ < x0 < ⋯ < xn = x such that ∑ni=1 ∣F (xi)−
F (xi−1)∣ ≥ TF (x) − ε. By definition,

TF (x) − TF (x0) = sup{
n

∑
i=1

∣F (xi) − F (xi−1)∣ ∶ n ∈ N, x0 < ⋯ < xn = x},

hence, TF (x) − TF (x0) ≥ ∑
n
i=1 ∣F (xi) − F (xi−1)∣ ≥ TF (x) − ε, which implies that TF (x0) ≤ ε.

Then TF being increasing yields that TF (y) ≤ ε for every y ∈ R with y < x0. Therefore, TF
being a positive function yields that T (−∞) = 0. Now, suppose that F is right-continuous.
Let ε > 0 be given, and let x ∈ R. Moreover, let α ∶= TF (x+) − TF (x), and choose δ > 0 such
that ∣F (x + h) − F (x)∣ < ε and TF (x + h) − TF (x+) < ε, whenever 0 < h < δ. The goal is to
prove that α = 0. Now, for 0 < h < δ, there exists a partition x = x0 < ⋯ < xn = x+h such that

n

∑
i=1

∣F (xi) − F (xi−1)∣ ≥ 3/4(TF (x + h) − TF (x)) ≥ 3/4(T (x+) − TF (x)) = 3/4α,

hence ∑ni=2 ∣F (xi)−F (xi−1)∣ ≥ 3
4α− ∣F (x1)−F (x)∣ ≥ 3

4α− ε. Likewise, there exists a partition
x = t0 < ⋯ < tm = x1 such that ∑mi=1 ∣F (ti) − F (ti−1)∣ ≥ 3

4α. Then x = t0 < ⋯ < tm < x2 < ⋯ <

xn = x + h is a partition of [x,x + h], and thus

α + ε > TF (x + h) − TF (x) = TF (x + h) − TF (x) + TF (x1) − TF (x) − (TF (x1) − TF (x))

≥
m

∑
i=1

∣F (ti) − F (tj−1)∣ +
n

∑
i=1

∣F (xi) − F (xi−1)∣

≥ 3
4α +

3
4α − ε =

3
2α − ε,

hence α < 4ε, and therefore, ε > 0 being arbitrary yields that α = 0 as wanted.

Theorem 7.21. Let µ be a complex Borel measure on (R,B(R)). If F ∶R→ C is defined by
F (x) ∶= µ((−∞, x]), then F ∈ NBV . Conversely, if F ∈ NBV , there exists a unique complex
Borel measure µF such that µF ((−∞, x]) = F (x). Moreover, ∣µF ∣ = µTF .

Proof. Any complex measure can be decomposed as µ = µR+iµI = µ
+
1 −µ

−
1 +i(µ

+
2 −µ

−
2), where

µR, µI are finite signed measures, i.e., µ±i is a finite positive measure for each i ∈ {1,2}.
Suppose F±

i is defined by F ±
i (x) ∶= µ

±
i ((−∞, x]). Then F±

i is increasing and right-continuous
by Theorem 7.2 and the following remark. Moreover, F±

i (−∞) = µ±i (∅) = 0, and F±
i (∞) =
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µ±i (R) < ∞. Thus, every F±
i is increasing and bounded, hence F = F+

1 − F −
1 + i(F+

2 − F −
2 ) is

of bounded variation by Theorem 7.15 (i) and (ii). Now, F is clearly also right-continuous,
and F (−∞) = F+

1 (−∞) − F −
1 (−∞) + i(F +

2 (−∞) − F−
2 (−∞)) = 0, hence F ∈ NBV .

Conversely, let F ∈ NBV . By Theorem 7.15 (i), R(F ),I(F ) ∈ BV , thus by (ii),

F = 1
2(TR(F ) +R(F )) − 1

2(TR(F ) −R(F )) + i(12(TI(F ) + I(F )) − 1
2(TI(F ) − I(F ))).

It is clear that F being right-continuous and F (−∞) = 0 implies that R(F ) and I(F ) are
right-continuous, and R(F )(−∞) = I(F )(−∞) = 0. Then by Lemma 7.20, TR(F )(−∞) =

TI(F )(−∞) = 0, and TR(F ) and TR(F ) are right-continuous. Moreover, TR(F ) ± R(F ) and
TI(F ) ± I(F ) are increasing by Lemma 7.14. This implies that F = F+

1 − F−
1 + i(F+

2 − F−
2 ),

where F ±
i ∈ NBV , and in particular, F±

i is right-continuous and increasing for each i ∈ {1,2}.
Thus by Theorem 7.2, each F±

i gives rise to a unique finite positive Borel measure, µF±i with
F±
i (x) = µF±i ((−∞, x]), such that F (x) = µF ((−∞, x]), and µF is unique by the uniqueness

of the decomposition of a complex measure into its real and imaginary part, as well as the
uniqueness of the Jordan decomposition of these.

To complete the proof, let µTF ((−∞, x]) = TF (x). The goal is to prove that ∣µF ∣ = µTF .
By definition of the total variation,

µTF ((−∞, x]) = TF (x) = sup{
n

∑
i=1

∣F (xi) − F (xi−1)∣ ∶ n ∈ N,−∞ < x0 < ⋯ < xn = x}

= sup{
n

∑
i=1

∣µ((xi−1, xi])∣ ∶ n ∈ N,−∞ < x0 < ⋯ < xn = x}

≤ sup{
∞
∑
i=1

∣µ(Ei)∣ ∶ n ∈ N,
∞
⊍
i=1
Ei = (−∞, x]} = ∣µF ∣((−∞, x]),

hence µTF ((−∞, x]) ≤ ∣µF ∣((−∞, x]) for every x ∈ R. To prove the other inequality, let
(a, b] ∈ B(R) for a < b. Then

∣µF ((a, b])∣ = ∣F (b) − F (a)∣ ≤ TF (b) − TF (a) = µTF ((a, b]).

Let S ∶= {⊍ni=1(ai, bi] ∶ n ∈ N,−∞ ≤ ai ≤ bi ≤ ∞}. Then S is a ring over P(R), as S is closed
under differences and pairwise unions. Moreover, in the proof of Theorem 7.2 it has been
obtained that S = {(a, b] ∶ a ≤ b ∈ R} is a semi-ring, thus, S being the collection of finite
disjoint unions of elements in S yields that S is a ring. By countable additivity,

∣µF (
n

⊍
i=1

(ai, bi])∣ = ∣
n

∑
i=1
µF ((ai, bi])∣ ≤

n

∑
i=1

∣µF ((ai, bi])∣ ≤
n

∑
i=1
µTF ((ai, bi]) = µTF (

n

⊍
i=1

(ai, bi]),

hence ∣µF (E)∣ ≤ µTF (E) for every E ∈ S. Now, let M ∶= {E ∈ B(R) ∶ ∣µF (E)∣ ≤ µTF (E)},
and let {Ei}i≥1 be an increasing sequence in M. Then by continuity from below,

∣µF (
∞
⋃
i=1
Ei)∣ = lim

i→∞
∣µF (Ei)∣ ≤ lim

i→∞
µTF (Ei) = µTF (

∞
⋃
i=1
Ei),

so ⋃∞i=1Ei ∈ M. Let {Ei}i≥1 be a decreasing sequence in M. Since µF is a complex measure
and thus finite, and also µTF is a finite measure, since TF (−∞) < ∞, continuity from above
yields that also

∣µF (
∞
⋂
i=1
Ei)∣ = lim

i→∞
∣µF (Ei)∣ ≤ lim

i→∞
µTF (Ei) = µTF (

∞
⋂
i=1
Ei),

so ⋂∞i=1Ei ∈ M. Hence, M is closed under countable monotone unions and intersections,
so M is a monotone class. Thus, if M(S) is the smallest monotone class containing S,
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then S ⊆ M yields that M(S) ⊆ M. By Monotone Class Theorem for rings (Theorem 7.1,
Berezansky, Sheftel, and Us 1996), M(S) = σR(S), where σR(S) is the σ-ring generated by
S. Since σR(S) is closed under countable unions, one obtains R = ⋃∞n=1(−n,n] ∈ σR(S), and
therefore, σR(S) = σ(S), where σ(S) is the σ-algebra generated by S. Hence B(R) = σ(S) ⊆
M, and thus, it holds for every E ∈ B(R) that ∣µF (E)∣ ≤ µTF (E). Then

∣µF ∣((−∞, x]) = sup{
∞
∑
i=1

∣µF (Ei)∣ ∶ (−∞, x] =
∞
⊍
i=1
Ei}

≤ sup{
∞
∑
i=1
µTF (Ei) ∶ (−∞, x] =

∞
⊍
i=1
Ei} = µTF ((−∞, x]),

which proves the other inequality, hence ∣µF ∣ = µTF as wanted.

Remark 7.22. The preceding theorem answers the question posed earlier, that is, functions of
normalized bounded variation correspond to complex Borel measures on (R,B(R)). It turns
out that there is a direct link between the positive and negative variations of F ∈ NBV
defined in Definition 7.16 and the positive and negative variations of the corresponding
Borel measure: If F ∈ NBV is a real-valued function such that µF ((−∞, x]) = F (x) is a
finite signed Borel measure on (R,B(R)), then the positive and negative variations of µF is
given by µ±F = µ 1

2
(TF±F ). This follows, since the total variation of µF is given by ∣µF ∣ = µT .

The next question to arise is: Which functions of normalized bounded variation correspond
to complex Borel measures that are singular, respectively, absolutely continuous with respect
to Lebesgue measure?

Lemma 7.23. Let F ∈ NBV , and let µF ((−∞, x]) = F (x). Then µF is regular.

Proof. Recall that µF is regular if ∣µF ∣ is regular. By Theorem 7.15, ∣µF ∣ = µTF , where
µTF ((−∞, x]) = TF (x) for TF increasing and right-continuous by Lemma 7.20. Thus, by
Proposition 7.4, µTF is regular, and hence, so is µF .

Proposition 7.24. Let F ∈ NBV . Then the following properties hold.

(i) F is differentiable with F ′ ∈ L1(m).

(ii) µF ⊥m if and only if F ′ = 0 m-a.e.

(iii) µF ≪m if and only if F (x) = ∫
x
−∞ F

′(t)dm(t).

Proof. (i) Let F ∈ NBV and µF the corresponding complex Borel measure from Theo-
rem 7.21 such that µF ((−∞, x]) = F (x). Let dµF = dλ+fdm be the Lebesgue decomposition
of µ with respect to m. Consider the difference quotient of F .

∣F (x + h) − F (x)∣

∣h∣
=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

µF ((x,x+h])
m((x,x+h]) , h > 0

µF ((x+h,x])
m((x+h,x]) , h < 0

.

Since the families {Er}r>0 = {(x−r, x]}r>0 and {Er}r>0 = {(x,x+r]}r>0 shrink nicely to x ∈ R
as r → 0, letting ∣h∣ = r → 0 yields that

F ′(x) = lim
∣h∣→0

∣F (x + h) − F (x)∣

∣h∣
= lim
r→0

µF (Er)

m(Er)
= f(x)

for m-a.e. x ∈ R by Theorem 6.26, since µF is regular by Lemma 7.23. Moreover, as µF
is a complex measure, Theorem 4.3 (The Lebesgue-Radon-Nikodym Theorem for complex

measures) yields that F ′ m−a.e.= f ∈ L1(m).
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(ii) Suppose µF ⊥ m such that R = A ⊍ B, where µF (A) = m(B) = 0. Now, for every
x ∈ R, it holds that either x ∈ A or x ∈ B, thus for a family {Er}r>0, which shrinks nicely to
x as r → 0, one eventually obtains that either Er ⊆ A or Er ⊆ B. So for every x ∈ A,

F ′(x) = lim
r→0

µF (Er)

m(Er)
= 0,

as µF (Er) = 0 as r → 0, so {x ∈ R ∶ F ′ ≠ 0} ⊆ B for a Lebesgue null set B, hence F ′ = 0 m-a.e.

Conversely, suppose F ′ = 0 m-a.e. Let A ∶= {x ∈ R ∶ F ′ = 0} and let B ∶= R A. By
assumption, F ′ = 0 m-a.e., hence m(B) = 0, and for every x ∈ A,

0 = F ′(x) = lim
r→0

µF (Er)

m(Er)
,

hence µF (A) = 0. Thus, µF ⊥m.
(iii) Suppose µF ≪m. By Theorem 4.6 (The Radon-Nikodym Theorem), dµF = fdm for

f ∈ L1(µ). Also, by part (i), F ′ = f m-a.e., which yields that

F (x) = µ((−∞, x]) = ∫(−∞,x]
f(t)dm(t) = ∫(−∞,x]

F ′(t)dm(t).

Conversely, suppose F (x) = ∫
x
−∞ F

′(t)dm(t). Then µF ((−∞, x]) = F (x) = ∫
x
−∞ F

′(t)dm(t),
so dµF = F ′dm, hence µF ≪m.

Definition 7.25. Let F ∶R → R. Then F is absolutely continuous if for every ε > 0, there
exists a δ > 0 such that ∑Ni=1 ∣F (bi) − F (ai)∣ < ε, whenever ∑Ni=1(bi − ai) < δ for a finite set of
disjoint intervals (a1, b1), ..., (aN , bN), i.e., a1 < b1 < a2 < ⋯ < aN < bN .

Remark 7.26. If F is absolutely continuous, then F is also uniformly continuous: Let N =

1 and ε > 0, then for every δ, one obtains that ∣F (b) − F (a)∣ < ε, whenever ∣b − a∣ < δ.
Thus, absolute continuity is stronger than uniform continuity. Moreover, if F is everywhere
differentiable with F ′ bounded, then F is absolutely continuous by the Mean Value Theorem:
If ∣F ′∣ ≤ M for some M ∈ N, then for every ε > 0, one may choose δ ∶= ε

M , such that

∑Nn=1 ∣F (bn) − F (an)∣ ≤ M ∑Nn=1 ∣bn − an∣ ≤ Mδ = ε, whenever ∑Nn=1 ∣bn − an∣ ≤ δ. In fact, F
being absolutely continuous is equivalent to the corresponding complex Borel measure µF
being absolutely continuous with respect to the Lebesgue measure, as seen in the following.

Proposition 7.27. Let F ∈ NBV . Then F is absolutely continuous if and only if µF ≪m.

Proof. Suppose µF ≪ m. Define E ∶= ⊍Ni=1(ai, bi] for some N ∈ N, and let ε > 0 be given.
Then by Theorem 2.26, there exists δ > 0 such that m(E) = ∑Ni=1(bi − ai) < δ yields that
∣µF (E)∣ = ∣∑Ni=1 µF (ai, bi)∣ = ∣∑Ni=1 F (bi) − F (ai)∣ < ε, hence F is absolutely continuous.
Conversely, suppose that F is absolutely continuous. Let E ∈ B(R) such that m(E) = 0,
and let ε > 0 be given. By absolute continuity of F , one may choose δ > 0 such that

∑Ni=1 ∣F (bi) −F (ai)∣ < ε, whenever ∑Ni=1(bi − ai) < δ for disjoint intervals (a1, b1), ..., (aN , bN).
By Theorem 6.4, m(E) = inf {m(U) ∶ U ⊇ E open}, so there exists a decreasing sequence
{Ui}i≥1 of open sets Ui ⊇ E such that m(U1) < δ, thus m(Ui) < δ for every i ≥ 0. Then
by continuity from above, limi→∞ µF (Ui) = µF (E). Now, every open subset of R can be
written as a disjoint union of countably many open intervals, thus, let Ui = ⊍

∞
k=1(a

k
i , b

k
i ).

Then δ >m(Ui) = ∑
∞
k=1(b

k
i − a

k
i ) ≥ ∑

N
k=1(b

k
i − a

k
i ) for every N ∈ N, hence

N

∑
k=1

∣µF ((a
k
i , b

k
i ))∣ =

N

∑
k=1

∣µF ((a
k
i , b

k
i ])∣ =

N

∑
k=1

∣F (bki ) − F (aki )∣ < ε,

for every N ∈ N by absolute continuity of F . Thus, letting N → ∞ yields that µF (Ui) =

limN→∞∑Nk=1 ∣µF ((a
k
i , b

k
i ))∣ ≤ ε, hence ∣µF (E)∣ ≤ ε. Now, since ε > 0 was chosen arbitrarily,

this shows that µF (E) = 0, and thus, µF ≪m.
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Corollary 7.28. Let f ∈ L1(m), and let F ∶R → C be defined by F (x) ∶= ∫
x
−∞ f(t)dm(t) for

every x ∈ R. Then F ∈ NBV , F is absolutely continuous, and f = F ′ m-a.e. Conversely, if
F ∈ NBV is absolutely continuous, then F ′ ∈ L1(m) and F (x) = ∫

x
−∞ F

′(t)dm(t).

Proof. The assumption f ∈ L1(m) yields that dµ ∶= fdm defines a complex measure. Then

µ((−∞, x]) = ∫(−∞,x]
f(t)dm(t) = F (x),

hence F ∈ NBV by Theorem 7.21. Now clearly, µ ≪ m, hence F is absolute continuous by
Proposition 7.27. Moreover, Proposition 7.24 yields that

∫
x

−∞
F ′(t)dm(t) = F (x) = ∫

x

−∞
f(t)dm(t),

which implies exactly that F ′ = f m-a.e. Conversely, if F ∈ NBV is absolutely continuous,
and µF ((−∞, x]) = F (x), then µF ≪ m by Proposition 7.27. Moreover, F is differentiable
with F ′ ∈ L1(m), and F (x) = ∫

x
−∞ F

′(t)dm(t) by Proposition 7.24.

This winds up the complete characterization of complex Borel measures is given by the
theory of functions of bounded variation. The following section proceeds with the proof of
the Fundamental Theorem of Calculus, which utilizes the preceding theory.

7.4 The Fundamental Theorem of Calculus

This section concludes the chapter with the proof of the Fundamental Theorem of Calculus
for Lebesgue integrals; a result which can be obtained almost directly from the preceding
theory of functions of bounded variation. The section is initialized with a lemma.

Lemma 7.29. Let F ∶R→ C be absolutely continuous on [a, b]. Then F ∈ BV ([a, b]).

Proof. Let ε = 1 be given, and choose δ > 0 such that ∑Ni=1 ∣F (bi) − F (ai)∣ < 1, whenever

∑Ni=1(bi − ai) < δ for disjoint intervals (a1, b1), ..., (aN , bN) ⊂ [a, b]. Choose N ∶= inf {n ∈ N ∶

n ≥ b−a
δ

}, such that δ ≥ b−a
N . Let a = x0 < ⋯ < xn = b be any partition of [a, b]. Then by

(possibly) adding more subdivision points, the intervals (xi−1, xi) can be collected into at

most N groups of consecutive intervals such that ∑
kj
i=1(xi − xi−1) < δ for j ∈ {1, ...,N}, i.e.,

the sum of the intervals lengths in each group is at most δ. Then ∑
kj
i=1 ∣F (xi) −F (xi−1)∣ < 1,

hence

TF (b) − TF (a) = sup{
n

∑
i=1

∣F (xi) − F (xi−1)∣ ∶ a = x0 < ⋯ < xn = b}

= sup{
N

∑
j=1

kj

∑
i=1

∣F (xi) − F (xi−1)∣ ∶ a = x0 < ⋯ < xkN = b} ≤ N.

Theorem 7.30 (Fundamental Theorem of Calculus for Lebesgue Integrals). Let F ∶ [a, b] → C
for −∞ < a < b < ∞. Then the following are equivalent.

(i) F is absolutely continuous on [a, b].

(ii) F (x) − F (a) = ∫
x
a f(t)dm(t) for some f ∈ L1(m).

(iii) F ′ exists for m-a.e. x ∈ [a, b] with F ′ ∈ L1([a, b],m), and F (x)−F (a) = ∫
x
a F

′(t)dm(t).
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Proof. Assume without loss of generality that F (a) = 0. Note that this is justified, since
otherwise, one may consider the function F̃ (x) = F (x) −F (a). Moreover, it follows trivially
that (iii) implies (ii), thus, it suffices to prove that (ii) implies (i) and (i) implies (iii). To
prove the latter, note first that the assumption that F is absolutely continuous on [a, b]
yields that F ∈ BV ([a, b]) by Lemma 7.29. Now, expand F such that F (x) = F (a) = 0 for
every x < a and F (x) = F (b) for every x > b. Then F ∶R → C, and by Remark 7.12, F ∈ BV .
By assumption, F is continuous, hence F is in particular right-continuous, and F (−∞) = 0,
so F ∈ NBV . Thus, Corollary 7.28 yields exactly that F ′ exists m-a.e. and F ′ ∈ L1(m), so
F ′ ∈ L1([a, b],m), and F (x) = ∫

x
−∞ F

′(t)dm(t), hence F (x) − F (a) = ∫
x
a F

′(t)dm(t). This
proves that (i) implies (iii). Now, to prove that (ii) implies (i), let f(t) = 0 for every t ∉ [a, b],
such that F (x) = ∫

x
−∞ f(t)dm(t). Then, by Corollary 7.28, F is absolutely continuous as

wanted.

The following decomposition of complex Borel measure on (Rn,B(Rn)) is sometimes
important. Moreover, it provides a nice transition into the final chapter.

Definition 7.31. Let µ be a complex Borel measure on (Rn,B(Rn)). Then µ is discrete, if
there exists a countable subset, {xi}i≥1 ⊆ Rn, and there exists ci ∈ C, such that ∑∞

i=1 ∣ci∣ < ∞
and µ = ∑∞

i=1 ciδxi . Conversely, µ is continuous or non-atomic if µ({x}) = 0 for every x ∈ Rn.

Lemma 7.32. Let µ be a complex Borel measure on (Rn,B(Rn)). Then µ can be decomposed
as µ = µd + µc, where µd is discrete, and µc is continuous.

Proof. Define E ∶= {x ∈ Rn ∶ µ({x}) ≠ 0}. Let F ⊆ E be any countable subset. Then

∑x∈F µ({x}) = µ(F ), so the series is convergent, and, in particular, absolutely convergent.
The claim is now that En ∶= {x ∈ E ∶ ∣µ({x})∣ > 1

n
} is finite for every n ∈ N. Suppose by

contradiction that En ∶= {x ∈ E ∶ ∣µ({x})∣ > 1
n
} is infinite. Then there exists a countably

infinite subset, F ′
n ⊆ En, i.e., there exists a countable subset F ′ ⊆ E such that F ′

n ∶= {x ∈

F ′ ∶ ∣µ({x})∣ > 1
n
} ⊆ En is countably infinite. However, as the series ∑x∈F ′ µ({x}) converges

absolutely, this is a contradiction. Thus, E = ⋃∞n=1En being a countable union of finite sets
yields that E itself is countable. Now, define measures µd(A) ∶= µ(A ∩ E) and µc(A) ∶=

µ(A E) for every A ∈ B(R). Then µd is discrete, µc is continuous, and µ(A) = µ(A ∩E) +

µ(A E) = µd(A) + µc(A) for every A ∈ B(R), which completes the proof.

Remark 7.33. If µ is discrete, then µ is concentrated on a countable subset {xi}i≥1 ⊆ Rn, i.e.,
µ(Rn ⋃∞i=1{xi}) = 0, where m(⋃∞i=1{xi}) = 0, as countable sets have Lebesgue measure zero.
Therefore, it is clear that if µ is discrete, then µ ⊥ m. On the other hand, if µ ≪ m, then
m({x}) = 0 for every x ∈ Rn yields that also µ({x}) = 0, hence µ is continuous. Now, if µ is
a complex Borel measure with Lebesgue decomposition µ = ψ + fdm, where fdm ≪ m and
ψ ⊥m, then fdm is continuous, and ψ = ψd +ψc by Lemma 7.32, thus ψ ⊥m yields that also
ψd ⊥m and ψc ⊥m. Therefore, every complex Borel measure can be written as

µ = µac + µsc + µd,

where µac ≪m, µsc is continuous, but µsc ⊥m, and µd is discrete. This leads to the existence
of a nonzero, singular continuous measure µsc on (R,B(R)), which by Proposition 7.24 and
Proposition 7.27 corresponds to functions F ∈ NBV such that F is not absolutely continuous,
but F is differentiable with F ′ = 0 m-a.e. The existence of such a measure is to be examined
in the last chapter, which is devoted to answering the question: Are there any non-atomic
measures, which are singular with respect to the Lebesgue measure?
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8 Singularity and the Lebesgue measure

Throughout this chapter, let m denote the Lebesgue measure on (R,B(R)), and let R be
equipped with the standard metric topology. The purpose of this section is to give an
example of an non-atomic measure, which is singular with respect to the Lebesgue measure.
The theory of this section is based on exercises 6.8, 7.12 & 20.9 from Schilling 2017.

8.1 The Cantor ternary set and the Cantor function

In this section, the Cantor ternary set and the Cantor function is introduced, as well as
theory behind.

Definition 8.1. Let C0 ∶= [0,1]. Define the Cantor ternary set, denoted C, by

C ∶=
∞
⋂
n=1

Cn,

where Cn =
Cn−1
3 ∪ (2

3 +
Cn−1
3

) for n ≥ 1 (with the convention that Cn
3 ∶= {x3 ∶ x ∈ Cn}).

Remark 8.2. Let C ⊆ [0,1] be equipped with the subspace topology. The definition of each
set, Cn, corresponds to the construction of iteratively removing the open middle third from
the initial set C0, i.e., C1 = [0,1] (13 ,

2
3) = [0, 13] ∪ [23 ,1] etc. Thinking of the construction

this way provides a picture of a decreasing nested sequence {Cn}n≥1 with C1 ⊃ C2 ⊃ ⋯.
Let P([0,1]) be the power set of [0,1] equipped with the discrete topology. Define a map
Φ∶ P([0,1]) → P([0,1]) by Φ(A) ∶= 1

3A ∪ (13A + 2
3). for every A ∈ P([0,1]). Then

Φ(C0) = Φ([0,1]) = [0, 13] ∪ [23 ,1] = C1,

thus, C1 ⊂ C0 yields that C2 = Φ(C1) ⊂ Φ(C0) = C1. Continuing this way, one obtains that
Cn+1 = Φ(Cn) ⊂ Φ(Cn−1) = Cn for every n ∈ N, and thus, {Cn}n≥1 is a decreasing sequence
with C1 ⊃ C2 ⊃ ⋯. For an intuitive understanding, the first five iterations are sketched in the
figure below.

Figure 1: The Cantor set

Lemma 8.3. The Cantor set, C, has Lebesgue measure zero.

Proof. Note that every Cn is a Borel set, which consists of 2n disjoint intervals, each of
which has length 3−n. Thus, for each n ∈ N, it holds that m(Cn) = 2n3−n, or similarly, by
translation invariance of the Lebesgue measure that

m(Cn) =m(Φ(Cn−1)) = 2
3m(Φ(Cn−2)) = 2

3
2
3m(Φ(Cn−3)) = ⋯ = (2

3
)
n−1

m(Φ(C0)) = (2
3
)
n
.

Furthermore, C = ⋂∞n=1Cn, where {Cn}n≥1 is a decreasing sequence of Borel sets with m(C0) =

m([0,1]) = 1 < ∞, thus by continuity from above,

m(C) =m(
∞
⋂
n=1

Cn) = lim
n→∞m(Cn) = lim

n→∞ (2
3
)
n
= 0

as wanted.
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Proposition 8.4. The Cantor set, C, holds the following properties.

(i) C is metrizable.

(ii) C is compact.

(iii) C has no isolated points.

(iv) C is totally disconnected.

Proof. (i) The Cantor set C is very clearly metrizable, as it is a subspace of R given the
subspace topology, i.e., the standard metric topology. Note that since each Cn is a finite
union of closed intervals, Cn itself is closed. Hence, C is closed in the metric topology on R,
since arbitrary intersections of closed sets are closed. Thus, C, being a closed subset of the
complete metric space R, is in particular a complete metric space.

(ii) Observe that the Cantor set is bounded in the region [0,1], since for every a, b ∈ C,
∣b − a∣ ≤ 1 < 1 + ε for every ε > 0. Now, since C is a closed and bounded subspace of R, C
is compact by the Heine-Borel Theorem. This result also follows from the construction of
Φ∶P([0,1]) → P([0,1]): Every map from a discrete topological space is continuous, since
the preimage of every set is open in the discrete topology, hence Φ is a continuous map, and
thus, C0 being compact yields that Φ(C0) = C1 is compact, which then again yields that
Φ(C1) = C2 is compact etc. Then, C being an intersection of compact sets yields that C is
compact. Furthermore, every finite intersection of sets from the nested sequence, {Cn}n≥1 is
non-empty. Thus, by compactness of C and the finite intersection property, C is non-empty.

(iii) Let ε > 0 be given. Choose n ∈ N large enough so that 3−n < ε. Let x ∈ C = ⋂∞i=1Ci.
Then x ∈ Cn. Let J1

n, ..., J
2n
n denote the 2n intervals, each of length 3−n, which make up Cn

arranged in increasing order of their endpoints, i.e., Cn = ⊍
2n

k=1 J
k
n . Then x ∈ Cn yields that

there exists k ∈ {1, ...,2n} such that x ∈ Jkn . Let Jkn = [ak, bk]. Then for some j ∈ {1, ...,2n+1},

Jkn ∩Φ(Cn) = [ak, bk] ∩Cn+1 = J
j
n+1 ⊍ J

j+1
n+1 = [aj , bj] ⊍ [aj+1, bj+1] = [ak, bj] ⊍ [aj+1, bk],

i.e., the map Φ preserves endpoints, so the endpoints are never removed in the iteration.
Thus, pick y = ak or y = bk such that y ≠ x with y ∈ Cn for every n ∈ N, hence y ∈ C. Then
∣x − y∣ ≤ 3−n < ε. This proves that every neighbourhood of x ∈ C contains at least one other
point y ∈ C, so x is not an isolated point, hence C has no isolated points.

(iv) The claim is that C is totally disconnected, i.e., the only connected subspaces of C are
the one-point sets. Let a, b ∈ C be distinct points in C. Choose n ∈ N so large that ∣b−a∣ > 3−n.
Then there exists a point c, which lies between a and b, such that c ∉ Cn, hence c ∉ C. This
shows that any subspace of C containing two points a, b has separation and therefore, it not
connected. Thus, C is totally disconnected.

Theorem 8.5. (Brouwer 1910). The Cantor set is uniquely determined up to homeomor-
phism by the properties given in Proposition 8.4.

Remark 8.6. As a result of the preceding theorem, any set homeomorphic to the Cantor
ternary set can be referred to as a Cantor set.

Example 8.7. X ∶= ∏∞
i=1{0,1} given the product topology is a Cantor set.

Proof. It suffices to prove that X holds the properties from Proposition 8.4.
(i) Let each {0,1} be equipped with the discrete topology, and let X be equipped with

the product topology. Then {0,1} is metrizable, since the discrete topology is induced by
the discrete metric. Thus, X = ∏∞

i=1{0,1} being a countable product of metric spaces implies
that X itself is metrizable (Munkres 2008, p. 129).
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(ii) Each {0,1} is a finite topological space, hence {0,1} is compact. Thus, X is compact
by Tychonoff’s Theorem (Theorem 37.3, Munkres 2008).

(iii) Assume by contradiction that x ∈ X is an isolated point, that is, {x} ⊆ X is open.
Now, every open set in the product topology is a union of sets, ∏∞

i=1Ui, where Ui ⊆ {0,1}
is open and Ui = {0,1} for all but finitely many i ∈ N. Therefore, any singleton {x} ⊆ X
cannot be open in the product topology, as {x} = ∏∞

i=1{xi} for {xi} = {0},{1} ≠ {0,1} for
every i ∈ N. Thus, X has no isolated points.

(iv) Every topological space equipped with the discrete topology is totally disconnected,
so {0,1} is totally disconnected. This may be proven directly, as a connected space is an
open subset that cannot be represented as the union of disjoint, non-empty open subsets.
Thus, {0,1} = {0} ⊍ {1} is not connected, hence the only connected subsets of {0,1} are the
one-point sets, {0},{1}. This implies that also X is totally disconnected, since if C ⊆X is a
connected subspace, which is not a one-point set, then x ≠ y ∈ C for some x = (x1, x2, ...) and
y = (y1, y2, ...). Then xi ≠ yi for some i ∈ N. Now, let pi∶X → {0,1} be the i’th projection.
Since the projection is continuous, and connectedness is preserved under continuous images,
pi(C) ⊆ {0,1} is connected. But {xi, yi} ⊆ pi(C), and xi ≠ yi implies that {xi, yi} ≠ {0},{1},
which is a contradiction. Thus, X is totally disconnected.

Definition 8.8. Let Cn = ⊍
2n

k=1 J
k
n with Jkn = [ak, bk], and let I1n, ..., I

2n−1
n denote the 2n − 1

intervals, which make up [0,1] Cn, arranged in increasing order of their endpoints. Define
a sequence {Fn}n≥1 of functions Fn∶R→ R by

Fn(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ 0

k2−n, if x ∈ Ikn,1 ≤ k ≤ 2n − 1

(32)
nx + k2−n − (32)

nbk, if x ∈ Jkn ,1 ≤ k ≤ 2n

1, if x ≥ 1

.

Remark 8.9. The definition of Fn(x), when x ∈ Jkn for 1 ≤ k ≤ 2n, corresponds to interpolating
linearly, as seen on the sketch below. Thus, by definition, each Fn is a continuous function.

x

F1

1
2

x

F2

1
2

x

F3

1
2

x

F4

1
2

Figure 2: The Cantor function
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Proposition 8.10. Let {Fn}n≥1 be the sequence defined in Definition 8.8. Then the following
hold.

(i) {Fn}n≥1 converges uniformly to a continuous function, F ∶R → R, which is called the
Cantor function.

(ii) F ∈ NBV .

(iii) F is differentiable m-a.e. with F ′ = 0 m-a.e.

(iv) F is not absolutely continuous.

Proof. (i) Since R is a complete metric space, it suffices to show that the sequence {Fn}n≥1
is Cauchy. By definition, one may observe that

∣Fn(x) − Fn+1(x)∣ ≤ 1
22−n =

1

2n+1
,

for every x ∈ R and for every n ∈ N. Let 0 < ε < 1 be given. Set N ∶= −
log(ε)
log(2) . Then for every

n,m ≥ N with n <m, and for every x ∈ R,

∣Fn(x) − Fm(x)∣ ≤
m−1
∑
k=n

1

2k+1
=

1

2n
−

1

2m
≤

1

2N
= ε.

Thus, {Fn}n≥1 is Cauchy with respect to the uniform norm. Hence, by completeness of R, the
sequence {Fn}n≥1 converges uniformly to F , and as each Fn is continuous, so is the uniform
limit, F .

(ii) That F is monotonically increasing is inherited directly from the pointwise limit,
since for every x < y ∈ R, it holds that Fn(x) ≤ Fn(y) for every n ∈ N. Thus,

F (x) = lim
n→∞Fn(x) ≤ lim

n→∞Fn(y) = F (y)

for every x, y ∈ R with x < y. Moreover, as ∣F (x)∣ ≤ 1 for every x ∈ R, it is clear that F is
bounded. Thus, by Example 7.13 (i), F ∈ BV . Also, F is continuous, so F is in particular
right-continuous, and F (−∞) = limx→−∞ F (x) = 0, as F (x) = 0 for every x ≤ 0. Thus,
F ∈ NBV as wanted.

(iii) Let x ∈ R C. Then either x ∈ (−∞,0), x ∈ (1,∞), or x ∈ [0,1] C. Note that if
x ∈ (−∞,0), then Fn(x) = 0 for every n ∈ N, and F (x) = Fn(x), which yields that F ′

n(x) =
F ′(x). Similarly, for x ∈ (1,∞), where Fn(x) = 1 for every n ∈ N. Thus, , F ′(x) = F ′

n(x) = 0
for every x ∈ (−∞,0) ∪ (1,∞). Now, suppose x ∈ [0,1] C. Note that each Ikn is open, thus
there exists n, k ∈ N such that x ∈ Ikn, and hence Fn(x) = F (x). Then for every x ∈ R C,
F (x) = Fn(x) for some n, which imply once again that F ′(x) = F ′

n(x). By definition, Fn(x)
is constant on each Ikn, which yields F ′(x) = F ′

n(x) = 0 for every x ∈ [0,1] C, and hence also
for every x ∈ R C. Thus, F ′ exists and equals zero for every x ∈ R C, and since m(C) = 0,
F ′ exists m-a.e. as wanted.

(iv) It is proved that F is not absolutely continuous using Definition 7.25. Let 0 <

ε < 1 be given. The goal is to prove that there exists a finite set of disjoint intervals
(a1, b1), ..., (aN , bN) such that ∑Nk=1 bk −ak < δ, but ∑Nk=1 ∣F (bk)−F (ak)∣ ≰ ε. Let Ikn = (ak, bk)
for each k ∈ {1, ...,2n−1}. The sets I1n, ..., I

2n−1
n are disjoint, so a1 < b1 < a2 < ⋯ < a2n−1 < b2n−1.

Thus, with the convention that b0 ∶= 0, the intervals (b0, a1), ..., (b2n , a2n−1) form a set of finite
disjoint intervals. Then by Lemma 8.3,

2n−1
∑
k=1

ak − bk−1 =m(Cn) →m(C) = 0
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as n → ∞. Thus, for every δ > 0, one may choose n ∈ N such that ∑2n−1
k=1 ak − bk−1 < δ. Now

consider ∑2n−1
k=1 ∣F (ak) − F (bk−1)∣. By definition, F is constant on each Ikn = (ak, bk), i.e.,

F (ak) = F (bk) for every k ∈ {1, ...,2n − 1}. Hence

2n−1
∑
k=1

∣F (ak) − F (bk−1)∣ = F (a2n−1) − F (b0) = F (a2n−1) − F (0).

But F (a2n−1) − F (0) → F (1) − F (0) = 1 as n→∞, hence

2n−1
∑
k=1

∣F (ak) − F (bk−1)∣ ≰ ε,

for ε < 1, which proves that F cannot be absolutely continuous, as wanted.

This concludes the theory behind the Cantor set and the Cantor function. With this
theory presented, the following section proceeds to define the Cantor measure utilizing the
preceding results.

8.2 The Cantor measure

In this section, the Cantor measure is defined. This builds upon the preceding section, in
particular, the Cantor function, which is proven to be of normalized bounded variation and
thus, gives rise to a Borel measure.

Definition 8.11. Define a finite positive Borel measure µ on (R,B(R)) by

µ((−∞, x]) = F (x)

for every x ∈ R. This measure is called the Cantor measure.

Remark 8.12. As F ∈ NBV by Proposition 8.10 (ii), the definition above does in fact define a
unique (complex) Borel measure by Theorem 7.21. One may note that the Cantor measure is
real and moreover positive, since F is a real-valued positive function. Thus, the Cantor mea-
sure is a well-defined finite, positive Borel measure on (R,B(R)). The Cantor measure can
also be viewed in the light of Theorem 7.2, since F ∶R → R is continuous and monotonically
increasing, i.e., the Cantor measure is actually the Lebesgue-Stieltjes measure associated to
F . The Cantor measure has continuous distribution function, F , hence the Cantor measure
is non-atomic, since µ({x}) = 0 for every x ∈ R. The construction of this non-atomic measure
provides a very nice way of showing that the Cantor set, C, is uncountable, as an application
of the following lemma.

Lemma 8.13. Let µ be a non-atomic measure on (X,A). Then every countable set is a
µ-null set.

Proof. Let C be a countable set, and let {c1, c2, c3, ...} be an enumeration of C. Note that
this enumeration is finite if and only if C is finite. Since for every x ∈ X, every singleton
{x} ∈ A, hence also C = ⋃∞n=1{cn} ∈ A. Then

µ(C) = µ(
∞
⋃
n=1

{cn}) =
∞
∑
n=1

µ({cn}) =
∞
∑
n=1

0 = 0

as wanted.

This lemma yields almost directly that the Cantor set is uncountable, as proven in the
following theorem.
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Theorem 8.14. The Cantor set, C, is uncountable.

Proof. Assume by contradiction that C is countable. Thus, since the Cantor measure is
a non-atomic measure, the assumption yields that µ(C) = 0. Now C = ⋂∞n=1Cn, where
Cn = [0,1] ⊍2n−1

k=1 Ikn, and Ikn = (ak, bk). Thus,

µ(Cn) = µ(
2n−1
⊍
k=1

[bk−1, ak]) =
2n−1
∑
k=1

F (ak) − F (bk−1).

Then by continuity from above,

µ(C) = µ(
∞
⋂
n=1

Cn) = lim
n→∞µ(Cn) = lim

n→∞

2n−1
∑
k=1

F (ak) − F (bk−1) = 1.

But µ(C) = 1 ≠ 0, hence C cannot be countable, and thus, C is uncountable as wanted.

Remark 8.15. From a topological point of view, the preceding result follows from Propo-
sition 8.4, by making use of the fact that the Cantor set C is non-empty, compact and
metrizable, hence Hausdorff, and has no isolated points. Thus, the result follows directly
from Theorem 27.7 (Munkres 2008), which states that every non-empty compact Hausdorff
space with no isolated points is uncountable.

Theorem 8.16. The Cantor measure is singular with respect to the Lebesgue measure.

Proof. By Proposition 8.10, the Cantor function F is differentiable with F ′ = 0 m-a.e., which
by Proposition 7.24 implies exactly that µ ⊥m. The result is also not very difficult to prove
directly from the definition of mutual singularity: By Lemma 8.3, m(C) = 0, thus, the goal
is to prove that µ(R C) = 0, since then R = (R C) ⊍ C with m(C) = µ(R C) = 0. Note that

µ(R) = µ(
∞
⋃
n=1

(−∞, n])) = lim
n→∞µ((−∞, n]) = lim

n→∞F (n) = 1,

by continuity from below. Since also µ(C) = 1, it follows that µ(R C) = 0, as wanted.

The preceding result ties together this project by providing an answer to the question:
Are there any non-atomic measures, which are singular with respect to the Lebesgue measure?,
using the theory of differentiation of measures and functions of bounded variation. Moreover,
one might notice that the preceding result gives rise to a very nice way of showing that the
Cantor function is not absolutely continuous without even using the definition of absolute
continuity of functions: Assume by contradiction that the Cantor function is absolutely
continuous. This is equivalent to the corresponding measure, the Cantor measure, being
absolutely continuous with respect to the Lebesgue measure. However, as the Cantor measure
is shown to be singular with respect to the Lebesgue measure, this would imply that the
Cantor measure equals zero. But this is a contradiction, as µ(C) = 1 ≠ 0, and thus, the Cantor
measure cannot be absolutely continuous with respect to the Lebesgue measure, implying
that the Cantor function is not absolutely continuous. This concludes another example of
how the theory of several chapters in this project can be used to show some very beautiful
mathematical results.
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