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Abstract

The main theme of this project is the concept of differentiation of a signed or complex
measure with respect to a positive measure on the same o-algebra. A central theorem is
the Lebesgue-Radon-Nikodym Theorem, which proves the decomposition of a signed or
complex measure into measures that are respectively absolutely continuous and singular
with respect to a positive measure. The Radon-Nikodym Theorem follows directly and
provides an abstract notion of the derivative of a signed or complex measure. The
Lebesgue-Radon-Nikodym Theorem has many applications; one of which is the result that
the dual space of LP(u), for 1 < p < co and a o-finite positive measure y, is isometrically
isomorphic to L9(u), where ¢ is the conjugate exponent to p, which can be obtained as
a consequence of the Lebesgue-Radon-Nikodym Theorem for complex measures, and in
particular, the Radon-Nikodym Theorem.

The project initializes with the theory and elementary properties of signed and com-
plex measures. Following, the concept of differentiation of signed or complex measures is
introduced in different successive levels of abstraction. This begins with the Lebesgue-
Radon-Nikodym Theorem and the very abstract notion of the Radon-Nikodym derivative,
and then letting (X, .A) = (R”, B(R™)) leads to a more refined result of differentiation of
signed or complex measures with respect to the Lebesgue measure on (R™, B(R™)). The
theory will lead to a proof of the Fundamental Theorem of Calculus for Lebesgue inte-
grals, which derives from the special case of n = 1. This includes the theory of functions
of bounded variation and their very significant connection to complex Borel measures on
(R,B(R)). In the final part of the project, the theory is used to construct an example
of a non-atomic measure, which is singular with respect to the Lebesgue measure. This
includes the theory of the Cantor ternary set and the Cantor function. The example ties
the theories from several parts of this project together in a very beautiful way.
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1 Introduction

The goal of this project is to showcase the work I have done with my advisor, Mikael, in
order to gain a general understanding of the concept of differentiation of measures.

The reader is assumed to be familiar with elementary notions from measure theory and
functional analysis. In particular, the reader should be comfortable with measures and the
theory behind, as well as bounded linear functionals on normed vector spaces, i.e., dual
spaces. Standard textbooks and references are Schilling 2017] and Folland 1999, More-
over, the reader should have an understanding of the basic topological concepts presented in
Munkres 2008. However, as the perspective of the project is not basically topological, these
concepts are thoroughly referenced and explained. The project is mostly self-contained.
When prerequisite results are needed, the results are stated with a reference. In particular,
some results from functional analysis are stated without proof, as they are well-known to
everyone who has done any fundamental functional analysis.

In the initial chapter, signed measures as well as the elementary properties and theory
behind, are introduced. This section follows Folland (1999 (section 3.1) proving the Hahn
Decomposition Theorem and the Jordan Decomposition Theorem, which leads to a general
understanding of signed measures as a unique decomposition into positive measures.

In the following chapter, complex measures are presented. This is based on Rudin (1987
(chapter 6). As complex measures can be decomposed into a real and imaginary part, both
of which are finite signed measures, the elementary properties follow more of less directly
from the theory of signed measures.

This leads to the chapter in which the Lebesgue-Radon-Nikodym Theorem is proved,
first for signed measures and next for complex measures. The chapter follows Folland [1999
(section 3.2) in the proof of the Lebesgue-Radon-Nikodym Theorem and the introduction of
the Radon-Nikodym derivative as well as elementary properties hereof.

Next, an application of the Lebesgue-Radon-Nikodym Theorem is showcased, as the
theory of bounded linear functionals on LP(u)-spaces is presented. The chapter follows Rudin
1987 (chapter 6) and Schilling 2017| (chapter 21) in the proof of an isometrical isomorphism
between the dual space, (LP(u))*, and the vector space, L(u), for 1 < p < oo and ¢ the
conjugate exponent to p. Moreover, this result is used to show that LP(u) is in fact reflexive
for 1 < p < co. The special case of p = 2 follows from the theory of Hilbert spaces, which is
presented following Folland 1999 (section 5.5.).

The following chapter revolves around differentiation on an Euclidean space, R". Fol-
lowing Folland {1999 (section 3.4), the definition of the pointwise derivative of a complex or
signed measure with respect to the Lebesgue measure is introduced. The theory includes
three successively sharper versions of the Fundamental Differentiation Theorem ending with
the Lebesgue Differentiation Theorem. Moreover, it is proven that the pointwise derivative
coincides with the Radon-Nikodym derivative under certain regularity conditions.

Thus, letting n = 1 and considering (R, B(R)), leads to the theory of functions of bounded
variation, which is presented following Folland |1999 (section 3.5). In this chapter, the goal is
to examine functions of bounded variation and their role in the characterization of complex
Borel measures on (R, B(R)). The chapter shows how the Fundamental Theorem of Calculus
can be proved rather easily as a consequence of this particular theory.

Finally, the Cantor ternary set and the Cantor function are constructed based on various
exercises from Schilling 2017 (chapter 6, 7 & 20). This chapter includes main theory and
remarkable properties of the Cantor set and the Cantor function in order to handle this with
the respect deserved. Personally, I think that this final chapter concludes the project very
beautifully by showing how to construct an example of a non-atomic singular measure using
the theory presented in the project.
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2 Signed measures

The purpose of this chapter is to introduce and characterize signed measures. A general
understanding of signed measures is obtained through two main examples, which by the
Jordan Decomposition Theorem turn out to be the only examples. The theory of this
chapter is based on Folland [1999 (section 3.1).

2.1 Definition and elementary properties

This section introduces the definition and elementary properties of signed measures, as well
as some examples hereof.

Definition 2.1. Let (X,.A) be a measurable space. A signed measure is a map v: A —
[—o0, 0] such that

(i) v(@)=0.
(i) v(U2, E;) = X2, v(E;) for every sequence of disjoint sets { Ej;}i»1 € A.
(iii) v assumes at most one of the values co and —oo.

Remark 2.2. One may notice that the definition of a signed measure is a generalization of
measures allowing negative values. It is clear that a measure fulfils the definition, hence a
measure is in particular a signed measure. To avoid confusion, measures shall forwardly be
referred to as positive measures.

Ezxample 2.3. Let pq, po be positive measures with at least one of them being finite. Then
V=[] — po is a signed measure.

Proof. (i) By the definition of positive measures, v(@) = u1(2) — u2(2) = 0.
(ii) Let {E;}; € A be a sequence of disjoint sets. Then by countable additivity of y1, pa,

V(@Ei) = Ml(gEi) - MQ(@Ez‘) = i,ul(Ei) - ZMQ(EZ.)
_ im(m—m(&) _ iu@),

since at least one of the series Y72 u1(E;) and Y72 ua(E;) converges.

(iii) By assumption at most one of p; and pe assumes infinite values, thus v = py — g
assumes at most one of the values co and —oco. Furthermore, note that v assumes the value
oo if and only if pq is infinite, and similarly v assumes —oo if and only if ug is infinite. O

Definition 2.4. Let (X, A, ) be a measure space. A measurable function f: X — [—oco, 0]
is extended p-integrable if [y f*du < oo or [y fdu < oo.

Example 2.5. The preceding definition gives rise to yet an example of a signed measure: If f
is an extended p-integrable function, then v defined by v(E) := [, fdu = [p ffdu— [5 f~dp
for every E € A is a signed measure. Note that f being extended p-integrable implies that at
least one of f*, f~ lies in L' (u), where f*, f~ are positive, measurable functions, so | g frdp
and [ f~dp are positive measures with at least one of them being finite. Hence, this is
simply a special case of Example with 11 (E) = [ f*dp and po(E) = [ f~du for every
E € A, thus, it is already proven that v is a signed measure.

Remark 2.6. Not only are these some of the most obvious examples of signed measures;
as a matter of fact, they are the only examples of a signed measure. In particular, every
signed measure can be expressed in either one of these forms by the Jordan Decomposition
Theorem, which is proven in a later section.
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Proposition 2.7. Let v be a signed measure on (X, A). Then the following properties hold.

(1) If {E;}is1 € A is an increasing sequence, then

1/(U1 E;) = Zlirg v(E;). (Continuity from below)

(11) If {E;}is1 € A is a decreasing sequence, and v(E7) is finite, then

V(m1 E;) = }Eg v(E;). (Continuity from above)

Proof. (i) Let {E;}i>1 €A be an increasing sequence. Set Fy := @. Thus, the union may be
written as a disjoint union, U2 E; = U532, (B3 \ Ej—1). Then

o) oo n
Z/(U Ez) = ZV(Ei\Eizl) = lim ZV(Ei\Eifl)
i=1 i=1 i1
n
= lim Y v(E;) -v(Eis) = lim v(E,).
n_)oo’Lzl n—-oo
(ii) Let {E;}i>1 € A be a decreasing sequence. Set F; := Fj\ E; for every ¢ > 1. Thus,
{Fi}is1 € A is increasing, v(E)) = v(F; u E;) = v(EF;) + v(E;), and U2, F; = B4\ (N2, E;).

Then by (i),

v(Ey) = V(QFi) + y(iji) - lim »(F}) + u(iji)

D}

- lim (v(B1) - v(E2)) + v(( ) = v(Ey) - lim w(E) + (

i=1 %

E;),
1

and since v(E1) is finite, subtracting it from both sides yields that v(N;%, E;) = lim;_, o v(E;).
O

2.2 The Hahn Decomposition Theorem

In this section the theory of positive, negative and null sets is introduced in order to prove
the Hahn Decomposition Theorem, which states that for any signed measure v on (X, .A),
the space X can be decomposed into disjoint positive and negative sets with respect to v.
This result proves to be very important in the theory of signed measures.

Definition 2.8. Let v be a signed measure on (X,.A). Then a set E € A is called positive,
negative and null, respectively, if v(F) >0,v(F) <0,v(F) =0 for every F € A with F ¢ E.

Remark 2.9. The definition above yields that a null set is a set that is both positive and
negative. Moreover, any measurable subset of a positive/negative/null set is positive/nega-
tive/null respectively. This follows directly from the definition.

Lemma 2.10. The union of a countable family of positive or negative sets is positive or
negative, respectively.

Proof. The proof is given for positive sets only, as it follows analogously for negative sets.
Let {P,};>1 be a countable family of positive sets, and set @, := P,\U";' P; for n € N. Then
clearly, Q,, € P, for every n € N, hence each @, is a positive set by Remark Note also
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that 12, Q; = U2, P, where ;2 Q; is a disjoint union, since Q; N Q; = @ for each ¢ # j.
Now, let E € A such that E c U2, P;. Then E = En (U2 ;) = En (U2, Q). Hence

v(E)=v(En(J@:))=v(JEnQ:) =Y v(EnQ;) >0,
i=1 i=1 i=1
since EnQ; € Q;. Thus, U;2; P; is positive as wanted. O

Theorem 2.11 (The Hahn Decomposition Theorem). Let v be a signed measure on (X,A).
Then there exist P and N, respectively positive and negative sets for v, such that PuN = X,
where PN N = @. Moreover, P and N are unique up to null sets, i.e., if P', N’ is another
such pair, then P A P'= N A N' is null for v.

Proof. Assume without loss of generality that v does not assume the value co. Note that
this is sufficient, since otherwise one considers the signed measure —v, and the proof follows
analogously. Let m := sup{v(FE) : E € A is a positive set}. Then there exists a sequence
{Qi}iz1 ¢ A of positive sets with lim; e v(Q;) = m. Let P, := U, Q; for each n € N.
Thus, {P, }n>1 € A is an increasing sequence with lim,,_,. ¥(P,) =m. Now let P :=U>, P,.
Then by Lemma P is positive, and by Proposition (i) (continuity from below),
v(P) =v(U;2, Py) =limy e v(P,) = m. Note that in particular 0 < v(P) = m < co. Now, the
aim is show that IV := X\ P is a negative set. Assume by contradiction that IV is not negative,
i.e., there exists £ ¢ N such that v(E) > 0. Let E € N be such a set, and assume first that E
is positive. Then E v P is positive by Lemma and v(E v P) = v(E) +v(P) > m, which
is a contradiction. Hence, N cannot contain any positive, nonnull sets. Moreover, if A € N
such that v(A) > 0, there exists B ¢ A with v(B) > v(A): Since A cannot be positive, there
exists C' ¢ A with v(C) <0. Let B:= A\C. Then v(B) =v(A4) -v(C) > v(A) as wanted.

Define a sequence of sets in N inductively: Let n; := inf {n eN:dBc N:v(B) > n‘l}
and let A; € N be such a set, i.e., (A7) > nIl. Similarly, let ng := inf {n eN:3IBc A;:
v(B)>v(Ar) +n_1} and let Ay be such a set. This is possible since for A ¢ N with v(A) >0
there exists B ¢ A with v(B) > v(A). Continuing this way, one obtains a decreasing sequence
{A;}i>1 € N, for which v(A4;) > v(A4;-1) + n;l > Zézl n]‘.l. Let A := N2, A;. By assumption
ni' <v(A1) < oo, so by Proposition (ii) (continuity from below),

00 >v(A) =v([)4) = lim v(4;) > lim )’ n]_-l =y n]_-l,
i=1 7—>00 2—»00].:1 j=1

which implies that n;-l — 0 as j — oo, or equivalently, n; — oo as j - oo. Once again, as

A c N with v(A) > 0, there exists B ¢ A such that v(B) > v(A) +n~! for some n € N. Note

that B ¢ A implies that also B ¢ A; for each j € N. By choosing j large enough, n < n;, so
v(B)>v(A)+nt > v(Aj )+ n]_-l,

but this contradicts with the construction of n;. Hence, N cannot contain any set £ € A
with v(E) >0, i.e., N is negative.

Now, suppose P’ and N’ is another set of respectively positive and negative sets for v
with P’ v N’ = X. First, observe that P A P'=N A N

PAP =(P\P)u(P'\P)
= ((XAN)\(X\N))u ((X\N)\(X\N))
=(N'A\N)U(N~N)=N'"aN=NaN"

Thus, it suffices to show that P A P’ is null for v. Since P\ P’ ¢ P and also P\ P’ =
P\(X\N')=PnN'c N', P\P'is both positive and negative, i.e., P\ P’ is null. By an
analogous argument, P’\ P is also null, and thus P A P’ is null for v as wanted. O
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Remark 2.12. This decomposition of X into a disjoint union of a positive and negative set
is called a Hahn decomposition of v. As proven, it is unique up to null sets, however, it is
usually not unique in general: Note that if U is a v-null set and U ¢ P, then P’ := P\U is a
positive set, N’ = NuU is a negative set, and also P"uN’ = X with P'n N’ = @. Thus, v-null
sets can be transferred from P to N (or from N to P). Although, a Hahn decomposition
of v is not unique, it gives rise to a canonical representation of v as the difference of two
positive measures, as it shall be proven in the following.

2.3 The Jordan Decomposition Theorem

The purpose of this section is prove the Jordan Decomposition Theorem, which provides a
complete characterization of the decomposition of signed measures into positive measures.
The result builds upon the Hahn Decomposition Theorem from the preceding section.

Definition 2.13. Let v and p be signed measures on (X,.A). Then v is singular with respect
to u, if there exist F, F' € A such that Ew F' = X, where E is null for v, and F' is null for u.
This is denoted v 1 p.

Remark 2.14. One might think of this as v and p being perpendicular, which agrees with
the notation. Note that if v is singular with respect to u, then p is also singular with respect
to v. For this reason, the term that v and p are mutually singular is often used. For an
intuitive understanding, the definition translates to v and p ‘living on disjoint sets’. The
concept of ‘support’ of measures might spring to mind with this definition. One should be
aware of this, as this understanding would consequently imply that no measure on (R, B(R))
is singular with respect to the Lebesgue measure, as the Lebesgue measure is supported on
the whole space, R. This is however not the case.

Ezample 2.15. Let J, be the Dirac measure on (R, B(R)) defined by

5. () = {1 peet
0 ifz¢FE

for every E € B. Then (R\{z})u{z} = R, where {z} is a Lebesgue null set, as it is a singleton,
and R\{z} is a Dirac null set. Thus, every discrete measure living on singletons, such as the
Dirac measure, is singular with respect to the Lebesgue measure on (R, B(R)). This example
is quite obvious, and for this reason it is also not very interesting. As it turns out, it is a
lot more cumbersome to come up with an example of a non-atomic measure that is singular
with respect to the Lebesgue measure on (R, B(R)). However, there are examples hereof;
one of which is displayed in the very last chapter, ‘Singularity and the Lebesgue measure’.

Theorem 2.16 (The Jordan Decomposition Theorem). Let v be a signed measure on (X,A).
Then there exist unique positive measures v and v~ such that v=v* —v™ and v* L v~.

Proof. For the existence part, let Pu N = X be a Hahn decomposition of X, and define
vi(E):=v(EnP)and v (F):=-v(EnN) for every FE € A. Thus,

vi(E)-v (E)=v(EnP)+v(EnN)
=v((EnP)u(EnN))=v(E).
Note that for every E ¢ N, it holds that v*(E) = v(E n P) = v(&) = 0, hence N is null for
v*; similarly, P is null for »~. Thus, v™ L v~ as wanted.

For the uniqueness, let ©*, 1~ be another such pair of positive measures with v = u* — pu~
and pu* L p~. Let E,F € A be such that Eu F = X with p*(FE) = p~(F) = 0. Clearly,
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FE is v-positive and F' is v-negative, hence £ u F' = X is another Hahn decomposition, and
therefore, P A E'= N A F is v-null. Then for every A € A,

W*(A) = 1" (An E) = v(An B)
=v((An(EnP))u(An(E\P)))=v(AnEnP)+v(An(E\P))
=v(AnEnP)+v(An(P\E))=v((AnEnP)u(An(P\E)))
=v(AnP)=v"(A),

since An(E\P),An(P\E)< P A E. Thus, u* =v". Analogously, = =v". O

Definition 2.17. The measures v* and v~ are called the positive and negative variation of
v, respectively. The total variation of v is defined as |v|:=v* +v~.

Remark 2.18. The total variation |v| is a well-defined positive measure. A signed measure
v is said to be finite, respectively, o-finite, if the total variation |v| is finite, respectively
o-finite.

Ezample 2.19. Let v be a signed measure and p a positive measure on (X, .A4). If v is given
by v(E) = [ fdp for f an extended p-integrable function, then the total variation of v is

given by [V|(E) =v*(E) +v (E) = [p ffdu+ [ f~du = [5|f|dp for every E € A.

Proof. Define P := {A CX:flax 0} and N := {A c X :fla< 0}. Clearly, Pn N = @, and
since for every A ¢ X, either f 4> 0 or f |4< 0, one obtains that Pu N = X. Now, for every
E' e A with E ¢ P, it holds that v(E) = [ fdu > 0, hence P is v-positive. Similarly, one
obtains that N is v-negative. Thus, Py N = X is a Hahn decomposition. Note that also
P':={AcX:f|a>0} and N’ := {Ac X : f|4<0} construct a Hahn decomposition, since
PAP = {A cX:fla= 0} is null for v, and v-null sets can be transferred from P to N and
vice versa.

Now, let v1(E) = [ f*dp and vo(E) = [, f~dp for every E € A. Note that v; and
vy are well-defined, positive measures on (X,.A), since f* and f~ are positive, measurable
functions. This definition of vy and vp implies that v1(N) = [y f*dp = 0 and similarly,

vo(P) = [pf dp = 0. Thus, v1 L vp. Moreover, v(E) = [ fdp = [pffdp— [ [ dp =
vi(E) —1a(FE), for every E € A, entailing exactly that v is the positive variation of v, and
V5 the negative variation of v. Thus, for every E € A the total variation of v is given by

e = [ rraps [ fdu= [ |fidp
O]

The following proposition is based on exercises 2, 4, 5 and 7 (Folland 1999} section 3.1).

Proposition 2.20. Let v be a signed measure on (X, A), and let E € A. Then the following
properties hold.

(i) E is v-null if and only if |[v|(E) = 0.

(i1) If A\, are positive measures such that v =X - pu, then X\ > p* and p>v~.
(111) If v1 and vy are signed measures that both omit oo or —oo, then |v1 + va| < |1 + |va].
(iv) v'(E) =sup{v(F): Fe A, FcE} and v (E) =-inf {v(F): Fe A, Fc E}.

(v) V|(E) =sup{ T, [V(E;)|:neN, Ey, ..., E, disjoint and U, E; = E}.
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Proof. (i) Suppose first that [v|(E) = v*(E)+v~(E) = 0. Then for every A ¢ E, monotonicity
of positive measures yields that 0 = [v|(A) = v*(A) +v~(A4) implying that v"(A) =v~(A) = 0.
Hence, v(A) =v*(A) -v~(A) =0, i.e., E is v-null as wanted.

Conversely, suppose E is v-null. Let Py N = X be a Hahn decomposition of v. Then
E=(EnP)u(EnN), and since En P € E, one obtains that 0 = v(En P) = v*(F), and
likewise, v~ (E'n N) = 0. Hence, |[V|(E) =v*(E) +v (E) =0 as wanted.

(ii) Let v = v* —v~ be the Jordan decomposition of v such that v* L v, and let X = PuN
be a Hahn decomposition for v. By assumption, v = v*—v~ = A—pu. Thus, v*(F) =v*(EnP) =
v(EnP)=XEnP)-u(EnP), for every E € A, hence A(E) > A(EnP) =v*(E)+u(EnP) >
v*(F). Similarly, it is obtained that p > v~.

(iii) Assume without loss of generality that v, vo both omit the value +oo. Let vy = vf —v7,
and v = 3 — v; be the Jordan decompositions for v and s respectively. By assumption,
vi, vy are finite positive measures. Thus, vy +ve = v{ +v5 — (v] +1v45) is a well-defined signed
measure. Now, let 7 + 19 = (11 + 12)" — (11 + 2)” be the Jordan decomposition for vy + vs.
Then by (ii) v{ +v5 > (v1 +v2)%, and v] + v > (11 +12)7, and thus,

|l/1 + V2| = (1/1 + 1/2)+ + (Vl + 1/2)_ < I/f + V; + 1/1_ + 1/2_ = |1/1| + |I/2|.

(iv) Let v = v*—v~ be the Jordan decomposition for v. Then for every F' € A with F ¢ E, it
holds that v(F) = v*(F)-v~(F) <v*(F) <v*(E), hence v*(E) > sup {v(F) : F e A, F c E}.
For the other inequality, let X = PuN be a Hahn decomposition for v. Then v*(F) = v(EnP)
for every E € A. Since En P ¢ E, it follows that v*(F) < sup {I/(F) :FeAFc E} Thus,
v (FE) =sup {V(F) tFeAFc E} The proof follows analogously for v~.

(v) As before, let X = Pu N be a Hahn decomposition for v. For every E ¢ A

W(E)=v (E)+v (E)=v"(EnP)+v (EnN)
=|v(EnP)|+|[v(EnN)|,

since v*(EnN) = v~ (EnP) = 0. This yields the inequality, [V|(E) < sup{ X, |v(E;)] :
n € N, Eyq, ..., E, disjoint and UL, F; = E} For the reverse inequality, note that for every
E =, E;, with Ey, ..., E, disjoint, it holds that

i|u<Ei>| u+<Ei>—u-<Ez->|si|u+<Ez->|+|u-<Ei>|

>
i=1
;|V|(Ei) = |V|(L='J1Ez') = V|(E).

Hence, also |v|(E) > sup{Z?zl lv(E;)|:neN, Eq, ..., E, disjoint and U}, E; = E}, thus the
equality follows. O

2.4 Integration and absolute continuity of signed measures

In this section, integration with respect to signed measures is introduced, as well as the
notion of absolutely continuity of signed measures with respect to positive measures.

Definition 2.21. Let v be a signed measure. Then integration with respect to v is defined

" f Fdv = f fdvt - [ Fdv,

for fe L'(v) = L'(v*)n LY (v7), where [ fdv* = [ R(f)dv* +i [ I3(f)dv*.

The following proposition is based on exercise 3 (Folland 1999, section 3.1).
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Proposition 2.22. Let v be a signed measure on (X, A). Then the following properties
hold.

(i) L'(v) = L' (|v]).
(ii) Let f e L'(v). Then| [ fdv|< [ |f|dlv|.
(iii) Let E e A. Then |v|(E) =sup{| [ fdv|:|f| <1}.

Proof. (i) Since the total variation |v| is a positive measure, it is clear that f e L'(|v]) if
and only if [ |fldlv| == [ |fldv* + [|f|ldv™ < oo, L., [|f|ldv" < oo and [ |f|dv™ < oo. Thus,
feL'(v|) if and only if f e L'(v*) and f € L'(v7), equivalently f € L'(v*)nL'(v~). Hence
LY(Jv|) = L' (v) as wanted.

(ii) Let f € L'(v). Then

[ o) g0 f <] f 0
< [Apiav*+ [1flav = [ 1fldwl.

(iii) Let E € A. Then for every measurable function f with |f| <1, it holds that

B = [ dil> [ sl > | [ pavl,

hence [v|(E) > sup{| [ fdv| : |f| < 1}. For the other inequality, let X = P v N be a Hahn
decomposition for v. Then for every F € A,

+‘ffdy*‘

W|[(E)=v (E)+v (E)=v(EnP)-v(EnN)

=[]lpdu—f]lNduzf]lp—]lNdU=|[]lp—]lNdl/
E E E E

and since, |1p - 1| < 1, the inequality |v|(E) < sup{|fE fdv|:|f| < 1} is obtained. O

I

Definition 2.23. Let v be a signed measure and p a positive measure on (X,.A4). Then v
is absolutely continuous with respect to p if v(E) = 0, whenever u(E) = 0 for every E € A.
This is denoted v « p.

The following proposition is based on exercises 8 and 9 (Folland [1999, section 3.2).

Proposition 2.24. Let let v be a signed measure and p a positive measure on (X, A). Then
the following properties hold.

(i) v L pif and only if |v| L p if and only if v* L pw and v~ 1 p.
(11) v < w if and only if [v| < w if and only if v© < p and v~ < .

(11i) Let {v;}i»1 be a sequence of positive measures. If v; L p for all i € N, then Y52, v; L,
and if v; < p for alli e N, then Y72, v; < p.

Proof. (i) Assume v L . Then there exist E, F' € A with X = E'u F such that u(E) =0 and
F' is a v-null set. Then by Proposition (1), [v|(F') =0, hence |v| L p.
Assume |v| L p, such that pu(E) = |v|(F) =0. Then
0= [v|(F) =v"(F) +v (F),

so v*(F)=0and v~ (F) =0, since v*,v” are positive measures. Hence, v* 1 p and v~ 1 p.
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Assume v* 1 g and v~ L p. Then there exist Eq, Fy} with X = FE; u Fy such that
w(E1) = v (Fy) =0, and there exist Fa, Fy with X = Fo w Fy such that u(FEs) = v~ (Fy) = 0.
Since countable unions of null sets are null sets, u(E7 U Eo) = 0. Since Fy n Fy c Fy, Fy,

V(Fl N Fg) = V+(F1 N Fg) - V_(Fl n Fg) =0.

Now, clearly X = (E7 U E2)uw (Fyn Fy). Hence v 1 p, which completes the proof.

(ii) Assume v < p. If u(E) =0 for some E € A, then v(FE) = 0. Now, let X = PuN
be a Hahn decomposition for v, and let v = v™ — v~ be its Jordan decomposition. Suppose
w(E)=0. Then EnP,EnN ¢ E, hence u(EnP) =pu(EnN) =0, which yields

0=v(EnP)=v"(EnP)=v"(E),

and similarly for v~. Hence, v*(F) = v~ (F) =0, and thus, v* < p and v~ < p.
Clearly, v* « p and v~ «< p is equivalent to |v| < p, since

WI(E) =v™(E) +v (E),

hence |v|(F) =0 if and only if v*(E) =v~(E) = 0.
Now, assume v* <« p and v~ < u. Suppose u(E) =0 for some F € A. Then

v(E)=v'(E)-v (E)=0-0=0,

hence v « p, which completes the proof.

(iii) Let {v;}i>1 be a sequence of positive measures. Assume v; L u for every i € N. Then
for each i € N, there exist F;, F; € A such that X = FE; u F; with p(F;) =0 and F; a v;-null
set. Define ' := U;2; E; and F := N2, F;. Note that F' ¢ F; for each i € N, thus En F = @.
Then, also X = EYJF. And pu(FE) = 0, since the countable union of null sets a null set
by Lemma Also, F ¢ F; yields that F is a v;-null set for each ¢ € N. Thus, F is a
Yio1 vi-null sets. Hence, Y72, v; L 1 as wanted.

Assume v; < p for each i € N. Suppose pu(E) =0 for some E € A. Then by assumption,
v;(E) =0 for each i € N. Hence, 72, v;(E) =0, and thus Y72, v; < p. a

Remark 2.25. One may think of absolute continuity as being the antithesis of mutual singu-
larity, as v 1 p and v < p yields that v =0: Assume v 1 p and v < pu. Let X = Eu F. Then
u L v is equivalent to p L |v| by the preceding proposition. Thus, suppose u(E) = |v|(F') = 0.
Then p(E) =0 yields that also |v|(E) = 0, implying exactly that v = 0.

The motivation behind the notion ‘absolute continuity’ is not immediately obvious, how-
ever it becomes more clear in the following theorem.

Theorem 2.26. Let v be a finite signed measure and p a positive measure on (X, A). Then
v p<eVe>030>0: u(E)<d=[v(E)| <e.
Proof. Note that by Proposition (ii), v < p if and only |v| < p, and for every E € A
W(E)| =" (E) +v (E) <v'(E) +v (E) = [v|(E).

Thus, it suffices to assume that v = |v], i.e., v is a positive measure.

Assume first that pu(E) = 0, and given € > 0 there exists 6 > 0 such that [v(F)| < ¢,
whenever p(FE) <§. Then pu(E) =0 < ¢ for every § > 0, so by assumption, |v(E)| < € for every
e >0, and thus, |[v(E)| =0. Hence, |v| < p.
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Conversely, assume by contradiction that there exists € > 0 such that for every n € N there
exists E, € A with p(E,) <2™ and v(E,) > . Now, define Fj, := U2, E, and F = N2, Fy.
Then F c F}, for each k € N, hence

u(F) < p(F) < i W(Ey) < ik g Zgloh,

which yields that u(F) < 2'7% for every k € N, i.e., u(F) = 0. But v(F}) > ¢ for every k € N,
hence by Proposition (ii) (continuity from above),

V(F) = (Y Fi) = lim v(Fi) 2 &,
k=1 e

since {Fy}rs1 is a decreasing sequence with v(F) finite, as v assumed to be finite. Thus,
v(F') cannot be equal to zero, which yields that v cannot be absolutely continuous with
respect to u, which is a contradiction. ]

Corollary 2.27. Let pu be a positive measure, and let f € L'(pn). Then
V5>OEI5>O:,u(E)<5:>‘fEfd,u‘<5.

Proof. Let f e L'(u). Then [ fdu:= [R(f)du+1i [ I(f)du, and f € L'(p) if and only if
R(f) e L' () and 3(f) € L' (). Define vy, vy signed measures by

v (E) ::fEiR(f)d,u, and 15(FE) ::/E’J(f)du

for every E € A. Now clearly, u(F) =0 implies that
v (E) = [E%(f)du =0, and w(E):= ij(f)du -0,

hence vy < p and v; < . Note that v is finite if and only if SR(f) € L' (1), since for every
EeA,

ml(B) = [ RO dus [ R du= [ R(Dlap.

Similarly, for v5. Thus, vq, 1o are both finite. Then by the preceding theorem, given € > 0,
there exist d1,d2 > 0 such that

(B =| [ R()du|<e,
whenever p(E) < d1, and
wa(E) =] [ 3(F)du] <,
whenever p(E) < d2. Let ¢ := min{d1,d2}. Then p(E) < implies that

| [ sanl=| [ nan+i [a(nan]<| [ crrdu]+| [ 3] <22,

and since € > 0 was arbitrary, this completes the proof. O

This concludes the preliminary theory of signed measures. With this theory presented,
the following chapter proceeds with the theory of complex measures, which utilizes signed
measures.
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3 Complex measures

The purpose of this chapter is to introduce complex measures, as well as the elementary
theory behind. In particular, the concepts from the theory of signed measures are introduced
according to complex measures. The theory of this chapter is based on Folland 1999 (section
3.3) and Rudin [1987| (chapter 6).

3.1 Complex measures and the total variation

Definition 3.1. Let (X,.A) be a measurable space. A complex measure is a map \: A — C
such that

(i) AM(@)=0.
(i) AUy E;) = X2y A(E;) for every sequence of disjoint sets {E; };»1 € A.
Example 3.2. Note that complex measures are finite, hence every finite positive measure is

in particular a complex measure. Thus, also the measure, A, defined by A\(E) = [ fdu for
every E € A for some positive measure p and some f € L'(p) is a complex measure.

Remark 3.3. The finiteness of complex measures requires the series from (ii) to be convergent.
Moreover, permutations of the subscript do not change the value, hence every reordering of
the series converge implying that the series is in fact absolutely convergent.

Definition 3.4. The total variation of a complex measure A is defined by

A(E) = sup { Y [\(E:)|: Br, Bs, ... disjoint, and ) E; = E}.
i=1 =1

Remark 3.5. As is proven in the following, the total variation |A| is in fact a positive measure
on (X,.A), and not only is it a measure, it is also finite. The proof of finiteness of the total
variation requires a lemma.

Lemma 3.6. Let z1,...,zny € C. Then there exists S € {1,..., N} such that

1N
Proof. Let 2, = |zx|e'®* for k=1,...,N and N e N. Let Sy := {k e{l,...,N}:cos(ay—6) > 0}
for 6 € [-m,7]. Then |¢7| = 1, and thus

| 3w =] 2 lale 0| 2 R T Jale )

keSy keSy keSy
N
= D |zl cos(ay = 0) = 3 |2x] cos™ (e - 0),
k‘ES@ k=1

where cos* () := max{cos(x),0}. Now, choose 8y € [-7, 7] to maximize the last sum, and let
S :=Sy. This sum is bigger than or equal to the average value, hence

N N 1 T
| 3 2] 2 3 ekl cos (ar = 00) 2 Y el [ cos (o= 0)do
keS k=1 =1 27 Jen
§|z | ! [gcos+(04 0)do ! §|2 |
= |l — - = - k|-
=1 2m I T k1

d
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Proposition 3.7. The total variation |\ of a complex measure A on (X,A) is a finite
positive measure on (X, A).

Proof. Note that the only partition of @ € A is U, @, hence |A|(@) = sup { 22, [\(2)|} = 0
is clear, since \(@) = 0. Now, it is proven that |\| is countably additive. Let E € A be given.
Let {E;}i>1 be a partition of E such that E = |32, E;. For every i € N, one may choose a; € R
such that a; < |[\|(E;). Then for each Ej, there is a partition {A;;};>1 such that

a; < Z |)\(Azj)|
j=1

Now, {A;j};>1 is a partition of E;, so {A;;}ij»1 is in particular a partition of F, hence

[e9)

i 3 2 N4 < AICE)

||Mg

Taking the supremum over all possible choices of {a; };>1 thus yields that 37°, |A\|[(E;) < [A|(E).
It then suffices to show that also 7% [A|(E;) 2 [A[(E). Let {E]};>1 be an arbitrary partition
of E. Then for any fixed i € N, {En E;};»1 satisfies that

U TNE;) = UE'mE EnE;=E;,
J=1 J=

thus { £} N E;};>1 is a partition of E;. Then

b_18

f; AED| = YIS AE A B < iing n )|

1=

> 2 ME N Ey)l < 3 IA(E:).

j=1 i=1

Now, since the partition {E]};>1 of £ was arbitrarily chosen, .72, [A\(£7)| < 72 [A[(£;) holds
for any partition of F, and thus |\|(E) < X521 |A|(E;), which completes the proof of countable
additivity of |\|. Thus, |\ is indeed a positive measure. To prove that |A| is finite, suppose
by contradiction that there exists an E € A such that |\|(E) = co. Let a:= 7 +7|A(E)|. Since
oo = [\(E) > a, a partition {E;};1 can be chosen such that ¥, |\(E;)| > a for some N € N.
Now, A\(E;) € C, hence by Lemma@ there is a set S € {1,..., N} such that for A := J;cs E;,

.

Il
—_
—_

Mg

<.
Il
=

A(A)[ =

>—Z|)\(E)|>—>1
€S T jeS

Now, let B := E\A. Then |A(B)| = |A\(E) = AM(A)| > [A\(A)[ - [A(E)| > £ — |A(E)| = 1. Thus,
E=AuB and |A(A)|,|\(B)| > 1. Since |A| is a positive measure, and in particular holds the
property of countable additivity, co = |A|[(E) = |A|[(AuB) = |A|(A)+|A(B)], hence at least one of
IA|(A) and |[A(B)| must assume the value co. Therefore, if |A|(X) = oo, there exist A;, By € A
such that X = Ay u By where |A(A1)],|A(B1)| > 1 and |\|(B1) = oo without loss of generality.
So by this argument, also By = Ay W By for some Ay, By € A with |[A(A2)],|A(B2)| > 1 and
|A|(B2) = co. Continuing this way, one obtains a disjoint collection of countably infinitely
many sets {A;};>1 with [A(4;)] > 1 for every i € N. Now, since A is a complex measure, thus,
in particular, is countably additive,

)\(Ul Ai) = 2 M (A),
i= i=1
where A\(lU32; A;) € C, so the series must converge. But [A(A4;)| > 1 for every i € N implies

that A(A4;) + 0 as i — oo, so the series cannot converge, thus a contradiction. Hence, it must
hold that [A|(X) < oo as wanted. O
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Remark 3.8. Note that |A\(E)| < |A|(E) for every E € A. Thus, the fact that |A| is finite,
yields that |A(E)| < [N(E) < [M(X) < oo for every E € A, hence the range of X is bounded.
This is sometimes referred to as A being of bounded variation.

Definition 3.9. Let A and u be complex measures on (X,.A). Define
(A+p)(E) =AE) + u(E)
(cA)(E) = c(A(E))
for every E € A and ceC.

Remark 3.10. With the definition above, A + u and cA are in fact complex measures, and
thus, the space C := {)\ : A - C complex measure} is a vector space. This is in particular a
result of complex measures being finite. Moreover, if one defines |A| := |A|(X), this forms a
well-defined norm, hence C' becomes a normed vector space.

3.2 Mutual singularity and absolute continuity

This section is devoted to defining the concepts known from the theory of signed measures
according to complex measure. As it turns out, there is a natural way of doing this.

Notation. For a complex measure A, the real and imaginary parts are denoted Az and A7,
respectively. Thus, every complex measure can be written (uniquely) as the decomposition,
A = Ay +1)\g, where A\g;, Ay are finite signed measures.

From this notation, the concepts of signed measures generalize easily:

Definition 3.11. Let A be a complex measure. Then integration with respect to A is defined

” [ Fd) = f Fddg +i f FdAs

for fe L'(\) == L'(\p) n L1 ()\y).

Definition 3.12. Let A and p be complex measures on (X,.A). Then A is singular with
respect to p, denoted A L pu, if A; L p; for every 7,5 =R, 7.

Definition 3.13. Let A be a complex measure and p a positive measure on (X,.4). Then
A is absolutely continuous with respect to p, denoted A < p, if Ay < p, and Ay < p.

Proposition 3.14. Let A\, \o be complex measures and u a positive measure on (X,A).
Then the following properties hold.

(i) If A1 L Aa, then |A1] L|\al.
(1i) If \1 L and Ag L p, then A1+ Xy L p.
(i5i) If \i < p and Ay <, then A\j + A2 < p.
(iv) If A < p then |\ < p.
(v) If \ < p and A1 L p, then A\ =0.
Proof. The proofs are similar to the proofs for signed measures. O

Thus, the elementary theory of complex measures is presented, and the following chapter
proceeds with the proof of The Lebesgue-Radon-Nikodym Theorem for signed and complex
measures, respectively.
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4 The Lebesgue-Radon-Nikodym Theorem

The purpose of this chapter is to prove the Lebesgue-Radon-Nikodym Theorem, which pro-
vides a complete picture of the relationship between a signed or complex measure and a
given positive measure. The theory of this chapter is based on Folland (1999 (section 3.2).

4.1 The proof of the Lebesgue-Radon-Nikodym Theorem

In this section, the Lebesgue-Radon-Nikodym Theorem is proved for signed and complex
measures, respectively. This commences with a lemma needed in order to prove the theorem
for signed measures. From here on, the theorem is proven for complex measures.

Notation. Let v be a signed measure on (X,A) defined by v(F) := [ fdu for a positive
measure p and an extended p-integrable function, f. This relationship between v and p is
from now on be described with the notation dv = fdu.

Lemma 4.1. Let v and p be finite positive measures on (X, A). Then either v L u, or there
existe >0 and E € A such that p(E) >0 and v(A) > eu(A) for every Ae A with AC E, i.e.,
FE is a positive set with respect to v —epu.

Proof. For each n € N, let X = P,|JN,, be a Hahn decomposition for the signed measure
v-n"tyu. Define P:=U2, P, and N :=N>; N, = X\ P. Then N is (v - n~u)-negative for
every n € N. Hence, 0 < v(N) < n~'pu(N), and since it holds for every n € N, this implies
that v(N) = 0. Now, either u(P) =0 or u(P) >0, as p is a positive measure. If u(P) =0,
then p(P) =v(X\P)=v(N) =0 with X = PuN, and thus v L u. Conversely, if u(P) >0,
then 0 < pu(P) = p(Up2y Pn) < Yooy i(Pp), hence u(P,) > 0 for some n € N, and P, is a
(v- n~tp)-positive set. This completes the proof with e =n~! and E = P,. ]

Theorem 4.2 (The Lebesgue-Radon-Nikodym Theorem for signed measures). Let v be a
o-finite signed measure and p a o-finite positive measure on (X,.A). Then there exist unique
o-finite signed measures 1 and p on (X, A) such that

/(/}J‘M7 P << [y V:1/1+P-
Moreover, dp = fdu for an extended p-integrable function f: X — R, which is unique p-a.e.

Proof. Case I: Suppose v and p are finite positive measures. Define a set F by
F = {f:X — [0, o] measurable : fEfd,u <v(E), VE ¢ A}.

Note that 0 € F, so F is non-empty. Let f,g € F, and define a function h: X — [0, 0] by
h(z) := max{f(z),g(z)}. Then h is measurable. Let A:={z e X : f(z)>g(x)}. Then

[Ehd,uz/EmAfd,u+[E\Agd,uSV(EmA)+u(E\A)=1/(E),

hence h € F. Now, let a := sup{fX fdu: f € .7-"}. Then a < v(X) < oo, since v is finite by
assumption. Choose a sequence { f,, }n>1 of functions in F such that lim,, e [y fn = a. Define
gn by gn(x) = max{fi(zx),..., fn(z)} for each n € N. Then g, € F by the previous argument.
Moreover, g, > f, for every n €N, so [y gndu > [y fadp, and thus, lim, e [y gndp = a. Let
f be a function defined by f(x) :=sup,, fn(x). Since g, converges to f pointwise as n — oo,
ie., lim,—e gn =sup,, frn = f, and g, < gn+1 for every n, the Monotone Convergence Theorem
(Theorem 2.14 Folland |1999)) yields that

fodu=fX7}g§ogndu=7}g§ofXgndu=a-
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Furthermore, f € F, since g, € F for every n € N. Now, [y fdu =a < oo implies that f < oo
p-a.e., so f can be taken to be real-valued everywhere, i.e., f: X — [0,00). Also, f € L'(u),
hence f is in particular extended p-integrable, as wanted. Thus, define measures p and v by
dp:= fdp and dip := dv - fdpu, i.e., ¢ = v—p. Note that f e L'(p) with f being positive yields
that p(E) = [ fdu is finite and positive for every E € A, so p is a finite positive measure.
Moreover, f € F yields that ¢ too is a positive measure, since ¢(E) = v(E) - [ fdu > 0,
for every FE € A, and v is finite, since v and p are finite measures. It thus suffices to show
that @ L p. Assume by contradiction that ¢ + u. Then by Lemma there exists € > 0
and F € A such that u(E) >0 and ¢(A) >eu(A) =ep(EnA) for every ACE. If Ae Ais
arbitrary, then A = Bu C, where B ¢ F and C'n E = @, hence by additivity of the positive
measures ¥, [,

B(A) = H(B) +$(C) > $(B) > ep(B) = e(u(Bn E) + u(C 1 E)) = ep(E n A),

so Y(A) > ep(E n A) for every A € A, or equivalently, dv — fdu = di > elgdu. Thus,
dv > (f +elg)dp, implying that v(A) > [,(f +elg)dp for every A € A, hence f +elp € F.
But

_[Xf+5]ld,u:fod,u+/X5]lEd,u:a+s,u(E)>a,

since pu(E) > 0, which contradicts the definition of a. Hence, it must hold that ¥ 1 p, and
thus, dv = dy + fdu = diy + dp, where ¢ L u and p < u, as wanted.
For uniqueness, suppose that also dv = dy)' + f'du, where ¥' 1 u. Then

dp —dy’ = f'dp - fdu = (f' - f)dp.

Note that since di,dy)’ and fdpu, f'dp are finite measures, the above is a well-defined finite
signed measure. By assumption ¢ L p and v’ L pu, hence following the proof of Proposi-
tion m (iii) analogously, one obtains that also v — ¢’ 1L p. Also clearly, (f' - f)du < du,
which means that the measure is both singular and absolutely continuous with respect to
w, hence dyp — dy" = (f' = f)dp = 0. This implies exactly that ) = ¢’ and f = [’ p-a.e. by
Theorem 2.23 (Folland 1999). This proves uniqueness of ¢ and p, when v and p are finite.

Case II: Suppose v and p are o-finite positive measures. Then X can be written as a
countable disjoint union of non-empty sets, each of which has finite measure under v and u:
By the assumption of v being o-finite, X = J:2; B;, where v(B;) < oo, and similarly by the
assumption of p being o-finite, X = (J72) B}, where u(B;)) < o0, so X = U, U2y Bin By,
thus, by re-indexing one obtains that, X = (2, A; with v(A;), u(A;) < co. Now define v;
and p; for every i > 1 by v;(F) :=v(EnA;) and p;(E) == p(En A;) for every E € A. Note
that each v; and u; are finite positive measures. Then by the first part of this proof, each v;
can be decomposed as dv; = di; + f;du; for (unique) positive measures di;, and f;du;, where
fidp; < dp; and 1p; 1 p;. Now since, v;( X\ A4;) = ui (X \A4;) =0,

iX\Ai:iX\AZ-—f dy; = 0
GXNA) = (XA = [
and it is justified to assume that f; |x\a,= 0. Define ¢ := 372, ¢; and f:= 372 fi. Then

Z/EZOOZ/Z'E AiZOOl‘E Al S zdz
OEDWICLEDEDWHCLEDED W M

—w(E)+ [ Y fidu=v(E)+ [ fap
for every E € A, where the third equality follows from f |x\4,= 0 and p;(E) = p(E n A;).

Thus, dv = dy + fdu. Moreover, defining p by dp := fdu, ¢ and p are o-finite measures by
construction, so Proposition m (iii) yields that @ = X2, 1 L 352 i = o as wanted.
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For uniqueness, suppose that also dv = di' + f'dp, where o' L p. Let X = J7%, A; with
v(A;) < oo as before. Then di + fdu =dv =dy' + f'du, and thus for every A; € A and i € N,

00> v(A) = () + [ fdu=v'(4)+ [ fdu

which implies that 1(A4;) —¢'(A4;) = [, (f = f)dp. Define #;(E) :=p(En A;) -9 (En A;) =
S, (' = f)dp for each i € N and for every E € A. Then &; is a well-defined (finite) signed
measure. By previous arguments, x; L p and also k; << p, hence k; = 0 for every ¢ € N. Then
using countable additivity,

0= OZO;RZ(E) = OZO;'QZ}(EHAZ) _d},(EmAi) = iémAi(f/_f)d“
= 0(B) - v'(E) = [ (f'~ Dl

for every F € A, implying that ¢ =4’ and f = f p-a.e.

To complete the proof, suppose v is a o-finite signed measure and u a o-finite positive
measure. Let v = v*—v~ be the Jordan decomposition of v. Suppose without loss of generality
that v* is finite and v~ o-finite. Then there exist unique finite positive measures " and p*
such that v* =¢* + p*, where ¥* 1 p and p* < p, and there exist unique o-finite positive
measures ¢~ and p~ such that v~ =Y~ + p~, where ¢~ L p and p~ « p. Hence,

v=vt v =t pt = (YT ) =P =T+ (T - ),

where ¢ =" -1~ and p:= p* — p~ are well-defined o-finite signed measures. By Proposi-
tion [2.24] (i),(ii), ¢* L g and ¢~ 1 p implies that also ¢ L g, and p* <« p and p~ <« p implies
that p < p. The decomposition is unique by the uniqueness of the decompositions v = v* -~
and vt =9y +ptand v = +p . O

Theorem 4.3 (The Lebesgue-Radon-Nikodym Theorem for complex measures). Let A\ be
a complex measure and | a o-finite positive measure on (X, A). Then there exist unique
complex measures ¥ and p such that

Ylp, p<p, A=9+p,
where dp = fdu for a unique f e L*(p).

Proof. The proof follows by applying Theorem to the real and imaginary part of A, since
A = Az + 1Ay, where Ag;, Ay are finite signed measures. Uniqueness follows as before. O

Remark 4.4. The noticeable difference in the Lebesgue-Radon-Nikodym Theorem for signed
and complex measures is that f € L'(x), when ), thus also p, is a complex measure.

Definition 4.5. The decomposition of a complex or o-finite signed measure, v = 1) + p, into
measures that are respectively absolutely continuous and singular with respect to u, is called
the Lebesgue decomposition of v with respect to .

4.2 The Radon-Nikodym derivative

The Lebesgue-Radon-Nikodym Theorem gives rise to an abstract notion of the derivative of
a signed or complex measures with respect to a positive measure. For ease, the following
results are stated and proved only for o-finite signed measures, but generalize to complex
measures by applying them to the real and imaginary parts respectively.
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Theorem 4.6 (The Radon-Nikodym Theorem). Let v be a o-finite signed measure and
W a o-finite positive measure on (X, A) with v < p. Then dv = fdu for some extended
p-integrable function f: X — R. Moreover, f is unique p-a.e.

Proof. The result follows from Theorem Let dv = dyp + fdu be the Lebesgue decompo-
sition of v with respect to p. Then fdu < du, and by assumption v < pg. Thus, u(E) =0
implies that [, fdu =0 and also v(E) =0 for every E € A. Then, ¥(E) =v(E) - [ fdu=0
for every F € A with u(E) = 0. Hence, 1) < p. But also, ¥ L p, implying that ¢) = 0. Thus,
dv = fdu for some f: X - R extended p-integrable function, and f is unique pu-a.e. 0

Definition 4.7. The class of functions equal to f u-a.e. is called the Radon-Nikodym deriva-
tive of v with respect to p. This is denoted dv = g—Zdu.

Nonexample 4.8. The Lebesgue decomposition and the Radon-Nikodym derivative can only
be guaranteed to exist for o-finite measures. Let p be the counting measure and m the
Lebesgue measure on ([0,1],8([0,1])). Then m <« p, but dm # fdu for any f. Moreover, u
has no Lebesgue decomposition with respect to m.

Proof. 1f (E) = 0 for some E € B([0,1]), then F = @&, and hence, m(E) = 0. Thus, m < p.
Assume by contradiction that dm = fdu for some f:[0,1] - [0, co]. Then, since the Lebesgue
measure is non-atomic, 0 = m({z}) = f{w} f(x)dp = f(x),so f=0. But then dm = 0dyu, which
implies that m = 0. This is a contradiction, hence dm # fdu for any f. Now, assume by
contradiction that p =1 + p with ¢» L m and p << m. Then for every x € [0,1] it holds that
m({x}) = 0, which implies that p({x}) =0, thus ¥ ({z}) = u({z}) = 1. Then ¢ = u, hence
m <<y =1. Thus, ¥ 1L m yields that m =0, but this is a contradiction. O

Remark 4.9. If v1 and vy are o-finite signed measures with dvy = fidu and dvs = fodu, then

di+vy) _dvy | dvy
du Cdp dp’

In general, this very abstract notion of a derivative can be shown to fulfil many of the known
properties of derivatives; some of which are proven in the following.

Proposition 4.10. Let v be a o-finite signed measure and u, 1 o-finite positive measures
on (X, A), such that v << u and p < . Then the following properties hold.

(i) Let g e L'(p). Then gg—z e L'(u) and /ngV:fng—Zdu.

(ii) It holds that v < ¢ and g—; = %%7 Y-a.e.
Proof. 1t suffices to prove the result for o-finite positive measures by considering the Jordan
decomposition of o-finite signed measures. The assumption that v < p and p < 1 yields
that v = fl—l':du and p = g—gdﬂ) by Theorem (The Radon-Nikodym Theorem).

(i) Suppose g = 1 for some E € A. Then

dv dv
1 pdy = E:/—d:f]l—d
/XEV v(E)= [, gntin= [ Legdn

for every E € A. Thus, by linearity, (i) therefore holds for every simple function u. Now,
suppose ¢ is a nonnegative measurable function. Then g is the pointwise limit of simple
functions, i.e., lim, o u, = ¢g. By the Monotone Convergence Theorem (Theorem 2.14,
Folland [1999)),

dv

. . dv . dv
fngV = T}l_)nolo Xundl/ = 7}1_)11010 . un@d,u = XJI_{IOIO un@du = Xg@du.
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Now, suppose g € L'(). Then g = g* — g~, where g* and g~ are nonnegative measurable
functions, hence by linearity

dv dv

d:f +d—f ‘d:f *—d—f -

[ng ng ng/ ngu’u ng,uﬂ
dv dv
- +———d=/ ey
f(g g )——dp s

And so if g € L'(p), then also g Y ¢ LY(), and (i) holds.

(ii) That v « 9 follows from the assumptions v < p and p < ¢: If Y(E) = 0 for
some F € A, then u(FE) = 0, which implies that also v(E) = 0. Hence, v « %, so by
Theorem . (The Radon-Nikodym Theorem), dv = d” d?j) The result now follows from part

(i) by replacing v and p with ¢ and p and letting g = ]l Ed” for F € A, such that

- [ [ st

for every F € A, and thus, g—z = Z_Z% 1-a.e. as wanted. O

Corollary 4.11. If p < and ¢ < p, then 4 d dw =1 a.e. with respect to either p or .

Proof. The result follows directly from Proposition [4.10, as p < v implies that du = d“ dw

by Theorem. (The Radon Nikodym Theorem), so [ 1du = u(E) = [ d“ dy = [ jZ Zﬁdu,

for every E € A, hence Wd_ =1 p-a.e. Similarly, one obtains that i‘; ‘;;f =1 vy-a.e. O

Lemma 4.12. Let v be a signed or complex measure and p a positive measure on (X,.A)
with v < p such that dv = fdu. Then the total variation of v is given by d|v| = |f|dp.

Proof. For signed measures, the equality has already been established in Example
Suppose v is a complex measure. Since ¥.7% [V(E;)| = X720 | [, fdul < 221 [, [fldp = [g|fldp
for every E € A and every partition {E;};»1 € A, it is clear that [v|(E) < [ |f]du. To prove
the reverse inequality, let € > 0 be given. By Theorem 2.26 (Folland [1999), there is a simple
function u € L'(p) such that [ |f —u|du < e. Then there exist disjoint sets Ei, ..., B, € A
such that E =, E; and u |g= Y1 ¢ilg, for ¢; € C. Then

rul(E)zérv(E»lzi\fEi fdu‘zé‘f&udu‘—é‘f&u—fdu\

= [yl 2| f, v g 2 [ Jedde= 3 [ - sl
_ d-[—dz[ d—z/ dji - 2,
[ el [ ju=flan> [ juldp-e> [ |flap-22

with equality in line two, since 37, |sz udu| = Y laln(E) = [p i el du = [;|ulduy,
and where the last inequality follows from |[E lu| — |f]d,u| < Jpllul =1 flldp < [zlu- fldu <e,

so [ |u| = |fldp > —e. Hence, € > 0 being arbitrary completes the proof.
O

Remark 4.13. The preceding lemma provides an alternative definition of the total varia-
tion measure, namely the measure that satisfies that if dv = fdu, then d|v| = |f|du. With
this result, it can easily be verified that for a signed or complex measure v with Lebesgue
decomposition dv = dy + fdu, the total variation of v is given by d|v| = d[¢| + | f|dp.

The following chapter shows a connection between the Lebesgue-Radon-Nikodym Theo-
rem and the dual space of LP(1), as the Radon-Nikodym Theorem is used to give a complete
characterization of the bounded linear functionals on LP(u).
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5 Bounded linear functionals on L?

The purpose of this chapter is to prove that the dual space of LP(u), denoted (LP(u))*, is
isometrically isomorphic to L?(u) for pu a o-finite positive measure, 1 < p < oo and ¢ the
conjugate exponent to p. This result can be obtained as a consequence of the Lebesgue-
Radon-Nikodym Theorem. The theory of this chapter is based on Rudin 1987 (chapter 6)
and Schilling 2017| (chapter 21).

5.1 The dual space of L?

In this section, it is proven that (LP(u))* is isometrically isomorphic to L9(u) for every
1 <p<oo, and as a result that LP(u) is reflexive for every 1 < p < oo.

Remark 5.1. Let g € L9(p), and let ®45:LP(u) — C be defined by ®4(f) = [y fgdp for
feLP(p). Clearly, ®, is linear by linearity of the integral. Note that by Hélder’s inequality,

0, (N1=] [ Fodu] <1 gl < Lglal /1

hence |®,| = sup{|<I>g(f)| N flp = 1} < |glg, and @4 is in fact bounded and linear, i.e.,
P, e (LP(p))*. Hence, the space of such functionals ®, for g € LI(p) is a subset of (LP(u))*.
The question is whether every ® € (LP(u))* is of this form for some g € LI(u), and whether
this representation is unique. The following theorem answers this question. The theorem
requires some preliminary lemmas, which are stated and/or proved in the following. To begin
with, the definition of an isometrical isomorphism is given.

Definition 5.2. Let X and Y be normed vector spaces over a field, K, and let T: X - Y
be a linear map. Then T is an isometry, if |Tz| = ||x| for every x € X. Moreover, T is a an
isomorphism, if T is invertible with bounded inverse. Thus, T is an isometrical isomorphism,
if T is an isomorphism that is also an isometry.

Lemma 5.3. (Theorem 1.40 Rudin |1987). Let i be a finite positive measure on (X, A), let
feLY(u), and let S be a closed set in the complex plane. If Ap(F) = ﬁfE fdu € S for
every E € A with pn(E) >0, then f(x) €S for p-a.e. x € X.

Lemma 5.4. Let (X,.A) be a measurable space, and let f: X — C be a measurable function.
Then there erists a measurable function a: X — C such that |a| =1 and |f| = af .

Proof. Let E := {x e X: f(x) = 0}. Define a: X — C by a(z) = @) Lp| g0, every x € X.

flx)+1Eg
Then
() 1, rekF
al(xr) = " .
gl otz

Since {0} is a measurable set, and E = f~1({0}), E is measurable. Thus, a being measurable

follows from f being measurable, and the map z = = being continuous on C\ {0}. Now it
is clear that « satisfies that |a| =1, and |f| = af, which completes the proof. O

Lemma 5.5. Let u be a o-finite positive measure on (X, A). Then there exists w € L' (1)
such that 0 < w(x) <1 for every x e X.

Proof. By assumption, X = U2, E; for sets E; € A for which p(E;) < co. Define

0, reX\E,
wn(x) = 2N E s
Trp(E,)r L&

and let w(z) := ¥, wy(z). Then clearly, w € L' (1), and 0 < w(z) < 1 as wanted. O
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Theorem 5.6 (The Dual Space of LP Characterization Theorem). Let u be a o-finite positive
measure on (X, A), and let ® be a bounded linear functional on LP(u), i.e., ® € (LP(u))*.
Then there exists a unique g € LI(u), where q is the exponent conjugate to p, such that

O(f) = fogdu
for f e LP(u). Moreover || = |g|q-

Proof. For the uniqueness, suppose that g and ¢" both satisfy that ®(f) = [y fodu = [ fg'du
for every f e LP(n). Then 0= [y f(g—¢')dp for every f e LP(p), thus in particular,

/ !/
O—fxllE(g g)du—ng gdp
for every E € M with p(FE) < oo such that 1 g € LP(u). Thus, since u is o-finite by assump-
tion, X can be covered with at most countably many of such sets implying that g — ¢’ =0
p-a.e. and thus, g = ¢’ p-a.e. This completes the uniqueness of g € LI().

Now, existence is proven. Note that if |®| = 0, hence ® =0, then 0 = g € LI(u) satisfies
that ®(f) = [y fgdu = 0 for every f e LP(u), and moreover, |g[, = 0 = |®]. Therefore,
assume now that ||®| > 0. The proof is given by splitting into two cases of p.

Case I: Suppose p is finite, i.e., (X)) < co. Define \: A - C by A\(F) := ®(1g) for every
E ¢ A, which is well-defined, since ®: LP(u) — C, and 1g € LP(u) for every E € A, since
1 is assumed to be finite. It is now proven that A is in fact a complex measure. Clearly,
AM@) = ®(1y) = ®(0) = 0 by linearity of ®. Now, let A, B € A be disjoint such that AnB = @.
Then 1 4up = La+1p, hence A(AuB) = A\(A)+A(B) for every such pair, i.e., A is additive. To
prove that A is countably additive, let £ = 72, £y be a countable union of disjoint sets, and
let Ay =5 | E,. Then |1g 14, [, = p(ENAR)YP » ()P = 0 as k — oo, since 1< p < oo,
and clearly, Ay, - E as k — oo. By continuity of ®, it thus holds that |®(14,) - ®(1g)| - 0
as k - oo, i.e,, ®(14,) > ®(1g) as k - co. Hence,

k )
;A(En) = M(Ap) = ME) = X( L;Jl E,) ask— oo,

which yields that >,2; A(E,) = A(E) as wanted. Thus, X is a complex measure. Now, the
claim is that A is absolutely continuous with respect to u. For E € A, then 0 = u(F) =
[x 1gdp yields that |1g|, = 0, which implies that A(E) = ®(1g) = 0 by boundedness of ®.
Then by Theorem (The Radon-Nikodym Theorem) applied to the complex measure A,
there exists g € L' () such that

(1e) = NE) = [ gdu~= [ Vegdy

for every E € A. Thus, by linearity of ®, it holds that ®(u) = [y ugdp for every simple
function u € LP(u). Now, since the set of simple functions in LP(u) is dense in LP(u), every
f e LP(p) is the limit of simple functions u, € LP(x). Thus, by the Dominated Convergence
Theorem (Theorem 2.24 Folland [1999)),

lim Xungduzf)(r}l_{goungd/i:/xfguv

n—oo

implying that ®(f) = ®(limp—eo un) = [y fgdp by continuity of P.

Now, it is proven that g € LI(p) and |®|| = |g|,. Note that by Holder’s inequality,
|2(f)| <[ flplglg, which establishes the inequality, [®] < |g]q. The reverse inequality is split
into two cases; p=1and 1 <p<oo. If p=1, then

| [, odu| = 1@(15)] < |21 [15]: = |2]u(E)
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for every E € A. Thus, since y is assumed to be finite, and g € L'(x), Lemma yields that
lg| < | @] p-a.e., implying that | g[ e := inf {c> 0: u({|g] > ¢}) = 0} < |@||, hence g € L= (u) and
lglleo = |®] as wanted. Now, suppose 1 < p < co. Since g € L*(x) is a complex, measurable
function, there exists a measurable function a: X — C with |a| = 1 such that ag = |g| by
Lemma@ Let E, = {z € X : [g(z)| < n}. Define f:X - C by f := 1g,|g]"'a. Note
that |f|” = |oP|g[PV) = |g|? on E, for every n €N, hence f is bounded, and thus since p is
assumed to be finite, f € LP(u). Then using Holder’s inequality, and the fact that p and ¢
are conjugate exponents,

qd:f]l qdzf]l q—ld:f]l “Togd
fEn lgl*dp = | g lgl'dn= | T, lgl" lgldp= | 1g,lgl"" agdp
= [ sadu=a(5) <1211 flp < 12 [ lolan)" = 1@1( [ lapran) "
= |, Fodu = < p < , lol'di) = . lol"dn
implying that 9d, 1/ < |®| and thus 9du < |®|9 for every n € N. Thus, since
ymg E, 197G E, 197G Yy

1g,|g|? is increasing with 1g, |g|? - 1x|g|? as n — oo, the Monotone Convergence Theorem
(Theorem 2.14 Folland |1999)) yields that

[ tatdu~ [ lgldp = gl

as n > oo, implying that g4 < |@]%, hence |g], < |©]. Thus, [g], = |®], and g € L9(y) as
wanted. This completes the existence part of the proof in the case, where p is finite.

Case II: Suppose p(X) = oo, but p is o-finite. Then by Lemma there exists w e L* (1)
such that 0 < w < 1 for every x € X. Define dji := wdu. Then [ is clearly a finite positive
measure on (X, A). Now, let ¢:LP(i) - LP(u) be defined by ¢(F) := w'/PF for every
F e LP(f1). Then v is clearly linear. Moreover, it is an isometry, since

171 = ( [, rpai)” - ( /. Ppwdn)” - ( /. w2 FPdp) - jwtF,

Then W:LP(ji) - C defined by ¥(F) = ®(w'/PF) is a bounded linear function on LP(ji),
ie, Ue (LP(n))*, with |[¥| = |®|. Now, by the first part of this proof, Case I, since fi is
finite, there exists a G € L(ji) such that ¥(F) = [ FGdp and |G|, = [¥]. Suppose p = 1.
Let g =G. Then ||g|oo = |G| oo = [¥] = |||, hence |g], = |®], and so g € LI(p). Moreover,

o(f) = v )= [ wriGdp= [ W fqudp= [ fodn
X X X
as wanted. Conversely, suppose 1 < p < oco. Let g := w'1G. Then
q_ aq =[ Yacaq :f Glidn = I1G1e = | w9 = |9
lolls = [ lgitd= [ jwtaGiodu= [ 1Glrdg = 1613 = L) = @),

hence g € LI(p) and |g[, = |®] as wanted. Moreover, Gdji = Gwdu = w'™Y9gdu = w'Pgdp,
thus

o(f) =v™p) = [ wiGdp= [ wregdu= [ fodp
completing the proof. O

Remark 5.7. If @ and g are related as in Theorem @ then @ is denoted by ®,. The map
Li(p) 3 g @4 e (LP(p))" is an isometry, since |®4] = |g]4, and is an isomorphism, since
the inverse (LP(p))* 3 ®, = g € L(p) exists by the one to one correspondence between
g and @, and is clearly also bounded. Thus, Theorem proves that (LP(u))* is in fact
isometrically isomorphic to L9(x). From this result, the question arises: For which 1< p < oo
is the space LP(u) reflexive?. This question is answered in the following, which initializes
with some prerequisite theory behind reflexivity. In particular, the following proposition is
stated in order to establish notation.
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Proposition 5.8 (Theorem 5.8 (d) Folland [1999). Let X be a normed vector space. Let
feX, and define f: X - C by f(®) = ®(f) for every ® € X*. Then A: f — f is a linear
isometry from X into X**.

Definition 5.9. A Banach space X is called reflexive if A(X) = X**, i.e., if A is surjective.

Remark 5.10. The map A is isometric, so x € X is usually identified with the image A(z) = & €
X** and thus, X being reflexive corresponds to X and X** being isometrically isomorphic.

Theorem 5.11. LP(u) is reflexive for every 1 <p < oo.

Proof. Let ¢ € (LP(u))**, p: (LP(pn))* = C be given. The goal is to show that there exists

f e LP(p) such that A(f) = f = ¢. Define a map ¢: LI(p) - C by ¢(g) = p(Py) for every
g € L(p). This is well-defined, since the map LI(u) 3 g = ®4 € (LP(p))* is an (isometrical)
isomorphism by Theorem Note that since the map LI(p) 3 g = ®4 € (LP(p))” is linear,

35(0‘191 + 04292) = @(‘I)Oélg1+04292) = 90(051(1)91 + a2¢92) = alsa(q)m) + 04290((13’92)

for every aq, a9 € C and g1, g2 € LI(u), hence ¢ is linear. Moreover, the isometrical isomor-
phism LI(p) 3> g+ ®4 € (LP(p))” is in particular surjective and [|g|q = | P4, hence

|¢1 = sup {(9)] + Igllq =1} = sup {[o(@g)] : [gllg =1}
=sup { (@) : [ @4 = 1} = o],

thus, since ¢ is bounded, so is @. Hence, ¢ € (L9(u))*. Now, by Theorem there exists a
unique f € LP(p) such that @(g) = [y fgdu for every g € LI(p). Then for every g € LI(p),

F(@y) = ®y(f) = fX fgdp=¢(g) = (@),

hence f = ¢, which completes the proof. ]

Remark 5.12. The proof of the preceding theorem uses that for 1 < p < co, the dual space of
Li(u), for g the exponent conjugate, is isometrically isomorphic to LP(u), applying Theo-
rem to LY(p). Thus, as for p = 1, the exponent conjugate is ¢ = oo, and so Theorem
does not apply to L*®(p), i.e., (L*®(u))* is not isometrically isomorphic to L(y). For this
reason, the result cannot be used to prove that L!(u) and L*°(u) are reflexive.

5.2 The dual space of L2

This section follows Folland |1999| (section 5.5) and displays the theory of dual spaces and
reflexitivity of Hilbert spaces. Unlike for any other 1 < p < oo, L?(1) is a Hilbert space, hence
the results from the preceding section follow from this. Let H denote a Hilbert space with
inner product (-, -).

Theorem 5.13 (The Riesz Representation Theorem (Theorem 5.25, Folland [1999)). For
every Fy e H*, there exists a unique y € H such that Fy(x) = (z,y) for all x e H.

Remark 5.14. In other words, the preceding theorem states that H* = {F, : y € H}. The
Cauchy-Schwartz’ inequality yields that [(x,y)| < |z||y| with equality if (and only if) z = ay
for some a € C. Thus, for every y € H, one may choose = = my € H. Then |z| = 1,
and [(z,y)| = |z[|yl = ly| and thus |F,| = sup {|(z,y)| : [z] = 1} = |y|. Hence, the map
H >y~ F,eH" is in fact a conjugate-linear isometrical isomorphism implying that H = H*,
i.e., H is isometrically isomorphic to its dual space.
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Proposition 5.15. H is a reflexive Banach space.

Remark 5.16. The proof of the preceding proposition follows similarly to the proof of Theo-
rem[5.11] The results show that Hilbert spaces, H, possesses a very strong form of reflexivity,
where not only is ‘H isomorphic to H**; H is isometrically isomorphic to H*. In particular,
the self-duality of L?(u) can be used to prove the Lebesgue-Radon-Nikodym Theorem, as
seen in the following, where the result is proven for finite positive measures using Theo-
rem (The Riesz Representation Theorem).

The following theorem is based on exercise 18 (Folland 1999, section 6.2).

Theorem 5.17. Let v and u be finite positive measures on (X, A). Then there exist (unique)
finite positive measures ¥ and p such that

Ylp, pKp, v=t+p.
Moreover, dp = fdu for some f e L'(u).
Proof. Define a finite, positive measure A on (X, A) by A:=v +p, and let L2(\) == {f: X —
R measurable : | f[2 < oo} and (L*()))* := {T:L*(\) > R : T'is bounded and linear}. Let

g€ L*(\), and let ®: L?(\) - R be defined by ®(g) := [y gdv. Then by the triangle inequality
for integrals and Holder’s inequality,

| [ gdv] < [ ladv < [ lgldr < A0 2g) < oo,
X X X

so ® is bounded, hence ® € (L?(\))*. Then by Theorem (The Riesz Representation
Theorem), there exists a unique h € L?(\) such that ®(g) = [ gdv = (g, h) = [y ghdA. Thus,

d:f hdA:f hd fhd,
Agl/ Xg X9V+X9N

which yields that [y g(1 - h)dv = [ ghdu. Now, it is proven that 0 < h(z) < 1 for A-a.e.
zeX. Let E:={zeX:h(z)<0}. Then v(E) = [pdv < [p1-hdv = [ghdu <0, hence
v(E) =0, as v is assumed to be positive. Then also, u(E) =0, so A(E) = v(E) + u(E) = 0.
Let F:={z e X :h(z)>1}. Then u(F) = [pdu< [phdp= [p1-hdv <0, hence by similar
arguments, u(F) =v(F) =0, thus A\(F)) =0. Then 0 < h(z) <1 for M\-a.e. x € X, so h can be
taken as h: X — [0,1]. Now, let A := {ZL‘ eX:h(x)< 1} and B := {:z: eX:h(x)= 1} such that
X = AuB. Define positive finite measures p and ¢ by p(F) :=v(EnA) and ¢(F) :=v(EnB)
for every E € A. Then v(E) =9 (FE) + p(E) for every E € A, hence the goal is to show that
¥ 1Ly and p < p. Clearly, ¥(A) = v(@) =0, and

B:fd:fhd=/1-hd=o,
wB) = | dup= | hdu= | v

which proves that ¥ 1 u. To prove p < u, it suffices to prove that dp = fdu. Let A, := {:p €eX:
h(z)<1- %} for every n € N. Now, u being finite implies that L?(p) 2 L°° (1) by Proposition
6.12 (Folland [1999). Thus, (1-h)~'1 4, being bounded, implies that (1-h)"'1 4, € L®(u) <
L*(p) for every n e N. As {A;}n>1 is decreasing with N, A, = A, and {(1-h) "4, }ns1
is increasing with lim, e (1 —h) 114, = (1 - h)"'14, the Monotone Convergence Theorem
(Theorem 2.14 Folland |1999)) and continuity from above yields that

p(E) = v(EnA) = lim v(En Ay,) = lim [E | dv=lim fE(l—h)‘l(l—h)]lAndz/
n—00 n—00 NAn, n—00

- lim Eh(l—h)‘lllAndpszlim h(l—h)_lllAnd,uz[Eh(l—h)‘lllAdu,

n—00

thus, setting f := h(1-h)"'14 completes the argument. As p is a positive, finite measure, it
is clear that f € L'(u) as wanted. The uniqueness follows as in Theorem [4.2 O

This wraps up the chapter showing how the theory of bounded linear functionals on LP ()
is linked to the Lebesgue-Radon-Nikodym Theorem.
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6 Differentiation on a Euclidean space

In this chapter, the concept of differentiation of signed or complex measures is examined in
the case (X, A, 1) = (R", B(R™), m), where m denotes the Lebesgue measure. The theory of
this chapter is based on Folland (1999 (section 3.4).

6.1 The Hardy-Littlewood maximal function and the Maximal Theorem

The purpose of this section is to introduce the Hardy-Littlewood maximal function and to
prove the Maximal Theorem, which will be used to prove theorems leading to the Lebesgue
Differentation Theorem. The section begins with a definition of the pointwise derivative of
a signed or complex measure with respect to the Lebesgue measure.

Definition 6.1. Let v be a signed or complex measure on (R”, B(R™)). When the limit
exists, the pointwise derivative of v with respect to m is defined as
v(B(,r))

T

where B(z,r) ={y e R": |y — x| < r} is the open ball with center z € R” and radius r > 0.

Remark 6.2. The open balls, B(z,r), have a very nice behaviour of ‘shrinking to =’ when
r — 0. For this reason, B(x,r) is chosen in the definition of the pointwise derivative. One
could also replace B(x,r) by other suitable sets which ‘shrink nicely to x” as » — 0. The
definition of ‘shrinking nicely to x’ is to be examined later on.
Example 6.3. Let v be a signed or complex measure with v <« m such that dv = fdm by
Theorem (The Radon-Nikodym Theorem). Then v(B(z,r)) = /. B(z,r) /dm, which implies
that

v(B(z,r)) _ Jp@n o

m(B(z,r)) m(B(z,r))’

i.e., this is simply the average value of f on B(z,r). Thus, when the limit exists,

F(z)=1lim v(B(z,r)) .. /B(z,r) fdm

r0m(B(x,r))  rs0 m(B(z,1)) 1),

so one would hope that with the definition above, F' = f m-a.e. As it turns out, this is the
case, when v(B(z,r)) is finite for every 2 € R™ and r > 0. This may be considered to be a
generalization of the Fundamental Theorem of Calculus, which yields that the derivative of
[ fdm is exactly f.

The section is now proceeded with some prerequisite results needed to prove the Maximal
Theorem beginning with a result regarding the regularity properties of the Lebesgue measure.

Theorem 6.4 (Theorem 2.40 a., Folland |1999). Let E € B(R™). Then
m(E) =inf {m(U): U open, U 2 E} (Outer regularity)
= sup {m(K) : K compact, K ¢ E} (Inner regularity)

Lemma 6.5. Let C be a collection of open balls in R™, and let U = Ugec B. If m(U) > ¢
for some ¢ >0, then there exist disjoint By, ..., By, € C such that Y5, m(B;) > 3 "c.

Proof. Assume m(U) > c. Then by Theorem m(U) = sup {m(K) : K ¢ U, K compact}
implying that there exist a compact set K € U = Ugec B such that also m(K) > ¢. Clearly,
U is an open covering of K, hence by compactness of K, there exists a finite subcover
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Aj, ..., Ap, such that K ¢ U, A;, where A; := B(x;,7;) is the open ball with center z; and
radius r; > 0. Now, choose Bj := {Ai 11y 2 1 for every j = 1,..,m}, i.e., let By be the A;
with the largest radius for ¢ € {1,...,m}. Choose B2 to be the largest (meaning with largest
radius) of the remaining A;’s that is also disjoint from Bs. Choose Bs to be the largest of
the remaining A;’s that is disjoint from both By and Bs. Continue this way until the list
of A;’s is exhausted. Now, if A; # B; for every j € {1,...,k}, there must exist a B; such
that A; n B; #+ @. Moreover, if j is the smallest integer with this property, then the radius
of A; must be smaller than or equal to Bj, since otherwise A; = B;. If Bj = B(zj,7;), let
B; := B(x;,3rj), such that B; is the open ball concentric with B; with radius thrice as big

as the radius of B;. Then A; ¢ B;. But then K c U, A; ¢ U?;l B]’-*, and thus,
k k
c<m(K) <y m(Bj)=3") m(B)),
j=1 g=1

implying exactly that Z?:l m(B;) >3"c as wanted. O

Definition 6.6. Let f:R™ — C be a Borel measurable function. Then f is locally integrable
with respect to m, if [, |f(z)|dm < oo for every compact set K € B(R™). Let L}, (m) denote
the space of such functions.

Definition 6.7. Let f € Llloc(m), and let x € R™ and r > 0. The average value of f on
B(z,r) is the function A, f:R" x R, — C defined by

1

Arf($) . m(B(.CE,T‘)) B(z,r)

f(y)dm(y).
Definition 6.8. Let Ay, ..., A, be topological spaces. A function f: A x---x A, - C is jointly
continuous if f is continuous with respect to the product topology on Ay x -+ x A,,.

Lemma 6.9. Let f € L}, (m). Then A,f is jointly continuous in (z,r) e R™ x R,.

Proof. Note that the product topology on R"™ x R, equals the standard metric topology
on R™1!. Also, note that m(B(z,r)) = r"m(B(0,1)). Moreover, LBy = 1B(aor) a8
(z,7) = (z0,70) on R™\ S(z0,70), where S(z0,70) := {y € R : [y — z¢| = 70 }. Thus, 1) —
1B(zg,ry) M-a-e., since m(S(zo,70)) = 0. Moreover, if r <7 + 1 and |z - 20| < 1, one obtains
that (1) < [1B(g,re+1)|- Now, f € L} (m) implies that 1S € L'(m), hence by the

loc

Dominated Convergence Theorem (Theorem 2.24 Folland [1999),

im [ e @IIG) = [ Lneum@I@dn@) = [ fG)dm).

(z,r)~(z0,m0) (zo,r0)

thus fB(x » f(y)dm(y) is continuous in (z,7) € R" x R, which proves that

! 1
AT )= ——7F 7"y dm :—f dm
1@ = By Jon T @MW) = m i S { @A)
is jointly continuous, as wanted. .

Definition 6.10. Let f € Llloc. Then the Hardy-Littlewood maximal function, is the function
Hf:R™ > R, defined by

HF) = sup {4 1(0)) - ggg{ | If(y)ldm(y)}'

v
m(B(m, ’I”)) B(z,r
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Remark 6.11. By the preceding lemma, (Hf)™'((a,00)) = Upso(Arlf)) " ((a,0)) is open,
since A, f is continuous with respect to the product topology, and arbitrary unions of open
sets are open, hence H f is a Borel measurable function.

Theorem 6.12 (The Maximal Theorem). There exists a constant C >0 such that for every
feL(m) and every a >0,

m({a R Hf(@) > a}) < [ |f@)ldm(z) = <17l

Proof. Let E, = {:L’ eR": Hf(x)> a}. For every x € E,, one may choose r, > 0 such that
A, |fI(z) > a. Then the open balls B(x,r;) cover Ey, ie., Eq € U2 B(x;,14,). Thus, by
Lemma if m(Eq) > ¢, then there exist disjoint B(z1,74, ), ..., B(xg,74,), i.€., Z1,..., T €
E,, such that Y%, m(B(x;,7s,) > 3™"c. Then

c< 3"y m(B(wi,r4,) <3" ),
i=1 i-1 &

oo Wldm) <2 [ (7@lam()

and thus, letting ¢ > m(E,), one obtains that m(E,) < % Jgn |f()|dm(y), as wanted. O

This concludes the section with the proof of the Maximal Theorem, from which the
following section proceeds to prove the Lebesgue Differentiation Theorem.

6.2 The Lebesgue Differentiation Theorem

In this section, three consecutive stronger versions of the Fundamental Differentiation The-
orem are presented, ending with the Lebesgue Differentiation Theorem. The purpose of
this section of is prove that the pointwise derivative of a signed or complex measure v with
respect to m is in fact equal to the Radon-Nikodym derivative, j—;’l, m-a.e. under certain
assumptions. The section is initialized with a lemma needed to prove the first theorem.

Lemma 6.13. (Theorem 2.41 (Folland|1999)). Let f € L*(m). Then for every € > 0, there

exists a continuous function g such that [ |f - gldm <e.
Theorem 6.14. Let f € L} (m). Then lim, A, f(z) = f(x) for m-a.e. x € R™.

Proof. Note that it suffices to prove that A, f(z) — f(x) as r — 0 for almost every z € R”
with |z| < N for some N € N, since for every x € R", there exists N € N such that |z| < N.
Thus, assume |z| < N. Assume also that r < 1, which is justified as » — 0. Then for
|yl < N +r < N +1 the values of A, f(x) depend only on f(y). Thus, by replacing f with
f1p(o,n+1), one may assume that f € L*(m). Now, by Lemma given € > 0, there exists
a continuous function g such that [y |f - g|(z)dm(z) < e. Continuity of g implies that for
every x € R" and for every ¢ > 0, there exists an r > 0, such that |g(y) — g(x)| < d, whenever
|y — x| < r. Hence,

409(2) = 9@)| = s [ 9w - g(@)am(w)| <
implying that A,g(z) — g(z) as r — 0 for every z € R". Then
limsup|A, £(z) - £(2)| =limsup |4, £(2) - £(2) - (Arglz) - 9(2) + (Argle) - 9(2))
~limsup A, (- 9)(2) + (g~ £)(&) + Arg(x) - (o)
<H(f - g)(@) +|f(z) - g(@)] +5
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Let Py := {z € R" : limsup, |4, f(z) - f(z)| > a}, Eq = {z e R": H(f - g)(z) > a} and
F,:={z eR":|f(z) - g(z)| > a}. Now, the goal is to show that P, is a Lebesgue null set.
Note that Pa ¢ E% U F%, where

Sm(Fa) = [F S dm(z) < fF 1f(z) - g(2)|dm(z) <&,
2 2
hence by Theorem [6.12

m(Pa) <m(Eg) +m(Fy) < 22 [ |7(x) - g(w)ldm(a) + 22 < (2 + 2)e.

Thus, m(P,) = 0 for every a >0, and limsup,_,q |4, f(z) - f(z)| = 0 for every = ¢ UpZ; Py,
Hence, it is concluded that A, f(z) — f(x) for m-a.e. x € R", as wanted. O

Remark 6.15. The preceding theorem yields that for f € Llloc(m), and for m-a.e. x € R",

. : 1
0=lim A, f(z) - f(x) = lim (Bl Jatery f(y) - f(x)dm(y).

But, as proven in the following theorem, something even stronger holds.

Theorem 6.16. Let Ly := {x e R" : hm’“—’ome(r,r)) If(y) = f(z)|dm(y) = 0}. If
feLi (m), then m(R"\Ls) =0.

loc

Proof. Let ¢ € C be arbitrary. By applying Theorem to g(x) == |f(x)-¢|, it is concluded

that ]
lig o Sy W)~ lim(y) =15() =

for m-a.e. x € R", i.e., every x € R™\ P, where P, is a Lebesgue null set. Let D denote a
countable dense subset of C, and let P := Ueep P.. Then m(P.) = 0 yields that also m(P) = 0.
Let x ¢ P, and let € > 0 be given. Then one may choose ¢ € D with |f(z) — ¢| < & such that

1F () = f @) =1f(y) = (f(2) —c) + (f(2) =) = f(@)| < |f (y) - c| + ¢

implying that

lim sup

1
S B ) S @) f@lAmy) <[f (@) —d+e<2e

hence limsup,._, m fB(%T) |f(y)—f(z)|dm(y) =0 for every x ¢ P, which completes the
proof. O

The preceding theory considers families of open balls B(x,r). However, these may be
replaced by families of more general sets, which ‘shrink nicely to z’, as is defined below.

Definition 6.17. A family {E, },o of sets E,. € B(R™) shrinks nicely to z € R™ as r - 0, if
the following conditions hold.

(i) E, ¢ B(x,r) for each > 0.
(ii) There exists an a > 0, independent of r, such that m(E,) > am(B(x,r)).

Ezample 6.18. Let U € B(R") with U ¢ B(0,1) and m(U) >0, and let E, := {z+ry:ye U}
for r > 0. Then the family {E,},-¢ shrinks nicely to = as r — 0.
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Proof. (i) Clearly, E, € B(x,r)), since |y| < 1 implies that |x — x + ry| <.

(ii) Let o := Then since the Lebesgue measure is invariant under translation,

—m(BHzO,l))+1'

m(U)

mv)
B ) B0, 1)

m(E,) =r"m(U) = r"m(B(0, 1))m =

>am(B,r).

d

Remark 6.19. This example shows that for a family {E,},-o that shrinks nicely to x, the
sets F, need not contain z itself, as one may notice that if 0 ¢ U, then x ¢ E, for any r > 0.

Theorem 6.20 (The Lebesgue Differentiation Theorem). Let f € Llloc. Then for every
T € Lf,

fi s [, V)= f@ldm() =0, and  lim— [ fdm(y) = £ ()

for every family {E, },so that shrinks nicely to x as r — 0.
Proof. By assumption E, ¢ B(z,r) and m(E,) > am(B(xz,r)) for some « > 0, hence

1
m(E;)

1
m(ET) B(z,r
1
D —
am(B(x,r)) JB(z,r

thus by Theorem lim, ¢ ﬁf& |f(y) = f(z)|dm(y) = 0 for every x € Ly. Applying
the triangle inequality of integrals, one obtains that

[ 1@ = 1 @)ldm(y) < 11 @) = f@)ldm(y)

: |f(y) = f(2)ldm(y),

. 1
li 5 ) = F@)dm(y) =0,
hence )
li s, F0)m() = (@)
for x € Ly as wanted. In particular, the equalities hold for m-a.e. z € R". O

Thus, the proof of the Lebesgue Differentiation Theorem is concluded. The section is now
proceeded with the definition of regular Borel measures needed in order to prove the main
result of the section, namely that the pointwise derivative of a signed or complex measure v
with respect to m, where v has Lebesgue descomposition dv = dy+ fdm, is equal to f m-a.e.,
if v is regular.

Definition 6.21. Let v be a positive Borel measure on (R™,B(R™)). Then v is regular if
the following conditions hold.

(i) v is finite on every compact K € B(R").
(ii) v(E) =inf{v(U) : U open, E c U} for every E € B(R"). (Outer regularity)

Remark 6.22. Condition (i) actually implies condition (ii). However, as this shall not be
proven here, condition (ii) is assumed explicitly. Also, note that condition (i) implies that
every regular measure is o-finite.

Ezample 6.23. Let f:R™ — [0,00] be Borel measurable, and let v be a positive measure
defined by dv := fdm. Then v is regular if and only if f € L} (m).

loc
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Proof. Note that v(K) = [, |f(z)|dm(z) for every compact K € B(R"), thus condition (i)
is clearly equivalent to f € Lj (m). Now assume condition (i) holds. Suppose E € B(R") is
bounded. Then given § > 0, there is a bounded, open set U 2 E such that m(U) <m(E) +§
by Theorem Then m(U\ E) < §. By Corollary for given € > 0, there exists
§ > 0 such that | [ fdm| < & whenever pu(E) < §. Thus, there is U 2 E satisfying that
m(U\ E) < §, which implies that | [,z fdm| < e, which then again implies that v(U) =
Ju fdm < [ fdm +e = v(E) +e. Now E ¢ U implies that also v(E) < v(U), and the result
follows. Suppose now that E is unbounded. Let E; = (E'n B(0,i))\Uj;_; B(0,j) for each
i € N, such that E = |72, E;, where Ej; is bounded. Thus, given 4, there exists a bounded,
open set U; 2 E; such that m(U;\ Ej) < ¢ for each E;. Hence, given 279 > 0, there is an open
set U; 2 E; such that | [, fdm(y)| < 27, which implies that Jo, fdm < [, fdm+27%. By
continuity from above, v(E) = v(U2, Ei) = 2 [, fdm. Letting U = U3, U;, one obtains
U 2 FE open, and

V(U)siu(Ui)=§/U_fdm§2/};_fdm+2iazu(E)JrE

as wanted. O

Proposition 6.24. Let \, u be positive Borel measures on (R",B(R™)). If A+ u is regular,
then A and p are regular.

Proof. (i) Let K € B(R™) be compact. Then oo > (A + u)(K) = M(K) + p(K), which clearly
implies that A(K), u(K) < oo.

(ii) By the assumption that A + u is a regular measure, given g; > 0, there exist an open
set U; € B(R™) such that A c U; and (A+ p)(U;) < (A+p)(A) +¢; for every A € B(R™). Now,
let {U;}i>1 be a decreasing sequence such that

Lm (A +p)(Ui) = (A + ) (A)

and (A +p)(U;) > (A + p)(A) for every i € N. Note that u(A) < p(U;) and A(A) < \(U;) by
monotonicity of the positive measures p and A, hence

g > (A+p)(Us) = (A + p)(A4) = MU;i) + u(Us) = A(A) - u(A)
= AU;) = A(A) 20,

hence, A(U;) < A(A) + ¢, and thus lim; . p(U;) = u(A), as wanted. Similarly for pu. O

Definition 6.25. Let v be a signed or complex Borel measure on (R", B(R")). Then v is
regular, if the total variation |v| is regular.

Theorem 6.26 (The Pointwise Derivative Theorem). Let v be a regular signed or complex
Borel measure on (R™,B(R™)), and let dv = di) + fdm be the Lebesque decomposition of v
with respect to m. Then
lim v(Ey)
r=~0 m(E;)

for m-a.e. x € R™ and every family {E,}so that shrinks nicely to x as r — 0.

Proof. By Lemma and the following remark, d|v| = d|y)| +|f|dm. Hence Proposition
yields that [¢| and |f|dm are regular, since |v| is regular by assumption. In particular, |f|dm
being regular yields that f € L} (m) by Example Note that

loc

= f(z)

W(E,) v(E)-[g [W)dm(y) v(E,) 1

m(E,) m(E,) “m(E,)  m(E,

 J, S @im().
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Therefore, by Theorem [6.20|it suffices to show that if 1 is regular and ¥ 1L m, then % -0

as r - 0, when {F,},-o shrinks nicely to x. Furthermore, note that

V(B | WICE:) _ [I(B(,r)) _ [9l(B(x,7))
m(E) |~ m(E,) ~  m(E,) ~ am(B(z,r))’

for some « > 0. Thus, it suffices to assume E, = B(z,r) and that 1 is a positive measure.
Let A € B(R™) such that ¢(A) = m(R™\ A) = 0 using the assumption that ¢ L m. Define
Ey, = {x € A:limsup,_ % > %} for each k € N. The goal is to show that m(Fy) =0
for every k € N. By regularity of v, given € > 0, there exists an open set U, 2 A such that
W(U:) < g, since Y (A) = 0. Now each x € A is the center of an open ball B(x,r) ¢ U such that
Y(B(z,1)) > w. Let V := Uger, B(x,7). Suppose by contradiction that m(Vz) > ¢ for
some ¢ > 0. Then by Lemma there exist disjoint open balls B(x1,71), ..., B(x;,7) in V2
such that ¥}, m(B;) >3 "c. Then

z z
c<3" Y m(B(xi, 1)) < 3"k Y W(B(xi,1)) = 3”’“!)(@ B(i,ri))
=1 i=1 i=1
< 3E(V2) < 3"kb(UL) < 3"k,

where the inequalities in the second line follows from Ué:l B(x;,r;) € V-, monotonicity of
¥, and B(x,r) ¢ U, for every x € Fy, which implies that V. ¢ U.. Thus, m(V;) < 3"ke,
since the above yields that for every ¢ > 0 with m(VZ) > ¢, it holds that ¢ < 3"ke, hence
if m(V;) > 3"ke, then 3"ke < 3"ke, but this is a contradiction. Since € > 0 was arbitrarily
chosen and since F}, € V, one obtains that m(V.) = 0 implying that also m(F}) = 0 for every
k € N, as wanted. ]

This concludes the theory of differentiation on a Euclidean space proving that the point-
wise derivative of a signed or complex measure with respect to the Lebesgue measure on
(R™,B(R™)) is in fact equal to f m-a.e. Moreover, if v < m such that dv = g—;du, this

indeed proves that the pointwise derivative agrees with the Radon-Nikodym derivative, g_nyw

m-a.e. as wanted. This leads to the theory of functions of bounded variation, where complex
Borel measures on (R,B(R)) are to be considered. This theory will lead to a proof of the
Fundamental Theorem of Calculus.
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7 Functions of bounded variation and complex Borel mea-
sures

This chapter revolves around functions of bounded variation, which turn out to play a sig-
nificant role in the characterization of complex Borel measures on (R, B(R)). One purpose
of the chapter is to prove the ultimate version of the Fundamental Theorem of Calculus for
Lebesgue integrals. The theory of this chapter is based on Folland 1999 (section 3.5).

7.1 Lebesgue-Stieltjes measures

In this section, Lebesgue-Stieltjes measures are introduced as a preliminary to the theory of
functions of bounded variation, as increasing and right-continuous functions correspond to
positive Borel measures the same way functions of normalized bounded variation correspond
to complex Borel measures. The section is based on Schilling [2017| (chapter 6) and Folland
1999 (section 1.5).

Theorem 7.1 (Carathédory). Let . € P(X) be a semiring, and let u:. — [0, 00] be a pre-
measure. Then p has an extension to a measure p on o(.). Furthermore, if . contains
an ezhausting sequence {Sytn>1 € .7, i.e., {Sp}nz1 is increasing with Us>, Sy, = X, such that
1(Sp) < oo for every n € N, then the extension is unique.

Theorem 7.2 (Lebesgue-Stieltjes measures). Let F:R — R be an increasing and right-
continuous function. Then

wr((a,b]) = F(b) - F(a), for every a <beR,

has a unique extension to a positive Borel measure on (R,B(R)). Conversely, if ur is a
Borel measure on (R,B(R)), and up is finite on all bounded Borel sets, then

F(x):= {”F((Ovﬂf’]L x>0
-pr((2,0]), <0

1s increasing and right-continuous.

Proof. Let .7 := {(a, bl,a<be R} such that o() = B(R). It is proven that . is a semi-ring.

(i) Since (a,a] = @ for every a € R, it is clear that @ € ..

(ii) Let S, T e .. If S=z or T =@, then SNT =@ € .. Thus, suppose S = (a1,b1],
and T = (ag,bz] are non-empty, and assume without loss of generality that a; < as. If also,
b1 < ag, then SNT =@ € .. On the other hand, if as < by, then SNT = (a2, min{by, by }] € ..

(iii) Let S,T € . If S = @, then S\T = @, which can be written as a finite disjoint union
of theset g e .. f T =@, then S\T =S =@uS. Now, suppose S = (a1,b1],T = (az2,b2] + @.
Note that if ST, then S\T =@ € .. Otherwise,

S\T = (al,bl]\(CLQ,bg] = (al,b1] ) ((—oo,ag] U (bQ, oo))

= (al,min{bl,ag}] U] (max{a1,b2},bl],

with (a1, min{b1,as}] € ¥ and (max{ai,ba},b1]€.7.

By Theorem [7.1] it thus suffices to check that v is a premeasure on . in order to prove
existence. Note that .% is not a g-algebra, hence vp is not a measure.

(i) Tt is clear that vp(@) = vp((a,a]) = F(a) - F(a) = 0.

(ii) Let {Sn}n>1 be a sequence of disjoint sets Sy, = (an,by] € 7 with U2, Sy = (a,b] =
S e.”. Let 01,02 > 0 be given. Observe that U5 (an, by, +01) 2 [a + d2,b] is an open cover
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of the set [a + d2,b]. Now, [a + d2,b] is closed and bounded, hence compact by the Heine-
Borel Theorem, thus there exists a finite open subcover, i.e., there exists N € N such that
Ug:l(an, bp +01) 2 [a+d2,b], implying that U _1(an, by +061] 2 (a+d2,b]. The goal is to show
that vp((a,b]) = Yoy vr((an, bn]) by showmg My oo (vr((a,b]) = 2 ve((an, by])) = 0.
Now, choose a}, < a,, and b/, > by, such that al, = a for some n € {1,.., N}, and likewise b/, = b

for some n € {1,..., N}. Then (a,b] = (an, b1 2 WY (an,bn]. Thus,
N
0=vr((a,b]) - Z vi((ay,b,]) <vr((a,b]) - ZlvF((ambn])
N N
= Z/F((a + (52,b:|) + VF((a,a + (52]) - ( ;(Z/F((an, bn + (51]) - ;VF((bn,bn + 51]))
< l/p((a,a + 52]) + % Z/F((bn,bn + 51]),
n=1

since (a+02,b] € UN_, (an,bn +01], hence vp((a+02,b]) = L2 vp((an, by +61]) < 0. Now, by
right-continuity of F', given € > 0, one may choose §; > 0 and d3 > 0 such that vp((a,a+3d2) =
F(a) - F(a+62) < § and vp((bn, by +01]) = F(by) = F(by +61) < gagr- Then

J N e & ¢
0<vp((a,b]) - Z:IVF((an,bn] <vp((a,a+d2]) + Z:ll/p((bn,bn +01]) < 3 + Z:l s

hence letting N — oo, one obtains that 0 < vp((a,b]) = o2 vr((an,bn]) < &, and since € > 0
was arbitrary, this completes the proof of existence.

For uniqueness, note that the sequence {(-n,n]},>1 € .7 is an exhausting sequence, since
(-n,n]c(=(n+1),n+1] and Us2,(-n,n] =R. This completes the uniqueness of p.

Now, let pp be a Borel measure on (R, B(R)). Then F is increasing, since for y < z <0,
then (z,0] ¢ (y,0], hence F(y) = —ur((y,0]) < —pur((z,0]) = F(z), and for 0 < y < z, then
(0,y] € (0,z], hence F(y) = pr((0,y]) < pr((0,z]) = F(x) by monotonicity of the positive
measure ,uF and for y < 0 < z, it holds that F(y) = —,uF((y, 0]) < ur((0,2z]). Let z > 0. Then
{0,z + = ]}n>1 is a decreasing sequence of sets (0, x + = ] e B(R) with N2, (0, z + ] (0,z],
and uF((O x+1]) < o0, since p is assumed to be finite on bounded sets, hence for y € [z, z+1],
by continuity from above,

Jim, F(y) = Tim e ((0,2+ 3 21) = MF(ﬂ(O v+ 3]) = ur((0,2]) = F(2).
Similarly, if z < 0, then {(x + ,0]}ns1 s an increasing sequence with US (2, 0], hence for
y € [z, z + 1], by continuity from below,

lim F(y) = lim pe((0,0+2]) - uF(UE) ue((2,0]) = F(2).

This completes the proof.
O

Remark 7.3. The measure pur is called the Lebesgue-Stieltjes measure associated to F. If p
is a finite Borel measure on (R, B(R)), then u = pp with F(z) = u((-o0,z]), and F is the
cumulative distribution function of . Note that if F is the function specified in Theorem.
then F(x) = F'(z) + u((~00,0]), i.e., F differs from F by a constant uu((-c0,0]). The results
from the previous section about differentiation on Euclidean spaces apply in particular to
R, and thus, by the correspondence between positive Borel measures on (R,B(R)) and
increasing, right-continuous functions from Theorem[7.2] these results are in particular results
about differentiation and integration of such functions. Lebesgue-Stieltjes measures hold
some nice regularity properties, which are to be examined.
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Proposition 7.4. Let p be a Lebesgue-Stieltjes measure on (R, B(R)). Then

p(E) = inf {M(U) U open, U 2 E} (Outer regularity)
= sup {,u(K) : K compact, K ¢ E} (Inner regularity)

Proof. Tt is clear that for every E € B(R), it holds that
w(E) = inf{ZF(bi) - F(a;):Ec Ul(ai,bi]} = inf{z,u((ai,bi]) tEc Ul(ai,bi]}.
i=1 i= i=1 i=

To prove outer regularity of y, it is proven that pu(E) = inf { Yooy p(ai, b))+ E < U2, (ai, bz)}
and then this is generalized to the wanted equality. Let E € B(R) and suppose that FE ¢
U2, (as, bi). Note that (a;,b;) = Up2, (ai - (bi;—ai) +(bi—a;),b; - M] for each i € N. Thus,

n+1

() = Bnsb) = 3 3 (o= 520 (- - 8582]) > ).

i=1n=1

Conversely, given € > 0, there exists {(a;, b;i]}i>1 with E € U2 (a4, bi] and Y72 p((aq, bi)
w(E)+¢e. Then by right-continuity of F', one may choose d; > 0 such that F'(b; + ;) — F'(b;
e+27". Then E c U, (ai,b; +4;) and

) <
) <

Zu((az,b +47)) Siu (a;,b;]) + e < p(E) + 2,

which proves the equality with open intervals. Let U = U2, (a;,b;). Then U is open with
EcU and p(U) < u(E) +¢. Since also u(U) > u(E), this proves that p is outer regular.

To prove that p is inner regular, suppose first that E € B(R) is bounded. Then if E is
also closed, F is compact, in which case the equality is obvious. Suppose E is not closed.
Let € > 0 be given. Then one may choose U 2 E\ E open such that u(F) < u(E\E) +e.
Now, set K := E\U. Then K is clearly compact and K ¢ E. Thus,

p(K) = (E) = p(U) = p(ENE) + (E) = p(U) 2 u(E) — e,

which proves the equality in the case, where E € B(R) is bounded. Suppose F is unbounded.
Let E; := En (i,i+ 1] for each ¢ € N such that E = (J;°__ E;. Then each E; is bounded,
so for every e > 0 there exists a compact set K; € E; such that u(K;) > u(E;) — €27 Let
H, = _, K;. Then H,, is compact, H, € E and

W(B) > p(Hy) = 3 (i) > Z W(Ey) - 227 = (1 Ey)

i=—n =-n
and since {(W}_,, E;)}n>1 is an increasing sequence with p(E) = limye p(U}_,, E;), the
equality follows as wanted. O

Remark 7.5. As the Lebesgue measure, m, on (R,B(R)) is the Lebesgue-Stieltjes measure
given by m((a,b]) = F(a)-F(b), where F(z) = x for every x € R, this also proves Theorem 6.4]
in the case where n = 1. Moreover, as every right-continuous and increasing function is
bounded on closed and bounded intervals, i.e., compact subsets of R, it is clear that Lebesgue-
Stieltjes measures are finite on compact sets K € B(R), thus, the preceding proposition proves
that Lebesgue-Stieltjes measures are in fact regular.
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7.2 Functions of bounded variation

Let (X, A, 1) = (R, B(R), m). In this section, functions of bounded variation are introduced,
as well as the theory behind.

Theorem 7.6. Let F:R — R be an increasing function, and let G:R — R be defined by
G(z) = F(x+) :=limy_,+ F(y) for every x e R. Then

(i) The set A := {ac eR:F is discontinuous} s countable.

(i1) F and G are differentiable m-a.e. with F' = G’ m-a.e.

Proof. (i) Note that F' is continuous in x € R if and only if F'(z+) = F/(z—). The assump-
tion that F is increasing yields that the intervals (F'(z-), F(x+)) are disjoint for every

x € R. Moreover, if |z| < N for some N € N, the intervals are contained in the interval
(F(-N),F(N)). Thus,

Y (F(z+)-F(z-)) < F(N)-F(-N) < o0,
|x|<N
which implies that Ay := {x € (-N,N) : F(x+) # F(x—)} is countable, since if F(z+) #
F(z-), i.e., F(z+) - F(z—) > 0 for uncountably many z € (-N, N), there would exist n € N
such that S, := {m € (-N,N): (F(x+)-F(z-)) > %} is infinite, and thus ¥, v(F(2+) -
F(z-)) > Y 4es, % = 00. Since Ay is countable for every N € N| A is countable as wanted.
(ii) The assumption that F' is increasing together with the definition of G(z) := F(xz+)
yields that G is increasing and right-continuous. Moreover, G(z) = F'(z) for every x € R\ A.
Thus, if pg is the Lebesgue-Stieltjes measure associated to G, then

GM+h)—G@0:{“G“%$+hD, h20
-pc((x+h,z]), h<O0

Note that the families {E, },50 = {(x =7, 2] }r>0 and {E; },s0 = {(z, 2 + 7] },>0 shrink nicely to
xeR asr - 0: Clearly, (x—r,x],(z,x+r] c B(x,r) for every r >0, and m(B(z,r)) = 2r, so
m((x-r,z])=r=m((z,z+r]) > %r = %m(B(:c, r)). Thus, letting |h| = r — 0 yields that

G'(z) = lim Glz+h) - G(x) =lim —MG(ET).
|h|-0 |h| r—0 m(E,)
Since p¢ is regular, Theorem yields that G’ exists for m-a.e. x € R. Now, let H(z) :=
G(x) = F(x). Thus, the goal is to show that H' exists and equals zero m-a.e. Note that
H(x) =G(x) - F(z) = F(x+) - F(x), and thus, the assumption that F' is increasing yields
that F(z+) > F((z), hence H(z) > 0. Let A’ := {z e R: H(z) > 0}. Then A’ ¢ A. Now, let
{x;}i>1 be an enumeration of the x € R for which H # 0. Then H(x;) > 0 for every z;, and

S H(z)= Y Fla) - F(a) < F(NV) - F(-N) < oo,
i |<N 5| <N

since (F'(x;),F(x;+)) are disjoint intervals contained in the interval (F(-N),F(N)) for
every |z;| < N. Let u be a measure on (R, B(R)) defined by u(E) := Y51 H(x;)05,(E), where
dz; is the Dirac measure. Then p is finite on compact sets K € (-N,N), and p((-o0,0]) =
Yu,<x H(x;), where 3, ., H(x;) is clearly increasing and right-continuous, thus p is regular
by Theorem Moreover, m(A") =0, since A’ ¢ A, and u(R\ A’) =0, so i L m. Then

H(zx+h)-H(x) H(zx+h)+H(z) .. p((z-2|h|,xz+2|h|))

lim < lim

[h=~0 h U |h| ~ hl>0 ||
i 4@ 2R e+ 200)) o (@ =2k 1 2R))
[7l=0 4lh| ihj~0 m((z — 2|h|,x + 2|h|))
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for m-a.e. x € R by Theorem letting r = 2|h|, since the family {(x - r,x + 1) },s0 shrinks
nicely to x as r — 0. Hence, H' exists and H' = 0 for m-a.e. x € R, as wanted. O]

Definition 7.7. Let F:R — C. The total variation function of F is defined by
n
Tp(x) := sup{z |F(x;) = F(xi—1)|:neN,—o0o <zg <+ <y, = x}
i=1

Remark 7.8. Note that Tp:R — [0, 00] is an increasing function. Adding more subdivision
points in the sum only increases the value of the sums in the definition of T, thus for a < b,
one may assume that a is always a subdivision point. Hence, the total variation of F' on
[a,b] is defined as follows.

Definition 7.9. The total variation of F on [a,b] is defined by

Tr(b) - Tr(a) = sup{ﬁyF(mi) - F(xi1)|:neNja=zp < <zy = b}.

Remark 7.10. In the case where Tr(b) = Tr(a) = oo, the definition should be interpreted as
Trp(b) =Tr(a) + sup{ P F(z) = F(xim1)|:neNja=xzp < <xyp, = b}.

Definition 7.11. Let F:R - C. Then F is of bounded variation on R, if Tp(oo) :=
lim, 00 Tr(x) < 00, and F is of bounded variation on [a,b] if Tp(b) - Tr(a) < co. Moreover,
let BV := {F :R—>C:Tp(c0) < oo} and BV ([a,b]) := {F: [a,b] > C:Tp(b) - Tr(a) < oo}.
Remark 7.12. If F € BV, then restricting F' to [a,b] yields that F|[a 0 € BV ([a,b]). Con-

versely, if F' € BV ([a,b]), then extending F by setting F(z) := F(a) for every x < a and
F(z):= F(b) for every x > b yields that F' € BV.

Example 7.13. The following are examples of functions of bounded variation.

(i) Let F:R - R be bounded and increasing. Then F € BV.
(ii) Let F,G € BV, and let a,b e C. Then aF +bG € BV.

(iii) Let F:R — R be differentiable with F’ bounded. Then F € BV ([a,b]) for every
—00<a<b< oo,

Proof. (i) Consider Tr(z) for x € R. Since F is increasing,

Tp(x) = sup{z |F(2;) = F(xi—1)| :neN,—oco < 29 < -2y = x}
i=1

=sup{ZF(:I:i)—F(xi_1):neNj—oo<x0<~-xn=x}

i=1
= sup {F(w) - F(aco)} = F(x) - F(-00).

Now, since F' is bounded, there exists M € N such that |F'(z)| < M for all z € R. Then
Tr(x)=F(x)— F(-00) <2M < o0, hence T'(o0) < co.
(ii) Consider the sums in the definition of T,z pqG:

i|aF(mi) FbG(25) — (aF(2i1) + bG(wi1)|

< i laF (z;) — aF(2;_1)| + 2 IbG (2;) — bG (2i-1)|

7 n

=la| 3, [F (i) = F(i-1)| + [b] Z; |G (i) - G(@i1)],

i=1

Page 37 of



hence Typipa(x) < |a|Tr(z) + |b|Tg(x) for every x € R. Thus, F,G € BV yields that
TaF+bG(°°) < |a|TF(OO) + |b|TG(OO) < 00.

(iii) Let = € [a,b]. For every [zi_1,x;] € [a,b], the Mean Value Theorem yields that
there exists ¢ € [x;_1,x;] such that |F(x;) — F(z;-1)| = |F'(¢)||x; — x;-1]. Moreover, since F’
is bounded, there exists M € N such that |F(z;) = F(xi-1)| = |[F'(¢)||x; - wi-1| £ M|x; — 2]
for every c € R. Thus,

NgE

Trp(b) - Tp(a) = sup{ |F(x;) - F(zi-1)|:neNja=xg<- <xp = b}

<
Il
—_

M=

Ssup{ M|a:i—a;i_1|:neN,a:x0<---<xn:b}:M(b—a)<oo.

)
I
—_

O
Lemma 7.14. Let F:R - R be in BV. Then Tr £ F are bounded and increasing functions.

Proof. Suppose x <y € R. Let € > 0 be given, and choose a partition zg < --- < &, = x such
that >0 |F(zi) — F(xi—1)| 2 Tr(x) —e. Then Tr(y) can be approximated by Y7t |F'(x;) -
F(zi1)|+|F(y) - F(x)], so

n

Tr(y) + F(y) 2 ; |F (i) = Fzi| + [F(y) - F(2)] = F(y)

= i‘F(ﬂﬁz) - F(mi—l)’ + \F(y) - F(a:)\ +(F(y) - F(x) + F(x))

2 ) |F (@) = F(ziq)| £ F(x) 2 Tp(z) - € + F(2),

)—‘M:

S
I

hence Trp(y) £ F(y) > Tr(x) £ F(x), so Tk + F are increasing. Then for z <y € R,
|F'(y) = F(2)| < Tp(y) - Tr(z) < Tp(oo) = Tp(-00) < oo,
which implies that F' is bounded, and hence T + F' are bounded. O
Theorem 7.15. The following hold.
(i) F e BV if and only if R(F') € BV and 3(F) € BV.

(ii) Let F:R — R. Then F € BV if and only if F is the difference of two bounded and
increasing functions.

(i1i) Let F € BV. Then the limits F(x+) and F(x-) exists for every x € R, and also the
limits F(+o00) exists.

(iv) Let F € BV. Then A := {x eR:F is discontmuous} is a countable set.

(v) Let F € BV and G(x) := F(x+) for every x e R. Then F',G' exist, and F' " =" G'.

Proof. (i) If F' = R(F) +iJ(F) € BV, then [R(F)| < |F(x)| for every x € R yields that
Tnry(7) < Tr(x) for every € R, hence Tiy(py(o0) < Tp(o0) < 00, so R(F) € BV. Similarly
for J(F). Conversely, if R(F'),J(F) € BV, then |F(z)| < |R(F)(x)| +|I(F)(x)| for every
v € R yields that Tr(x) < Tyy(py(z) + Tyry(x) for every x € R, hence Tr(00) < Tiy(py(00) +
T5(ry(o0) < 0.

(i) Suppose F' = G-H, where G, H:R — R are bounded and increasing. Then by Example
(i), G,H € BV, and thus by Example (ii), F = G - H € BV. Conversely, suppose
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F:R —Rand F e BV. Then F = 1(Tp + F) - 1(Tr - F), where T + I are bounded and
increasing by Lemma

(iii) Let F' € BV. Then also R(F),J(F) € BV by (i), hence by (ii), each of the functions
R(F),I(F):R - R is the difference of two bounded and increasing functions, i.e., R(F') =
Fy—Fy and J(F) = F3— Fy. Then F = Fy - F5 +i(F3 - Fy), where F; bounded and increasing
for i € {1,...,4}. Therefore, the limits F;(z+) and F;(x—) exist and are finite for every x € R
and i € {1,...,4}. Moreover, F; being bounded yields that F;(+o0) < oo for i € {1,...,4}, so

F(z+) = Fi(z+) — Fo(z+) +i(Fs3(a+) — Fa(z+)),
so F(z+) exists. Similarly for F(z-). And also
F(+00) = F1(£00) — Fy(£00) + i(F3(x00) — Fy(£00)),

so the limits F'(+oc0) exists.

(iv) As in (iii), F' € BV yields that F' = F} — Fy + i(F3 — Fy), where each F; is bounded
and increasing. Then by Theorem (i), the sets A4; := {z € R : F} is discontinuous} are
countable for ¢ € {1,..,4}. Now, clearly, A := {:U eR: Fis discontinuous} c Ul 4, and
thus, since every finite union of countable sets is countable, #A < # Uil A; yields that A is
countable as wanted.

(v) For F' € BV with F = F| — F5 +i(F3 — Fy) for F; bounded and increasing, define
Gi(z) := Fj(x+) for each i € {1,...,4}. Thus, G(x) = F(a+) = Fi(z+) — Fa(z+) + i(F3(z+) —
Fy(z+)) = Gi(a+) - Go(z+) +i(G3(z+) — G4(z+)), and by Theorem (i), Gi = F m-a.c.

for each i = 1,...,4. Hence, G’ = F’ m-a.e. as wanted. O

Definition 7.16. Let F:R — R be in BV. The representation F' = %(TF +F) - %(TF -F)
is called the Jordan decomposition of F, and %(TF + F') are called the positive, respectively
negative, variations of F'.

Proposition 7.17. Let F:R - R be in BV. Then the positive and negative variations are
n
5(Tp £ F)(z) = sup{Z(F(xi) —F(xi-1)*:neN:—co<ag< - <xp = x} + 3 F(-00).
i=1

Proof. Note that * := max(+,0) = 1 (|| + ) for z € R. Thus, since Y1) F(z;) - F(xi-1) =
F(z,) - F(xo), one obtains that

n

(T + F)(w) = sup { 2; (| (25) = F(wi1)| + F(x)) =00 <29 < o < = 2|

=sup { i(F(xZ) —F(zi-1))* £12F (zg) : —00 <o < =+ < Tp = :z} (%)

= sup { Zn;(F(a:Z) —F(z41))* i —00<xg <+ <y = x} + %F(—oo). (%)

To justify that (*) = (#%), let € > 0 be given. There exists ¢ such that F'(—o0)—e < F(xq) <
F(-o00)+e. Assume without loss of generality that xg is a subdivision point. Then for every
partition,

7

Z(F(ﬂfz) - F(:ci_l))i + 1/2F(—00) < Zn:(F(l‘l) — F(.Ti_l))i + 1/2F(J,‘0) + % < (*) + g,

i=1 i=1

i(F(azi) = P(wi))* £ 1P () < i(F(azi) ~P(wia)" P (o) £ 5 < (+4) + 5.

for every partition, which implies that also (*) < (*x). O
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7.3 Characterization of complex Borel measures

The theory of functions of bounded variation rises the question: Which functions of bounded
variation correspond to a complex Borel measure on (R, B(R))? In this section, an answer to
this question is provided. Initially, functions of normalized bounded variation are introduced.

Definition 7.18. Define the space of functions of normalized bounded variation by
NBV :={F ¢ BV : F is right-continuous and F(-0) = 0}.
Ezample 7.19. Let F' € BV. Then G:R — C defined by G(z) := F(x+)—F(-o0) lies in NBV.

Proof. Since F(-o0) is just a constant, non-dependent of x € R, it is clear from Theorem
that G € BV. Moreover, G is right-continuous by definition, since lim,_,+ G(y) =
F(z+) - F(-00) =G(x), and G(-0) = limy,_ F(y+) = F(-0) = F(-00) = F((-00) =0. [

Lemma 7.20. Let F € BV. Then Tp(—o00) =0. Moreover, if F' is right-continuous, then so
18 TF.

Proof. Let € >0 be given. Let z € R, and choose —oo <z < -+ < x,, = x such that Y1 ; |F(x;) -
F(xi-1)| 2 Tp(x) — e. By definition,

n
Tr(xz) - Tr(xo) =sup { Z |F(x;) = F(xi-1)| :neNyjzg <<y = x},

i=1
hence, Tr(z) - Tr(x0) 2 Xivy |F (i) — F(xi-1)| 2 Tr(z) — €, which implies that Tr(x0) < €.
Then Tr being increasing yields that Tp(y) < € for every y € R with y < zg. Therefore, Tr
being a positive function yields that T'(-o0) = 0. Now, suppose that F' is right-continuous.
Let € > 0 be given, and let x € R. Moreover, let « := Tp(z+) — Tp(x), and choose § > 0 such
that |F(x + h) - F(z)| <e and Trp(x + h) - Tr(x+) < &, whenever 0 < h < §. The goal is to
prove that a = 0. Now, for 0 < h < 9, there exists a partition z = xg < -- < x,, = ¢+ h such that

i [F(2i) = F(zi)| 2 31(Tr(x + h) = Tp(2)) 2 34(T (2+) - Tr(x)) = 3ac,

hence Y7 o |F(2;) — F(xi-1)| 2 %a— |F(x1) - F(x)| > %a—a. Likewise, there exists a partition
x =19 < <ty =z such that Y7 |F(t;) - F(ti-1)] > %a. Then x =ty < -+ <ty < Ty <+ <
Zn = + h is a partition of [z, z + h], and thus

a+e> TF(w + h) - TF(w) = TF(.% + h) - TF(.%) + TF(l'l) - TF(a;) - (TF(l'l) - TF(w))

> 2 1P () = F(ty)|+ E1F(@0) - Plai)|

i=1
3 3 _3
2 jo+ 30 —€=50-¢€,
hence « < 4¢, and therefore, € > 0 being arbitrary yields that « = 0 as wanted. ]

Theorem 7.21. Let pu be a complex Borel measure on (R,B(R)). If F:R — C is defined by
F(x):= u((-oc0,x]), then F e NBV. Conversely, if F'e NBV, there exists a unique complex
Borel measure pp such that pp((—oo,x]) = F(x). Moreover, |pp|= firy .

Proof. Any complex measure can be decomposed as p = um+ipy = py —py +i(puy — (13 ), where
H, py are finite signed measures, i.e., p7 is a finite positive measure for each ¢ € {1,2}.
Suppose F;* is defined by F;*(z) := pF ((—o0,z]). Then F}* is increasing and right-continuous
by Theorem and the following remark. Moreover, F;*(-o0) = pf (&) = 0, and F[*(o0) =
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15 (R) < oo. Thus, every F;* is increasing and bounded, hence F' = F|" - F| +i(Fy - Fy) is
of bounded variation by Theorem (i) and (ii). Now, F' is clearly also right-continuous,
and F'(—oo) = Fj"(—00) — F] (—00) +i(F5 (—o0) — F;y (—0)) =0, hence F e NBV.

Conversely, let F'e NBV. By Theorem (i), ®R(F),3(F) e BV, thus by (ii),

F =Y (Twpy + R(F)) = 3(Toery - R(F)) +i(3(Tyry + I(F)) = 3(Tyry - I(F))).

It is clear that F' being right-continuous and F'(-oco0) = 0 implies that R(F') and J(F') are
right-continuous, and R(F)(-o0) = J(F)(-c0) = 0. Then by Lemma T(py(—00) =
Ty(py(=o0) = 0, and Ty and Tiy(py are right-continuous. Moreover, Ty py + R(F) and
T5(py = J(F) are increasing by Lemma This implies that F' = F}" — F{ +i(Fy - Fy),
where F}* € NBV, and in particular, F* is right-continuous and increasing for each i € {1,2}.
Thus by Theorem 7.2} each F}* gives rise to a unique finite positive Borel measure, p1p: with
F*(z) = pp+((—o00,z]), such that F(z) = pp((-o0,x]), and pp is unique by the uniqueness
of the decorlnposition of a complex measure into its real and imaginary part, as well as the
uniqueness of the Jordan decomposition of these.

To complete the proof, let pz, ((-o0,z]) = Tr(x). The goal is to prove that |pup| = pr,.
By definition of the total variation,

prp (=00, 2]) = T (z) = sup{ilw(xi) — F(ai)|:n e N,—00 <2 < - < = 2

n
=sup{2| ((zi-1,2;])| :meN,—o0 <y < - <xn=x}
=1

~.

< sup { Y2 a(E)| € N = (0,1} = | ((-o0.)).

i=1

hence pr, ((—o0,2]) < |up|((—o0,z]) for every z € R. To prove the other inequality, let
(a,b] € B(R) for a <b. Then

lur((a,0])| = |F(b) - F(a)| < Tr(b) - Tr(a) = prp((a, b]).

Let S := {Ug‘:l(ai,bi] :neN, —oco<a;<b; < oo}. Then S is a ring over P(R), as S is closed
under differences and pairwise unions. Moreover, in the proof of Theorem it has been
obtained that .& = {(a,b] ta<be ]R} is a semi-ring, thus, S being the collection of finite
disjoint unions of elements in . yields that S is a ring. By countable additivity,

e (s D) = | 3 D) < 3 e (i < - (o D) = e (O )

hence |up(E)| < pr, (E) for every E € S. Now, let M := {E € B(R) : [up(E)| < pr,.(E)},
and let {E;};>1 be an increasing sequence in M. Then by continuity from below,

lur (U E)| = lim |pp(E;)| < lim pr, (E;) = MTF(U1 E;),

so U, E; € M. Let {E;}i»1 be a decreasing sequence in M. Since p1p is a complex measure
and thus finite, and also pr, is a finite measure, since Tp(—00) < oo, continuity from above
yields that also

|NF(mE)| = lim [pop(Ey)| < lim pry (B3) = prye ﬂE)

i=1 i=1

so N F; € M. Hence, M is closed under countable monotone unions and intersections,
so M is a monotone class. Thus, if M(S) is the smallest monotone class containing 5,
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then S ¢ M yields that M (S) ¢ M. By Monotone Class Theorem for rings (Theorem 7.1,
Berezansky, Sheftel, and Us|1996), M (S) = or(S), where or(S) is the o-ring generated by
S. Since or(S) is closed under countable unions, one obtains R = U2, (—n,n] € or(5), and
therefore, or(S) = o (), where o(S) is the o-algebra generated by S. Hence B(R) = o(S) ¢
M, and thus, it holds for every E € B(R) that |up(F)| < pr,(E). Then

jarl((=e0.]) = sup { 3 e (B : (-00.0] = () )

i=1

ssup@mw) (wo0.] = [ B3} = parp (=o0.))

which proves the other inequality, hence |up| = p7, as wanted. O

Remark 7.22. The preceding theorem answers the question posed earlier, that is, functions of
normalized bounded variation correspond to complex Borel measures on (R, B(R)). It turns
out that there is a direct link between the positive and negative variations of F' € NBV
defined in Definition and the positive and negative variations of the corresponding
Borel measure: If F' € NBV is a real-valued function such that pup((-co,z]) = F(z) is a
finite signed Borel measure on (R, B(R)), then the positive and negative variations of pp is
given by pp = p L (TpsF): This follows, since the total variation of up is given by |up| = pr.
The next question to arise is: Which functions of normalized bounded variation correspond
to complex Borel measures that are singular, respectively, absolutely continuous with respect
to Lebesque measure?

Lemma 7.23. Let F e NBV, and let up((-o0,z]) = F(z). Then up is reqular.

Proof. Recall that pp is regular if |up| is regular. By Theorem lur| = pre, where
pry ((—oo,z]) = Tp(zx) for Tr increasing and right-continuous by Lemma Thus, by
Proposition 7.4} pur, is regular, and hence, so is . O

Proposition 7.24. Let F'e NBV. Then the following properties hold.
(i) F is differentiable with F' e L*(m).
(i) pr Lm if and only if F' =0 m-a.e.

(i4i) pp <m if and only if F(z) = [ F'(t)dm(t).

Proof. (i) Let F ¢ NBV and pp the corresponding complex Borel measure from Theo-
rem such that pp((—o0,z]) = F(x). Let dup = d\+ fdm be the Lebesgue decomposition
of u with respect to m. Consider the difference quotient of F'.
pr ((za+h])
[F(z+h)-F(z)| | miamn > >0

Al | pe(@rha) '
(e P <0

Since the families {F; },»0 = {(z—7,2]}rs0 and {E} },50 = {(z, 2 +7]},>0 shrink nicely to x € R
as 1 — 0, letting |h| =7 — 0 yields that

o @ h) - F@)| (B
PO "M E)

= f(z)
for m-a.e. x € R by Theorem [6.26 since up is regular by Lemma [7.23] Moreover, as up

is a complex measure, Theorem (The Lebesgue-Radon-Nikodym Theorem for complex
measures) yields that F/ "= f e L'(m).
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(ii) Suppose pp L m such that R = Au B, where pup(A) = m(B) = 0. Now, for every
x € R, it holds that either x € A or x € B, thus for a family {F, },0, which shrinks nicely to
x as r - 0, one eventually obtains that either E, ¢ A or E, ¢ B. So for every z € A,

E
F'(a) = tim “EED
r—0 m(ET)
as up(FEy)=0asr—0,so {x eR:F'# O} ¢ B for a Lebesgue null set B, hence F’' = 0 m-a.e.
Conversely, suppose F' = 0 m-a.e. Let A := {a: eR: F' = 0} and let B := R\ A. By

assumption, F' = 0 m-a.e., hence m(B) =0, and for every = € A,

R 1 UF(ET)
O—F(z)—}g% (5

hence pur(A) =0. Thus, pr L m.
(iii) Suppose pp < m. By Theorem (The Radon-Nikodym Theorem), dup = fdm for
feL'(u). Also, by part (i), F' = f m-a.e., which yields that

F@)=pl(-ooal)= [ F0dm(t)= [ F'(5)dm().

Conversely, suppose F(x) = [ F'(t)dm(t). Then up((-oo,z]) = F(x) = [*_ F'(t)dm(t),
so dup = F'dm, hence up < m. O

Definition 7.25. Let F:R — R. Then F is absolutely continuous if for every € > 0, there
exists a 0 > 0 such that Y, |F(b;) - F(a;)| < €, whenever ¥V, (b; — a;) < d for a finite set of
disjoint intervals (ai,b1),..., (an,bn), i.e., a1 <b; <ag <--<ay <by.

Remark 7.26. If F' is absolutely continuous, then F' is also uniformly continuous: Let N =
1 and € > 0, then for every §, one obtains that |F'(b) — F'(a)| < €, whenever |b—a| < 4.
Thus, absolute continuity is stronger than uniform continuity. Moreover, if F' is everywhere
differentiable with F” bounded, then F is absolutely continuous by the Mean Value Theorem:
If |F'| < M for some M € N, then for every € > 0, one may choose § := 17> such that
SN IF(by) = F(an)| < MYN | by = an| < M§ = €, whenever YN, |b, — ap| < 6. In fact, F
being absolutely continuous is equivalent to the corresponding complex Borel measure up
being absolutely continuous with respect to the Lebesgue measure, as seen in the following.

Proposition 7.27. Let F'e NBV. Then F is absolutely continuous if and only if pp << m.

Proof. Suppose urp << m. Define E := Uﬁl(ai,bi] for some N € N, and let € > 0 be given.
Then by Theorem there exists § > 0 such that m(FE) = ¥, (b; - a;) < § yields that
lur(E)| = | SN, praib)| = | 2N, F(b) - F(ai)| < €, hence F is absolutely continuous.
Conversely, suppose that F' is absolutely continuous. Let E € B(R) such that m(E) = 0,
and let € > 0 be given. By absolute continuity of F, one may choose § > 0 such that
YN IF(b;) - F(a;)| < e, whenever ¥V, (b; - a;) < 6 for disjoint intervals (ay,b1), ..., (ay,by).
By Theorem m(E) = inf {m(U ):U2FE Open}, so there exists a decreasing sequence
{U;}i>1 of open sets U; 2 E such that m(Uy) < §, thus m(U;) < ¢ for every i > 0. Then
by continuity from above, lim; . pr(U;) = pp(E). Now, every open subset of R can be
written as a disjoint union of countably many open intervals, thus, let U; = U,‘;‘;l(af,bf).
Then § > m(U;) = £52,(bF = a¥) > 2N, (bF — a¥) for every N € N, hence

N N N
> e ((ai bi) = 3 lur((af bEDI = 3 [F () = F(af)| <,
k=1 k=1 k=1

for every N € N by absolute continuity of F. Thus, letting N — oo yields that up(U;) =
My oo Y0y e ((af, 05))] < €, hence |up(E)| < €. Now, since € > 0 was chosen arbitrarily,
this shows that up(FE) =0, and thus, pup < m. O
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Corollary 7.28. Let f € L'(m), and let F:R — C be defined by F(z) = [*_ f(t)dm(t) for
every x € R. Then F'e NBV, F is absolutely continuous, and f = F' m-a.e. Conversely, if
F € NBV is absolutely continuous, then F' € L'(m) and F(x) = [*_F'(t)dm(t).

Proof. The assumption f € L'(m) yields that du := fdm defines a complex measure. Then
pl(eox]) = [ S@ydm(1) = F(2),

hence F' € NBV by Theorem Now clearly, << m, hence F is absolute continuous by
Proposition Moreover, Proposition yields that

[ F®dm@) =F) = [ p@)dm(e),

which implies exactly that F’ = f m-a.e. Conversely, if F' € NBV is absolutely continuous,
and pp((—o0,z]) = F(zx), then urp < m by Proposition Moreover, F' is differentiable
with F’ € L'(m), and F(z) = [*_F’'(t)dm(t) by Proposition O

This winds up the complete characterization of complex Borel measures is given by the
theory of functions of bounded variation. The following section proceeds with the proof of
the Fundamental Theorem of Calculus, which utilizes the preceding theory.

7.4 The Fundamental Theorem of Calculus

This section concludes the chapter with the proof of the Fundamental Theorem of Calculus
for Lebesgue integrals; a result which can be obtained almost directly from the preceding
theory of functions of bounded variation. The section is initialized with a lemma.

Lemma 7.29. Let F:R — C be absolutely continuous on [a,b]. Then F € BV ([a,b]).

Proof. Let € = 1 be given, and choose § > 0 such that ¥, |F(b;) - F(a;)| < 1, whenever
YN (b - a;) < 6 for disjoint intervals (a1,b1), ..., (an,by) € [a,b]. Choose N := inf {n eN:
b-a

n > I’?Ta}, such that 0 > %#. Let a = xg < - < w, = b be any partition of [a,b]. Then by

(possibly) adding more subdivision points, the intervals (z;-1,2;) can be collected into at
most N groups of consecutive intervals such that ijl(azZ —xi—1) <6 for je{l,..,N}, ie.,
the sum of the intervals lengths in each group is at most 6. Then ijl |F'(z;) = F(zi-1)| < 1,
hence

M=

Tr(b) -Tp(a) = sup{ |F(x;) = F(zi—1)|:a=20 < <xp = b}

~
Il
—_

k;
|F(2;) - F(zi-1)|ta=29 <+ <xpy = b} <N.
=1

M=

= sup{

J

Il
—_
~

Theorem 7.30 (Fundamental Theorem of Calculus for Lebesgue Integrals). Let F:[a,b] - C
for —oo <a<b<oo. Then the following are equivalent.

(i) F is absolutely continuous on [a,b].
(ii) F(x)-F(a)= [ f(t)dm(t) for some f e L*(m).
(iii) F' exists for m-a.e. x € [a,b] with F" € L'([a,b],m), and F(z)-F(a) = [* F'(t)dm(t).
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Proof. Assume without loss of generality that F'(a) = 0. Note that this is justified, since
otherwise, one may consider the function F(x) = F(x) - F(a). Moreover, it follows trivially
that (iii) implies (ii), thus, it suffices to prove that (ii) implies (i) and (i) implies (iii). To
prove the latter, note first that the assumption that F' is absolutely continuous on [a,b]
yields that F € BV ([a,b]) by Lemma [7.29] Now, expand F such that F(z) = F(a) = 0 for
every x < a and F(x) = F(b) for every  >b. Then F:R — C, and by Remark F e BV.
By assumption, F' is continuous, hence F' is in particular right-continuous, and F(-o0) =0,
so F'e NBV. Thus, Corollary yields exactly that F’ exists m-a.e. and F’ € L*(m), so
F' e L'([a,b],m), and F(z) = [ F'(t)dm(t), hence F(z) - F(a) = [ F'(t)dm(t). This
proves that (i) implies (iii). Now, to prove that (ii) implies (i), let f(¢) = 0 for every ¢ ¢ [a,b],
such that F(z) = [*_f(t)dm(t). Then, by Corollary m F is absolutely continuous as
wanted. O

The following decomposition of complex Borel measure on (R",B(R™)) is sometimes
important. Moreover, it provides a nice transition into the final chapter.

Definition 7.31. Let p be a complex Borel measure on (R", B(R™)). Then pu is discrete, if
there exists a countable subset, {x;};>1 € R", and there exists ¢; € C, such that ;%) |¢;] < o0
and p = 72 ¢;05,. Conversely, p is continuous or non-atomic if p({z}) = 0 for every x € R".

Lemma 7.32. Let i be a complex Borel measure on (R™, B(R™)). Then u can be decomposed
as [ = g + e, where pg is discrete, and e is continuous.

Proof. Define E := {a: e R" : pu({x}) # 0}. Let FF ¢ E be any countable subset. Then
Yoer p({x}) = p(F), so the series is convergent, and, in particular, absolutely convergent.
The claim is now that FE, := {m € E:|u({x})| > %} is finite for every m € N. Suppose by
contradiction that FE, := {:c € E:|p({z})| > %} is infinite. Then there exists a countably
infinite subset, £, € E,, i.e., there exists a countable subset F’ ¢ E such that F) := {z €
F':|\u({z})| > %} ¢ E, is countably infinite. However, as the series ¥ . p({x}) converges
absolutely, this is a contradiction. Thus, £ = U;?; E,, being a countable union of finite sets
yields that E itself is countable. Now, define measures pg(A) := u(An E) and p.(A) :=
w(A\E) for every A € B(R). Then pg is discrete, p. is continuous, and pu(A) = p(AnE) +
WANE) = pqg(A) + pe(A) for every A € B(R), which completes the proof. O

Remark 7.33. If p is discrete, then p is concentrated on a countable subset {z;};>1 € R", i.e.,
p(R™NUZ {zi}) = 0, where m(U52,{z;}) = 0, as countable sets have Lebesgue measure zero.
Therefore, it is clear that if u is discrete, then g L m. On the other hand, if u < m, then
m({x}) =0 for every x € R" yields that also u({x}) = 0, hence p is continuous. Now, if y is
a complex Borel measure with Lebesgue decomposition u = ¢ + fdm, where fdm <« m and
1 L m, then fdm is continuous, and 1 = 14 + ¥, by Lemma thus ¢ 1 m yields that also
g L m and 1. L m. Therefore, every complex Borel measure can be written as

W= Hac + Hse T Ud,

where g << M, lige is continuous, but ps. L m, and pg is discrete. This leads to the existence
of a nonzero, singular continuous measure . on (R, B(R)), which by Proposition and
Proposition|7.27| corresponds to functions F' € N BV such that F'is not absolutely continuous,
but F is differentiable with I’ = 0 m-a.e. The existence of such a measure is to be examined
in the last chapter, which is devoted to answering the question: Are there any non-atomic
measures, which are singular with respect to the Lebesgue measure?
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8 Singularity and the Lebesgue measure

Throughout this chapter, let m denote the Lebesgue measure on (R,B(R)), and let R be
equipped with the standard metric topology. The purpose of this section is to give an

example of an non-atomic measure, which is singular with respect to the Lebesgue measure.
The theory of this section is based on exercises 6.8, 7.12 & 20.9 from Schilling [2017]

8.1 The Cantor ternary set and the Cantor function

In this section, the Cantor ternary set and the Cantor function is introduced, as well as
theory behind.

Definition 8.1. Let Cj := [0, 1]. Define the Cantor ternary set, denoted C, by

C:= ﬂ Cn7

n=1

where C), = C’gl U (% + C’gl) for n > 1 (with the convention that % ={5:xeCy}).

Remark 8.2. Let C ¢ [0,1] be equipped with the subspace topology. The definition of each
set, C},, corresponds to the construction of iteratively removing the open middle third from
the initial set Cp, i.e., C; = [0,1]\ (%, %) = [0, %] U [%, 1] ete. Thinking of the construction
this way provides a picture of a decreasing nested sequence {Cj}n>1 with C; o Cy > ---.
Let P([0,1]) be the power set of [0,1] equipped with the discrete topology. Define a map
®:P([0,1]) > P([0,1]) by ®(A) :=2AU(34+2). for every A e P([0,1]). Then
(I)(CO) = CI)([O, 1]) = [07 %] U [%7 1] =Ch,

thus, C1 c Cy yields that Cy = ®(C1) c ®(Cp) = Cy. Continuing this way, one obtains that
Cni1 = ®(Cp) c ®(Cyh-1) = C,, for every n € N, and thus, {C, },>1 is a decreasing sequence
with C 5 Cs o ---. For an intuitive understanding, the first five iterations are sketched in the
figure below.

i [
Figure 1: The Cantor set

Lemma 8.3. The Cantor set, C, has Lebesque measure zero.

Proof. Note that every C), is a Borel set, which consists of 2" disjoint intervals, each of
which has length 3™, Thus, for each n € N, it holds that m(C),) = 2"3™", or similarly, by
translation invariance of the Lebesgue measure that

m(Cp) = m(®(Cp1)) = 2m(®(Cp2)) = 22m(®(Crg)) = = (2)" ' m(®(Co)) = (3)".

Furthermore, C = N;2, Cy,, where {C), } 51 is a decreasing sequence of Borel sets with m(Cp) =
m([0,1]) =1 < oo, thus by continuity from above,

m(C) =m( Fan) = T}l_)rgom(Cn) = lim (%)n =0

n—oo

as wanted. O
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Proposition 8.4. The Cantor set, C, holds the following properties.
(1) C is metrizable.
(i1) C is compact.

(iii) C has no isolated points.

(iv) C is totally disconnected.

Proof. (i) The Cantor set C is very clearly metrizable, as it is a subspace of R given the
subspace topology, i.e., the standard metric topology. Note that since each C,, is a finite
union of closed intervals, C), itself is closed. Hence, C is closed in the metric topology on R,
since arbitrary intersections of closed sets are closed. Thus, C, being a closed subset of the
complete metric space R, is in particular a complete metric space.

(ii) Observe that the Cantor set is bounded in the region [0,1], since for every a,b € C,
|b—a| <1< 1+e¢ for every € > 0. Now, since C is a closed and bounded subspace of R, C
is compact by the Heine-Borel Theorem. This result also follows from the construction of
®:P([0,1]) - P([0,1]): Every map from a discrete topological space is continuous, since
the preimage of every set is open in the discrete topology, hence ® is a continuous map, and
thus, Cy being compact yields that ®(Cy) = C; is compact, which then again yields that
®(C) = Cy is compact etc. Then, C being an intersection of compact sets yields that C is
compact. Furthermore, every finite intersection of sets from the nested sequence, {C, },>1 is
non-empty. Thus, by compactness of C and the finite intersection property, C is non-empty.

(iii) Let € > 0 be given. Choose n € N large enough so that 37" <e. Let z € C = N, C;.
Then z € C,,. Let J}, ..., J,an denote the 2" intervals, each of length 37", which make up Cj,
arranged in increasing order of their endpoints, i.e., C), = Uiil J,]f . Then x € C), yields that
there exists k € {1, ...,2"} such that = € J*. Let J* = [ag, by]. Then for some j € {1,...,2"*1},

Js n (I)(Cn) = [ak,bk] N Cn+1 = J7]1+1 G] Ji:i = [aj,bj] G] [aj+1,bj+1] = [ak,bj] G] [aj+1,bk],
i.e., the map ® preserves endpoints, so the endpoints are never removed in the iteration.
Thus, pick y = ai or y = by such that y # x with y € C,, for every n € N, hence y € C. Then
|z —y| < 37 < e. This proves that every neighbourhood of x € C contains at least one other
point y € C, so x is not an isolated point, hence C has no isolated points.

(iv) The claim is that C is totally disconnected, i.e., the only connected subspaces of C are
the one-point sets. Let a,b € C be distinct points in C. Choose n € N so large that [b—a| > 37".
Then there exists a point ¢, which lies between a and b, such that ¢ ¢ C,,, hence ¢ ¢ C. This
shows that any subspace of C containing two points a, b has separation and therefore, it not
connected. Thus, C is totally disconnected. O

Theorem 8.5. (Brouwer|1910). The Cantor set is uniquely determined up to homeomor-
phism by the properties given in Proposition [8.4)

Remark 8.6. As a result of the preceding theorem, any set homeomorphic to the Cantor
ternary set can be referred to as a Cantor set.

Ezample 8.7. X :=1;2,{0,1} given the product topology is a Cantor set.

Proof. 1t suffices to prove that X holds the properties from Proposition

(i) Let each {0,1} be equipped with the discrete topology, and let X be equipped with
the product topology. Then {0,1} is metrizable, since the discrete topology is induced by
the discrete metric. Thus, X = []52,{0,1} being a countable product of metric spaces implies
that X itself is metrizable (Munkres 2008, p. 129).
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(ii) Each {0,1} is a finite topological space, hence {0, 1} is compact. Thus, X is compact
by Tychonoft’s Theorem (Theorem 37.3, Munkres 2008]).

(iii) Assume by contradiction that xz € X is an isolated point, that is, {x} ¢ X is open.
Now, every open set in the product topology is a union of sets, [I;2; U;, where U; ¢ {0,1}
is open and U; = {0,1} for all but finitely many ¢ € N. Therefore, any singleton {z} ¢ X
cannot be open in the product topology, as {z} = [1;2;{x;} for {x;} = {0},{1} # {0,1} for
every 7 € N. Thus, X has no isolated points.

(iv) Every topological space equipped with the discrete topology is totally disconnected,
so {0,1} is totally disconnected. This may be proven directly, as a connected space is an
open subset that cannot be represented as the union of disjoint, non-empty open subsets.
Thus, {0,1} = {0} u{1} is not connected, hence the only connected subsets of {0,1} are the
one-point sets, {0},{1}. This implies that also X is totally disconnected, since if C'c X is a
connected subspace, which is not a one-point set, then x # y € C' for some = = (x1,z2,...) and
vy = (y1,Y2,...). Then x; #+ y; for some i € N. Now, let p;: X — {0,1} be the i’th projection.
Since the projection is continuous, and connectedness is preserved under continuous images,
pi(C) €{0,1} is connected. But {z;,v;} € pi(C), and x; # y; implies that {z;,y;} # {0}, {1},
which is a contradiction. Thus, X is totally disconnected. O

Definition 8.8. Let C), = Uzzl Jff with J¥ = [ay, by], and let I} ”',1721”—1 denote the 2™ — 1
intervals, which make up [0,1]\ C,,, arranged in increasing order of their endpoints. Define
a sequence {Fy, }n>1 of functions F,;:R — R by

0, ifx<0

k2", ifrel* 1<k<2n-1
Fn(l‘) = (3)n Lo 3\n : k n

S)tw+ k27" = (5) by, fxed)1<k<2

1, ifx>1

Remark 8.9. The definition of Fy,(z), when z € J* for 1 < k < 2", corresponds to interpolating
linearly, as seen on the sketch below. Thus, by definition, each F}, is a continuous function.

Fy Fy
1] _ 1]
2 2
x x
F3 Fy
1] 1]
2 2
x x

Figure 2: The Cantor function
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Proposition 8.10. Let {F,, },>1 be the sequence defined in Definition . Then the following
hold.

(i) {Fn}ns1 converges uniformly to a continuous function, F:R — R, which is called the
Cantor function.

(i) Fe NBV.
(ii1) F is differentiable m-a.e. with F' =0 m-a.e.
(iv) F is not absolutely continuous.

Proof. (i) Since R is a complete metric space, it suffices to show that the sequence {F),}n>1
is Cauchy. By definition, one may observe that

_ 1
|F(2) = Fr(z)| < 327" = TR
for every z € R and for every n € N. Let 0 < e <1 be given. Set N := —iggg Then for every
n,m > N with n <m, and for every z € R,
el 11 1
|F(x) = ()| < ) ohil ~gn gm SN €

Thus, {F}, }n>1 is Cauchy with respect to the uniform norm. Hence, by completeness of R, the
sequence { F}, },>1 converges uniformly to F, and as each F,, is continuous, so is the uniform
limit, F.

(ii) That F' is monotonically increasing is inherited directly from the pointwise limit,
since for every x <y € R, it holds that F,(z) < F,,(y) for every n € N. Thus,

F(z) = lim Fy(z) < lim Fo(y) = F(y)

for every x,y € R with = < y. Moreover, as |F(z)| < 1 for every x € R, it is clear that F' is
bounded. Thus, by Example (i), F e BV. Also, F' is continuous, so F' is in particular
right-continuous, and F(-o0) = lim,_« F(x) = 0, as F(x) = 0 for every x < 0. Thus,
F e NBV as wanted.

(iii) Let z € R\C. Then either z € (-00,0), z € (1,00), or x € [0,1]\C. Note that if
x € (=00,0), then F,,(z) =0 for every n € N, and F(z) = F,,(x), which yields that F,(z) =
F'(z). Similarly, for x € (1,00), where F,(x) =1 for every n € N. Thus, , F'(z) = F/(z) =0
for every z € (—00,0) U (1,00). Now, suppose z € [0,1]\C. Note that each I* is open, thus
there exists n,k € N such that 2 € I¥, and hence Fy,(z) = F(x). Then for every x € R\C,
F(x) = F,(x) for some n, which imply once again that F'(z) = F(z). By definition, F},(x)
is constant on each I¥, which yields F'(z) = F(z) = 0 for every x € [0,1]\C, and hence also
for every x € R\C. Thus, F’ exists and equals zero for every x € R\C, and since m(C) =0,
F' exists m-a.e. as wanted.

(iv) It is proved that F' is not absolutely continuous using Definition Let 0 <
€ < 1 be given. The goal is to prove that there exists a finite set of disjoint intervals
(a1,b1), ..., (an,by) such that ¥ | by —ag < 6, but Y0, |F(by) - F(ay)| £ e. Let IF = (ag, by)
foreach k € {1,...,2"-1}. Thesets I}, ..., 12"~ are disjoint, so a1 < b < ag < - < agn_1 < bon_;.
Thus, with the convention that by := 0, the intervals (bg, a1), ..., (ban, agn_1) form a set of finite
disjoint intervals. Then by Lemma [8.3

2"-1

>, ax =bg-1=m(Cy) »m(C) =0
k=1
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as n — oo. Thus, for every § > 0, one may choose n € N such that Zii{l ap —bp_1 < 0. Now
consider Y271 |F(ay) - F(by_1)|- By definition, F is constant on each I¥ = (ag,by), i.c.,
F(ay) = F(bg) for every ke {1,...,2" - 1}. Hence

2"-1

> [F(ax) = F(bg-1)| = Fazn_1) = F(bo) = F(azn-1) - F(0).
k=1

But F'(agn_1) - F(0) - F(1) - F(0) =1 as n - oo, hence

2"-1

kZ |F(ar) - F(bi-1)| £ €,
-1

for € < 1, which proves that F' cannot be absolutely continuous, as wanted. 0

This concludes the theory behind the Cantor set and the Cantor function. With this
theory presented, the following section proceeds to define the Cantor measure utilizing the
preceding results.

8.2 The Cantor measure

In this section, the Cantor measure is defined. This builds upon the preceding section, in
particular, the Cantor function, which is proven to be of normalized bounded variation and
thus, gives rise to a Borel measure.

Definition 8.11. Define a finite positive Borel measure p on (R, B(R)) by

pu((=o0,z]) = F(x)
for every x € R. This measure is called the Cantor measure.

Remark 8.12. As F' e NBV by Proposition (ii), the definition above does in fact define a
unique (complex) Borel measure by Theorem One may note that the Cantor measure is
real and moreover positive, since F is a real-valued positive function. Thus, the Cantor mea-
sure is a well-defined finite, positive Borel measure on (R, B(R)). The Cantor measure can
also be viewed in the light of Theorem since F:R — R is continuous and monotonically
increasing, i.e., the Cantor measure is actually the Lebesgue-Stieltjes measure associated to
F'. The Cantor measure has continuous distribution function, F', hence the Cantor measure
is non-atomic, since p({z}) = 0 for every = € R. The construction of this non-atomic measure
provides a very nice way of showing that the Cantor set, C, is uncountable, as an application
of the following lemma.

Lemma 8.13. Let u be a non-atomic measure on (X, A). Then every countable set is a
w-null set.

Proof. Let C' be a countable set, and let {¢1,c2,c3,...} be an enumeration of C. Note that
this enumeration is finite if and only if C is finite. Since for every x € X, every singleton
{z} € A, hence also C' = U2 {cp} € A. Then

) :u@{cn}) _ ilmcn}) _ io ~0

as wanted. O

This lemma yields almost directly that the Cantor set is uncountable, as proven in the
following theorem.
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Theorem 8.14. The Cantor set, C, is uncountable.

Proof. Assume by contradiction that C is countable. Thus, since the Cantor measure is
a non-atomic measure, the assumption yields that u(C) = 0. Now C = N2, Cp, where

n_

Cy = [0, 1]\ 1 1E and IF = (ak,by). Thus,

271 21
w(Cn) = M( 9 [bk—hak]) = Z F(ag) — F(bg-1).
k=1 k=1
Then by continuity from above,
2n-1

#(©) = (Y Cn) = Jim w(Co) = lim 32 F o) = F(bir) = 1

But p(C) =1 # 0, hence C cannot be countable, and thus, C is uncountable as wanted. [

Remark 8.15. From a topological point of view, the preceding result follows from Propo-
sition by making use of the fact that the Cantor set C is non-empty, compact and
metrizable, hence Hausdorff, and has no isolated points. Thus, the result follows directly
from Theorem 27.7 (Munkres 2008), which states that every non-empty compact Hausdorff
space with no isolated points is uncountable.

Theorem 8.16. The Cantor measure is singular with respect to the Lebesque measure.

Proof. By Proposition[8.10} the Cantor function F is differentiable with F’ = 0 m-a.e., which
by Proposition implies exactly that g L m. The result is also not very difficult to prove
directly from the definition of mutual singularity: By Lemma m(C) =0, thus, the goal
is to prove that u(R\C) =0, since then R = (R\C) uC with m(C) = u(R\C) = 0. Note that

() = u(U (~o0.n))) = lim pu((~o0,n]) = lim F(n) = 1,

n=1
by continuity from below. Since also u(C) =1, it follows that u(R\C) = 0, as wanted. O

The preceding result ties together this project by providing an answer to the question:
Are there any non-atomic measures, which are singular with respect to the Lebesque measure?,
using the theory of differentiation of measures and functions of bounded variation. Moreover,
one might notice that the preceding result gives rise to a very nice way of showing that the
Cantor function is not absolutely continuous without even using the definition of absolute
continuity of functions: Assume by contradiction that the Cantor function is absolutely
continuous. This is equivalent to the corresponding measure, the Cantor measure, being
absolutely continuous with respect to the Lebesgue measure. However, as the Cantor measure
is shown to be singular with respect to the Lebesgue measure, this would imply that the
Cantor measure equals zero. But this is a contradiction, as u(C) = 1 # 0, and thus, the Cantor
measure cannot be absolutely continuous with respect to the Lebesgue measure, implying
that the Cantor function is not absolutely continuous. This concludes another example of
how the theory of several chapters in this project can be used to show some very beautiful
mathematical results.
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