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Abstract

An example is given of a simple, unital C∗-algebra which contains an infinite and a

non-zero finite projection. This C∗-algebra is also an example of an infinite simple

C∗-algebra which is not purely infinite. A corner of this C ∗-algebra is a finite, simple,

unital C∗-algebra which is not stably finite.

Our example shows that the type decomposition for von Neumann factors does

not carry over to simple C∗-algebras.

We also give an example of a simple, separable, nuclear, C ∗-algebra in the UCT

class which contains an infinite and a non-zero finite projection. This nuclear C ∗-al-

gebra arises as a crossed product D oα Z, where D is an inductive limit of type I

C∗-algebras.

1 Introduction

The first interesting class of simple C∗-algebras (not counting the simple von Neumann

algebras) were the UHF-algebras, also called Glimm algebras, constructed by Glimm in

1959 ([22]). Several other classes of simple C∗-algebras were found over the following

25 years including the (simple) AF-algebras, the irrational rotation C∗-algebras, the free

group C∗-algebras C∗
red(Fn) (and other reduced group C∗-algebras), the Cuntz algebras On

and the Cuntz–Krieger algebras OA, C∗-algebras arising from minimal dynamical systems

and from foliations, and certain inductive limit C∗-algebras, among many other examples.

Parallel with the appearance of these examples of simple C∗-algebras it was asked if there is

a classification for simple C∗-algebras similar to the classification of von Neumann factors

into types. Inspired by work of Dixmier in the 1960’s, Cuntz studied this and related

questions about the structure of simple C∗-algebras in his papers [14], [17], and [15].
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A von Neumann algebra is simple precisely when it is either a factor of type In for

n <∞ (in which case it is isomorphic to Mn(C)), a factor of type II1, or a separable factor

of type III. This leads to the question if (non type I) simple C∗-algebras can be divided

into two subclasses, one that resembles type II1 factors and another that resembles type

III factors. A II1 factor is an infinite dimensional factor in which all projections are finite

(in the sense of Murray–von Neumann’s comparison theory for projections), and II1 factors

have a unique trace. A factor is of type III if all its non-zero projections are infinite, and

type III factors admit no traces. Cuntz asked in [17] if each simple C∗-algebra similarly

must have the property that its (non-zero) projections either all are finite or all are infinite.

Or can a simple C∗-algebra contain both a (non-zero) finite and an infinite projection? We

answer the latter question in the affirmative. In other words, we exhibit a simple (non

type I) C∗-algebra that neither corresponds to a type II1 or to a type III factor.

It was shown in the early 1980’s that simple C∗-algebras, in contrast to von Neumann

factors, can fail to have non-trivial projections. Blackadar ([5]) and Connes ([12]) found

examples of unital, simple C∗-algebras with no projections other than 0 and 1—before

it was shown that C∗
red(F2) is a simple unital C∗-algebra with no non-trivial projections.

Simple C∗-algebras can fail to have projections in a more severe way: Blackadar found

in [4] an example of a stably projectionless simple C∗-algebra. (A C∗-algebra A is stably

projectionless if 0 is the only projection in A⊗K.) Blackadar and Cuntz proved in [8] that

every stably projectionless simple C∗-algebra is finite in the sense of admitting a (densely

defined) quasitrace. (Every quasitrace on an exact C∗-algebra extends to a trace as shown

by Haagerup [23] (and Kirchberg [27]).) These results lead to the dichotomy for a simple

C∗-algebra A: Either A admits a (densely defined) quasitrace (in which case A is stably

finite), or A is stably infinite, i.e., A⊗K contains an infinite projection.

Cuntz defined in [16] a simple C∗-algebra to be purely infinite if all its non-zero heredi-

tary sub-C∗-algebras contain an infinite projection. Cuntz showed in [13] that his algebras

On, 2 ≤ n ≤ ∞, are simple and purely infinite. The separable, nuclear, simple, purely

infinite C∗-algebras are classified up to isomorphism by K- or KK-theory by the spectac-

ular theorem of Kirchberg ([28] and [26]) and Phillips ([35]). This result has made it an

important question to decide which simple C∗-algebras are purely infinite. We show here

that not all stably infinite simple C∗-algebras A are purely infinite.

Villadsen ([41]) was the first to show that the K0-group of a simple C∗-algebra need not

be weakly unperforated; Villadsen ([42]) also showed that a unital, finite, simple C∗-algebra

can have stable rank different from one—thus answering in the negative two longstanding

open questions for simple C∗-algebras.

If B is a unital, simple C∗-algebra with an infinite and a non-zero finite projection,
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then its semigroup of Murray–von Neumann equivalence classes of projections must fail

to be weakly unperforated (see Remark 7.8). It is therefore no surprise that Villadsen’s

ideas play a crucial role in this article. Our article is also a continuation of the work

by the author in [37] and [38] where it is shown that one can find a C∗-algebra A such

that M2(A) is stable but A is not stable; and, related to this, one can find a (non-simple)

unital C∗-algebra B, such that B is finite and M2(B) is properly infinite. We show here

(Theorem 5.6) that one can make this example simple by passing to a suitable inductive

limit.

In Section 6 (added March 2002) an example is given of a crossed product C∗-algebra

D oα Z, where D is an inductive limit of type I C∗-algebras, such that D oα Z is simple

and contains an infinite and a non-zero finite projection. This new example is nuclear and

separable. It shows that simple C∗-algebras with this rather pathological behavior can

arise from a quite natural setting. It shows that Elliott’s classification conjecture (in its

present formulation) does not hold (cf. Corollary 7.9); and it also serves as an example of

a separable nuclear simple C∗-algebra that is tensorially prime (cf. Corollary 7.5).

I thank Bruce Blackadar, Joachim Cuntz, George Elliott, and Eberhard Kirchberg for

valuable discussions and for their comments to earlier versions of this manuscript. I thank

Paul M. Cohn and Ken Goodearl for explaining the example included in Remark 7.13.

I also thank the referee for suggesting several improvements to this article (including a

significant simplification of Proposition 5.2 (ii) and (iii)).

This work was done in the spring of 2001 while the author visited the University of

California, Santa Barbara. I thank Dietmar Bisch for inviting me and for his warm hospi-

tality.

The present revised version (with the nuclear example in Section 6 and where the

construction in Section 5 is simplified) was completed in March 2002. A part of the work

leading to this construction was obtained during a visit in January 2002 to the University

of Münster. I thank Joachim Cuntz and Eberhard Kirchberg for their hospitality, and I

am indebted to Eberhard Kirchberg for several conversations during the visit that led me

to this construction.

2 Finite, infinite, and properly infinite projections

A projection p in a C∗-algebra A is called infinite if it is equivalent (in the sense of Murray

and von Neumann) to a proper subprojection of itself; and p is said to be finite otherwise.

If p is non-zero and if there are mutually orthogonal subprojections p1 and p2 of p such
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that p ∼ p1 ∼ p2, then p is properly infinite. A unital C∗-algebra is said to be properly

infinite if its unit is a properly infinite projection.

If p and q are projections in A, then let p⊕ q denote the projection diag(p, q) in M2(A).

Two projections p ∈ Mn(A) and q ∈ Mm(A) can be compared as follows: Write p ∼ q if

there exists v in Mm,n(A) such that v∗v = p and vv∗ = q, and write p - q if p is equivalent

(in this sense) to a subprojection of q.

In the proposition below, where some well-known properties of properly infinite projec-

tions are recorded, O∞ denotes the Cuntz algebra generated by infinitely many isometries

with pairwise orthogonal range projections, and E2 is the Cuntz–Toeplitz algebra generated

by two isometries with orthogonal range projections ([13]).

Proposition 2.1 The following five conditions are equivalent for every non-zero projection

p in a C∗-algebra A:

(i) p is properly infinite;

(ii) p⊕ p - p;

(iii) there is a unital ∗-homomorphism E2 → pAp;

(iv) there is a unital ∗-homomorphism O∞ → pAp;

(v) for every closed two-sided ideal I in A, either p ∈ I or p + I is infinite in A/I.

The equivalences between (i), (ii), and (iii) are trivial. The equivalence between (iii) and

(iv) follows from the fact that there are unital embeddings E2 → O∞ and O∞ → E2.

The equivalence between (i) and (v) is proved in [29, Corollary 3.15]; a result that extends

Cuntz’ important observation from [14] that every infinite projection in a simple C∗-algebra

is properly infinite.

We shall use the following two well-known results about properly infinite projections.

Lemma 2.2 Let p and q be projections in a C∗-algebra A. Suppose that p is properly

infinite. Then q - p if and only if q belongs to the closed two-sided ideal in A generated by

p.

Proof: If q - p, then, by definition, q ∼ q0 ≤ p for some projection q0 in A. This entails

that q belongs to the ideal generated by p. Conversely, if q belongs to the ideal generated

by p, then q -
⊕n

j=1 p for some n (cf. [40, Exercise 4.8]), and
⊕n

j=1 p - p if p is properly

infinite by iterated applications of Proposition 2.1 (ii). �
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Proposition 2.3 Let B be the inductive limit of a sequence B1 → B2 → B3 → · · · of

unital C∗-algebras with unital connecting maps. Then B is properly infinite if and only if

Bn is properly infinite for all n larger than some n0.

Proof: If Bn is properly infinite for some n, then there are unital ∗-homomorphisms

E2 → Bn → B, and hence B is properly infinite. Conversely, if B is properly infinite,

then there is a unital ∗-homomorphism E2 → B. The C∗-algebra E2 is semiprojective, as

shown by Blackadar in [6]. By semiprojectivity (see again [6]), the unital ∗-homomorphism

E2 → B lifts to a unital ∗-homomorphism E2 →
∏∞

n=n0
Bn for some n0. This shows that

Bn is properly infinite for all n ≥ n0. �

3 Vector bundles over products of spheres

We consider here complex vector bundles over the sphere S2 and over finite products of

spheres, (S2)n.

For each k ≤ n, let πk : (S2)n → S2 denote the kth coordinate mapping, and let

ρm,n : (S2)m → (S2)n be given by

ρm,n(x1, x2, . . . , xm) = (x1, x2, . . . , xn), (x1, x2, . . . , xm) ∈ (S2)m. (3.1)

when m ≥ n.

Whenever f : X → Y is a continuous map and ξ is a k-dimensional complex vector

bundle over Y , let f ∗(ξ) denote the vector bundle over X induced by f . Let e(ξ) ∈

H2k(Y,Z) denote the Euler class of ξ. Denote also by f ∗ the induced map H∗(Y,Z) →

H∗(X,Z). By functoriality of the Euler class we have f ∗(e(ξ)) = e(f ∗(ξ)).

For any vector bundle ξ over (S2)n and for every m ≥ n we have a vector bundle

ξ′ = ρ∗m,n(ξ) over (S2)m. It follows from the Künneth Theorem (see [33, Theorem A6]),

that the map

ρ∗m,n : H∗((S2)n,Z) → H∗((S2)m,Z)

is injective; so if e(ξ) is non-zero, then so is e(ξ ′). Our main concern with vector bundles

will be whether or not they have non-zero Euler class, and from that point of view it does

not matter if we replace the base space (S2)n with (S2)m for some m ≥ n.

We remind the reader of some properties of the Euler class for complex vector bundles

ξ1, ξ2, . . . , ξn over a base space X. First of all we have the product formula (see [33, Property

9.6]):

e(ξ1 ⊕ ξ2 ⊕ · · · ⊕ ξn) = e(ξ1)·e(ξ2) · · · e(ξn). (3.2)
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Let θ denote the trivial complex line bundle over X. The Euler class of θ is zero; and so

it follows from the product formula that e(ξ) = 0 whenever ξ is a complex vector bundle

that dominates θ in the sense that ξ ∼= θ ⊕ η for some complex vector bundle η.

Combining the formula

ch(ξ) = 1 + e(ξ) +
1

2
e(ξ)2 +

1

6
e(ξ)3 + · · · ,

that relates the Chern character and the Euler class of a complex line bundle ξ (see [33,

Problem 16-B]), with the fact that the Chern character is multiplicative, yields the formula

e(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = e(ξ1) + e(ξ2) + · · · + e(ξn), (3.3)

that holds for all complex line bundles ξ1, . . . , ξn over X.

Let ζ be a complex line bundle over S2 such that its Euler class e(ζ), which

is an element in H2(S2,Z), is non-zero. (Any such line bundle will do, but the reader

may take ζ to be the Hopf bundle over S2.) For each natural number n and for each

non-empty, finite subset I = {n1, n2, . . . , nk} of N define complex line bundles ζn and ζI

over (S2)m (for all m ≥ n, respectively, m ≥ max{n1, . . . , nk}) by

ζn = π∗
n(ζ), ζI = ζn1

⊗ ζn2
⊗ · · · ⊗ ζnk

, (3.4)

where, as above, πn : (S2)m → S2 is the nth coordinate map. The Euler classes (in

H2((S2)m,Z)) of these line bundles are by functoriality and equation (3.3) given by

e(ζn) = π∗
n(e(ζ)), (3.5)

e(ζI) = π∗
n1

(e(ζ)) + π∗
n2

(e(ζ)) + · · · + π∗
nk

(e(ζ)). (3.6)

Lemma 3.1 For each n and for each m ≥ n there is a complex line bundle ηn over (S2)m

such that ζn ⊕ ζn ∼= θ ⊕ ηn.

Proof: Since

dim(ζ ⊕ ζ) = 2 > 1 ≥ 1
2
(dim(S2) − 1),

it follows from [24, 9.1.2] that there is a complex vector bundle η over S2 of dimension

dim(η) = 2 − 1 = 1 such that ζ ⊕ ζ ∼= θ ⊕ η. We conclude that

ζn ⊕ ζn = π∗
n(ζ ⊕ ζ) ∼= π∗

n(θ ⊕ η) = θ ⊕ π∗
n(η).
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Proposition 3.2 Let I1, I2, . . . , Im be non-empty, finite subsets of N. The following three

conditions are equivalent:

(i) e(ζI1 ⊕ ζI2 ⊕ · · · ⊕ ζIm
) 6= 0.

(ii) For all subsets F of {1, 2, . . . , m} we have
∣∣ ⋃

j∈F Ij
∣∣ ≥ |F |.

(iii) There exists a matching t1 ∈ I1, t2 ∈ I2, . . . , tm ∈ Im (i.e., the elements t1, . . . , tm are

pairwise distinct).

Proof: Choose N large enough so that each ζIj
is a vector bundle over (S2)N .

(ii) ⇔ (iii) is the Marriage Theorem (see any textbook on combinatorics).

(i) ⇒ (ii). Assume that
∣∣⋃

j∈F Ij
∣∣ < |F | for some (necessarily non-empty) subset

F = {j1, j2, . . . , jk} of {1, 2, . . . , m}, and write

J
def
=

⋃

j∈F

Ij = {n1, n2, . . . , nl}.

Let ρ : (S2)N → (S2)l be given by ρ(x) = (πn1
(x), πn2

(x), . . . , πnl
(x)). Then

ξ
def
= ζIj1

⊕ ζIj2
⊕ · · · ⊕ ζIjk

= ρ∗(η)

for some k-dimensional vector bundle η over (S2)l. Now, e(η) belongs to H2k((S2)l,Z),

and H2k((S2)l,Z) = 0 because 2k > 2l. Hence e(ξ) = ρ∗(e(η)) = 0, so by the product

formula (3.2) we get

e(ζI1 ⊕ ζI2 ⊕ · · · ⊕ ζIm
) = e(ξ)·

∏

j /∈F

e(ζIj
) = 0.

(iii) ⇒ (i). Put

xj = π∗
j (e(ζ)) ∈ H2((S2)N ,Z), j = 1, 2, . . . , N.

The element

z = x1 ·x2 · · ·xN ∈ H2N ((S2)N ,Z)

is non-zero by the Künneth Theorem ([33, Theorem A6]). Using that x2
i = 0 and that
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xixj = xjxi for all i, j it follows that if i1, i2, . . . , iN belong to {1, 2, . . . , N}, then

xi1 ·xi2 · · ·xiN =




z, if i1, . . . , iN are distinct,

0, otherwise.
(3.7)

Now, by (3.2) and (3.6),

e(ζI1 ⊕ ζI2 ⊕ · · · ⊕ ζIm
) = e(ζI1)·e(ζI2) · · · e(ζIm

)

=
(∑

i∈I1

π∗
i (e(ζ))

)
·
(∑

i∈I2

π∗
i (e(ζ))

)
· · ·

( ∑

i∈Im

π∗
i (e(ζ))

)

=
(∑

i∈I1

xi

)
·
(∑

i∈I2

xi

)
· · ·

( ∑

i∈Im

xi

)

=
∑

(i1,...,im)∈I1×···×Im

xi1 ·xi2 · · ·xim .

Assume that (iii) holds, and write

{1, 2, . . . , N} \ {t1, t2, . . . , tm} = {s1, s2, . . . , sN−m}.

Let k denote the number of permutations σ on {1, 2, . . . , m} such that tσ(j) ∈ Ij for

j = 1, 2, . . . , m. The identity permutation has this property, so k ≥ 1. The formula for

e(ζI1 ⊕ · · · ⊕ ζIm
) above and equation (3.7) yield

e(ζI1 ⊕ ζI2 ⊕ · · · ⊕ ζIm
)·xs1

·xs2
· · ·xsN−m

= kz 6= 0.

It follows that e(ζI1 ⊕ · · · ⊕ ζIm
) 6= 0 as desired. �

4 Projections in a certain multiplier algebra

There is a well-known one-to-one correspondence between isomorphism classes of complex

vector bundles over a compact Hausdorff space X and Murray–von Neumann equivalence

classes of projections in matrix algebras over C(X) (and in C(X)⊗K). The vector bundle

corresponding to a projection p in Mn(C(X)) = C(X,Mn(C)) is

ξp = {(x, v) : x ∈ X, v ∈ p(x)(Cn)},
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(equipped with the topology given from the natural inclusion ξp ⊆ X × Cn), so that the

fibre (ξp)x over x ∈ X is the range of the projection p(x). If p and q are two projections in

C(X)⊗K, then ξp
∼= ξq if and only if p ∼ q. It follows from Swan’s theorem, which to each

complex vector bundle ξ gives a complex vector bundle η such that ξ ⊕ η is isomorphic to

the trivial n-dimensional complex vector bundle over X for some n, that every complex

vector bundle is isomorphic to ξp for some projection p in Mn(C(X)) for some n.

View each matrix algebra Mn(C) as a sub-C∗-algebra of K via the embeddings

C �

�

// M2(C) �

�

// M3(C) �

�

// · · · �
�

// K,

where Mn(C) is mapped into the upper left corner of Mn+1(C). Identify C(X,K) with

C(X) ⊗K and identify C(X,Mn(C)) with C(X) ⊗Mn(C).

In Section 3 we picked a non-trivial complex line bundle ζ over S2 (which could be the

Hopf bundle). This line bundle ζ corresponds to a projection p in some matrix algebra over

C(S2), and, as is well known, such a projection p can be found in M2(C(S2)) = C(S2,M2).

(The projection p ∈ M2(S
2,M2) corresponding to the Hopf bundle is in operator algebra

texts often referred to as the Bott projection.) Put

Z =
∞∏

n=1

S2.

Let πn : Z → S2 be the nth coordinate map, and let ρ∞,n : Z → (S2)n be given by

ρ∞,n(x1, x2, x3, . . . ) = (x1, x2, . . . , xn), (x1, x2, x3, . . . ) ∈ Z.

With ρ̂n : C((S2)n) → C((S2)n+1) being the ∗-homomorphism induced by the map ρn =

ρn+1,n defined in (3.1) we obtain that C(Z) is the inductive limit

C(S2)
ρ̂1

// C((S2)2)
ρ̂2

// C((S2)3)
ρ̂3

// · · · // C(Z)

with inductive limit maps ρ̂∞,n : C((S2)n) → C(Z).

For n in N and for each non-empty finite subset I = {n1, n2, . . . , nk} of N, let pn and
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pI be the projections in C(Z) ⊗K = C(Z,K) given by

pn(x) = p(xn), (4.1)

pI(x) = p(xn1
) ⊗ p(xn2

) ⊗ · · · ⊗ p(xnk
)

= pn1
(x) ⊗ pn2

(x) ⊗ · · · ⊗ pnk
(x),

(4.2)

for all x = (x1, x2, . . . ) ∈ Z (identifying M2, respectively, M2 ⊗ M2 ⊗ · · · ⊗ M2 with

sub-C∗-algebras of K).

We shall now make use of the multiplier algebra, M(C(Z)⊗K), of C(Z)⊗K = C(Z,K).

We can identify this multiplier algebra with the set of all bounded functions f : Z → B(H)

for which f and f ∗ are continuous, when B(H), the bounded operators on the Hilbert

space H on which K acts, is given the strong operator topology.

It is convenient to have a convention for adding finitely or infinitely many projections in

M(C(Z)⊗K), or more generally in M(A), where A is any stable C∗-algebra—a convention

that extends the notion of forming direct sums of projections discussed in Section 2.

Assuming that A is a stable C∗-algebra, so that A = A0 ⊗ K for some C∗-algebra A0,

then we can take a sequence {Tj}∞j=1 of isometries in C⊗B(H) ⊆ M(A0⊗K) = M(A) such

that 1 =
∑∞

j=1 TjT
∗
j in the strict topology. (Notice that 1 is a properly infinite projection

in M(A).) For any sequence q1, q2, . . . of projections in A and for any sequence Q1, Q2, . . .

of projections in M(A), define

q1 ⊕ q2 ⊕ · · · ⊕ qn =

n∑

j=1

TjqjT
∗
j ∈ A, (4.3)

∞⊕

j=1

qj =
∞∑

j=1

TjqjT
∗
j ∈ M(A), (4.4)

Q1 ⊕Q2 ⊕ · · · ⊕Qn =

n∑

j=1

TjQjT
∗
j ∈ M(A), (4.5)

∞⊕

j=1

Qj =

∞∑

j=1

TjQjT
∗
j ∈ M(A), (4.6)

Observe that q′j = TjqjT
∗
j ∼ qj, that the projections q′1, q

′
2, . . . are mutually orthogonal, and

that the sum
∑∞

j=1 q
′
j is strictly convergent. The projections in (4.3)–(4.6) are, up to unitary

equivalence in M(A), independent of the choice of isometries {Tj}∞j=1. Indeed, if {Rj}∞j=1

is another sequence of isometries in M(A) with 1 =
∑∞

j=1RjR
∗
j , then U =

∑∞
j=1RjT

∗
j is
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a unitary element in M(A) and

∞∑

j=1

RjXjR
∗
j = U

( ∞∑

j=1

TjXjT
∗
j

)
U∗

for any bounded sequence {Xj}∞j=1 in M(A). It follows in particular that

∞⊕

j=1

qj ∼
∞⊕

j=1

qσ(j) (4.7)

for every permutation σ on N.

In the lemma below the correspondence between projections and vector bundles is

given by the mapping p 7→ ξp defined at the beginning of this section. By identifying the

projections pn, pI , pI1, . . . , pIk
with projections in C((S2)N) ⊗ K, where N is any integer

large enough to ensure that these projections belong to the image of

ρ̂∞,N ⊗ idK : C((S2)N) ⊗ K → C(Z) ⊗K,

we can take the base space to be (S2)N .

Lemma 4.1 Let ζn and ζI be the complex line bundles defined in (3.4).

(i) The vector bundle ζn corresponds to pn for each n in N.

(ii) The vector bundle ζI corresponds to pI for each non-empty finite subset I of N.

(iii) The vector bundle ζI1 ⊕ ζI2 ⊕ · · · ⊕ ζIk
corresponds to pI1 ⊕ pI2 ⊕ · · · ⊕ pIk

whenever

I1, . . . , Ik are non-empty finite subsets of N.

Proof: (i). Since p corresponds to ζ, pn = p ◦ πn corresponds to ζn = π∗
n(ζ), where

πn : (S2)N → S2 is the nth coordinate map.

(ii). Write I = {n1, n2, . . . , nk}. We shall here view pn as a projection in C((S2)N ,M2)

and pI as a projection in C((S2)N ,M2 ⊗ · · · ⊗M2). By (i), ζn is the complex line bundle

over (S2)N whose fibre over x ∈ (S2)N is equal to pn(x)(C2). The fibre of the complex line

bundle ζI = ζn1
⊗ ζn2

⊗ · · · ⊗ ζnk
over x ∈ (S2)N is by definition

(ζI)x = (ζn1
)x ⊗ (ζn2

)x ⊗ · · · ⊗ (ζn1
)x

= pn1
(x)(C2) ⊗ pn2

(x)(C2) ⊗ · · · ⊗ pnk
(x)(C2)

= pI(x)(C
2 ⊗ C2 ⊗ · · · ⊗ C2).
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This shows that ζI corresponds to pI .

(iii). This follows from (ii) and additivity of the map p 7→ ξp. �

The next three lemmas are formulated for an arbitrary stable C∗-algebra A and its multi-

plier algebra M(A), but they shall primarily be used in the case where A = C(Z) ⊗K.

The lemma below is a trivial, but much used, generalization of (4.7):

Lemma 4.2 Let A be a stable C∗-algebra, and let q1, q2, . . . and r1, r2, . . . be two sequences

of projections in A. Assume that there is a permutation σ on N such that qj - rσ(j),

respectively qj ∼ rσ(j), in A for all j in N. Then
⊕∞

j=1 qj -
⊕∞

j=1 rj, respectively
⊕∞

j=1 qj ∼⊕∞
j=1 rj, in M(A).

An element in a C∗-algebra A is said to be full in A if it is not contained in any proper

closed two-sided ideal of A.

Lemma 4.3 Let A be a stable C∗-algebra. The following three conditions are equivalent

for all projections Q in M(A):

(i) Q ∼ 1, (ii) Q is properly infinite and full in M(A), (iii) 1 - Q.

Proof: (i) ⇒ (iii) is trivial. Assume that 1 - Q. Then Q is full in M(A) (the closed

two-sided ideal in M(A) generated by Q contains 1 and hence all of M(A)). It was noted

above (4.3) that 1 is properly infinite in M(A), and so Q ⊕ Q ≤ 1 ⊕ 1 - 1 - Q, whence

Q is properly infinite; cf. Proposition 2.1. This proves (iii) ⇒ (ii). Assume finally that Q

is properly infinite and full in M(A). Since K0(M(A)) = 0 (see [7, Proposition 12.2.1])

the two projections Q and 1 represent the same element in K0(M(A)); and since these

two projections both are properly infinite and full they must be Murray–von Neumann

equivalent (see [16, Section 1] or [40, Exercise 4.9 (iii)]), i.e., Q ∼ 1. �

Lemma 4.4 Let A be a stable C∗-algebra and let q, q1, q2, . . . be projections in A. If

q -
⊕∞

j=1 qj in M(A), then q - q1 ⊕ q2 ⊕ · · · ⊕ qk in A for some k.

Proof: We have
⊕∞

j=1 qj =
∑∞

j=1 q
′
j (= Q) for some strictly summable sequence of mutu-

ally orthogonal projections q′1, q
′
2, . . . in A with q′j ∼ qj. By the assumption that q - Q

there is a partial isometry v in M(A) such that vv∗ = q and v∗v ≤ Q. As v = qv, v belongs

to A, and by the strict convergence of the sum Q =
∑∞

j=1 q
′
j there is k such that

‖v − v
k∑

j=1

q′j‖ < 1/2.
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Put x = v
∑k

j=1 q
′
j. Then xx∗ ≤ q, x∗x ≤ q′1 + · · · + q′k, and ‖xx∗ − q‖ < 1. This shows

that xx∗ is invertible in qAq with inverse (xx∗)−1. Put u = (xx∗)−1/2x. Then uu∗ = q and

u∗u ≤ q′1 + · · · + q′k, whence q - q1 ⊕ · · · ⊕ qk. �

Let g be a constant one-dimensional projection in C(Z,K) = C(Z)⊗K (that corresponds

to the trivial complex line bundle θ over X). The (easy-to-prove) statement in part (iii) of

the proposition below is not used in this paper, but it may have some independent interest.

Proposition 4.5 Let I1, I2, . . . be a sequence of non-empty, finite subsets of N. Put

Q =
∞⊕

j=1

pIj
∈ M(C(Z) ⊗K).

(i) If
∣∣ ⋃

j∈F Ij
∣∣ ≥ |F | for all finite subsets F of N, then g -| Q and Q is not properly

infinite.

(ii) g - pn ⊕ pn for every natural number n.

(iii) If infinitely many of the sets I1, I2, . . . are singletons, then Q⊕Q is properly infinite

and Q⊕Q ∼ 1 in M(C(Z) ⊗ K).

Proof: (i). We show first that g -| Q in M(C(Z) ⊗ K). Indeed, assume to the contrary

that g - Q. Then

g - pI1 ⊕ pI2 ⊕ · · · ⊕ pIk
(4.8)

in C(Z) ⊗K for some k by Lemma 4.4. As noted earlier, C(Z) ⊗ K is an inductive limit

C(S2) ⊗K
ρ̂1 ⊗ idK

// C((S2)2) ⊗ K
ρ̂2 ⊗ idK

// C((S2)3) ⊗ K // · · · // C(Z) ⊗ K.

Take N such that all projections appearing in (4.8) belong to the image of

ρ̂∞,n ⊗ idK : C((S2)n) ⊗ K → C(Z) ⊗ K

whenever n ≥ N . Use a standard inductive limit argument to see that (4.8) holds relatively

to C((S2)n) ⊗ K for some large enough n ≥ N . In the language of vector bundles over

(S2)n, (4.8) and Lemma 4.1 imply that

θ ⊕ η ∼= ζI1 ⊕ ζI2 ⊕ · · · ⊕ ζIk
(4.9)
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for some vector bundle η over (S2)n. Now, (4.9) and (3.2) imply that e(ζI1 ⊕· · ·⊕ ζIk
) = 0,

in contradiction with Proposition 3.2 and the assumption on the sets Ij.

The projection pI1 is a full element in C(Z) ⊗ K and pI1 ≤ Q. Hence g belongs to the

ideal generated by Q. It now follows from Lemma 2.2 and from the fact that g -| Q that

Q cannot be properly infinite.

(ii) follows from Lemma 3.1 and Lemma 4.1.

(iii). The unit 1 of M(C(Z) ⊗ K) can be written as a strictly convergent sum 1 =∑∞
j=1 gj, where gj ∼ g for all j. Let Γ denote the infinite subset of N consisting of those j

for which Ij is a singleton. By Lemma 4.2 and (ii) we get

1 ∼
∞⊕

j=1

g -
⊕

j∈Γ

(pIj
⊕ pIj

) -

∞⊕

j=1

(pIj
⊕ pIj

) ∼ Q⊕Q.

Lemma 4.3 now tells us that Q⊕Q is properly infinite and that Q⊕Q ∼ 1. �

5 A non-exact example

We construct here a simple, unital C∗-algebra that contains a finite and an infinite projec-

tion; thus proving one of our main results: Theorem 5.6 below.

Let again Z denote the infinite product space
∏∞

j=1 S
2. Set A = C(Z)⊗K = C(Z,K);

recall from Section 4 that M(A) denotes the multiplier algebra of A and that it can be

identified with the set of bounded ∗-strongly continuous functions f : Z → B(H).

Choose an injective function ν : Z × N → N. Choose points cj,i ∈ S2 for all j, i ∈ N

with j ≥ i such that

{(cj,1, cj,2, . . . , cj,n) | j ≥ n} = S2 × S2 × · · · × S2 (5.1)

for every natural number n. Set

Ij = {ν(j, 1), ν(j, 2), . . . , ν(j, j)}, (5.2)

for j ∈ N.

Define ∗-homomorphisms ϕj : A→ A for all integers j as follows. For j ≤ 0, set

ϕj(f)(x) = f
(
xν(j,1), xν(j,2), xν(j,3), . . .

)
, f ∈ A, x = (x1, x2, . . . ) ∈ Z. (5.3)

Let pn and pI be the projections in A = C(Z,K) defined in (4.1) and (4.2). Choose an
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isomorphism τ : K ⊗ K → K. For f in A, x = (x1, x2, . . . ) in Z, and j ≥ 1 define

ϕj(f)(x) = τ
(
f(cj,1, . . . , cj,j, xν(j,j+1), xν(j,j+2), . . . ) ⊗ pIj

(x)
)
. (5.4)

Choose a sequence {Sj}∞j=−∞ of isometries in M(A) such that
∑∞

j=−∞ SjS
∗
j = 1 with the

sum being strictly convergent. Define a ∗-homomorphism ψ : A→ M(A) by

ψ(f) =
∞∑

j=−∞

Sjϕj(f)S∗
j , f ∈ A. (5.5)

Lemma 5.1 Let {en}∞n=1 be an increasing approximate unit for A. Then {ψ(en)}∞n=1 con-

verges strictly to a projection F ∈ M(A), and F is equivalent to the identity 1 in M(A).

Proof: If ψ(en) converges strictly to F ∈ M(A) for some approximate unit {en} for

A, then this conclusion will hold for all approximate units for A. We can therefore take

{en}∞n=1 to be the approximate unit given by en(x) = ên, where {ên}∞n=1 is an increasing

approximate unit for K.

We show first that {ϕj(en)}∞n=1 converges strictly to a projection Fj in M(A) for each

j ∈ Z. Indeed, since ϕj(en) = en when j ≤ 0 it follows that ϕj(en) → 1 strictly; and so

Fj = 1 when j ≤ 0. Consider next the case j ≥ 1. Here we have ϕj(en)(x) = τ(ên⊗pIj
(x)).

Extend τ : K ⊗ K → K to a strongly continuous unital ∗-homomorphism τ : B(H ⊗H) →

B(H) and define Fj in M(A) by Fj(x) = τ (1⊗ pIj
(x)) for x ∈ Z. Then Fj is a projection

and {ϕj(en)}∞n=1 converges strictly to Fj.

Now,

ψ(en) =
∞∑

j=−∞

Sjϕj(en)S∗
j

strictly
−→
n→∞

∞∑

j=−∞

SjFjS
∗
j

def
= F ∈ M(A),

As 1 = F0 ∼ S0F0S
∗
0 ≤ F it follows from Lemma 4.3 that F ∼ 1 in M(A). �

Take an isometry T in M(A) with TT ∗ = F (where F is an in Lemma 5.1). Define

ϕ(f) = T ∗ψ(f)T =
∞∑

j=−∞

T ∗Sjϕj(f)S∗
jT, f ∈ A. (5.6)

Then ϕ : A → M(A) is a ∗-homomorphism that maps an approximate unit for A into a

sequence in M(A) that converges strictly to the identity in M(A) (by Lemma 5.1 and the

choice of T ). It follows from [32, Proposition 2.5] that ϕ extends to a unital ∗-homomor-

phism ϕ : M(A) → M(A).
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We collect below some properties of the ∗-homomorphisms ϕ and ϕ. A subset of a

C∗-algebra A is called full in A if it is not contained in any proper closed two-sided ideal

in A.

Proposition 5.2 Let p1 be the projection in A defined in (4.1) and let g be a constant

1-dimensional projection in A = C(Z,K).

(i) ϕ(g) ∼ 1 in M(A), and ϕ(f) is full in M(A) for every full element f in A.

(ii) If f is a non-zero element in M(A), then ϕ(f) does not belong to A, and Aϕ(f) is

full in A.

(iii) If f is a non-zero element in M(A), then Aϕ k(f) is full in A for every k ∈ N.

(iv) None of the projections ϕ k(p1), k ∈ N, are properly infinite in M(A).

It follows immediately from (ii) that ϕ and ϕ are injective, and that ϕ(M(A)) ∩ A = {0}

and ϕ(A) ∩ A = {0}.

The proof of Proposition 5.2 is divided into a few lemmas, the first of which (included

for emphasis) is standard and follows from the fact that any closed two-sided ideal in

C(Z,K) is equal to C0(U,K) for some open subset U of Z.

Lemma 5.3 Let f be an element in A = C(Z,K). Then f is full in A if and only if

f(x) 6= 0 for all x ∈ Z.

Proof of Proposition 5.2 (i): Observe first that ϕj(g) = g for every j ≤ 0. Accordingly,

1 ∼
0⊕

j=−∞

g ∼
0∑

j=−∞

T ∗Sjϕj(g)S
∗
jT ≤ ϕ(g) in M(A).

This and Lemma 4.3 imply that ϕ(g) ∼ 1 and that ϕ(g) is full in M(A). If f is any

full element in A, then the closed two-sided ideal generated by ϕ(f) contains ϕ(g) and

therefore all of M(A). This proves the second claim in (i). �

Proof of Proposition 5.2 (ii): Take a non-zero element f in M(A). There is an element

a in A such that af 6= 0. The two claims in (ii) will clearly follow if we can show that

ϕ(af) /∈ A and that Aϕ(af) is full in A, and we can therefore, upon replacing f by af ,

assume that f is a non-zero element in A = C(Z,K).
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There are δ > 0, r ∈ N, and non-empty open subsets U1, . . . , Ur of S2 such that

x ∈ U1 × U2 × · · · × Ur × S2 × S2 × · · · =⇒ ‖f(x)‖ ≥ δ. (5.7)

Use (5.1) to find an infinite set Λ of integers j ≥ r such that

(cj,1, cj,2, . . . , cj,r) ∈ U1 × U2 × · · · × Ur for all j ∈ Λ. (5.8)

It follows from Lemma 5.3, (5.4), (5.7), and (5.8) that ‖ϕj(f)‖ ≥ δ and ϕj(f) is full in

A for every j in the infinite set Λ. This entails that ϕ(f) =
∑∞

j=−∞ T ∗Sjϕj(f)S∗
jT does

not belong to A. (A strictly convergent sum
∑∞

j=−∞ aj of pairwise orthogonal elements

from A belongs to A if and only if limj→±∞ ‖aj‖ = 0.) The closed two-sided ideal in A

generated by Aϕ(f) contains the full element ϕj(f) = S∗
jTϕ(f)T ∗Sj and therefore all of

A (for each—and hence at least one—j in Λ). �

Proof of Proposition 5.2 (iii): This follows from injectivity of ϕ and Proposition 5.2 (ii).

�

We proceed to prove Proposition 5.2 (iv).

Lemma 5.4 Let J be a finite subset of N and let j be an integer. Then ϕj(pJ) ∼ pαj(J),

where

αj(J) =




ν(j, J), j ≤ 0

ν(j, J \{1, 2, . . . , j}) ∪ Ij, j ≥ 1.
(5.9)

We have in particular that ν(j, J) ⊆ αj(J) for all finite subsets J of N and for all j ∈ Z.

Proof: Write J = {t1, t2, . . . , tk}, where t1 < t2 < · · · < tk. We consider first the case

where j ≤ 0. Then

ϕj(pJ)(x) = pJ(xν(j,1), xν(j,2), xν(j,3), . . . )

= p(xν(j,t1)) ⊗ p(xν(j,t2)) ⊗ · · · ⊗ p(xν(j,tk))

= pν(j,t1)(x) ⊗ pν(j,t2)(x) ⊗ · · · ⊗ pν(j,tk)(x) = pν(j,J)(x),

as desired.

Suppose next that j ≥ 1, and put q(x) = pJ(cj,1, . . . , cj,j, xν(j,j+1), xν(j,j+2), . . . ). Then

ϕj(pJ)(x) = τ(q(x)⊗pIj
(x)). Suppose that 1 ≤ j < tk and letm be such that tm−1 ≤ j < tm
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(with the convention t0 = 0). Then

q(x) = p(cj,t1) ⊗ · · · ⊗ p(cj,tm−1
) ⊗ p(xν(j,tm)) ⊗ · · · ⊗ p(xν(j,tk))

= p(cj,t1) ⊗ · · · ⊗ p(cj,tm−1
) ⊗ pν(j,tm)(x) ⊗ · · · ⊗ pν(j,tk)(x)

= p(cj,t1) ⊗ · · · ⊗ p(cj,tm−1
) ⊗ pν(j,J\{1,2,...,j})(x).

Thus q ∼ pν(j,J\{1,2,...,j}), which shows that ϕj(pJ) is equivalent to the projection defined

by

x 7→ τ(pν(j,J\{1,2,...,j})(x) ⊗ pIj
(x)),

and this projection is equivalent to pν(j,J\{1,2,...,j})∪Ij
. If j ≥ tk, then J \ {1, 2, . . . , j} = ∅

and q(x) = p(cj,t1)⊗· · ·⊗p(cj,tk), i.e., q is a constant projection. In this case, ϕj(pJ) ∼ pIj
,

thus affirming the first claim of the lemma.

The last claim follows from the definition of the sets Ij in (5.2). �

Lemma 5.5 Let J1, J2, . . . be finite subsets of N. Put Q =
⊕∞

i=1 pJi
∈ M(A). Then

ϕ(Q) ∼
∞⊕

i=1

∞⊕

j=−∞

pαj(Ji),

where αj is as defined in (5.9). Moreover, if |
⋃

i∈F Ji| ≥ |F | for all finite subsets F of N,

then |
⋃

(j,i)∈G αj(Ji)| ≥ |G| for all finite subsets G of Z × N.

Proof: By (4.4), Q =
∑∞

i=1 TipJi
T ∗

i ; and because ϕ is strictly continuous we get

ϕ(Q) =
∞∑

i=1

ϕ(Ti)ϕ(pJi
)ϕ(Ti)

∗ ∼
∞⊕

i=1

ϕ(pJi
) ∼

∞⊕

i=1

∞⊕

j=−∞

ϕj(pJi
) ∼

∞⊕

i=1

∞⊕

j=−∞

pαj(Ji),

where the first equivalence is proved below (4.3)–(4.6), and the last equivalence follows

from Lemma 5.4.

By the Marriage Theorem we can find natural numbers ti ∈ Ji such that {ti}i∈N are

mutually distinct. Set sj,i = ν(j, ti). Then sj,i belongs to αj(Ji) by Lemma 5.4, and

{sj,i}(j,i)∈Z×N are mutually distinct because ν is injective and the ti’s are mutually distinct.

This proves the second claim of the lemma. �

Proof of Proposition 5.2 (iv): Put Q0 = p1 and put Qn = ϕn(Q0). We must show that

none of the projections Qn, n ≥ 0, are properly infinite. It is clear that Q0 is finite, and

hence not properly infinite.
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Use Lemmas 5.4 and 5.5 to see that

Q1 =

∞∑

j=−∞

T ∗Sjϕj(p1)S
∗
jT ∼

∞⊕

j=−∞

ϕj(p1) ∼
0⊕

j=−∞

pν(j,1) ⊕
∞⊕

j=1

pIj
=

∞⊕

j=−∞

pJj
,

where Jj = {ν(j, 1)} for j ≤ 0 and Jj = Ij for j ≥ 1. It is easily seen that the sequence of

sets {Jj}∞j=−∞ satisfies the condition |
⋃

j∈F Jj| ≥ |F | for all finite subsets F of Z. Hence

Q1 is not properly infinite by Proposition 4.5 (i).

The claim that Qn is not properly infinite for all n follows by induction using Lemma 5.5

and Proposition 4.5 (i). �

Theorem 5.6 Consider the inductive limit B of the sequence:

M(C(Z) ⊗ K)
ϕ

// M(C(Z) ⊗K)
ϕ

// M(C(Z) ⊗ K)
ϕ

// · · · // B.

Then B has the following properties:

(i) B is unital and simple.

(ii) The unit of B is infinite.

(iii) B contains a non-zero finite projection.

(iv) K0(B) = 0 and K1(B) = 0.

Proof: (i). B is unital being the inductive limit of a sequence of unital C∗-algebras with

unital connecting maps.

Write again A for C(Z) ⊗ K, and let ϕ∞,n : M(A) → B be the inductive limit map

from the nth copy of M(A) into B. Let L be a non-zero closed two-sided ideal in B, and

set

Ln = ϕ −1
∞,n(L) C M(A).

Then Ln is non-zero for some n. Since A is an essential ideal in M(A), also A ∩ Ln is

non-zero.

Take a non-zero element e in A∩Ln. Then ϕ(e) belongs to Ln+1, hence Aϕ(e) ⊆ Ln+1,

and so it follows from Proposition 5.2 (ii) that A ⊆ Ln+1. Take now a full element f in

A ⊆ Ln+1. Then ϕ(f) belongs to Ln+2. It follows from Proposition 5.2 (i) that ϕ(f) is full

in M(A) and therefore Ln+2 = M(A). Hence L = B, and this shows that B is simple.

(ii). This is clear because the unit of M(A) is infinite.
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(iii). As in the proof of Proposition 5.2 (iv), set Q0 = p1 and Qn = ϕn(Q0) for n ≥ 1.

Put Q = ϕ∞,0(Q0) ∈ B. It is shown in Proposition 5.2 (ii) that ϕ is injective, which implies

that ϕ∞,0 is injective, and hence Q is non-zero. We show next that Q is finite.

Assume that Q were infinite. Then Q is properly infinite by Cuntz’ result (see Propo-

sition 2.1) because B is simple. Applying Proposition 2.3 to the sequence

Q0M(A)Q0
λ0

// Q1M(A)Q1
λ1

// Q2M(A)Q2
// · · · // QBQ,

with the unital connecting maps λj = ϕ|QjM(A)Qj
, we obtain that Qn is properly infinite

for all sufficiently large n. But this contradicts Proposition 5.2 (iv).

(iv). This follows from the fact that the multiplier algebra of a stable C∗-algebra has

trivial K-theory (see [7, Proposition 12.2.1]). �

It follows from Proposition 4.5 (ii) and Proposition 5.2 (i) that the finite projection Q in

B (found in part (iii) above) satisfies

Q⊕Q ∼ ϕ∞,0(Q0 ⊕Q0) = ϕ∞,0(p1 ⊕ p1) % ϕ∞,0(g) = ϕ∞,1(ϕ(g)) ∼ 1,

whence Q ⊕Q ∼ 1 by Lemma 4.3. In other words, the corner C∗-algebra QBQ is unital,

finite, and simple, and M2(QBQ) ∼= B is infinite.

The C∗-algebra B from Theorem 5.6 is not separable and not exact. To see the latter,

note that B(H), the bounded operators on a separable, infinite dimensional Hilbert space

H, can be embedded into M(A) = M(C(Z) ⊗ K) and hence into B. As B(H) is non-

exact (see Wasserman [43, 2.5.4]) it follows from Kirchberg’s result that exactness passes

to sub-C∗-algebras (see [43, 2.5.2]) that B is non-exact. We use the lemma below from [3]

to construct a non-exact separable example.

Lemma 5.7 (Blackadar) Let B be a simple C∗-algebra and let X be a countable subset

of B. It follows that B has a separable, simple sub-C∗-algebra B0 that contains X.

Corollary 5.8 There exists a unital, separable, non-exact, simple C∗-algebra B0 such that

B0 contains an infinite and a non-zero finite projection.

Proof: Let B be as in Theorem 5.6. Let s be a non-unitary isometry in B and let q

be a non-zero finite projection in B. The universal C∗-algebra, C∗(F2), generated by two

unitaries is separable and non-exact (see Wassermann [43, Corollary 3.7]). It admits an

embedding into M(C(Z) ⊗ K) and hence into B. Let u, v ∈ B be the images of the two
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(canonical) unitary generators in C∗(F2). Use Lemma 5.7 to find a separable, simple, and

unital C∗-algebra B0 that contains {u, v, s, q}.

Then B0 is infinite because it contains the non-unitary isometry s; and it contains the

finite projection q. Finally, B0 is non-exact because it contains the non-exact sub-C∗-alge-

bra C∗(u, v) ∼= C∗(F2). �

6 A nuclear example

We show here that an elaboration of the construction in Section 5 yields a nuclear and

separable example of a simple C∗-algebra with a finite and an infinite projection.

The construction requires that we make a specific choice for the injective map ν : Z ×

N → N from Section 5.

Let {Λr}∞r=0 be a partition of the set N such that Λ0 = {1} and such that Λr is infinite

for each r ≥ 1. For each r ≥ 1 choose an injective map γr : Z × Λr−1 → Λr and define

ν : Z × N → N by:

ν(j, t) = γr(j, t), r ∈ N, t ∈ Λr−1, j ∈ Z. (6.1)

Observe that

t ∈ Λr ⇐⇒ ν(j, t) ∈ Λr+1, j ∈ Z. (6.2)

To see that ν is injective assume that ν(j, t) = ν(i, s). Then ν(j, t) = ν(i, s) ∈ Λr for some

r ≥ 1. Therefore both s and t belong to Λr−1. Now, γr(j, t) = ν(j, t) = ν(i, s) = γr(i, s),

which entails that (j, t) = (i, s) by injectivity of γr.

Let αj be as defined in Lemma 5.4 (wrt. the new choice of ν). Let Γ0 ⊆ P (N) be the

family containing the one set {1}, and set

Γn+1 = {αj(I) | I ∈ Γn, j ∈ Z} ⊆ P (N),

for n ≥ 0. Set Γ =
⋃∞

n=0 Γn. Observe that each I ∈ Γ is a finite subset of N.

Put Q0 = p1 ∈ A (cf. (4.1)) and put Qn = ϕn(Q0) ∈ M(A) (where ϕ is the endomor-

phism on M(A) defined in Section 5 above Proposition 5.2). It then follows by induction

from Lemma 5.5 that

Qn ∼
⊕

I∈Γn

pI , n ≥ 0, (6.3)

when pI ∈ A is as defined in (4.2).
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Lemma 6.1 There is an injective function t : Γ → N such that t(I) ∈ I for all I ∈ Γ. It

follows in particular that ∣∣ ⋃

I∈F

I
∣∣ ≥ |F |

for all finite subsets F of Γ.

Proof: Define t recursively on each Γn as follows. For n = 0 we set t({1}) = 1. Assume

that t has been defined on Γn−1 for some n ≥ 1. Then define t on Γn by t(αj(I)) = ν(j, t(I))

for I ∈ Γn−1 and j ∈ Z. It follows from Lemma 5.4 that

t(I) ∈ I =⇒ t(αj(I)) ∈ αj(I), I ∈ Γ, j ∈ Z.

It therefore follows by induction that t(I) ∈ I for all I ∈ Γ.

We show next that t(I) ∈ Λn if I ∈ Γn. This is clear for n = 0. Let n ≥ 1 and let

I ∈ Γn be given. Then I = αj(I
′) for some I ′ ∈ Γn−1 and some j ∈ Z. It follows that

t(I) = t(αj(I
′)) = ν(j, t(I ′)). Hence t(I) ∈ Λn if t(I ′) ∈ Λn−1, cf. (6.2). Now the claim

follows by induction on n.

We proceed to show that t is injective. If I, J ∈ Γ are such that t(I) = t(J), then

t(I) = t(J) ∈ Λn for some n, whence I, J both belong to Γn. It therefore suffices to show

that t|Γn
is injective for each n. We prove this by induction on n. It is trivial that t|Γ0

is injective. Assume that t|Γn−1
is injective for some n ≥ 1. Let I, J ∈ Γn be such that

t(I) = t(J). Then I = αi(I
′) and J = αj(J

′) for some i, j ∈ Z and some I ′, J ′ ∈ Γn−1, and

ν(i, t(I ′)) = t(αi(I
′)) = t(I) = t(J) = t(αj(J

′)) = ν(j, t(J ′)).

Since ν is injective we deduce that i = j and t(I ′) = t(J ′). By injectivity of t|Γn−1
we

obtain I ′ = J ′, and this proves that I = J . It has now been shown that t|Γn
is injective,

and the induction step is complete. �

Let g ∈ A = C(Z,K) be a constant 1-dimensional projection, and let Qn be as defined

above (6.3).

Lemma 6.2 For each natural number m we have

g -| Q0 ⊕Q1 ⊕ · · · ⊕Qm in M(A).
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Proof: From (6.3) (and Lemma 4.2) we deduce that

Q0 ⊕Q1 ⊕ · · · ⊕Qn ∼
⊕

I∈Γ0∪···∪Γn

pI .

The claim of the lemma now follows from Proposition 4.5 (i) together with Lemma 6.1.

�

As in Theorem 5.6 consider the inductive limit

M(A)
ϕ

// M(A)
ϕ

// M(A)
ϕ

// · · · // B, (6.4)

where A = C(Z) ⊗ K. Let µ∞,n : M(A) → B be the inductive limit map (from the nth

copy of M(A)) for n ≥ 0, and let µm,n : M(A) → M(A) be the connecting map from

the nth copy of of M(A) to the mth copy of M(A) for n < m, i.e., µm,n = ϕ(m−n). The

endomorphism ϕ on M(A) extends to an automorphism α on B that satisfies α(µ∞,n(x)) =

µ∞,n(ϕ(x)) for x ∈ M(A) and all n ∈ N. (The inverse of α is on the dense subset⋃∞
n=0 µ∞,n(M(A)) of B given by α−1(µ∞,n(x)) = µ∞,n+1(x).)

Put A0 = µ∞,0(A) ⊆ B, put An = αn(A0) ⊆ B for all n ∈ Z, and put

Dn = C∗(A−n, A−n+1, . . . , A0, . . . An−1, An), D =
∞⋃

n=1

Dn. (6.5)

It is shown in Lemma 6.6 below that eachDn is a type I C∗-algebra, and so the C∗-algebraD

is an inductive limit of type I algebras. In particular, D is nuclear and belongs to the UCT

class N . Moreover, D is α-invariant (by construction). Observe that Am−n = µ∞,n(ϕ
m(A))

for all non-negative integers m and n.

Put Q = µ∞,0(p1) (= µ∞,n(Qn)) in D ⊆ B, and, as above, let g ∈ A = C(Z,K) be a

constant 1-dimensional projection.

Lemma 6.3 The following two relations hold in D and in B:

(i) µ∞,0(g) - Q⊕Q.

(ii) µ∞,0(g) -|
⊕N

j=−N α
j(Q) for all natural numbers N .

Proof: (i) follows immediately from Proposition 4.5 (ii).
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(ii). Assume, to reach a contradiction, that µ∞,0(g) -
∑N

j=−N α
j(Q) in B (or in D) for

some N ∈ N. For j ≥ −N we have

αj(Q) = αj(µ∞,0(Q0)) = αj(µ∞,N(ϕN(Q0))) = µ∞,N(ϕN+j(Q0)).

The relation µ∞,0(g) -
∑N

j=−N α
j(Q) can therefore be rewritten as

µ∞,N(ϕN (g)) -

2N⊕

j=0

µ∞,N(ϕ j(Q0)) in B.

By a standard property of inductive limits this entails that

µM,N(ϕN(g)) -

2N⊕

j=0

µM,N(ϕ j(Q0)) in M(A),

for some M ≥ N , or, equivalently,

ϕM(g) -

2N⊕

j=0

ϕ j+M−N(Q0) =

N+M⊕

j=M−N

ϕ j(Q0) =

N+M⊕

j=M−N

Qj -

N+M⊕

j=0

Qj in M(A).

Use now that g - ϕM(g) (which holds because ϕj(g) = g for j ≤ 0, cf. (5.3)) to conclude

that g -
⊕N+M

j=0 Qj in M(A), in contradiction with Lemma 6.2. �

Let C be an arbitrary unital C∗-algebra and let γ be an automorphism on C.

Let K denote the compact operators on `2(Z) and let {ei,j}i,j∈Z be a set of matrix

units for K. Define a unital injective ∗-homomorphism ψ : C → M(C ⊗ K) and a unitary

U ∈ M(C ⊗ K) by

ψ(c) =
∑

n∈Z

γn(c) ⊗ en,n, U =
∑

n∈Z

1 ⊗ en,n+1, c ∈ C,

(the sums converge strictly in M(C ⊗K)). It is easily seen that

Uψ(c)U∗ = ψ(γ(c)), c ∈ C,

so that ψ extends to a representation ψ̃ : C oγ Z → M(C ⊗ K). The following standard

argument shows that the representation ψ̃ is faithful.

Put Vt =
∑

n∈Z
1 ⊗ t−nen,n ∈ M(C ⊗ K) for t ∈ T, and check that Vt is a unitary

element that satisfies Vtψ(c)V ∗
t = ψ(c) and VtUV

∗
t = tU for all t ∈ T. Let E : C oγ Z →

24



C be the canonical faithful conditional expectation, and define F : Im(ψ̃) → Im(ψ̃) by

F (x) =
∫

T
VtxVt

∗ dt. Then F (ψ̃(x)) = ψ(E(x)) for all x ∈ C oγ Z. Now, if ψ̃(x) = 0 for

some positive element x in C oγ Z, then ψ(E(x)) = F (ψ̃(x)) = 0, whence E(x) = 0 (by

injectivity of ψ), and x = 0 (because E is faithful).

Lemma 6.4 Let C be a unital C∗-algebra and let γ be an automorphism on C. Suppose

that p, q are projections in C such that

(i) p -
⊕m

j=1 q in C for some natural number m, and

(ii) p -|
⊕N

j=−N γ
j(q) for all natural numbers N .

Then q is not properly infinite in C oγ Z.

Proof: It suffices to show that ψ(q) is not properly infinite in M(C ⊗ K). Assume, to

reach a contradiction, that ψ(q) is properly infinite in M(C⊗K). Then
⊕m

j=1 ψ(q) - ψ(q)

by Proposition 2.1. As q ⊗ e0,0 ≤ ψ(q) we can use (i) to obtain

p⊗ e0,0 -

m⊕

j=1

q ⊗ e0,0 ≤
m⊕

j=1

ψ(q) - ψ(q) =
∞∑

j=−∞

γj(q) ⊗ ej,j

in M(C ⊗ K). By Lemma 4.4 this entails that

p⊗ e0,0 -

N∑

j=−N

γj(q) ⊗ ej,j in C ⊗K,

for some N ∈ N, or, equivalently, that p -
⊕N

j=−N γ
j(q) in C, in contradiction with

assumption (ii). �

Returning now to our specific C∗-algebra B from (6.4), Lemmas 6.3 and 6.4 imply that:

Lemma 6.5 The projection Q = µ∞,0(p1) is not properly infinite in B oα Z.

Lemma 6.6 The C∗-algebra Dn = C∗(A−n, A−n+1, . . . , A0, . . . , An) is of type I for each

n ∈ N.

Proof: Note first that

AnAm ⊆ Amin{n,m}, n,m ∈ Z. (6.6)
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Indeed, we can assume without loss of generality that n ≤ m, and then deduce

AnAm = αn(µ∞,0(Aϕ
m−n(A))) ⊆ αn(µ∞,0(A)) = An.

Since A ∩ ϕm−n(A) = {0} when n < m, cf. Proposition 5.2 (ii), it follows also that

An ∩ Am = {0}, n 6= m. (6.7)

Use (6.6) to see that the C∗-algebra Dm,n generated by Am, Am+1, . . . , An, for m ≤ n, is

equal to

Dm,n = Am + Am+1 + · · ·+ An−1 + An. (6.8)

(To see that the right-hand side of (6.8) is norm closed, use successively the fact that if E

is a C∗-algebra, I is a closed two-sided ideal in E, and F is a sub-C∗-algebra of E, then

I + F is a sub-C∗-algebra of E.) It follows from (6.6), (6.7), and (6.8) that we have a

decomposition series

0 C A−n C D−n,−n+1 C D−n,−n+2 C · · · C D−n,n−1 C D−n,n = Dn

for Dn and that each successive quotient is isomorphic to A = C(Z)⊗K. This proves that

Dn is a type I C∗-algebra. �

Lemma 6.7 The crossed product C∗-algebra D oα Z contains an infinite projection and

a non-zero projection which is not properly infinite. The C∗-algebra D has no non-trivial

αn-invariant closed two-sided ideal for any non-zero integer n.

Proof: The projection Q = µ∞,0(p1) belongs to A0 = µ∞,0(A) ⊆ D, and it is non-zero

because µ∞,0 is injective (which again is because ϕ is injective). We have D ⊆ B and hence

Q ∈ D oα Z ⊆ B oα Z.

Since Q is not properly infinite in Boα Z (by Lemma 6.5) it follows that Q is not properly

infinite in D oα Z.

Put P = µ∞,0(g) ∈ A0 ⊆ D, where g is a constant 1-dimensional projection in A =

C(Z,K). We have

g = ϕ0(g) ∼ S0ϕ0(g)S
∗
0 <

∞∑

j=−∞

Sjϕj(g)S
∗
j = ϕ(g),
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cf. (5.3). Hence P = µ∞,0(g) is equivalent to a proper subprojection of µ∞,0(ϕ(g)). As

µ∞,0(ϕ(g)) = α(µ∞,0(g)) ∼ P in D oα Z we conclude that P is an infinite projection in

D oα Z.

Suppose that n is a non-zero integer (that we can take to be positive) and that I is

a non-zero closed two-sided αn-invariant ideal in D. Then I ∩ Dkn is non-zero for some

natural number k, cf. (6.5). As I is αn-invariant, I ∩ αkn(Dkn) is non-zero, and

αkn(Dkn) = C∗(A0, A1, . . . , A2kn) = µ∞,0

(
C∗(A,ϕ(A), . . . , ϕ 2kn(A))

)
.

Because A0 = µ∞,0(A) is an essential ideal in αkn(Dkn) it follows that I ∩ A0 is non-zero.

Take a non-zero element f in I ∩A0, and write f = µ∞,0(f0) for some non-zero element f0

in A. Use Proposition 5.2 (iii) to conclude that

A−mf = µ∞,m

(
Aϕm(f0)

)

is full in µ∞,m(A) = A−m, and hence that A−m ⊆ I, for every natural number m. Since

I is αn-invariant, A−m+rn = αrn(A−m) ⊆ I for all m ∈ N and all r ∈ Z. This shows that

Am ⊆ I for all m, which finally entails that I = D. �

We remind the reader of the notion of properly outer automorphism introduced by Elliott

in [19]:

Definition 6.8 An automorphism γ on a C∗-algebra E is called properly outer if for every

non-zero γ-invariant closed two-sided ideal I of E and for every unitary u in M(I) one has

‖γ|I − Ad u‖ = 2 (the norm is the operator norm).

Olesen and Pedersen list in [34, Theorem 6.6] eleven conditions on an automorphism γ that

all are equivalent to γ being properly outer. We shall use the following sufficient (but not

necessary) condition for being properly outer: If E has no non-trivial γ-invariant ideals

and if γ(p) � p for some projection p in E, then γ is properly outer. To see this, note first

that p ∼ upu∗ = (Ad u)(p) for every unitary u in M(E) (the equivalence holds relatively

to E). We therefore have γ(p) � (Ad u)(p), whence ‖γ(p) − (Ad u)(p)‖ = 1. This shows

that ‖γ − Ad u‖ ≥ 1 for all unitaries u in M(E), whence γ is properly outer (by (ii) ⇔

(iii) of [34, Theorem 6.6]).

(One can argue along another line by taking an approximate unit {eλ} for E, such that

eλ ≥ p for all λ, and set xλ = 2p− eλ. Then xλ is a contraction in E for all λ, and one can

check that limλ→∞ ‖γ(xλ) − (Ad u)(xλ)‖ = 2, thus showing directly that ‖γ − Ad u‖ = 2

for all unitaries u in M(E) whenever γ(p) � p for some projection p in E.)
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More generally, γ is properly outer if for each non-zero γ-invariant ideal I of E there is

a projection p in I such that γ(p) � p.

Lemma 6.9 The automorphism αn on D is properly outer for every non-zero integer n.

Proof: We know from Lemma 6.7 that D has no αn-invariant ideals (when n 6= 0), so the

lemma will follow from the claim (verified below) that αn(Q) � Q for all n 6= 0 (where Q

is as in Lemma 6.3).

Assume, to reach a contradiction, that αn(Q) ∼ Q for some non-zero integer n (that

we can take to be positive). Then, by Lemma 6.3 (i), µ∞,0(g) - Q ⊕ Q ∼ Q ⊕ αn(Q) -⊕n
j=0 α

j(Q) in D, in contradiction with Lemma 6.3 (ii). �

We now have all ingredients to prove our main result:

Theorem 6.10 There is a separable C∗-algebra D and an automorphism α on D such

that:

(i) D is an inductive limit of type I C∗-algebras.

(ii) D oα Z is simple and contains an infinite and a non-zero finite projection.

(iii) D oα Z is nuclear and belongs to the UCT class N .

Proof: Let D be the C∗-algebra and let α the automorphism on D defined in (and above)

(6.5). Since D is the union of an increasing sequence of sub-C∗-algebras Dn (cf. (6.5)) and

each Dn is of type I (by Lemma 6.6), we conclude that D is an inductive limit of type I

C∗-algebras, and hence that the crossed product Doα Z is nuclear, separable, and belongs

to the UCT class N .

Since D has no non-trivial α-invariant ideals (by Lemma 6.7) and αn is properly outer

for all n 6= 0 (by Lemma 6.9), it follows from Olesen and Pedersen, [34, Theorem 7.2], (a

result that extends results from Elliott, [19], and Kishimoto, [31]) that D oα Z is simple.

By simplicity of Doα Z, the (non-zero) projection Q, which in Lemma 6.7 is proved to be

not properly infinite, must be finite in D oα Z, cf. Proposition 2.1. The existence of an

infinite projection in D oα Z follows from Lemma 6.7, and this completes the proof. �

7 Applications of the main results

We begin by listing some corollaries to Theorems 5.6 and 6.10.
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Corollary 7.1 There is a nuclear, unital, separable, infinite, simple C∗-algebra A in the

UCT class N such that A is not purely infinite.

Proof: Take the C∗-algebra D oα Z from Theorem 6.10, and take a properly infinite

projection p and a non-zero finite projection q in that C∗-algebra. Then q ∼ q0 ≤ p for

some projection q0 in D oα Z by Lemma 2.2. Hence A = p(D oα Z)p is infinite; and A is

not purely infinite because it contains the non-zero finite projection q0. �

Corollary 7.2 There is a nuclear, unital, separable, finite, simple C∗-algebra A that is

not stably finite, and hence does not admit a tracial state (nor a non-zero quasitrace).

Proof: Take the C∗-algebra E = D oα Z from Theorem 6.10 and a non-zero finite pro-

jection q in E. Put A = qEq. Then A is finite, simple, and unital. Since A⊗ K ∼= E ⊗ K

we conclude that A⊗ K (and hence Mn(A) for some large enough n) contains an infinite

projection, so A is not stably finite.

Every simple, infinite C∗-algebra is properly infinite, so Mn(A) is properly infinite. No

properly infinite C∗-algebra can admit a non-zero trace (or a quasitrace), so Mn(A), and

hence A, do not admit a tracial state (nor a non-zero quasitrace). �

A C∗-algebra A is said to have the cancellation property if the implication

p⊕ r ∼ q ⊕ r =⇒ p ∼ q (7.1)

holds for all projections p, q, r in A ⊗ K. It is known that all C∗-algebras of stable rank

one have the cancellation property and that no infinite C∗-algebra has the cancellation

property. There is no example of a stably finite, simple C∗-algebra which is known not

to have the cancellation property (but Villadsen’s C∗-algebras from [42] are candidates).

A C∗-algebra A is said to have the weak cancellation property if (7.1) holds for those

projections p, q, r in A⊗ K where p and q generate the same ideal of A.

Corollary 7.3 There is a nuclear, unital, separable, simple C∗-algebra A that does not

have the weak cancellation property.

Proof: Take A as in Corollary 7.1, and take a non-zero finite projection q in A. Since A

is properly infinite, we can find isometries s1, s2 in A with orthogonal range projections;

cf. Proposition 2.1. Put p = s1qs
∗
1 + (1 − s1s

∗
1). Then p is infinite because s2s

∗
2 ≤ p, and
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so p � q (because q is finite). On the other hand, q and p generate the same ideal of

A—namely A itself—and

p⊕ 1 =
(
s1qs

∗
1 + (1 − s1s

∗
1)

)
⊕ 1 ∼ s1qs

∗
1 ⊕ (1 − s1s

∗
1) ⊕ s1s

∗
1 ∼ q ⊕ 1.

�

It was shown in [30, Theorem 9.1] that the following implications hold for any separable

C∗-algebra A and for any free filter ω on N:

A is purely infinite =⇒ A is weakly purely infinite

⇐⇒ Aω is traceless

=⇒ A is traceless,

and the first three properties are equivalent for all simple C∗-algebras A. (A C∗-algebra is

here said to be traceless if no algebraic ideal in A admits a non-zero quasitrace. See [30]

for the definition of being weakly purely infinite.) It was not known in [30] if the reverse

of the third implication holds (for simple or for non-simple C∗-algebras), but we can now

answer this in the negative:

Corollary 7.4 Let ω be any free filter on N. There is a nuclear, unital, separable, simple

C∗-algebra A which is traceless, but where `∞(A) and Aω admit non-zero quasitraces defined

on some (possibly non-dense) algebraic ideal.

Proof: Take A as in Corollary 7.2. Then A is algebraically simple and A admits no

(everywhere defined) non-zero quasitrace. Hence A is traceless in the sense of [30]. Because

A is simple and not purely infinite, Aω cannot be traceless. Since Aω is a quotient of `∞(A),

the latter C∗-algebra cannot be traceless either. �

Kirchberg has shown in [26] (see also [39, Theorem 4.1.10]) that every exact simple C∗-

algebra which is tensorially non-prime (i.e., is isomorphic to a tensor product D1 ⊗ D2,

where D1 and D2 both are simple non-type I C∗-algebras) is either stably finite or purely

infinite. Liming Ge has proved in [21] that the II1-factor L(F2) is (tensorially) prime (in

the von Neumann algebra sense), and it follows easily from this result that the C∗-algebra

C∗
red(F2) is tensorially prime. We can now exhibit a simple, nuclear C∗-algebra that is

tensorially prime:

Corollary 7.5 The C∗-algebra D oα Z from Theorem 6.10 is simple, separable, nuclear,

and tensorially prime, and so is p(D oα Z)p for every non-zero projection p in D oα Z.
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Proof: The C∗-algebra D oα Z is simple, separable, nuclear; cf. Theorem 6.10. It is not

stably finite because it contains an infinite projection, and it is not purely infinite because

it contains a non-zero finite projection. The (unital) C∗-algebra p(D oα Z)p is stably

isomorphic to Doα Z and is hence also simple, separable, nuclear, and neither stably finite

nor purely infinite. It therefore follows from Kirchberg’s theorem (quoted above) that these

C∗-algebras must be tensorially prime. �

Villadsen’s C∗-algebras from [41] and [42] are, besides being simple and nuclear, probably

also tensorially prime (although to the knowledge of the author this has not yet been

proven). Jiang and Su have in [25] found a non-type I, unital, simple C∗-algebra Z for

which A ∼= A ⊗ Z is known to hold for a large class of well-behaved simple C∗-algebras

A, such as for example the irrational rotation C∗-algebras and more generally all C∗-alge-

bras that are covered by a classification theorem (cf. [20] or [39]). Such C∗-algebras A are

therefore not tensorially prime.

The real rank of the C∗-algebras found in Theorems 5.6 and 6.10 have not been de-

termined, but we guess that they have real rank ≥ 1. That leaves open the following

question:

Question 7.6 Does there exist a (separable) unital, simple C∗-algebra A such that A

contains an infinite and a non-zero finite projection, and such that:

(i) A is of real rank zero?

(ii) A is both nuclear and of real rank zero?

It appears to be difficult (if not impossible) to construct simple C∗-algebras of real rank

zero that exhibit bad comparison properties; cf. Remark 7.8 below.

George Elliott suggested the following:

Question 7.7 Does there exist a (separable), (nuclear), unital, simple C∗-algebra A such

that all non-zero projections in A are infinite but A is not purely infinite?

If Question 7.7 has affirmative answer, and A is a unital, simple C∗-algebra whose non-zero

projections are infinite and A is not purely infinite, then the real rank of A cannot be zero.

Indeed, a simple C∗-algebra is purely infinite if and only if it has real rank zero and all its

non-zero projections are infinite.

Remark 7.8 (Comparison and dimension ranges) Suppose that A is a unital, sim-

ple, infinite C∗-algebra with a non-zero finite projection e. By simplicity of A there is a
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natural number k such that 1 - e ⊕ e ⊕ · · · ⊕ e (with k copies of e). Let s1, s2, . . . be a

sequence of isometries in A with orthogonal range projections; cf. Proposition 2.1. Letting

[p] denote the Murray–von Neumann equivalence class of the projection p, we have

n[1] = [s1s
∗
1 + s2s

∗
2 + · · · + sns

∗
n] ≤ [1] ≤ k[e]

for every natural number n. But [1] � [e] because e is finite and 1 is infinite.

This shows that if A is a simple C∗-algebra with a finite and an infinite projection, then

the semigroup D(A) of Murray–von Neumann equivalence classes of projections in A⊗ K

is not weakly unperforated.

(An ordered abelian semigroup (S,+,≤) is said to be weakly unperforated if

∀ g, h ∈ S ∀n ∈ N : ng < nh =⇒ g ≤ h.

The order structure on D(A) is the algebraic order given by g ≤ h if and only if h = g+ f

for some f in D(A).)

Villadsen showed in [41] that K0(A), and also the semigroup D(A), of a simple, stably

finite C∗-algebra A can fail to be weakly unperforated. The present article is a natural

continuation of Villadsen’s work to the stably infinite case.

Let (S,+) be an abelian semigroup with a zero-element 0. An element g ∈ S is called

infinite if g + x = g for some non-zero x ∈ S, and g is called finite otherwise. The

sets of finite, respectively, infinite elements in S are denoted by Sfin and Sinf . One has

S = Sfin q Sinf and S + Sinf ⊆ Sinf , but the sum of two finite elements can be infinite.

It is standard and easy to see that the finite and infinite elements in the semigroup

D(A) are given by

Dfin(A) = {[f ] : f is a finite projection in A⊗K},

Dinf(A) = {[f ] : f is an infinite projection in A⊗ K}.

If A is a simple C∗-algebra that contains an infinite projection, then the Grothendieck

map γ : D(A) → K0(A) restricts to an isomorphism Dinf(A) → K0(A) as shown by Cuntz

in [16, Section 1]. We can therefore identify Dinf(A) with K0(A), in which case we can

write

D(A) = Dfin(A) q K0(A).

Note that [0] belongs to Dfin(A), and that Dfin(A) = {[0]} if and only if all non-zero

projections in A⊗K are infinite. One can therefore detect the existence of non-zero finite
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elements in A ⊗ K from the semigroup D(A); and K0(A) contains all information about

D(A) if and only if all non-zero projections in A⊗K are infinite.

In general, when A is simple and contains both infinite and non-zero finite projections,

then Dfin(A) can be very complicated and large. One can show that Dfin(B) is uncountable,

when B is as in Theorem 5.6. We have no description of D(A), when A = D oα Z from

Theorem 6.10.

We remark finally, that if A is simple and if g is a non-zero element in Dfin(A), then

ng ∈ Dinf(A) for some n ∈ N. In other words, Dinf(A) eventually absorbs all non-zero

elements in D(A).

The example found in Theorem 6.10 provides a counterexample to Elliott’s classification

conjecture (see for example [20]) as it is formulated (by the author) in [39, Section 2.2].

The conjecture asserts that

(
K0(A), K0(A)+, [1A]0, K1(A), T (A), rA : T (A) → S(K0(A))

)
(7.2)

is a complete invariant for unital, separable, nuclear, simple C∗-algebras. If A is stably

infinite (i.e., if A⊗K contains an infinite projection), then K0(A)+ = K0(A) and T (A) = ∅.

The Elliott invariant for unital, simple, stably infinite C∗-algebras therefore degenerates to

the triple (K0(A), [1A]0, K1(A)). (We say that (K0(A), [1A]0, K1(A)) ∼= (G0, g0, G1) if there

are group isomorphisms α0 : K0(A) → G0 and α1 : K1(A) → G1 such that α0([1A]0) = g0.)

Corollary 7.9 There are two non-isomorphic nuclear, unital, separable, simple, stably

infinite C∗-algebras A and B (both in the UCT class N ) such that

(K0(A), [1A]0, K1(A)) ∼= (K0(B), [1B]0, K1(B)).

Proof: Take the C∗-algebra A from Corollary 7.1. It follows from [36, Theorem 3.6] that

there is a nuclear, unital, separable, simple, purely infinite C∗-algebra B in the UCT class

N such that

(K0(A), [1A]0, K1(A)) ∼= (K0(B), [1B]0, K1(B)).

Since B is purely infinite and A is not purely infinite, we have A � B. �

One can amend the Elliott invariant by replacing the triple (K0(A), K0(A)+, [1A]0) (for

a unital C∗-algebra A) with the pair (D(A), [1A]), cf. Remark 7.8 above, where D(A)

carries the structure of a semigroup. In the unital, stably infinite case, the amended

invariant will then become (D(A), [1A], K1(A)). (Since K0(A) is the Grothendieck group
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of D(A), and K0(A)+, respectively, [1A]0, are the images of D(A), respectively, [1A], under

the Grothendieck map γ : D(A) → K0(A), one can recover (K0(A), K0(A)+, [1A]0) from

(D(A), [1A]).)

The invariant (D(A), [1A]) can detect if A has a non-zero finite projection, cf. Re-

mark 7.8; and the triples (D(A), [1A], K1(A)) and (D(B), [1B], K1(B)) are therefore non-

isomorphic, when A and B are as in Corollary 7.9. We have no example to show that

(D(A), [1A], K1(A)) is not a complete invariant for nuclear, unital, simple, separable,

stably infinite C∗-algebras. On the other hand, there is no evidence to suggests that

(D(A), [1A], K1(A)) indeed is a complete invariant for this class of C∗-algebras.

The Elliott conjecture can also be amended by restricting the class of C∗-algebras that

are to be classified. One possibility is to consider only those unital, separable, nuclear,

simple C∗-algebras A for which A ∼= A ⊗ Z where Z is the Jiang–Su algebra (see the

comment below Corollary 7.5). It seems plausible that the Elliott invariant (7.2) actually

is a complete invariant for this class of C∗-algebras; and one could hope that the condition

A ∼= A⊗Z has an alternative intrinsic equivalent formulation, for example in terms of the

existence of sufficiently many central sequences.

Remark 7.10 (A non-simple example) Examples of non-simple unital C∗-algebras A,

such that A is finite and M2(A) is infinite, have been known for a long time. Such examples

were independently discovered by Clarke in [9] and by Blackadar (see Blackadar [7, Exercise

6.10.1]): One such example is obtained by taking a unital extension

0 // K // A // C(S3) // 0

with non-zero index map δ : K1(C(S3)) → K0(K). Then A is finite and M2(A) is infinite.

The proof uses that any isometry or co-isometry s in A (or in a matrix algebra over

A) is mapped to a unitary element u in (a matrix algebra over) C(S3); and every unitary

u in Mn(C(S3)) lifts to an isometry or a co-isometry s in Mn(A). Moreover, the isometry

or co-isometry s is non-unitary if and only if the unitary element u has non-zero index.

The unitary group of C(S3) is connected, so all unitaries here have zero index. Hence

A contains no non-unitary isometry, so A is finite. By construction of the extension, the

generator of K1(C(S3)), which is a unitary element in M2(C(S3)), has non-zero index, and

so it lifts to a non-unitary isometry or co-isometry in M2(A), whence M2(A) is infinite.

The C∗-algebra M2(A) is not properly infinite since the quotient, M2(A)/M2(K) ∼=

M2(C(S3)), is finite.
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An example of a unital, finite, (non-simple) C∗-algebra A such that M2(A) is properly

infinite was found in [38].

Remark 7.11 (Inductive limits) Suppose that

B1
// B2

// B3
// · · · // B

is an inductive limit with unital connecting maps, and that B is a simple C∗-algebra such

that B is finite and M2(B) is infinite. Then M2(B) is properly infinite, and it follows from

Proposition 2.3 that Bn is finite and M2(Bn) is properly infinite for all sufficiently large n.

It is therefore not possible to construct an example of a simple C∗-algebra, which is finite,

but not stably finite, by taking an inductive limit of C∗-algebras arising as in the example

described in Remark 7.10.

Remark 7.12 (Free products) Let B be a simple, unital C∗-algebra such that B is

finite and M2(B) is infinite. Then we have unital ∗-homomorphisms

ϕ1 : M2(C) →M2(B), ϕ2 : O∞ →M2(B),

such that ϕ1(e) is a finite projection in M2(B) whenever e is a one-dimensional projection

in M2(C).

The existence of B (already obtained in the non-simple case in [38]) shows that the

image of e in the universal unital free product C∗-algebra M2(C) ∗ O∞ is not properly

infinite.

It is tempting to turn this around and seek a simple C∗-algebra A with a finite and an

infinite projection by defining A to be a suitable free product of M2(C) and O∞. However,

the universal unital free product M2(C) ∗ O∞ is not simple. The reduced free product

C∗-algebra

(A, ρ) = (M2(C), ρ1) ∗ (O∞, ρ2),

with respect to faithful states ρ1 and ρ2, is simple (at least for many choices of the states

ρ1 and ρ2, see for example [2]) and properly infinite, but no non-zero projection e in M2(C)

is finite in A. The Cuntz algebra O∞ contains a sequence of non-zero mutually orthogonal

projections, and it therefore contains a projection f with ρ2(f) < ρ1(e). Now, e and f are

free with respect to the state ρ and ρ(f) < ρ(e). This implies that f - e (see [1]), and

therefore e must be infinite.

It is shown in [18] that reduced free product C∗-algebras often have weakly unperforated

K0-groups, which is another reason why this class of C∗-algebras is unlikely to provide an
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example of a simple C∗-algebra with finite and infinite projections; cf. Remark 7.8.

We conclude this article by remarking that ring theorists for a long time have known about

finite simple rings that are not stably finite:

Remark 7.13 (An example from ring theory) A unital ring R is called weakly finite

if xy = 1 implies yx = 1 for all x, y in R, and R is called weakly n-finite if Mn(R) is weakly

finite. (A finite ring is a ring with finitely many elements!) A (unital) non-weakly finite

simple ring R is properly infinite in the sense that there are idempotents e, f in R such

that 1 ∼ e ∼ f and ef = fe = 0. (Equivalence of idempotents is given by e ∼ f if and

only if e = xy and f = yx for some x, y in R.)

An example of a unital, simple ring which is weakly finite but not weakly 2-finite was

constructed by P. M. Cohn as follows:

Take natural numbers 2 ≤ m < n and consider the universal ring Vm,n generated by

2mn elements {xij} and {yji}, i = 1, . . . , m and j = 1, . . . , n, satisfying the relations

XY = Im and Y X = In, where X = (xij) ∈ Mm,n(R), Y = (yij) ∈ Mn,m(R), and Im

and In are the units of the matrix rings Mm(R) and Mn(R). The rings Mm(Vm,n) and

Mn(Vm,n) are isomorphic and Mn(Vm,n) is not weakly finite. Therefore Mm(Vm,n) is not

weakly finite. In other words, Vm,n is not weakly m-finite.

It is shown by Cohn in [11, Theorem 2.11.1] (see also the remarks at the end of Sec-

tion 2.11 of that book) that Vm,n is a so-called (m − 1)-fir, and hence a 1-fir; and a ring

is a 1-fir if and only if it is an integral domain (i.e., if it has no non-zero zero-divisors).

Cohn proved in [10] that every integral domain embeds into a simple integral domain. In

particular, Vm,n is a subring of a simple integral domain Rm,n whenever 2 ≤ m < n. Now,

Rm,n is weakly finite (an integral domain has no idempotents other than 0 and 1 and must

hence be weakly finite), and Rm,n is not weakly m-finite (because it contains Vm,n).

This example cannot in any obvious way be carried over to C∗-algebras, first of all

because no C∗-algebra other than C is an integral domain.
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