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ABSTRACT. We give a self-contained and elementary proof of Huaxin Lin’s theorem that
pairs of almost commuting self-adjoint matrices are near commuting pairs of self-adjoint
matrices (in a uniform way). Asin Lin’s proof, the result is obtained by showing that a cer-
tain corona C*-algebra has property (FN), i. e. any normal element can be approximated
by a normal element with finite spectrum.

We prove a generalization of Lin’s theorem, that almost commuting self-adjoint ele-
ments in any C*-algebra with property (IR) (a property weaker than stable rank one) are
close to commuting self-adjoint elements (again in a uniform way).

Using similar methods, we give a necessary and sufficient condition for a C*-algebra to
have property (FN), and from this it follows in particular that every C*-algebra of real
rank zero, stable rank one and with trivial K;-group has property (FN).

1. INTRODUCTION

The old problem whether pairs of almost commuting self-adjoint matrices are uniformly
close to commuting pairs of self-adjoint matrices was recently solved affirmatively by
Huaxin Lin. We refer the reader to [4] for an account of the history of this problem.

The precise statement is given by

1.1. Theorem (Huaxin Lin [4]). For every € > 0 there is a § > 0 such that for any n
and any pair a,b € M, (C) of self-adjoint matrices such that ||a||, ||b]| < 1 and

|lab — ba|| < 6,
there exists a commuting pair o', b' € M, (C) of self-adjoint matrices with

la—d'||+||b —b'|| <e.

It is a crucial part of the theorem that § can be chosen independent of n.

Observing that z*z — z2™ = 2i(ab — ba) when z = a + ib and a and b are self-adjoint
elements, we see that asking for commuting self-adjoint approximants to a given almost
commuting pair of self-adjoints is equivalent to asking for normal approximants to a given
almost normal matrix. Hence Theorem 1.1 can be phrased “almost normal implies close
to normal”.



2. PROOF OF THEOREM 1.1

We shall in this section present an elementary and self-contained proof of Theorem 1.1.
The proof is given in the context of C*-algebras but it does not use any deep or technical
theory. We only need to use the continuous function calculus in C*-algebra.

Following the line in Lin’s original proof, consider a sequence (n;) of natural numbers,
and define the C*-algebras

M = {(a;)|a; € My;(C), sup||a;|| < oo},
A = {(aj) | aj € Mp;(C), a; — 0},

of bounded sequences, respectively null sequences. Clearly A is an ideal of M, and so we
can consider the quotient C*-algebra M /A and the quotient map 7: M — M/A. Actually
M is the multiplier algebra of A (a fact we shall not use), and M is a finite von Neumann
algebra.

2.1. Lemma. For each normal element x € M/A, for each finite or countably infinite
subset F' of C and for each € > 0 there is a normal element y € M/A with ||z —y|| < ¢
and sp(y) N F = @.

Proof. Recall that every matrix z € M,,(C) has a unitary polar decomposition x = u|z|,
where |z| = (z*2)'/?, and where u is a unitary in M,,(C). Hence each element in M has
such a unitary polar decomposition. If x € M/A, then x = 7(y) for some y € M and
y = v|y| for some unitary v € M, whence z = 7(v)7(|y|) = 7(v)|z|, and 7(v) is a unitary
element of M/A. Therefore each element of M/A has a unitary polar decomposition.

Let z be a normal element in M /A and write z = u|z|. From the identity ¥z = z2™ we
see that u and |z| commute. Hence for every € > 0, the element y = u(|z| + 1) is normal
(and clearly invertible) and ||z — y|| < e. In other words, the set of invertible normal
elements is dense in the set of normal elements. It is also relatively open, since the set of
invertible elements in M /A is an open subset of M/A.

Upon applying the homeomorphism z +— 2 — Al on set of normal elements of M/A, we
find that for any A € C, the set of normal elements x € M/A with X\ ¢ sp(z) is dense and
relatively open in the set of normal elements.

Now, by Baire’s category theorem, the set of normal elements y with sp(y) N F = & is

dense in the set of normal elements, and this completes the proof. O
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For each € > 0 consider the e-grid I'. in C and the corresponding lattice >, of “center-
points” in I',, defined by

I = {z+iyeClzxecZ or yecl},
Y. = {z+iyeClzce(Z+3) and yee(Z+3)}

2.2. Lemma. For each normal element x in M /A and for each ¢ > 0 there is a normal
element y in M /A with sp(y) C . and ||z — y|| < e.

Proof. By Lemma 2.1 there is a normal element z; in M /A with
lz — 21| < 1= )e,  sp(z) N, = 2.

There is a continuous retraction f: C\X. — I, with |f(z) — 2| < ?6 for all z € C\X%,,
and so we can take y to be f(z1). O

2.3. Lemma. Let z be a normal element of M/A. Suppose V is a relatively open subset
of sp(x), and that V is homeomorphic to the open unit interval. Then for each Ay € V
and each ¢ > 0, there exists a normal element y in M /A such that sp(y) C sp(z) \ { Ao}
and ||z — y|| <e.

Proof. Set X =sp(x). Let U be a relatively open subset of V' satisfying
NeEUCUCY, diam(U) < e.

Choose a homeomorphism f; from V onto T \ {—1}, where T is the unit circle in the
complex plane. Extend fy to a continuous function f: X — T by setting f(z) = —1 for
all z € X\ V. Set u = f(x), and observe that u is unitary. Let a be any element in M
with 7(a) = u, and let @ = v|a| be a polar decomposition for a where v is a unitary in M.
Then, since 7(|a|) = |u| = 1, we have 7(v) = u.

Consider the open subset W = f,(U) of T, and let 1y be the characteristic function
corresponding to this set. By the Borel function calculus in von Neumann algebras, 1y (v)
defines a projection in M. (One could obtain the projection 1y (v) by less technical means
by expressing v as a sequence (v;) of unitary matrices.) Let e € M/A be the projection
(1w (v)).

Suppose ¢: X — C is a continuous function which is zero on X \ V. Then

oty { #oR'E TV

defines a continuous function T — C satisfying ¢ = @ o f, and hence ¢(z) = ¢(u). Since
e commutes with u (because 1y (v) commutes with v) we see that e commutes with ¢(x).
If ¢ in addition is constant equal to 1 on U, then ¢ is constant equal to 1 on W, which
implies that ¢(x)e = ep(z) = e. If ¢ vanishes on X \ U, then ¢ vanishes on T\ W, and so
o(x)e = ep(x) = ¢(x) in this case.
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Let h: X — [0,1] be a continuous function with hl; = 1 and h|x\y = 0. By the
argument above, h(x)e = eh(x) = e, and since the function z — zh(z) vanishes on X \ V,
we get

ze = zh(z)e = exh(x) = eh(x)x = ex.
We show next that

Spe(M/A)e(xe) - Ua SP(1—e)(M/A)(1—e) (z(1—e€)) CX\U.

It suffices to show that ¢(xe) = 0 and ¥ (z(1—e)) = 0 for every pair of continuous functions
©,1: X — C, where ¢ vanishes on U and 1 vanishes on X \ U (and where the continuous
functions operate in the respective corner algebras). We may assume that ¢ is equal to 1
on the set X \ V. From the argument in the previous paragraph we get

p(re) = p(r)e=e— (1 —p())e=0, ¢(z(l-e)) =)l -e) =0,

as desired.
Choose A\; € U \ {\o} and set

y=XMe+(1—e)z.
Then y is normal,

sp(y) € {M} U (X\U) € X\ {Ad},
and ||z — y|| = ||lze — Aie]| < diam(U) < € as desired. O

2.4. Lemma. Let ¢ > 0 and let x be a normal element of M/A whose spectrum is
contained in I's for some § > 0. Then there is a normal element y in M /A with finite
spectrum and with ||z — y|| < e.

Proof. Upon applying Lemma 2.3 a finite number of times, one obtains a normal element
z; of M/A with ||z — z1]| < £/2 and with the property that each connected component
of sp(x;) has diameter less than £/2. Now, each A € sp(z;) is contained in some clopen
subset of sp(z1) of diameter less than ¢/2. Hence sp(z;) can be partitioned into a finite
family V3, Vs, ..., V,, of clopen (non-empty) subsets of sp(z;) each with diameter less than
g/2. Choose any A; € V}, and observe that there is a continuous retraction f: sp(z;) —
{1, A2, ..., A} satisfying |f(z) — z| < ¢/2 for all z € sp(xy). Then y = f(z1) is a normal
element with spectrum {A;, A, ..., A} and with distance less than € to z. O

The consequence of Lemmas 2.3 and 2.4, that any normal element in M/A with one-
dimensional spectrum can be approximated by normal elements with finite spectra, also
follows from a more general result of Huaxin Lin (see [2, Theorem 5.4]).
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Proof of Theorem 1.1. Suppose Theorem 1.1 were false. Then by the remark below The-
orem 1.1, there would exist a sequence (n;) of natural numbers and a sequence (z;) of
matrices x; € My, (C) with ||z;|| < 1 such that

* *
||acj Tj — T;%; || — 0,

and yet for some € > 0, every x; would have distance at least € to the set of normal
matrices in M, (C). Let M and A be the C*-algebras of bounded sequences, respectively,
null sequences corresponding to the sequence (n;) as defined at the beginning of this section.
Set x = (z;) € M and set y = m(x) € M/A. Then y is normal. By Lemma 2.4 there exists
a normal element ¢’ in M/A with finite spectrum and with ||y — ¢/|| < /4.

There is a normal element 2’ = (z) € M with m(2') = y'. To see this choose complex
polynomials p and ¢ in one variable so that p(sp(y’)) € R and (¢ o p)(A) = A for all
A € sp(y'). Then p(y') is self-adjoint and y' = ¢(p(y')). Let z be any element in M with
7(z) = p(y'). Then (z + z*)/2 is self-adjoint and 7((z + 2*)/2) = p(y'). Hence we may
take 2’ = ¢((z + 2*)/2). By the definition of the norm on the quotient algebra there exists
a = (aj) € A such that

lz—2' —al| =|ly—y| +e/4 <e/2.

(One can actually find a such that ||z — 2’ —a|| = ||y — ¢||.) Choose j such that |a;|| <
£/2. Then Hmj - x;” < ¢, in contradiction with the choice of z;. O

3. NORMAL ELEMENTS WITH FINITE SPECTRA

The method from Section 2 to approximate normal elements in the C*-algebra M/A by
normal elements with one-dimensional spectra can be applied to give a characterization of
the C*-algebras with property (FN) (see Theorem 3.5 below). Recall that a C*-algebra A
has property (FN) if every normal element in A can be approximated by normal elements
in A with finite spectrum. This property has been studied by Lin (among others) and
has been established for certain simple AF-algebras (see [3]) and all purely infinite simple
C*-algebras with trivial K;-group (see [2]). Theorem 3.5 generalizes these results.

Recall (see [7]) that a unital C*-algebra A is said to have stable rank one if the group,
GL(A), of invertible elements in A is a dense subset of A. A non-unital C*-algebra A has
stable rank one if the C*-algebra A obtained by adjoining a unit to A has stable rank one.
A C*-algebra has real rank zero if every self-adjoint element in A can be approximated
by self-adjoint elements with finite spectra (see [1]). In addition to these properties of a

C*-algebra we shall also consider the following:
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3.1. Definition. For each unital C*-algebra A denote by R(A) the set of elements z € A
with the property that for no ideal I of A is x + I one-sided and not two-sided invertible
in A/I.

A unital C*-algebra A will be said to have property (IN) if every normal element in
A belongs to the norm closure of GL(A), and A will be said to have property (IR) if all
elements in R(A) belong to the norm closure of GL(A).

A non-unital C*-algebra A has property (IN), respectively property (IR), if the C*-
algebra obtained by adjoining a unit to A has this property.

It follows immediately from the definition, that every C*-algebra of stable rank one also
has property (IR). The set of normal element of a unital C*-algebra A is contained in
R(A). Hence every C*-algebra with property (IR) also has property (IN).

Every von Neumann algebra has property (IN) (by the Borel function calculus) and
every simple von Neumann algebra has property (IR) (see [9]).

It is shown in [9, Theorem 4.4] that all simple, purely infinite, unital C*-algebras have
property (IR) (and hence also property (IN)). There are no known examples of simple C*-
algebras which are neither purely infinite nor have stable rank one. It is therefore possible
that all simple C*-algebras have properties (IR) and (IN).

The set R(A) is always closed, and it contains the closure of GL(A) (see [9, Proposition
2.1]). Soif A is a unital C*-algebras for which R(A) # A, then A cannot have stable rank
one. We shall return with a more detailed discussion of the property (IR) in Section 4.

3.2. Lemma. Let A be a unital C*-algebra with property (IN). Then for each normal
element x in A and each ¢ > 0 there exists an invertible normal element y in A with
lz =yl <e.

If A is a general C*-algebra with property (IN) (unital or not), then for each normal
element x in A, for each non-zero A € C and for each € > 0 there exists a normal element
y in A with ||z — y[| < e and with A ¢ sp(y).

Proof. Define the continuous function f. : Rt — R to be f.(t) = max{t —,0}. Let
r = v|z| be the polar decomposition of z, where |z| = (z*z)'/?2 € A and where v is a
partial isometry in the bidual A** of A. The partial isometry v will commute with |z|
because z is normal. Since z belongs to the closure of GL(A) it follows from [8, Theorem
2.2], that there is a unitary element u in A such that vf.(|z|) = uf.(|z|). Because v
commutes with |z|, we conclude that v and f.(|z|) commute, and this in turn implies that
uf:(|z]) is normal. Hence u commutes with f.(|z|). It follows that y = u(f.(|z|) +¢) is a
normal (and clearly invertible) element in A, satisfying

le =yl < [lv(|] - fs(lwlg) + (ufe(z]) — )|l < 2.



If A is unital, then we see that the normal element x is close to a normal element, which
does not have a given A in it spectrum, by applying the argument given above to the
normal element x — Al.

Suppose now that A is non-unital, and let A be the C*-algebra obtained by adjoining
a unit to A. We may assume that ¢ < |A|. By assumption, 2 — Al belongs to the closure
of GL(A), so if # — A1 = v|z — A1 is the polar decomposition of z — A1, with v a partial
isometry in A** (as above), then vf.(|z — A1|) = uf.(|z — A1|) for some unitary u in A. Set
y = u(fe(|x—A1|)+el)+Al. Then, arguing as above, we see that y is normal, ||z — y|| < 2¢
and that y — Al is invertible. We must also show that y € A.

With s: A — C the scalar map, we have

s(felle = A1) = (M —e,  s(vfe(lz = AL])) = =AN (A — &),
which implies that s(u) = —A/|A|. Hence s(y) = (=A/|AD)|A|+ A =0,s0 that y € A. O
The proof of Lemma 2.1 (together with Lemma 3.2) yields the following:

3.3. Lemma. Let A be a C*-algebra with property (IN). For each normal element x € A,
for each finite or countably infinite subset F' of C, such that 0 ¢ F' if A is non-unital, and
for each € > 0 there is a normal element y € A with ||z — y|| < e and sp(y) N F = .

Let T'. and X, be as defined in Section 2. (Note that 0 € ', and that 0 ¢ X..) We shall
in the following refer to a topological space as being one-dimensional if it has covering
dimension < 1. Every closed subset of I', is one-dimensional in this sense.

Copying the proof of Lemma 2.2 we obtain:

3.4. Proposition. Let A be a C*-algebra with property (IN). Then for each normal
element x € A and for each ¢ > 0 there is a normal element y € A with sp(y) C I'. and
|l — y|| < e. Hence each normal element in A can be approximated by normal elements
in A with one-dimensional spectrum.

3.5. Theorem. The following two conditions are equivalent for every C*-algebra A:
(i) A has property (FN).
(ii) A has property (IN), the real rank of A is zero, and the unitary group of A (or of A
if A is non-unital) is connected.

Recall from [2, Lemma 2.2] that if A is a C*-algebra of real rank zero, then the unitary
group of A (or of A) is connected if K;(A) = 0.

Proof. The implication (i) == (ii) is trivial. Huaxin Lin proved in [2, Theorem 5.4]
that every normal element in A with one-dimensional spectrum can be approximated by
normal elements with finite spectra provided the unitary group in A (or in /Nl) is connected.
Combining this with Proposition 3.4 yields the theorem. O



4. A GENERALIZATION OF LIN’S THEOREM

Having read a preliminary version of this paper, George Elliott pointed out to us that Lin’s
theorem, as well as a generalization thereof, where one can replace the C*-algebra M, (C)
in Theorem 1.1 with any C*-algebra of stable rank one, can be derived from Proposition
3.4 using Terry Loring’s result that C(I") is semiprojective for every finite one-dimensional
CW-complex I' (see [5, Theorem 5.1]). We prove below a generalization of Lin’s theorem
that includes all C*-algebras with property (IR) (see Theorem 4.4 below).

From Loring’s result we get:

4.1. Lemma. For any sequence (A,) of C*-algebras and any normal element x in

[14./ D A

with sp(z) contained in some one-dimensional finite CW-complex T, there exists a normal
element y in || A, such that x = w(y).

Proof. By semiprojectivity the x-homomorphism C(I') — [[ A,/ A, given by f —
f(z) factors through [] A,/ @~_, A, for some k. Hence z lifts to a normal element of
1A/ @zzl A,,, and every normal element of [ 4,,/ 691:1:1 A, lifts to a normal element of

T] A, O

We shall in the proposition and in the remark below illustrate some connections between
almost commuting self-adjoint elements in a C*-algebra A and the property (IR) and the
set R(A) defined in 3.1.

4.2. Proposition. For every C*-algebra A, the following holds:
(i) For every x € A,

dist(z,R(A)) < H\x| — |x*\” :

(ii) Suppose I is a closed two-sided ideal in A, and let m: A — A/I be the quotient
mapping. Let x be a normal element in A/I. Then there is a sequence (a,) of
elements in A with 7(a,) = z, ||a,| = ||z||, and Ha:an - ana:H — 0.

(iii) If A has property (IR) then every quotient A/I of A has property (IN).

Proof. (i). Set & = |[|z| — |z*[||, let = v|z| be the polar decomposition of z (with v a
partial isometry in A**), and set zy = vfs(|z|), where f5: Rt — R" is as in Lemma 3.2.
Then ||z — zo|| < 0. We show that zy € R(A).

Suppose [ is a closed two-sided ideal in A and suppose that (y =) () is non-invertible.
Then either 0 € sp(|y|) or 0 € sp(|y*|). Assume with no loss of generality the former.
Since |||y — |y*||| < [||z| — |z*||| = 6, it follows that sp(|y*|) N[0, 6] # 0. Hence 0 is in the
spectrum of both |m(zo)| = f5(|y|) and of |7 (zg)| = fs(Jy*|). Accordingly, m(z,) is neither

left nor right invertible.
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(ii). Let € > 0 be given, and let ¢ € A be any lift of x with ||b|| = ||z||]. Then
a*a — aa® € I. Using Arveson’s quasi-central approximate unit for I (see [6, 3.12.14]), we
can find an element e € [ satisfying

0<e<1, llea—aell<e/3, |(1—e)(a*a—aa*)(l—e¢)|<e/3.

It follows that the element b = (1 — e)a € A is a lift of & with ||b|| = ||z|| and that
5% — bb* | < e.

(iii). Upon adjoining a unit to A if necessary, we may assume that A is unital. Let x be
a normal element of A/I and let ¢ > 0. By (ii) there is an element a € A with 7(a) = z
and with H la| — |a*|” < e. By (i), dist(a, R(A)) < &, which combined with the assumption
that A has property (IR) implies that ||a — b|| < € for some invertible element b € A. Now,
7(b) is clearly invertible in A/I and ||z — 7 ()| < e. O

Remark. Suppose A is a unital C*-algebra which has an ideal I so that the map K;(A) —
K;(A/I) induced by the quotient mapping is not surjective and, moreover, does not have
[u]; in its image for some unitary v € A/I. Then u does not lift to a unitary element of
A, and no invertible element in the connected component of GL(A/I) containing u can be
lifted to an invertible element of A. Combining this Proposition 4.2 (iii) (and its proof)
we see that A cannot have property (IR).

4.3. Lemma. Let A, be a sequence of C*-algebras with property (IR). Then the C*-
algebra [[ A, has property (IR), and hence the quotient [[ A,/ @ A, has property (IN).

Proof. By Proposition 4.2 it suffices to show that the C*-algebra A = [] A, has property
(IR). Consider first the case where all A,, are unital. Let z = (x,) belong to R(A). Then
x, is the image of x under the canonical surjection A — A,, whence z,, € R(A,) by the
definition of R(-). By the assumption on A,, each z,, belongs to the closure of GL(A4,).

As in the proof of Lemma 3.2, if z, = v,|z,| is the polar decomposition for x, (with
vy, € A%F), then for each ¢ > 0 there is a unitary u,, € A, such that v, f.(|z,]) = v, fe(|2n]),
and y, = un(fe(Jzn|) + €1) is an invertible element of A, with ||z, — y.|| < 2e. Set
u= (u,) € Aand y = (y,) = u(fe(|z|]) + €1). Then y is an invertible element of A and
|z — y|| < 2e, which proves that x belongs to the closure of GL(A).

Suppose I is a closed two-sided ideal in some C*-algebra A. Then I is a unital sub-C*-
algebra of A. By the proof of [7, Theorem 4.4] every element of I, that belongs to the
closure of GL(A) actually belongs to the closure of GL(I). Since R(I) C R(A), this shows
that I has property (IR) if A has this property.

Consider now the general case where the C*-algebras A,, are not assumed to be unital.
Then A, has property (IR), and hence [] A, has property (IR) by the already established
part of the lemma. Now, [[ A, must have property (IR) being a closed two-sided ideal in

I1 A.. O



4.4. Theorem. For every € > 0 there is a 6 > 0 such that for any C*-algebra A with
property (IR) and any pair a,b € A of self-adjoint elements such that ||a||, ||b]| < 1 and

|lab — ba|| <6,
there exists a commuting pair a',b' € A of self-adjoint elements with
lla—d||+]b—10'| <e.

Proof. Exactly as in the proof (in Section 2) of Theorem 1.1, it suffices to show that for
every sequence (A,) of C*-algebras with property (IR), for each normal element z in

I14./ €D An.

and for each € > 0, there is a normal element y € [[ 4, such that ||7(y) — z|| < e. By
Proposition 3.4 (which applies because of Lemma 4.3), z is within ¢ of a normal element
x1 with one-dimensional spectrum, and by Lemma 4.1, 2; = 7(y) for some normal element

y €[] An. O

4.5. Corollary. Suppose that A is a C*-algebra with property (IR), let I be a closed
two-sided ideal in A, and let m: A — A/I be the quotient mapping. Then for every
normal element x € A/I and for every € > 0 there exists a normal element a € A with
[m(a) —z| <e.

Proof. We may without loss of generality assume that ||z|| < 1. Choose the § > 0 corre-
sponding to our given £ > 0 in Theorem 4.4. By Proposition 4.2 (ii) z lifts to an element
b € A with ||b*b— bb*|| < 6 and ||b]| < 1. By Theorem 4.4 there is a normal element a € A
with ||a — b]| < e. O

Remark. Theorem 4.4 in the special case where we require real rank zero and trivial K;-
group in addition to property (IR), also follows using 3.5: As in the proof of Theorem 4.4 it
suffices to show that for any sequence (A,) of C*-algebras with the three given properties,
the C*-algebra [[ A,/ € A, has property (FN). By Lemma 4.3 and Theorem 3.5 all that
remains to be shown is that [[ A,/ €D A, has real rank zero. Let us show that [] A, has
real rank zero (real rank zero passes to quotients):

Let (z,) be a self-adjoint element of [] 4,, let € > 0 and choose, as we may, a sequence
(yn) of invertible self-adjoints such that sup ||z, — y,|| < e. Let f be any continuous map
R\ {0} = R\ (—¢,¢) such that |f(t) — t| < e for all t. Put 2, = f(y,) and note that (z,)
is invertible in [] 4, and that sup ||z, — 2,|| < 2e.

Remark. The proof of Theorem 4.4 also yields the following result: For every C*-algebra
A, if the C*-algebra

[[4/@4 (=e(4)/a)
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has property (IN), then for every ¢ > 0 there is a § > 0 such that for any pair a,b € A of
self-adjoint elements with ||a||, ||b]] < 1 and ||ab — ba|| < §, there exists a commuting pair
a',b' € A of self-adjoint elements with ||a — o'|| + [|b — V|| < e.

The converse does not hold. For instance ¢>°(A)/co(A) does not have property (IN) if
A =C(X) and dim(X) > 2.

4.6. Example. The C*-algebra £*°(B(£?))/co(B(£?)) has real rank zero and trivial K-
group (being a quotient of the von Neumann algebra ¢*°(B(¢?)). However, it does not have
property (IN). If it had, then by the remark above, B(¢?) would have the property “almost
normal implies close to normal”, which is well known not to be the case:

Let (&) be an orthonormal basis for the Hibert space ¢? and define for each n € N the
tapered unilateral shift s, to be

$n&k = min{k/n, 1}&41.

Then Hs,’fsn - sns:H — 0, yet every s, has distance > 1 to the set of normal operators
(being an essential unitary with non-zero Fredholm index). This was noted by Man-Duen
Choi among others. (Observe also, that a sequence with properties similar to that of (s,)
could have been constructed using Proposition 4.2 (ii)).
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