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Abstract

We give a short proof of the theorem of Brown, Douglas and Fillmore that an es-
sentially normal operator on a Hilbert space is a compact perturbation of a normal
operator if and only if the Fredholm index of its translates are zero whenever defined.
The proof is a modification of the short proof of Lin’s theorem on almost commuting
self-adjoint elements we gave in [7].

Using similar methods we prove some new results, that generalize results of Lin,
about when a normal element in a C*-algebra can be approximated by normal ele-

ments with finite spectra.

1 Introduction

Let H be an infinite-dimensional separable Hilbert space, let K denote the compact oper-

ators on H, and consider the short-exact sequence
0— K —> B(H) "~ Q(H) —>0,

where Q(H) is the Calkin algebra B(H)/K. An operator T € B(H) is essentially normal
if T*T — TT* € K, or equivalently, if 7(7’) is normal.

An operator T € B(H) is Fredholm if (T is invertible in Q(H), and its Fredholm
index is denoted by index(7T"). The essential spectrum spess(7’) is the spectrum of 7 (7).
The index function of T is the map

C\ Spess(T) — Z; A= index(T — A-1).



The index function is invariant under compact perturbations. Hence we may define the
index function of an invertible S € Q(H) to be that of any lift T € B(H) of S.

The index function is continuous and hence constant on each connected component of
its domain. It vanishes on the unbounded connected component of its domain. We say
that an operator has trivial index function if its index function is zero everywhere on its

domain.

In Section 2 we give a new proof of the following:

Theorem 1.1 (Brown-Douglas-Fillmore, [2, Corollary 11.2]) An essentially normal
operator on a Hilbert space is a compact perturbation of a normal operator if and only if it

has trivial indez function.

The theorem is a special case of the result by Brown-Douglas-Fillmore (|2, Theorem 11.1])
that two essentially normal operators are unitarily equivalent modulo a compact pertur-
bation if and only if they have the same essential spectrum and index function (in fact the
general theorem follows from Theorem 1.1, see [1]).

The contributions of the Brown-Douglas-Fillmore papers ([2] and [3]) go far beyond the
particular theorem addressed in this article, in their development of Ext- and K-homology

theory.

Our proof of Theorem 1.1 has two steps. The first step is to show that an essentially
normal operator with trivial index function is in the closure of the set of compact pertur-
bations of normal operators on H. We prove this by showing that a normal element in
the Calkin algebra can be approximated by normal elements with finite spectra if it has
trivial index function (see also Lin [9]). The methods used here follow closely the methods
we used in [7]. The main difference is that we here must keep track of the index (or K;-
class) of the invertible operators used in the various approximation steps. Step two is then
to show that the set of compact perturbations of normal operators is norm closed. This
step involves quasi-diagonal essentially normal operators, and its proof is a straightforward

consequence of Lin’s Theorem:

Theorem 1.2 (H. Lin, [9]) For every ¢ > 0 there is a 6 > 0 such that for every finite

dimensional C*-algebra A and every element T € A such that
IT|<1 and ||T*T —TT*| <6

there is a normal element N € A such that |T — N|| < e.



See also the short proof of Lin’s theorem in [7].

In Section 3 we consider the general problem of approximating normal elements of a
C*-algebra by normal elements with finite spectra.

We show that a normal element a of a unital C*-algebra A of real rank zero can be
approximated by normal elements with finite spectra if and only if all its translates, a — -1,
A € C, belong to the closure of GLg(A), the connected component of the identity in GL(A)
(Theorem 3.2). A key step towards this end is that a normal element @ in any unital
C*-algebra A can be approximated by normal elements b € A, with 1-dimensional spectra
and with b — X\-1 € GLy(A) for all A not in the spectrum of b, if and only if all translates
a — A-1 belong to the closure of GLy(A). To complete the argument we use a theorem
of Lin ([10, Theorem 5.4]) that every normal element with 1-dimensional spectrum in a
C*-algebra of real rank zero is the norm-limit of normal elements with finite spectra.

In Corollary 3.12 to Theorem 3.2 it is shown that if A is a unital C*-algebra of real rank
zero and stable rank one, then every normal element a € A, satisfying 7(a)—X € GLy(A/I)
for all proper ideals I of A and for all A € C \ sp(n(a)), can be approximated by normal
elements with finite spectra. This result should be compared with the theorem of Lin in
[11] which says that in a simple C*-algebra A of real rank zero and with property (IR) — a
property, considered in [7], which is weaker than stable rank one — every normal element
a, with a — X\-1 € GLy(A) for every A € C \ sp(a), is the norm-limit of normal operators

with finite spectra.

The first operator theoretic proof of Theorem 1.1 is due to Berg and Davidson [1]. In
fact, their analysis gives a stronger quantitative version which, subject to a natural resol-
vent condition on the operator 7', gives a bound on the norm of the compact perturbation
in terms of the norm of the self-commutator T*T — T'T™.

Also let us mention that Lin has generalized Theorem 1.1 to essentially normal elements
of M(A)/A for certain AF-algebras A (see [12]).

We thank Larry Brown for several suggestions that helped improve our results and our

exposition.

2 Proof of Theorem 1.1

The main part of the proof of Theorem 1.1 consists of showing the theorem below, which

— as indicated — has already has been proved by Huaxin Lin (noting that Q(H) is purely



infinite and simple). The proof presented here is, we believe, shorter and more direct than
Lin’s proof.

Theorem 2.1 (cf. H. Lin, [10, Theorem 4.4]) Let T be a normal element in Q(H).
Then T is the norm limit of a sequence of normal elements in Q(H) with finite spectra if

and only if T has trivial index function.

The lemmas below serve to prove the ”if”-part of the theorem.

Define the continuous function f.: RT — R* by f.(t) = max{t — ¢,0}. Let B(\,r)
denote the closed disc in the complex plane with center A and radius r. We let D denote
the unit disc B(0, 1), and T will be the unit circle.

Lemma 2.2 Let T be a normal element in Q(H), let A\ € sp(T) and let ¢ > 0. There
exists a normal element S € Q(H) with |T — S|| < 2¢, A ¢ sp(S), index(S — A-1) =0, and

sp(S) \ B(A,e) =sp(T) \ B(A, ).

Proof: We may without loss of generality assume that A = 0. Let R € B(H) be any lift
of T, and let R = V|R| be the polar decomposition of R. The operator V f.(|R|) and
its adjoint, V*f.(|R*|), have infinite-dimensional kernels (because n(|R|) = |T| = = (|R*|)
is non-invertible). Let W f.(|R|) be the polar decomposition of V f.(|R|). The argument
above shows that 1 —WW* and 1 —W*W are both infinite-dimensional projections. Hence
W extends to a unitary U € B(H) with V f.(|R|) = Uf.(|R|).

Notice that 7(V fo(|R|)) = #(V) f(|T]) = #(U) f(|T|) is normal (because 7(V) com-
mutes with |7'|). This implies that #(U) commutes with f.(|T]), and therefore S =
7(U)(f-(|T]) + €-1) is normal. Clearly, S is invertible, and S lifts to the invertible op-
erator U(f-(|R|) +¢-1), and so index(S) = 0. The distance between S and T is estimated
by

1T = S| < llxWITT =7 (V) L(TDI + I @) f(IT1) = m (@) (f(IT1]) + &- D] < 2.

Let E € Q(H)* be the spectral projection for |T'| corresponding to the interval [0, £].
Since |S| = f.(|T|) + -1, it follows that E is the spectral projection of |S| corresponding
to {e} in Q(H)**. Since T and S are normal, F commutes with 7 and S (being a Borel
function of 7" and of S). We therefore have

sp(I) U{0} =sp(T'E) Usp(T'(1 - E)),  sp(S)U {0} =sp(SE)Usp(S(1 - E)).



To complete the argument, notice that |T|(1 — E) = (f.(|T]) +&-1)(1 — E) = |S|(1 — E),
and hence T(1 — E) = S(1 — E). Also, |TE| = |||T|E|| < € and ||SE| = |||S|E|| < &,
which entails that sp(T'F) and sp(SE) are both contained in B(0,¢). O

Lemma 2.3 Let F be a finite subset of C. The set of elements S € Q(H), satisfying
sp(S)N F =0 and index(S — A-1) =0 for all A € F, is open.

Proof: The set in question is a finite intersection of open sets of the form GLo(Q(H))+M. O

Lemma 2.4 Let T € Q(H) be normal with trivial index function, let F' be a finite subset
of C, and let € > 0. Then there exists a normal element S € Q(H) such that ||T — S|| < e,
sp(S)NF =0, and

index(S — A-1) =0,

forall A € F.

Proof: For some 0 < k < n we can write F' = {A1,Ag,..., Ay} so that F Nsp(T) =
{41, Akt2, - - -, An}. By assumption, index(T" — A;-1) = 0 for each j < k.

Using Lemmas 2.2 and 2.3 we find successively normal elements Ty, = T, Ty.1,Tk12,
..., T, in Q(H) satisfying

1T = Tjall < e/(n— k),

)\1,)\2, ceey )\] ¢ Sp(]}),

index(7; — A\;-1) =0, for i =1,2,..., 7, and

i1, Ajr2, - -5 A € sp(T).

Finally, S = T,, will be as desired. [J

For each € > 0 consider the e-grid I', in C defined by
Ile={z+iyeC|lzxe€ecZ or yccl}.

Lemma 2.5 Let T € Q(H) be normal with trivial index function, and let € > 0. Then
there exits a normal element S € Q(H) with trivial index function, sp(S) C e, and such
that ||S — T|| < e.



Proof: Choose N € N such that Ne > ||T|| + ¢/4. Put
Se={z+iyeCla,yce(Z+3)}, X ={a+ib:|a] < Ne, |b] < Ne}.

Applying Lemma 2.4 to the finite set ©.NX we get a normal operator S’ € Q(H) satisfying:
1S = T|| < e/4, sp(S") N (2. N X) =0, and index(S" — A-1) = 0 for all A € . N X. Note
that sp(S") C X \ X (=Y).

There is a continuous path ¢t — f;, t € [0, 1], of continuous functions f;: ¥ — Y so that

o fo(z) =zforalzeY,

o fi(Y)CL,,

e fi(z) =zforall z€'.NX and for all ¢,
o |fi(2) — 2| < (V2/2)e forall z € Y.

Put S = £,(S'). Then S is normal, sp(S) CT. N X, and |T — S|| < &/4 + (V/2/2)e < e.

If A € C\ sp(S), then A is in the same connected component of C \ sp(S) as some
N e ¥.NX, or Ais in the unbounded component of C \ sp(S). In the latter case,
index(S — A-1) = 0, and in the former case,

index(S — A-1) = index(S — N-1) = index(f;(S") — \'-1)
= index(fo(S") — N'-1) = index(S' — X'-1) = 0. O

The lemma below is a special case of the Alexander Duality theorem from topology. For a
compact subset X of C it says that 7*(X) & H'(X;Z) & Hy(C\ X;Z), and the latter is
the free Abelian group generated by the bounded connected components of C\ X.

Lemma 2.6 Let X be a compact subset of Iy for some ¢ > 0. FEvery continuous map
f: X — C\ {0} is homotopic to a map of the form

z (2= A)" (2= Ag)™ -+ (2 — )"
for some \; € C\ X and some n; € Z.

Proof: Choose n € N such that X C [—ne,ne]?, and put Y = I'. N [-ne, nel]®>. Then f
extends to a continuous function g: Y — C\ {0}. (Indeed, by considering only one line-

segment of Y at a time, this follows from the elementary fact that if X is a closed subset



of the interval [0, 1] and if fy: Xq — C\ {0} is continuous, then f, extends to a continuous
function go: [0,1] — C\ {0}.)
Let Cy, Cs, ..., Ck be the bounded connected components of C\ Y. Each C; is an open
square, k = 4n?, and
[~ne,nel> =Y UC,UCo U ---U Cy.

Let 4" be the closed curve C; \ C; oriented in the positive direction, and denote by n; the
winding number of g around ~°.
Choose a y; € C; for each i. Put

h(z) =(z—=X1)7"(z— Ag) ™ - (2 — Ap) ™ g(2), zeY.

The winding number of h around 4" is zero for each i. Therefore k|, extends to a con-
tinuous function C; — C\ {0} for each i. This shows that h extends to a continuous
function h: [—ne,ne]?> — C\ {0}. Since [—ne, ne]? is contractible, & is homotopic to the
constant function 1 inside C([—ne, ne]?, C\{0}). Hence h|x = h|x is homotopic to 1 inside
C(X,C\ {0}). The claim of the lemma follows immediately from this. [J

Lemma 2.7 is a natural generalization of [7, Lemma 2.3] and the proof requires only a
simple modification using Lemma 2.6. For the reader’s convenience we include the entire
proof.

Lemma 2.7 Let T be a normal element in Q(H) with trivial index function and with
sp(T) C . for some ¢ > 0. Suppose that I is a relatively open subset of sp(T) which is
homeomorphic to the open interval (0,1). Then for each Ay € I and for each 6 > 0 there
is a normal element S in Q(H) with trivial index function such that ||S — T|| < §, and

sp(S) € sp(T) \ Ao}

Proof: Choose one point in each bounded connected component of C\ sp(7’), and let F be
the finite set of all these points. If S € Q(H) satisfies sp(S) C sp(7T'), then S has trivial
index function if index(S — A-1) = 0 for all A € F. It follows from Lemma 2.3 that S
has these properties if || — S|| < ¢ for a sufficiently small §o > 0. We may assume that
0 < 4y, and the part of the statement regarding S having trivial index function is then
automatically taken care of.

Let J be a relatively open subset of I satisfying

NEJCJCI, diam(J) < e.



Let fo: I — T\ {—1} be a homeomorphism, and extend f; to f: sp(T") — T by setting
f(z)=1for all z€ sp(T)\ I. Let V be the unitary element f(7) of Q(H).

It follows from Lemma 2.6 that f is homotopic, inside C(sp(7"), C\{0}), to the function
g:sp(T) — C\ {0} given by

9(2) = (z = )™ (2 = p2)"™ -+ (2 — )™,
for appropriate p; € C\ sp(T) and n; € Z. Hence f(T) ~y, g(T) inside GL(Q(H)) and
k
index(f (7)) = index(g(T)) = Y _ n;-index(T — p1;-1) = 0.

i=1

This shows that V = f(T) lifts to a unitary U in B(H). We may now proceed exactly as
in [7, Lemma 2.3] (see also [2, Lemma 6.1]).

Let E € B(H) be the spectral projection for U corresponding to the (relatively open)
subset f(J) of sp(U), and put F' = 7(E). Then F is a projection in Q(H). We show below
that F' commutes with 7', and that

SpFQ(H)F(TF) cJ, SP(1—-F)Q(H)(1-F) (T(1—F)) Csp(T)\ J. (o)
Once this has been established, we can choose any A; € J \ {\o} and set
S=MF+(1-F)T.
Then S is normal (because 7" and F' commute),

sp(T') € {A}Usp(T)\ J S sp(T) \ { Ao},

and ||S — T = ||TF — M\ F|| < diam(J) < ¢ as desired.
Suppose ¢: sp(T’) — C is a continuous function which is zero on sp(7") \ I. Then

bl

o) = { (po(fl)7)(=), ifz€T\{-1}
0, ifz=-1

defines a continuous function T — C satisfying ¢ = ¢ o f, and hence ¢(T) = $(V). Since

E commutes with U, it follows that F' commutes with V' and hence with ¢(V') = (7).
If ¢ in addition is constant equal to 1 on J, then ¢ is constant equal to 1 on f(J), which

implies that o(T)F = Fp(T) = F. If ¢ instead vanishes on sp(7’) \ J, then ¢ vanishes on



T\ f(J), whence p(T)F = Fo(T) = ¢(T).

Let h: sp(T) — [0,1] be a continuous function with hA|y = 1 and hlg,ry\; = 0. By
the argument above, h(T)F = Fh(T) = F, and since the function z — zh(z) vanishes on
sp(T) \ I, we get

TF = Th(T)F = FTh(T) = Fh(T)T = FT.

To show (&) it suffices to show that o(TF) =0 and (T (1 — F)) = 0 for every pair of
continuous functions ¢, 1: sp(T) — C, where ¢ vanishes on J and 1 vanishes on sp(T') \ I
(and where the continuous functions operate in the respective corner algebras). We may
assume that ¢ is equal to 1 on the set sp(7’) \ I. From the argument in the previous
paragraph we get

p(TF)=¢(T)F =F—(1-9T)F =0, $(T(1-F))=4¢T)(1-F)=0,

as desired. [

Proof of Theorem 2.1: Assume that T}, is a sequence of normal elements of Q(H) so that
T, tends to T in norm, and T,, has finite spectrum for each n. Let A € C \ sp(7T’). Then
A € C\ sp(T,) for all sufficiently large n, and index(7,, — A-1) — index(7 — A-1). But
index(7,, — A\-1) = 0 because C \ sp(7},) is connected, so index(7 — A-1) = 0. This shows
that 7" has trivial index function.

Assume now that 7 is a normal element of QQ(H) with trivial index function, and let
e > 0. By Lemma 2.5 there is a normal element 7" € Q(H) with sp(7”) C T, ||T-T"|| < e,
and such that 7" has trivial index function.

We show next that there exists a normal element 7" € Q(H) such that

[T"=T" <e,  sp(I”) C T,

and such that sp(7") contains no entire line segment of I'., where an entire line segment

is a set of the form
{n+iy|me<y<(m+1l)e} or {x+im|ne<z<(n+1)e},

for some n,m € Z.
Let {I1,I,...,I,} be the set of entire line segments of I, that are contained in sp(7”),
and choose \; € I; for each j. Apply Lemma 2.7 successively to obtain normal elements



Ry=T',Ri,Ry,...,R, in Q(H) such that

[1Rje = Rl <e/n, sp(Rjn) S sp(By) \ {Aj41},

and each with trivial index function. The element 7" = R,, then has the desired property.

It now follows that sp(7") can be partitioned into finitely many clopen sets Cj, Cs,
..., Cp, each with diameter less than 2e. Choose p; € C; for each 4, and let f: sp(T") —
{p1, o, - - ., b} be the continuous function which maps C; to p;. Then |f(z) — 2| < 2¢
for all z € sp(T"). The element S = f(7") is normal with sp(S) = {u1, po, - ., m }, and
IS —T"|| < 2, so that ||S —T|| < 4e. O

Recall that an operator 7' is quasi-diagonal if there is an increasing sequence {F,}%°,
of finite rank projections converging strongly to 1 such that lim, , ||TE, — E,T|| = 0.
The set of quasi-diagonal operators is invariant under compact perturbations and is norm
closed. That the set is norm closed can be seen by using the equivalent “local” definition of
T being quasi-diagonal, that for every finite rank projection £ € B(H) and for every € > 0
there exists a finite rank projection F' € B(H) such that E < F and ||[TF — FT|| < e.
Every normal element N with finite spectrum is quasi-diagonal (write N = Zle AP
and put F, = Z§:1 Féj ), where {Frsj )}fle is an increasing sequence of finite rank projec-
tions converging strongly to P;). Since every normal operator in B(H) can be approximated
by normal operators with finite spectrum, every normal operator is in fact quasi-diagonal.
The statements in the proposition below were consequences of Theorem 1.1 in [2]. Here

it is used as a step in our proof.

Proposition 2.8 (cf. [2, Corollary 11.4 and Corollary 11.12]) The set of compact
perturbations of normal operators on a Hilbert space H is equal to the set of quasi-diagonal
essentially normal operators. In particular, the set of compact perturbations of normal

operators operators on H is norm-closed.

Proof: Each compact perturbation of a normal operator is clearly essentially normal, and
— by the remarks above — also quasi-diagonal.

It is well-known that every quasi-diagonal operator 7' € B(H) is block-diagonal plus
compact, i.e. there exist S € B(H) and an increasing sequence {F,}>°, of finite rank
projections converging strongly to 1 such that 77— S € K and SE, = E,S for all n.
(Indeed, choose {E,}22, such that > >° ||E,T — TE,| < oo. Put E; = 0, and put

10



S = 220:1(En —FE, 1)T(E, — E, 1). Then

T —8S = Z(En — Enfl)T(l - En) + Z(En - Enfl)TEnfli
n=1 n=1

and the right-hand side is compact since the two terms are norm-convergent sums of com-
pact operators.)
Assume now that T is essentially normal and quasi-diagonal. Notice that S, being a

compact perturbation of 7" is also essentially normal. Put
Sp=(En— E,1)T(E, — Ep—1).
Since S =) Sy, and SS* — S*S is compact, we have
Tim |5, — S3Sull = 0.

Each S, lies in the finite dimensional C*-algebra B(H,,), where H,, = (E,, — E,_1)(H), and
so Lin’s theorem (Theorem 1.2) says that there exist normal operators R, € B(H,) with
limy, o0 |[Ry — Snll = 0. Put R = >>° | R,. Then R is normal, and R — S is compact.
This proves that 7T is a compact perturbation of a normal operator.

The set of essentially normal operators and the set of quasi-diagonal operators are both

closed. Hence so is their intersection. O

Proof of Theorem 1.1: A compact perturbation of a normal operator has trivial index
function since this is the case for a normal operator and since the index function is invariant
under compact perturbation.

Assume now that 7 is essentially normal with trivial index function. Then 7(T) € Q(H)
is normal with trivial index function. Hence, by Theorem 2.1, there is a sequence {S,}5°,
of normal elements of Q(H) with finite spectra such that S,, — 7(7T") in norm. Lift S,
to T,, € B(H) such that 7,, — T in norm. Every normal operator in Q(H) with finite
spectrum has a lift to a normal operator in B(H). Hence we can find normal operators
R, € B(H) with 7(R,) = S, = n(T,). It follows that each T}, is a compact perturbation of
a normal operator. By Proposition 2.8 this shows that 7T itself is a compact perturbation

of a normal operator. [

Corollary 2.9 An essentially normal operator on a Hilbert space has trivial index function

11



if and only if it is quasi-diagonal.

Proof: Combine Theorem 1.1 with Proposition 2.8. [

3 Approximating normal elements with normal ele-

ments with finite spectra

In this section we prove various generalizations of Theorem 2.1 using more or less the same
methods as in Section 2.

We first consider an obstruction — analogous to the index-obstruction in Theorem 2.1
— for a normal element of a C*-algebra to be a norm-limit of normal elements with finite
spectra. The natural generalization of the index function of an element of Q(H) to an

element a of a unital C*-algebra A is the map
C\sp(a) = K1 (A); A= Ja— A1)

Proposition 3.1 below shows that we must also take into account the index function of a in
every quotient of A. For each proper ideal I of A (proper ideal meaning I # A) we must
consider the maps

C\ sp(mr(a)) — K1 (A/I); A= [mr(a) — A1y,

where 77 denotes the quotient mapping A — A/I. This additional obstruction was hidden
in the case of the simple C*-algebra Q(H).

Proposition 3.1 Let A be a unital C*-algebra and let a € A be a normal element. If a is

the norm limit of normal elements in A with finite spectra, then
m1(a) — A-1 € GLo(A/I) ()

for every proper ideal I of A and every X\ € C\ sp(m;(a)).
Lin showed in [10] that the natural map GL(A)/GLy(A) — K;(A) is injective if RR(A) = 0.
Since the property real rank zero passes to quotients, this shows that (<») could be replaced
by

[rr(a) — A1)y =0in K;(A/I) @)

12



if RR(A) = 0.

Proof: Suppose that 7;(a) — A\-1 ¢ GLy(A/I) for some proper ideal I of A and some
A € C\ sp(mr(a)). Then a belongs to the open set

{be A|m(b) — A1 € GL(A/T)\ GLo(A/I)}.

This set can contain no element with finite spectrum, because if b was such an element,
7(b) € A/I would have finite spectrum and then either 7;(b) — A-1 is not invertible or
belongs to GLy(A/I) since C \ sp(m;(b)) is connected. [

Next, we investigate to what extent the converse of Proposition 3.1 holds. Recall the

definition of the e-grid I'. given above Lemma 2.5.

Theorem 3.2 Let A be a unital C*-algebra and let a be a normal element in A. The

following conditions are equivalent:
(i) @ — A-1 lies in the closure of GLy(A) for every A € C,

(i) for every e > 0 there exists a normal element b € A such that
sp(b) €T, fla—bl| <2, b—A-1€GLo(4)

for all A € C\ sp(b),
If the real rank of A is zero, then (i) and (ii) are equivalent to

(iii) for every € > 0 there exists a normal element b € A with finite spectrum and with
la—0b] <e.

The implication (ii) = (iii) of Theorem 3.2 is contained in a theorem of H. Lin, [10,
Theorem 5.4]. It also follows from [5, Theorem 3.1] after realizing that the conditions on
a in (i) and (ii) imply that the map K;(C*(a,1)) — K;(A), induced by the inclusion map,
is zero. The implication (ii) = (i) follows easily from the fact that C\ I'. is dense in C.
The implication (iii) = (i) is also easy — see also the proof of Proposition 3.1 above.
One could alternatively prove (ii) = (iii) by mimicking the proof of Lemma 2.7. One
would for this approach need Lin’s result, [8], that if A is a unital C*-algebra of real rank
zero, then every unitary u € Up(A) can be approximated by unitaries with finite spectra.

To follow the proof of Lemma 2.7 we would need actual spectral projections for u. They will

13



in general not be available. Instead we can find projections, that approximately commute
with v and that approximately divide the spectrum of u into two disjoint subsets. With
some care, one can complete the proof of Lemma 2.7 in this fashion.

The proof of (i) = (ii) is contained in the three lemmas below:

Lemma 3.3 (cf. [14, Theorem 2.2]) Let A be a unital C*-algebra and let a be an el-
ement in the closure of GLo(A). Let a = vl|a| be the polar decomposition of a, with v a
partial isometry in A**. For each continuous function f: R" — R", such that flj. =0
for some & > 0, there exists a unitary u € Uy(A) such that vf(|a|) = uf(|al).

Proof: This follows from [14, Theorem 2.2] except for the part about the unitary u lying
in the connected component of the identity (and the assumption that a lies in the closure
of GLo(A) rather than in the closure of GL(A)). As we shall indicate below, the proof of
[14, Theorem 2.2] — with obvious modifications — yields the claimed lemma.

We shift to the notation of [14], and denote our C*-algebra by 2, and the element a € A
will be denoted by T (so that a(7T) = 0 — the distance from 7" to the invertibles of 2 is
zero), and T = V/|T| is the polar decomposition of 7.

In the proof of [14, Theorem 2.1] choose the invertible element A to lie in GL(2) (which
is possible by the assumption that 7 lies in the closure of GLy(2)). Then the element S pro-
duced in that theorem will lie in GLy(2(). The element S constructed in [14, Lemma 2.3] is
homotopic to S, and will therefore also lie in GLy(2(). To see this, go into the proof of [14,
Lemma 2.3], put D; = S—tg(|T*|)S+tSg(|T|) and put E; = S~ —tg(|T|)S~1+tS~1g(|T*|).
Then, following the proof, one finds that D;F; = E;D, =1, Dy = S, and D; = Sj. Finally,
the unitary U found in [14, Theorem 2.2], which satisfies U f(|T|) = V f(|T]), is equal to
So]So|™t, and so U is homotopic to Sy in GLg(2), and hence U € Uy(2A). O

The next lemma is an improvement of Lemma 2.2. Recall the definition of the functions
fe: R — R* from above Lemma 2.2. If f: Rt — R' is a continuous function with
f(0) = 0, then define a continuous function f: C — C by f(re®) = f(r)e®.

Lemma 3.4 Let A be a unital C*-algebra, let a be a normal element in A, and let a = v|al

be a polar decomposition of a, where v € A™ is a partial isometry and |a| = (a*a)'/?.

(i) If f: Rt — Rt is continuous with f(0) = 0, then vf(|a]) = f(a).

(ii) If vf(la|) = uf(la|) for some unitary u € A, and if b = u(f.(|a|) +€-1), then b is

normal and invertible, and ||a — b|| < 2¢. Moreover, if g: C — C is a continuous
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function which is constant on B(0,¢), then g(a) = g(b), and
sp(b) \ €T = sp(a) \ B(0,¢).

Proof: (i). This follows easily by approximating f with functions fy of the form fo(r) =
rh(r), where h: Rt — R" is continuous (not necessarily with £(0) = 0).

(ii). That b is normal, and |ja — b|| < 2¢ can be seen as in the proof of Lemma 2.2.
Notice that |b| = f.(|a|]) + e-1. This shows that |b| — and hence b — are invertible, and
that the spectrum of b does not intersect the open ball with center 0 and radius &.

We shall apply the Borel function calculus inside the von Neumann algebra A**. De-
noting the indicator function of the (Borel) set E by 1g, set e. = 1y (|a|) = Lj(|0]) =
Lio(16])- Put @(t) =t-1(e,00)(t) = (fe(t) +€)-1(c,00)(t) for t € RT.

lal(1 - ec) = ¢(laf) = [b](1 — ).
Since e, commutes with [b],
a(l —e.) =v|a|(1 —e.) =v(1 —e.)|b| =u(l —e.)|b] =b(1 —e.).
Now using that e, commutes with a and with b, we get
9(a)(1 —ec) = g(a(l —ec)) = g(b(1 —e.)) = g(b)(1 —ec)

for every continuous function g: C — C.
Assume g is constant on B(0,¢). Put v(2) = g(2)1p,(|2]) = 9(0)110,(|2])- Then

In conclusion, we have shown that g(a) = g(b). The claim about the spectra follows from

the previous statement. [

We now show an analogue of Lemma 2.4.

Lemma 3.5 Let A be a unital C*-algebra, let a be a normal element in A, and let F' be

a finite subset of C. If a — A-1 lies in the closure of GLo(A) for all X € F, then for every
e > 0 there ezists a normal element b in A with |la — b|| < & and b — X\-1 € GLy(A) for
every A € F'.
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Proof: Write F' = {A1, Ag,..., A\y}. We find successively normal elements ay = a, a1, as,

..., a, in A satisfying
° [lajr1 —ajl| <e/n,
e a;—\i-1€GLg(A) fori=1,2,...,7,
e a; — A;-1 lie in the closure of GLy(A) fori=j+1,7+2,...,n.

The element b = a,, will then be as desired.
Assume a;_; has been found and that 1 < j < n. Choose ¢ > 0 such that

e ) <¢&/2n,
e for every ¢ € A with ||c—a;_41|| <, we have c— \;-1 € GLg(A) fori =1,2,...,5—1.
o [\—Aj|>d0fori=44+1,j+2,...,n,

Write aj_1 — A;-1 = v|a;—1 — Aj-1|, with v a partial isometry in A**, and use Lemma
3.3 to find a unitary u € Uy(A) so that vfs(|laj—1 — Aj-1|) = ufs(|aj—1 — A;-1]). Put

a; = u(f5(|aj_1 - )\]1|) + 51) + )\]1

It then follows from Lemma 3.4 (ii) that a; is normal, that a; — A\;-1 € GL¢(A), and that
la; — a;—1|| < 26 < ¢/n. By the choice of ¢ this implies that a; — A\;+1 € GLy(A) for
i=1,2,...,7].

Let i € {j+1,7+2,...,n}. We show that a; — A;-1 is in the closure of GLy(A). By
the choice of §, we have that \; ¢ B();,9). We can therefore find continuous functions
f,9: C — C such that

o f(2)g(z) =2z— A forall z € C,
e flB(,0) is constant,

e g(z) = exp(h(z)) for some continuous function h: C — C.

The property of g entails that g(b) € GLy(A) for every normal element b € A. From
Lemma 3.4 (ii) we conclude that f(a;_1) = f(a;). Hence

aj — Xi-1 = f(a;)g(a;) = f(aj-1)g(a;) = (aj1 — Ni-1)g(a;—1) "' g(a;).
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By assumption, a;_1 — A;-1 lies in the closure of GL¢(A), and this shows that a; — A;-1 lies
in the closure of GLy(A). O

Proof of (i) = (ii) in Theorem 8.2: Copy the proof of Lemma 2.5 using Lemma 3.5 instead
of Lemma 2.4. [J

Recall from [7] that a unital C*-algebra A is said to have property (IN) if every normal
element belongs to the closure of GL(A). A non-unital C*-algebra A has property (IN) if
its unitization A has property (IN).

Definition 3.6 We say that a unital C*-algebra A has property (INy) if every normal
element that has 0 as an interior point of its spectrum lies in the closure of GLg(A).
A non-unital C*-algebra A is said to have property (INy) if A has property (IN,).

It is clear that property (INg) implies property (IN). Property (IN) does not imply (INy),
not even for C*-algebras of real rank zero and stable rank one as Example 3.7 below shows.

Examples of C*-algebras satisfying (INg) are given in Proposition 3.8. The reader may
prefer to consider the slightly more restrictive condition (INgg) of a unital C*-algebra A,
defined by requiring all normal non-invertible elements of A to belong to the closure of
GLy(A). Trivially, (INg) implies (INg), but Example 3.9 gives a C*-algebra of real rank
zero for which the reverse implication does not hold.

Example 3.7 Property (IN) does not imply property (INy).

Let B;, By be two unital C*-algebras of stable rank one, real rank zero, so that the
unitary group of Bj is disconnected, and (B; and) By are non-scattered. (One could for
example take B; = By to be an irrational rotation C*-algebra.) Let A be the C*-algebra
B, ® By. Then A is unital, sr(A) =1 and RR(A) = 0.

Choose normal elements b; € By and by € By with

sp(b) ={z€C:1/2<|z| <1}, sp(by) = {2z € C:|z| <1/2},

and with by ¢ GLo(B1). Set a = (b1,b2) € A. Then sp(a) = D, the closed unit disc in
the complex plane. Hence a — A\-1 € GLy(A) for every A € C\ sp(a) (because C \ sp(a) is
connected). But a does not belong to the closure of GLy(A), since b; does not belong to
the closure of GLy(By).

Hence A does not have property (INy), but sr(A) = 1 (so A has property (IN)), and
RR(A) = 0.
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Proposition 3.8 FEvery simple unital C*-algebra, which has stable rank one or is purely

infinite, has property (IN).

Proof: The two classes of C*-algebras in the proposition have in common that they have
property (IN) (see [15, Theorem 4.4]), and if B is a non-zero hereditary sub-C*-algebra of
A, then the natural map U(B) — U(A)/Uy(A) is surjective (see [13, Theorem 10.10] and
[4, Theorem 1.9]).

Let a be a normal non-invertible element of A, and let ¢ > 0. Let a = v|a| be the
polar decomposition for a, with v € A** and recall from [14, Theorem 2.1] that there
exists a unitary u € A so that vf.(|la]) = uf.(|a]). Let g: Rt — R* be a continuous
function that vanishes on [, 00), and with g(0) = 1. Then g(|a|) # 0 because a is non-
invertible, and we can therefore find a unitary w € g(a|)Ag(Ja|) + 1 such that ww ~j 1.
Set b = uw(f.(|a|) + £-1). Then b € GLy(A) (we are not claiming here that b is normal),

and
la =0l <lla —u(f(la]) +e- D) + [lw(fe(la]) + &-1) = (fe(la]) +e-1)[| < 4e,

where we have used that wf.(|a|) = f:(|al).
This argument shows that A actually has property (INgg). O

Villadsen has found an example of a simple C*-algebra with stable rank 2, showing that a
specific normal element of the constructed C*-algebra cannot be approximated by invertible
elements (see [16]). This example is therefore a simple, stably finite C*-algebra that does
not have property (IN), and hence neither (INg) nor (INgp).

Example 3.9 Property (INy) does not imply property (INgg).

Let B be any real rank zero, unital C*-algebra that has property (INy) and non-
connected group of unitary elements, and set A = B @ C. (Here B could be an irrational
rotation C*-algebra, cf. Proposition 3.8.) If zero is an interior point of the spectrum of
a = (b,\) € A, then zero is an interior point of the spectrum of b. Hence b lies in the
closure of GLy(B), and from this we get that a lies in the closure of GLg(A).

The C*-algebra A does not have property (INgg). Indeed, if u € U(B) \ Uy(B), and if

a = (u,0) € A, then a is normal and non-invertible, but « is not in the closure of GLg(A).
Corollary 3.10 Let A be a unital C*-algebra. The following two conditions are equivalent:

(i) Every normal element a € A, salisfying
a—A-1eGLy(A)
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for all X € C\'sp(a), is the norm-limit of normal elements in A with finite spectrum.

(ii)) A has real rank zero and property (INy).

Proof: (i) = (ii). Assume that (i) holds. Every self-adjoint element ¢ in A is normal and
satisfies a— A1 € GLg(A) for all A € C\sp(a) (because C\sp(a) is connected). Hence a can
be approximated within any given tolerance by a normal element b with finite spectrum. It
is easily seen, that (b+ b*)/2 is a self-adjoint element with finite spectrum whose distance
to a is at most ||a — b||. This shows that A has real rank zero.

We proceed to show that A has property (INg). Let a be a normal element in A, and
assume that there exists an r > 0 such that B(0,7) C sp(a). Let a = v|a| be the polar
decomposition of a, with v a partial isometry in A**.

Consider the continuous functions f: Rt — R, g: Rt — R*, given by f(t) =
min{r~'¢,1} and ¢(t) = max{r,t}, and h = f: C — C (see above Lemma 3.4). Notice
that f(t)g(t) = t, and that vf(|a|) = h(a) (by Lemma 3.4 (i)).

The element h(a) is therefore normal and sp(h(a)) = h(sp(a)) = D (the closed unit disc
in the complex plane). Consequently, h(a) — A1 € GLy(A) for all A € C\sp(h(a)) (because
C\ sp(h(a)) is connected). Assuming (i), we conclude that h(a) can be approximated by
normal elements with finite spectra, and therefore A (a) lies in the closure of GLo(A) (cf. the
proof of Proposition 3.1). Since a = vf(|al)g(|a|) = h(a)g(|al), and since g(|a|) € GLy(A),
we conclude that a lies in the closure of GLg(A). It has now been proved that A has
property (INj).

(ii) = (i). By Theorem 3.2 it suffices to show that @ — A-1 lies in the closure of GL(A)
for all A € C. This is the case by assumption on a if A ¢ sp(a). By continuity, a — A-1 lies
in the closure of GL(A) for all A in the closure of C\ sp(a). The remaining points, A, are
the interior points of the spectrum of a, and there a — A-1 is in the closure of GLy(A) by
the assumption that A has property (INg). O

Corollary 3.11 Let A be a unital C*-algebra. Assume that RR(A) = 0, that A has
property (IN), and that

(NT) for every hereditary sub-C*-algebra B of A, the map Z/{(B) — L{(f)/uo(f), where I is
the ideal of A generated by B, is surjective.

Then every normal element a € A, satisfying
71'](0,) - A1 € GL()(A/I) (<>)
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for every proper ideal I of A, and for every A € C\ sp(nr(a)), is a norm limit of normal

elements in A with finite spectra.

Proof: By Theorem 3.2 it suffices to show that every normal element a € A, satisfying
nr(a) € GL(A/I) = 71(a) € GLo(A/I),

lies in the closure of GLy(A). Let ¢ > 0. Write a = v|a| with v a partial isometry in
A**. By the assumption that A has property (IN), and by Lemma 3.3, there is a unitary
u € A so that vf.(|a|) = uf:(Ja|). We wish to replace u by another unitary that belongs
to Up(A). Since A is of real rank zero, we can find a projection p in the hereditary
subalgebra of A generated by f.(|a|) so that ||(1 — p)f-(|a])|| < e. We show that there
is a unitary v € (1 — p)A(1 — p) such that u* ~p, p+ v in U(A). This will imply that
b=u(p+v*)(fe(la]) +e-1) € GLy(A), and

la=bll < lla—u(fellal) +e- 1) + (o +v") (fo(lal) +-1) = (£(lal) +£-1)]
< 24|~ (1 - p)(fella) +e D] < 6.

Let I be the closed two-sided ideal in A generated by 1—p. If I = A, then (1—p)A(1—p)
contains a unitary v with u* ~p, p+wv in U(A) by the assumption (NT). Assume that I # A.
Because p lies in the hereditary subalgebra generated by f.(|a|), we have pla|p > ep; this
entails 77(|a]) > €-1, and so n7(a) € GL(A/I), which by the assumption on a implies
mr(a) € GLo(A/I). It follows that

mr(u) ~n mr(ufe(|al)) ~n mr(a) ~n

in GL(A/I). We can therefore find w € Uy(A) with m;(w) = m;(u). Since w*u € U(T) it
follows from the assumption (NT) that there exists a unitary v in (1 — p)A(1 — p) with
(w*u)* ~p p+ v. This completes the proof, because w*u ~y, u. O

Every C*-algebra of stable rank one has property (IN) (for trivial reasons), and also prop-
erty (NT) (for less trivial reasons). For the latter one can use [13, Theorem 10.10]. With

these observations we get the following corollary to Corollary 3.11:

Corollary 3.12 Let A be a unital C*-algebra of real rank zero and stable rank one. Then

every normal element a € A, satisfying
71'](0,) - A1 € GL()(A/I) (<>)
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for every proper ideal I of A and every A € C\ sp(nr(a)), is a norm limit of normal

elements in A with finite spectra.

Corollary 3.12 can for example be applied to the real rank zero AT-algebras classified by
George Elliott in [6]. (AT-algebras is the class of C*-algebras obtained from the C*-algebra
C(T) with the operations of tensoring by M, (C), taking direct sums, and taking inductive
limits.)

It would be interesting to know if one can replace the assumption in Corollary 3.12
that sr(A) = 1 with the weaker assumption that A has property (IR) (cf. [7, 3.1] and the
main theorem of [11]). By Corollary 3.11 that would be the case if property (IR) (together
with RR(A) = 0) implies property (NT). This is known to be true for simple C*-algebra,
because a simple unital C*-algebra A has property (IR) if and only if either sr(4) =1 or
A is purely infinite.

Example 3.13 Of the three sufficient conditions in Corollary 3.11, the real rank zero
condition is clearly also necessary (cf. the proof of Corollary 3.10). It is possible that the
condition (NT) always holds for real rank zero C*-algebras. Larry Brown has informed
us that examples of C*-algebras of real rank zero, which do not have property (IN), exist.
Condition (NT) is necessary in Corollary 3.11, at least when A is simple, as the following
example shows:

Assume that A is a simple unital C*-algebra of real rank zero where property (NT) of
Corollary 3.11 does not hold — if such an example exists. Since every hereditary sub-C*-
algebra of A is the inductive limit of corner algebras pAp, where p is a projection in A,
there is a unitary v € A and a projection p € A with the property that there is no unitary
v € pAp satisfying u ~p, v + (1 — p). Since A is of real rank zero, and since sp(u) = T,
there is a non-zero projection ¢ € A such that ||qug — ¢|| < 1/2. Then (1 — q)u(l — q) is
invertible in (1 —¢)A(1—gq), and z = ¢+ (1 — ¢)u(1 — q) is homotopic to u in GLy(A4). Put
ug = z|2|7!. Then uy € U(A), u ~}, up and quy = upq = q.

Let 2 be a non-zero element in gAp, and let e be a non-zero projection in zAz*. Then
e < q and e 3 p. It follows that eupe = e and that there is no unitary v € eAe such
that ug ~p v+ (1 —e). The corner algebra eAe is non-scattered (because A must be
infinite-dimensional), and we can therefore find a normal element ¢ € eAe with sp(c) = D.

Put a = ¢+ (1 —e)ug(1 —e). Then a is normal and sp(a) =D, and so a — -1 € GLy(A)
for every A € C\ sp(a). We claim that a is not in the closure of GL¢(A), and this will

show that a cannot be approximated by normal elements with finite spectra, cf. Theorem
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3.2. Indeed, assume that b € GLy(A) and that ||a — b|| < 1. Then
(1 —eJuo(l —e) = (1 —e)b(1 —e)]| <1,

and (1 — e)ug(l — e) is unitary in (1 — e)A(1 —e). Hence (1 — e)b(1 — e) is invertible in
(1 —e)A(1 — e) with an inverse we denote by 7. As in a standard 2 x 2 matrix trick,

(1 —e)b(1 —e)+ (ebe — ebrbe) = (1 — ebr(1 —e))b(1 — (1 — e)rbe) ~p b (M)

in GL(A). Hence d = ebe — ebrbe € GL(eAe) and so d = v*|d| for some unitary v € eAe.
By (#) we also have

(1—e)+v~p(1—e)+dt~y (T—e)b(l—e)+en~y (1—e)ug(l—e) +e=ug

in contradiction with the stipulated properties of uy and e.
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