On sums of finite projections

Mikael Rgrdam

Abstract
It is shown that there exists a (unital) finite C*-algebra A such that My(A) is

properly infinite (in the sense that My(A) contains two isometries with orthogonal
range projections). This also shows that there exist finite C*-algebras without tracial
states.

We discuss different notions of finiteness and how these behave with respect to

forming sums.

1 Introduction

A well-known — and non-trivial — theorem by Murray and von Neumann says that the sum
of two finite orthogonal projections in a von Neumann algebra is again finite. Finiteness
is defined in terms of the comparison theory of Murray and von Neumann. This theorem
is an ingredient in the proof that any finite von Neumann algebra has a tracial state.

The situation for C*-algebra is different. It is ambiguous what it should mean for a
projection in a C*-algebra to be finite; and almost whichever way finiteness is being defined,
the sum of two finite projections will fail to be finite (in general). The word “finite” for a
projection in a C*-algebra is usually given the same meaning as it has for von Neumann
algebras (c.f. Definition 2.1 below). With this meaning, an example of a finite C*-algebra
A such that M,(A) is not finite was discovered by N. Clarke [4] (see [2, Exercise 6.10.1]).
Clarke’s construction involves a generalized Toeplitz algebra. In his example, M5(A) is not
properly infinite, and M(A) has a (non-faithful) tracial state, and so Ms(A) is not very
infinite.

A still unresolved question asks if every unital simple C*-algebras is either finite in
the sense that it admits a tracial state, or is purely infinite in the sense of J. Cuntz (c.f.
[6]). In particular, can a simple C*-algebra contain simultaneously a finite and an infinite
projection? Infinite projections in a simple C*-algebra are automatically properly infinite

due to a result of J. Cuntz. If one could show the stronger statement, that e ® e cannot be
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properly infinite when e is a finite projection in any C*-algebra, then one could conclude
that simple C*-algebras cannot contain both finite and infinite projections (see Remark
4.4). Tt is shown here that this stronger statement is false. This may indicate that perhaps
there exists a simple C*-algebra with finite and infinite projections.

The example of a finite C*-algebra A with M,(A) properly infinite is obtained from an
example in [18] of a simple non-stable C*-algebra B with M, (B) stable, and this example
comes from a construction of J. Villadsen [19]. In Section 3 we establish some new relations
between stability of a C'*-algebra and the structure of its multiplier algebra. These results
build on a characterization of stable C*-algebras given in [13].

2 A preliminary discussion

We remind the reader of some standard (and some less standard) notations concerning
projections in C*-algebras. Let A be a C*-algebra, and let e € M, (A) and f € M,,(A) be

projections. Set

eeaf=(§ ﬁ)eMmm(A),

and denote by e ® 1j the k-fold direct sum e @ e® --- ® e € My, (A). Write e ~ f if there
exists v € My, ,(A) such that e = v*v and f = vv*, and write e < fife ~ fo < f for some
projection fy € M, (A).

Definition 2.1 Let e be a projection in a C*-algebra A. Then e is

e tracially finite, if there exists a separating family of tracial states on the corner C*-

algebra eAe,

e weakly tracially finite, if there exists a (not necessarily faithful) tracial state on the

corner C*-algebra eAe,
e finite, if for all projections f € A, e ~ f < e implies f = e,

e infinite, if e is not finite,

properly infinite, if e is non-zero and e ® e < e.

If A is unital, then A is said to be tracially finite, weakly tracially finite, finite, infinite,
respectively, properly infinite if the unit 14 of A has the corresponding property. If M, (A)
s finite for all n € N, then A is said to be stably finite.



It is clear that e tracially finite implies e is finite, and that e properly infinite implies that
e is infinite.

If e € A is properly infinite, then e ® 1,, < e for all n € N. Moreover, e is properly
infinite if and only if there is a unital embedding O,, — eAe.

Any subprojection of a tracially finite projection is tracially finite, and any subprojec-
tion of a finite projection is again finite. Hence any projection that dominates an infinite
projection is infinite. It is not true that a projection that dominates a properly infinite
projection is again properly infinite. For example, if A is a properly infinite C*-algebra
and if B is a finite C*-algebra, then e = (14,0) € A @ B is properly infinite, whereas
f=(14,1p) € A® B is not properly infinite, although f dominates e. On the other hand

we have the following:

Proposition 2.2 Let A be a C*-algebra, let e, f € A be projections and suppose that e is
properly infinite, e < f, and that f lies in the ideal of A generated by e. Then f is properly
infinite.

Let I be an ideal in A, and let m: A — A/I be the quotient mapping. Ife € A is a
properly infinite projection and e ¢ I, then w(e) is properly infinite.

Proof: The assumption that f lies in the ideal of A generated by e implies (by standard

techniques, see [5]), that f < e ® 1, for some n. Since e is properly infinite, e ® 1,, < e.

Hence e < f <e. This implies that f & f Sede Se < f, and so f is properly infinite.
The second claim follows immediately from the definition. [J

Example 2.3 (The Toeplitz algebra) The Toeplitz algebra, T, is the C*-algebra gen-
erated by the unilateral shift S on the Hilbert space 2. It contains the compact operators
KC on #2, and we have a short-exact sequence

0 K 77— C(T) 0.

The unit 17 of 7 is infinite (because 17 = S*S ~ SS* < 17). But C(T) is finite, and so
7(1) is finite — hence infiniteness doesn’t pass to quotients. This also shows that 17 is not
properly infinite (c.f. Proposition 2.2). Notice also, that 7 admits a trace (take any state
on C(T) and follow it by 7). Hence 17 is weakly tracially finite.

Finiteness doesn’t pass to quotients either. Actually, a tracially finite projection can be-

come properly infinite in some quotient as the following example shows:



Example 2.4 Let A be a unital UHF-algebra with normalized trace 7. Consider the
multiplier algebra M(A ® K). Find a sequence {p,}2, of non-zero mutually orthogonal
projections in A ® K such that the sum P = > >°  p, converges strictly in M(A ® K),
and such that >~ >° | 7(p,) < 0o. 7T extends to an unbounded trace defined on the positive
elements of M(A), and 7(P) =Y ", 7(pn) < co. Hence 7 extends to a bounded trace on
PM(A® K)P (= B). Since 7 is faithful on P(A® K)P (= I), and [ is an essential ideal
in B, it follows that 7 is faithful on B. This shows that P is tracially finite.

Let m: B — B/I be the quotient mapping. By [12, Corollary 3.7], B/I is purely infinite
and simple, and therefore 7(P) is properly infinite.

For more about ideals of multiplier algebras (and related results) see G. A. Elliott [9],

H. Lin [14], and S. Zhang [20].

The equivalence of (i), (ii) and (iii) in the theorem below is essentially, but not explicitly,
contained in K. Goodearl and D. Handelman’s paper [10], and Uffe Haagerup’s theorem in
[11] is the bridge from quasi-traces to traces.

The theorem tells (at least in the exact case) when a unital C*-algebra A admits a
tracial state. Notice that if A is properly infinite, then A cannot admit a tracial state. As
will be shown in Section 4, the reverse does not hold.

To each unital C*-algebra A associate the triple (Ky(A), Ko(A)T, [14]o), where

Ko(A) = {lplo — [glo | p,q € P(A)},  Ko(A)" ={[plo | p € Pw(A)},

where Py, (A) is the set of projections in all matrix algebras over A, and where [14]p €
Ky(A)™" is a distinguished order unit of (K,(A), Ko(A)*).

A state on Ky(A) is a group homomorphism f: Ky(A) — R which satisfies f(K(A)") C
R* and f([1)o) = 1.

Theorem 2.5 (Goodearl-Handelman, Haagerup) Let A be a unital C*-algebra. The
following conditions are equivalent:
(i) there is no state on Ky(A),
(ii) no (non-zero) quotient of A is stably finite,
(iii) M,(A) is properly infinite for some n € N.
If, in addition, A is exact, then these conditions are equivalent to

(iv) A admits no tracial states.



Proof: (i) = (iii): Put v = [14]o € Ko(A)*. We show first that there exist k,! € N with
k > 1 and ku < lu, if (i) holds. Indeed, assume to the contrary that ku < lu implies k& <[
for all k,1 € N. Define fo: Zu — R to be fy(ku) = k. Then f; is well-defined, positive,
and fy(u) = 1. But then, by [10, Theorem 3.2], fo would extend to a state on Ky(A), in
contradiction with (i).

Let e, denote the unit of M,(A). Then nu = [e,]o, and thus [ex]o < [e]o. It follows
that there exists m € N such that e, @ e, S e @e,. Putn=I4+mandd=%k—-1>0.

~Y

Then e,.4 < e,, and, consequently,

€n+trd ~ €ntd D €(r—1)d ,S én @ €(r—1)d ™~ €nt(r—1)d ,S T 5 €n,

for all 7 € N. Choose r € N such that rd > n. Then e, e, < e,1rq S €,. This shows
that M, (A) is properly infinite.

(iii) = (ii): Assume M, (A) is properly infinite. Then every (non-zero) quotient of
M, (A) is properly infinite by Proposition 2.2. Hence M, (A/I) is properly infinite for all
proper ideals I of A, and consequently, A/I is not stably finite for any proper ideal .

(ii) = (i): We show that the existence of a state on Ky(A) will imply that A/I is stably
finite for some proper ideal I of A.

Assume for this purpose, that f is a state on Ky(A). By [3, Theorem 3.3], f lifts to a
(positive, normalized) quasi-trace 7 on A. The set I = {zx € A | 7(z*z) = 0} is a (proper)
closed two-sided ideal in A, and 7 factors through a faithful quasi-trace 7/ on A/I. The
quasi-trace 7' extends (by the definition of a quasi-trace) to a faithful quasi-trace on each
matrix algebra M, (A/I). A unital C*-algebra which admits a faithful quasi-trace must
be finite (since if v*v = 1, then 1 = 7(v*v) = 7(vv*) = 1 — 7(1 — vv*), which implies
7(1 —vv*) = 0 and hence vv* = 1). Hence A/I is stably finite.

(iv) = (i): Every trace 7 induces a state on Ky(A) by the formula Ky(7)([e]o — [flo) =
7(e) — 7(f), where e, f € Py(A), and with 7 extended to all matrix algebras over A.

(i) = (iv): As used in the proof of (ii) = (i), a state f on Ky(A) would extend to
a quasi-trace on A, and as proved by U. Haagerup [11], any quasi-trace on an exact C*-
algebra is a trace. [

The equivalence between (iii) and (iv) in Theorem 2.5 (that holds for exact C*-algebras)
can be restated as: e is weakly tracially finite if and only if e ® 1,, is not properly infinite
for alln e N.



As seen in Example 2.3, not all infinite projections are properly infinite. For simple C*-

algebras we have the following result of Joachim Cuntz:

Proposition 2.6 (Cuntz, [5, Proposition 2.2]) In a simple C*-algebra every infinite

projection is properly infinite.

3 Stable (C*-algebras

Recall that a C*-algebra A is stable if A =2 A ® K. Since K =2 K ® I, it follows that
A ® K is stable for every C*-algebra A. A C*-algebra is o-unital if it admits a countable
approximate unit (of positive elements). A C*-algebra A is called op,-unital if it admits a
countable approximate consisting of projections. In that case, the approximate unit can
be chosen to consist of an increasing sequence of projections.

For a C*-algebra A, let F(A) be the set of elements a € A" for which there exists
e € AT with a = ae (= ea). For a,b € A" write a ~ b if there exists z € A with a = 2*z

and b = zz*. It is shown in [15, Theorem 3.5] that this defines an equivalence relation on
AT

Theorem 3.1 ([13, Theorem 2.1 + Proposition 2.2]) Let A be a o-unital C*-algebra.
Then the following are equivalent:
(i) A is stable,

(ii) for each a € F(A) there exists b € A™ with a ~ b and ab =0,

(iii) for each a € F(A) and for each ¢ > 0 there exist b,c € AT with b ~ ¢, ||bc|| < €, and
la = bl <e.

Lemma 3.2 Let A be a o-unital C*-algebra of stable rank one. Then A is stable if and
only if for all a € F(A) there erist b,c € F(A) such that a ~ b~ ¢ and bc = 0.

Proof: The “only if” part follows immediately from (i) = (ii) in Theorem 3.1.

We proceed to prove the “if” part. We use (iii) = (i) in Theorem 3.1. Let a € F(A)
be given. By assumption we can find ¢, ¢” € A" such that a ~ ¢’ ~ ¢’ and ¢'¢” = 0. Hence
there exists © € A with z*z = a and zz* = ¢. Since sr(A) = 1 there exists a sequence
{x,}2, of invertible elements in A, A with a unit adjoined, with z, — z. Each z, has a

unitary polar decomposition wu,|z,| (with u, a unitary in A). Now,
2 * 2 % * /
|zp|” = 2) 2y — a, Un|Tn|“uy, = xpz), — .
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This entails that u,au’ — ¢
Put b, = u}cu, and ¢, = u’c"u,. Then b,,c, € A*, b, — a, byc, = 0, and b, ~ c,.
This shows that (iii) in Theorem 3.1 is satisfied, and so A is stable. O

Retain the notation M (A) for the multiplier algebra of A.

Lemma 3.3 Assume that A is a simple C*-algebra and that M(A) is infinite. Then for
each a € F(A) there exist b,c € A™ such that a ~ b~ ¢ and bc = 0.

Proof: The set F(A) is contained in the Pedersen ideal of A, which is an algebraically
simple, essential ideal in M(A). Hence every non-zero algebraic ideal of M(A) contains
F(A). Let a € F(A) be given. Since M(A) is infinite, it contains a non-unitary isometry
S. The algebraic ideal in M(A) generated by 1 — SS* contains a. Therefore

a=>) X;(1-55Y;
=0
for some n € N and some X,,Y; € M(A). Put E, =1 — .55, and put E; = SE; 1 5* for
j>1. Set
X =) X;(8VE;, Y=)» ESY;,
=0 =0

and set 7= S™*!. Then XY = qa, T is an isometry in M(A),

and YY*(1 — TT*) = (1 —- TT)YY* = YY*.

Put 2o = X (YY*)Y/2. Then z¢z} = a?, z9 € A, and z}zo € (1 — TT*)A(1 — TT*). Let
u|zo| be the polar decomposition for zo (with u € A*), and set © = u|xo|/2 € A. Then
zr* = a and z¥z = (z530)Y/? € (1 — TT*)A(1 — TT).

Put b = z*z and ¢ = TaT*. Then b,c € A", bc =0, a ~ b, and a ~ ¢ (for the latter,

use that a = 7*r and ¢ = r7* when r = Ta'/? € A). O

The following lemma is well-known:

Lemma 3.4 Let A be a stable C*-algebra. Then B(H), the bounded operators on an
infinite dimensional, separable Hilbert space H, embeds unitally into M(A). In particular,
M(A) is properly infinite.



Proof: Write A = D ® K for some C*-algebra D. Represent D faithfully and non-
degenerately on a Hilbert space H;, and identify X with the compact operators on a
Hilbert space H. Then D® K is a subalgebra of B(H;)®B(H), and M(D ® K) is the nor-
malizer (or the set of multipliers) of DQK in B(H;)®B(H) (see [16, Section 3.12]). Clearly,
Cly, ® B(H) normalizes D ® K, and is therefore contained in M(D ® K). This gives a
unital embedding of B(H) into M(D® K). Since the unit of B(H) is properly infinite (be-
cause H is infinite-dimensional), it follows that the unit of M(D®XK) is properly infinite. [J

Theorem 3.5 Let A be a simple, o-unital C*-algebra of st(A) = 1. Then M(A) is finite
if A is non-stable, and M(A) is properly infinite if A is stable.

Proof: The first statement follows immediately from Lemma 3.2 and Lemma 3.3, and the

second statement is contained in Lemma 3.4. O

If we omit the simplicity assumption on A (but keep the assumption on the stable rank),

then we get:

Proposition 3.6 Let A be a o-unital C*-algebra of sr(A) = 1. Then M(A) is properly
infinite of and only if A is stable.

Proof: The “if” part follows from Lemma 3.4. Assume that M(A) is properly infinite.
Then there exist isometries S, T € M(A) with orthogonal range projections. Let a € F/(A).
Then b = SaS* and ¢ = T'aT™ satisfy the conditions of Lemma 3.2. [

The condition on the stable rank in the two results above cannot be omitted — but perhaps
relaxed. Indeed, if A is a (unital) properly infinite C*-algebra, then M(A) = A, and A is
not stable. A properly infinite C*-algebra has stable rank oo (c.f. [17, Proposition 6.5]).

Theorem 3.7 ([18, Theorem 5.3]) There exists a simple, op-unital, nuclear (and hence
exact) C*-algebra A with sr(A) =1 such that My(A) is stable while A is not stable.

4 Sums of finite projections

Let e, f be projections in a C*-algebra A. Assume that e and f are finite (in some sense).
Does it follow that e @ f, respectively, e @ e are finite (in some, perhaps different, sense)?

Consider the following four notions of finiteness:
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e (TF) = tracially finite,

(F) = finite,
e (WTF) = weakly tracially finite,
e (NPI) = not properly infinite.

(c.f. Definition 2.1). The following implications between these properties are immediate:
(TF) = (F) = (NPI),  (TF) = (WTF) = (NPI). (1)
None of the remaining 7 implications hold: To show this it suffices to show that
(F) = (WTF), (WTF) = (F). (2)

The second non-implications in (2) follows from Example 2.3. The non-implication (F) #
(WTF), i.e. not all finite (unital) C*-algebras admit a tracial state, is really the main point
of this article, and it is verified below Example 4.3.

Using that traces on a C'*-algebra extend to all matrix algebras over it, one has:

Proposition 4.1 Let e be a tracially finite, respectively, weakly tracially finite, projection
in a C*-algebra A. Then e @ e is tracially finite, respectively, weakly tracially finite.

To each of the four notions of finiteness one can consider their corresponding stabilized
versions. For example, a projection e € A will be said to be stably finite, (SF), if e ® 1,
is finite for all n € N. Define (STF), (SWTF) and (SNPI) similarly. Proposition 4.1 says
that the properties (TF) and (WTF) are stable, i.e.,

(STF) & (TF),  (SWTF) < (WTF);

and by Theorem 2.5,
(SNPI) & (WTEF),

for all exact C*-algebras.

We have (TF) = (SF) = (F) for all C*-algebras, and (SF) = (WTF) for exact C*-
algebras (c.f. Theorem 2.5), but (SF) # (TF). To see the latter, the unit of the C*-algebra
K, the compacts with a unit adjoined, is stably finite but not tracially finite. For a more
convincing example of a stably finite but not tracially finite projection, take the unit of
the C*-algebra (Cy(R) ® O5)™.



Except for the cases covered by Proposition 4.1, the sum of two “finite” projection will fail

to be “finite” as the following two examples show:

Example 4.2 There ezist tracially finite projections e, f in some C*-algebra such that

e ® f is properly infinite.

Proof: Let B be the unique unital AF-algebra with dimension group
G=Q8Q (=Ky(B), G '={(51)€QaQ|s>0,t>0} (=Ko(B)"),

and order unit v = (1,1) (= [1g]o). Since (G,G™) is a simple dimension group, it follows
that B is a simple C*-algebra.
Let 71, 75 be the (extremal) tracial states on B given by Ko (71)(s,t) = s and Ky(72)(s,t) =

oo

oo, of projections in B with

t. Find a sequence {p,

Tl(pn) = 2—n’ 7_2(pn) =1-2""

Let {e; ;}ijen be a system of matrix units for the compacts K, and put

P=) pp®enn € M(BRK),

n=1

(the sum is strictly convergent). Then 1 — P =" (15 — p,) ® €,,,. As in Example 2.4,
71 extends to a bounded, faithful trace on PM(B ® K)P, and 7, extends to a bounded,
faithful trace on (1 — P)M(B ® K)(1 — P).

It follows that P and 1 — P are tracially finite. But M(B ® K) is properly infinite (c.f.
Lemma 3.4), and so P @ (1 — P) ~ 1 is properly infinite. O

Example 4.3 There exists a finite projection e in some C*-algebra such that e @ e is

properly infinite.

Proof: Let A be the C*-algebra from Theorem 3.7. Put B = M(A). Then My(B) =
M(M(A)). By Theorem 3.5, B is finite and Ms(B) is properly infinite. Let e be the unit
of B. Then e @ e is the unit of M,(B), and hence e is finite and e @ e is properly infinite.
O

The projection e in Example 4.3 cannot be weakly tracially finite (WTF) (since a trace
on B = eBe would extend to a trace on My(B), but My(B) is properly infinite, and no
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properly infinite C*-algebra can admit a trace). This proves the non-implication (F) #
(WTF).

Remark 4.4 Example 4.3 gives an indication that there might exist simple C*-algebras
that contain simultaneously infinite and non-zero finite projections.

In more detail, assume that A were a simple C*-algebra with a non-zero finite projection
e and an infinite projection f. Then f < e ® 1, for some n € N. By Proposition 2.2 and
Proposition 2.6, e ® 1,, is properly infinite. Let 1 < m < n be chosen such that ¢/ = e®1,,
is finite and e ® 1,,,41 is infinite. Then e ® 1,11 < € @ €, and therefore e’ @ €’ is properly
infinite.

In other words, if e finite had implied e & e not properly infinite, then it would follow
that no simple C*-algebra could contain finite and infinite projections. However, Example
4.3 shows that this algebraic approach to the problem does not work.

One cannot (immediately) from Example 4.3 construct a simple C*-algebra with finite
and infinite projections, although the following strategy seems tempting: If A is a finite
unital C*-algebra such that Ms(A) is properly infinite, and if I is a maximal ideal in A,
then A/I is simple and Ms(A/I) is properly infinite (c.f. Proposition 2.2). But A/I need
not be finite. Perhaps one can choose A in such a way that A/I does become finite, at

least for some maximal ideal 1.

Corollary 4.5 Let A x My(C) be the universal unital free product of a unital separable
C*-algebra A and My(C). Let f € My(C) C A x My(C) be a one-dimensional projection.
Then f is not properly infinite in A x My(C).

Proof: By Example 4.3 and its proof there is a unital finite C*-algebra B such that My(B)
is the multiplier algebra of a stable C*-algebra. Let e € My(B) correspond to the unit of
B C M,(B) (so that e is a finite projection in My(B)), and let @o: My(C) — My(B) be
a unital *-homomorphism with po(f) = e (where f € M,(C) is the given one-dimensional
projection).

By Lemma 3.4, B(H) embeds unitally into My(B), for some infinite dimensional sepa-
rable Hilbert space H, and therefore we can find a unital embedding ¢;: A — Ms(B). By
universality of the free product, there exists a (unique) *-homomorphism ¢: A x My(C) —
M, (B) such that ¢|4 = ¢ and @[, = @2- In particular, ¢(f) = e. Proposition 2.2 now
yields that f is not properly infinite. [J

We do not know if f in Corollary 4.5 is actually finite for all A, or, say, when A = Q.

The situation in reduced free products is different:
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Proposition 4.6 Let A be a unital properly infinite C*-algebra, let p; be a faithful state
on A, let ps be a faithful state on My(C), and consider the reduced free product C*-algebra

(A, p) = (A, p1) * (M2(C), p2)-
Let f € My(C) C A be a one-dimensional projection. Then f is properly infinite.

Proof: Since A is properly infinite, it admits a unital embedding O,, — A. There is a
sequence of mutually orthogonal non-zero projections in O, C A, and in this sequence
there is a (necessarily properly infinite, full) projection ¢ € A with p;1(q) < p2(f). The
projections f and ¢ are p-free by the construction of the reduced free product. By [7], p is
faithful on 2. Since p(q) = p1(q) < p2(f) = p(f), it follows from [1] (see also [8, Proposi-
tion 1.1]) that ¢ < f in 2. By Proposition 2.2, this entails that f is properly infinite. [J
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