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Abstract

We show that there exists a purely infinite AH-algebra. The AH-algebra arises as

an inductive limit of C∗-algebras of the form C0([0, 1),Mk) and it absorbs the Cuntz

algebra O∞ tensorially. Thus one can reach an O∞-absorbing C∗-algebra as an

inductive limit of the finite and elementary C∗-algebras C0([0, 1),Mk).

As an application we give a new proof of a recent theorem of Ozawa that the cone

over any separable exact C∗-algebra is AF-embeddable, and we exhibit a concrete

AF-algebra into which this class of C∗-algebras can be embedded.

1 Introduction

Simple C∗-algebras are divided into two disjoint subclasses: those that are stably finite and

those that are stably infinite. (A simple C∗-algebra A is stably infinite if A ⊗ K contains

an infinite projection, and it is stably finite otherwise.) All simple, stably finite C∗-alge-

bras admit a non-zero quasi-trace, and all exact, simple, stably finite C∗-algebras admit a

non-zero trace.

A (possibly non-simple) C∗-algebra A is in [12] defined to be purely infinite if no non-

zero quotient of A is abelian and if for all positive elements a, b in A, such that b belongs

to the closed two-sided ideal generated by a, there is a sequence {xn} of elements in A

with x∗naxn → b. Non-simple purely infinite C∗-algebras have been investigated in [12],

[13], and [3]. All simple purely infinite C∗-algebras are stably infinite, but the opposite

does not hold, cf. [17].

The condition on a (non-simple) C∗-algebra A, that all projections in A⊗K are finite,

does not ensure existence of (partially defined) quasi-traces. There are stably projectionless

purely infinite C∗-algebras— take for example C0(R)⊗O∞, where O∞ is the Cuntz algebra

generated by a sequence of isometries with pairwise orthogonal range projections—and

purely infinite C∗-algebras are traceless.

That stably projectionless purely infinite C∗-algebras can share properties that one

would expect are enjoyed only by finite C∗-algebras was demonstrated in a recent paper
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by Ozawa, [16], in which is it shown that the suspension and the cone over any separable,

exact C∗-algebra can be embedded into an AF-algebra. (It seems off hand reasonable

to characterize AF-embeddability as a finiteness property.) In particular, C0(R) ⊗ O∞ is

AF-embeddable and at the same time purely infinite and traceless. It is surprising that

one can embed a traceless C∗-algebra into an AF-algebra, because AF-algebras are well-

supplied with traces. If ϕ : C0(R)⊗O∞ → A is an embedding into an AF-algebra A, then

Im(ϕ)∩Dom(τ) ⊆ Ker(τ) for every trace τ on A. This can happen only if the ideal lattice

of A has a sub-lattice isomorphic to the interval [0, 1] (see Proposition 4.3). In particular

A cannot be simple.

Voiculescu’s theorem, that the cone and the suspension over any separable C∗-algebra

is quasi-diagonal, [19], is a crucial ingredient in Ozawa’s proof.

By a construction of Mortensen, [15], there is to each totally ordered, compact, metriz-

able set T an AH-algebra AT with ideal lattice T (cf. Section 2). A C∗-algebra is an

AH-algebra, in the sense of Blackadar [1], if it is the inductive limit of a sequence of C∗-

algebras each of which is a direct sum of C∗-algebras of the form Mn(C0(Ω)) = C0(Ω,Mn)

(where n and Ω are allowed to vary). We show in Theorem 3.2 (in combination with Propo-

sition 5.2) that the AH-algebra A[0,1] is purely infinite (and hence traceless)—even in the

strong sense that it absorbs O∞, i.e., A[0,1]
∼= A[0,1] ⊗O∞— and A[0,1] is an inductive limit

of C∗-algebras of the form C0([0, 1),M2n). We can rephrase this result as follows: Take

the smallest class of C∗-algebras, that contains all abelian C∗-algebras and that is closed

under direct sums, inductive limits, and stable isomorphism. Then this class contains a

purely infinite C∗-algebra (because it contains all AH-algebras).

A word of warning: In the literature, an AH-algebra is often defined to be an inductive

limit of direct sums of building blocks of the form pC(Ω,Mn)p, where each Ω is a compact

Hausdorff space (and p is a projection in C(Ω,Mn)). With this definition, AH-algebras

always contain non-zero projections. The algebras we consider, where the building blocs are

of the form C0(Ω,Mn) for some locally compact Hausdorff space, should perhaps be called

AH0-algebras to distinguish them from the compact case, but hoping that no confusion

will arise, we shall not distinguish between AH- and AH0-algebras here.

Every AH-algebra is AF-embeddable. Our Theorem 3.2 therefore gives a new proof

of Ozawa’s result that there are purely infinite—even O∞-absorbing—AF-embeddable C∗-

algebras. Moreover, just knowing that there exists one AF-embeddable O∞-absorbing

C∗-algebra, in combination with Kirchberg’s theorem that all separable, exact C∗-algebras

can be embedded in O∞, immediately implies that the cone and the suspension over any

separable, exact C∗-algebra is AF-embeddable (Theorem 4.2). This observation yields a

new proof of Ozawa’s theorem referred to above.

Section 5 contains some results with relevance to the classification program of Elliott.

In Section 6 we show that A[0,1] can be embedded into the AF-algebra AΩ, where Ω is the

Cantor set, and hence that the the cone and the suspension over any separable, exact C∗-
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algebra can be embedded into this AF-algebra. The ordered K0-group of AΩ is determined.

I thank Nate Brown for several discussions on quasi-diagonal C∗-algebras and on the

possibility of embedding quasi-diagonal C∗-algebras into AF-algebras. I thank Eberhard

Kirchberg for suggesting the nice proof of Proposition 4.1, and I thank the referee for

suggesting several improvements to the paper.

2 The C∗-algebras AT

We review in this section results from Mortensen’s paper [15] on how to associate a C∗-al-

gebra AT with each totally ordered, compact, metrizable set T , so that the ideal lattice of

AT is order isomorphic to T . Where Mortensen’s algebras are inductive limits of C∗-alge-

bras of the form C0(T \{maxT},M2n(O2)), we consider plain matrix algebras M2n in the

place of M2n(O2). It turns out that Mortensen’s algebras and those we consider actually

are isomorphic when T = [0, 1] (see the second paragraph of Section 5).

Any totally ordered set, which is compact and metrizable in its order topology, is order

isomorphic to a compact subset of R (where subsets of R are given the order structure

inherited from R). We shall therefore assume that we are given a compact subset T of R.

Put tmax = maxT , tmin = min T , and put T0 = T \{tmax}. Choose a sequence {tn}
∞
n=1

in T0 such that the tail {tk, tk+1, tk+2, . . . } is dense in T0 for every k ∈ N. Let AT be the

inductive limit of the sequence

C0(T0,M2)
ϕ1

// C0(T0,M4)
ϕ2

// C0(T0,M8)
ϕ3

// · · · // AT , (2.1)

where

ϕn(f)(t) =

(
f(t) 0

0 f(max{t, tn})

)
=

(
f(t) 0

0 (f ◦ χtn)(t)

)
, (2.2)

and where we for each s in T let χs : T → T be the continuous function given by χs(t) =

max{t, s}. The algebra AT depends a priori on the choice of the dense sequence {tn}.

The isomorphism class of AT does not depend on this choice when T is the Cantor set

(as shown in Section 6) or when T is the interval [0, 1] (as will be shown in a forthcoming

paper, [14]). It is likely that AT is independent on {tn} for arbitrary T .

For the sake of brevity, put An = C0(T0,M2n) = C0(T0) ⊗M2n . Let ϕ∞,n : An → AT

and ϕm,n : An → Am, for n < m, denote the inductive limit maps, so that AT is the closure

of
⋃∞

n=1 ϕ∞,n(An).
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Use the identity χs ◦ χt = χmax{s,t} to see that

ϕn+k,n(f) =




f ◦ χmax F1 0 · · · 0

0 f ◦ χmax F2 · · · 0
...

...
. . .

...

0 0 · · · f ◦ χmax F
2k


 , (2.3)

(with the convention max ∅ = tmin), where F1, F2, . . . , F2k is an enumeration of the subsets

of {tn, tn+1, . . . , tn+k−1}. Note that χtmin
is the identity map on T .

For each t ∈ T and for each n ∈ N consider the closed ideal

I
(n)
t

def
= {f ∈ An | f(s) = 0 when s ≥ t} ∼= C0(T ∩ [tmin, t),M2n) (2.4)

of An. Observe that I
(n)
tmin

= {0}, I
(n)
tmax

= An, and I
(n)
t ⊂ I

(n)
s whenever t < s for all n ∈ N.

We have ϕ−1
n (I

(n+1)
t ) = I

(n)
t for all t and for all n, and so

It
def
=

∞⋃

n=1

ϕ∞,n(I
(n)
t ), t ∈ T, (2.5)

is a closed two-sided ideal in AT such that I
(n)
t = ϕ−1

∞,n(It). Moreover, Itmin
= {0}, Itmax =

AT , and It ⊂ Is whenever s, t ∈ T and t < s.

Proposition 2.1 (cf. Mortensen, [15, Theorem 1.2.1]) Let T be a compact subset of

R. Then each closed two-sided ideal in AT is equal to It for some t ∈ T . It follows that the

map t 7→ It is an order isomorphism from the ordered set T onto the ideal lattice of AT .

Proof: Let I be a closed two-sided ideal in AT . Put I (n) = ϕ−1
∞,n(I) C C0(T0,M2n) = An,

and put

Tn =
⋂

f∈I(n)

f−1({0}) ⊆ T, n ∈ N.

Then I (n) is equal to the set of all continuous functions f : T →M2n that vanish on Tn. It

therefore suffices to show that there is t in T such that Tn = T ∩ [t, tmax] for all n, cf. (2.4)

and (2.5). Now,

Tn = Tn+1 ∪ χtn(Tn+1) =
⋃

F⊆Xn,k

χmax F (Tn+k), n, k ∈ N, (2.6)

where Xn,k = {tn, tn+1, . . . , tn+k−1}; because if we let T ′
n,k denote the right-hand side of
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(2.6), then for all f ∈ C0(T0,M2n) = An,

f |Tn
≡ 0 ⇐⇒ f ∈ I (n) ⇐⇒ ϕn+k,n(f) ∈ I (n+k)

⇐⇒ ∀s ∈ Tn+k : ϕn+k,n(f)(s) = 0
(2.3)
⇐⇒ ∀F ⊆ Xn,k ∀s ∈ Tn+k : f(χmaxF (s)) = 0

⇐⇒ f |T ′

n,k
≡ 0.

It follows from (2.6) that minTn ≤ minTn+1 for all n; and as

minχtn(Tn+1) = max{tn,minTn+1} ≥ minTn+1,

we actually have minTn = minTn+1 for all n. Let t ∈ T be the common minimum.

Because t belongs to Tn+k for all k, we can use (2.6) to conclude that Tn contains the set

{tn, tn+1, tn+2, . . . } ∩ [t, tmax]; and this set is by assumption dense in T ∩ (t, tmax]. This

proves the desired identity: Tn = T ∩ [t, tmax], because Tn is a closed subset of T ∩ [t, tmax]

and t belongs to Tn. �

Proposition 2.2 AT is stable for every compact subset T of R.

Proof: Let f be a positive element in the dense subset Cc(T0,M2n) of An and let m > n

be chosen such that f(t) = 0 for all t ≥ tm−1. Then f ◦ χmax F = 0 for every subset F

of {tn, tn+1, . . . , tm−1} that contains tm−1. In the description of ϕm,n(f) in (2.3) we see

that f ◦ χmax Fj
= 0 for at least every other j. We can therefore find a positive function

g in Am = C0(T0,M2m) such that g ⊥ ϕm,n(f) and g ∼ ϕm,n(f) (the latter in the sense

that x∗x = g and xx∗ = ϕm,n(f) for some x ∈ Am). It follows from [8, Theorem 2.1 and

Proposition 2.2] that AT is stable �

3 A purely infinite AH-algebra

We show in this section that the C∗-algebra A[0,1] is traceless and that B = A[0,1] ⊗M2∞

is purely infinite. (In Section 5 it will be shown that A[0,1]
∼= B.)

Following [13, Definition 4.2] we say that an exact C∗-algebra is traceless if it admits no

non-zero lower semi-continuous trace (whose domain is allowed to be any algebraic ideal

of the C∗-algebra). (By restricting to the case of exact C∗-algebras we can avoid talking

about quasi-traces; cf. Haagerup [7] and Kirchberg [10].)

If τ is a trace defined on an algebraic ideal I of a C∗-algebra B, and if I is the

closure of I, then I contains the Pedersen ideal of I. In particular, (a − ε)+ belongs to

I for every positive element a in I and for every ε > 0. (Here, (a − ε)+ = fε(a), where

fε(t) = max{t− ε, 0}. Note that ‖a− (a− ε)+‖ ≤ ε.)
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Proposition 3.1 The C∗-algebra A[0,1] is traceless.

Proof: Assume, to reach a contradiction, that τ is a non-zero, lower semi-continuous,

positive trace defined on an algebraic ideal I of A[0,1], and let It be the closure of I, cf.

Proposition 2.1. Since τ is non-zero, It is non-zero, and hence t > 0.

Identify I
(n)
t = ϕ−1

∞,n(It) with C0([0, t),M2n). Put I(n) = ϕ−1
∞,n(I). If x is a positive

element in I
(n)
t and if ε > 0, then

ϕ∞,n((x− ε)+) =
(
ϕ∞,n(x) − ε

)
+
∈ I,

and so (x − ε)+ ∈ I(n). This shows that I(n) is a dense ideal in I
(n)
t , and hence that I(n)

contains Cc([0, t),M2n).

Let τn be the trace on I(n) defined by τn(f) = τ(ϕ∞,n(f)). We show that

τn(f) =

∫ t

0

Tr(f(s)) dµn(s), f ∈ Cc([0, t),M2n), (3.1)

for some Radon measure µn on [0, t) (where Tr denotes the standard unnormalized trace

on M2n). Use Riesz’ representation theorem to find a Radon measure µn on [0, t) such that

τn(f) = 2n
∫ t

0
f(s)dµn(s) for all f in Cc([0, t),C) ⊆ Cc([0, t),M2n). Let E : Cc([0, t),M2n) →

Cc([0, t),C) be the conditional expectation given by E(f)(t) = 2−nTr(f(t)). Then

E(f) ∈ co{ufu∗ | u is a unitary element in C([0, t],M2n)}, f ∈ Cc([0, t),M2n), (3.2)

from which we see that τn(f) = τn(E(f)). This proves that (3.1) holds. Because µn is a

Radon measure, µn([0, s]) <∞ for all s ∈ [0, t) and for all n ∈ N.

Let {tn}
∞
n=1 be the sequence in T used in the definition of AT . For each n and k in N

we have τn = τn+k ◦ϕn+k,n. Set Xk,n = {tn, tn+1, . . . , tn+k−1} and use (2.3) and (3.1) to see

that

∫ t

0

Tr(f(s)) dµn(s) = τn(f) = τn+k(ϕn+k,n(f))

=

∫ t

0

Tr
(
ϕn+k,n(f)(s)

)
dµn+k(s)

=
∑

F⊆Xk,n

∫ t

0

Tr
(
(f ◦ χmax(F ))(s)

)
dµn+k(s)

=
∑

F⊆Xk,n

∫ t

0

Tr(f(s)) d(µn+k ◦ χ
−1
max(F ))(s)
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for all f ∈ Cc([0, t),M2n). This entails that

µn =
∑

F⊆Xk,n

µn+k ◦ χ
−1
max(F ), (3.3)

for all natural numbers n and k.

We prove next that µn([0, s]) = 0 for all natural numbers n and for all s in [0, t). Choose

r such that 0 < s < r < t. Put Yk,n = Xk,n ∩ [0, s] and put Zk,n = Xk,n ∩ [0, r]. Observe

that

χ−1
u ([0, v]) =

{
∅, if v < u,

[0, v], if v ≥ u,
(3.4)

whenever u, v ∈ [0, 1]. Use (3.3) and (3.4) to obtain

µn([0, r]) =
∑

F⊆Zk,n

µn+k([0, r]) = 2|Zk,n|µn+k([0, r]). (3.5)

Use (3.3), (3.4), and (3.5) to see that

µn([0, s]) =
∑

F⊆Yk,n

µn+k([0, s]) = 2|Yk,n|µn+k([0, s])

≤ 2|Yk,n|µn+k([0, r]) = 2−(|Zk,n|−|Yk,n|)µn([0, r]).

As

lim
k→∞

(
|Zk,n| − |Yk,n|

)
= lim

k→∞

∣∣Xk,n ∩ (s, r]
∣∣ = ∞,

(because
⋃∞

k=nXk,n = {tn, tn+1, . . . } is dense in [0, 1)), and as µn([0, r]) <∞, we conclude

that µn([0, s]) = 0. It follows that µn([0, t)) = 0, whence µn and τn are zero for all n.

However, if τ is non-zero, then τn must be non-zero for some n. To see this, take a

positive element e in I such that τ(e) > 0. Because τ is lower semi-continuous there is

ε > 0 such that τ((e − ε)+) > 0. Now, I(n) is dense in I
(n)
t and

⋃∞
n=1 ϕ∞,n(I

(n)
t ) is dense

in It ⊃ I. It follows that we can find n ∈ N and a positive element f in I (n) such that

‖ϕ∞,n(f)− e‖ < ε. Use for example [13, Lemma 2.2] to find a contraction d ∈ A such that

d∗ϕ∞,n(f)d = (e− ε)+. Put x = ϕ∞,n(f)1/2d. Then

τn(f) = τ(ϕ∞,n(f)) ≥ τ
(
ϕ∞,n(f)1/2dd∗ϕ∞,n(f)1/2

)

= τ(xx∗) = τ(x∗x) = τ
(
(e− ε)+

)
> 0,

and this shows that τn is non-zero. �

In the formulation of the main result below, M2∞ denotes the CAR-algebra, or equivalently

the UHF-algebra of type 2∞.
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It is shown in [13, Corollary 9.3] that the following three conditions are equivalent for

a separable, stable (or unital), nuclear C∗-algebra B:

(i) B ∼= B ⊗O∞.

(ii) B is purely infinite and approximately divisible.

(iii) B is traceless and approximately divisible.

The C∗-algebra O∞ is the Cuntz algebra generated by a sequence {sn}
∞
n=1 of isometries

with pairwise orthogonal range projections. Pure infiniteness of (non-simple) C∗-algebras

was defined in [12] (see also the introduction). A (possibly non-unital) C∗-algebra B is

said to be approximately divisible if for each natural number k there is a sequence of unital
∗-homomorphisms

ψn : Mk ⊕Mk+1 → M(B)

such that ψn(x)b − bψn(x) → 0 for all x ∈ Mk ⊕Mk+1 and for all b ∈ B, cf. [12, Defini-

tion 5.5]. The tensor product A⊗M2∞ is approximately divisible for any C∗-algebra A.

Theorem 3.2 Put B = A[0,1] ⊗M2∞ , where A[0,1] is as defined in (2.1). Then:

(i) B is an inductive limit

C0([0, 1),Mk1) → C0([0, 1),Mk2) → C0([0, 1),Mk3) → · · · → B,

for some natural numbers k1, k2, k3, . . . . In particular, B is an AH-algebra.

(ii) B is traceless, purely infinite, and B ∼= B ⊗ O∞.

It is shown in Proposition 5.2 below that A[0,1]
∼= B. We stress that this fact will not be

used in the proof of Theorem 4.2 below.

Proof: Part (i) follows immediately from the construction of A[0,1] and from the fact that

M2∞ is an inductive limit of matrix algebras.

(ii). The property of being traceless is preserved after tensoring with M2∞ , so B is

traceless by Proposition 3.1. As remarked above, B is approximately divisible, A[0,1] and

hence B are stable by Proposition 2.2, and as B is also nuclear and separable it follows

from [13, Corollary 9.3] (quoted above) that B is purely infinite and O∞-absorbing. �

The C∗-algebra B is stably projectionless, and, in fact, every purely infinite AH-algebra is

(stably) projectionless. Indeed, any projection in an AH-algebra is finite (in the sense of

Murray and von Neumann), and any non-zero projection in a purely infinite C∗-algebra is

(properly) infinite, cf. [12, Theorem 4.16].

It is impossible to find a simple purely infinite AH-algebra, because all simple purely

infinite C∗-algebras contain properly infinite projections.
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4 An application to AF-embeddability

We show here how Theorem 3.2 leads to a new proof of the recent theorem of Ozawa that

the cone and the suspension over any exact separable C∗-algebra are AF-embeddable, [16].

It is well-known that any ASH-algebra, hence any AH-algebra, and hence the C∗-alge-

bras A[0,1] and B from Theorem 3.2 are AF-embeddable. For the convenience of the reader

we include a proof of this fact—the proof we present is due to Kirchberg. (An ASH-algebra

is a C∗-algebra that arises as the inductive limit of a sequence of C∗-algebras each of which

is a finite direct sum of basic building blocks: sub-C∗-algebras of Mn(C0(Ω))—where n

and Ω are allowed to vary.)

An embedding of A[0,1] into an explicit AF-algebra is given in Section 6.

Proposition 4.1 (Folklore) Every ASH-algebra admits a faithful embedding into an AF-

algebra.

Proof: Note first that if A is a sub-C∗-algebra of Mn(C0(Ω)), then its enveloping von

Neumann algebra A∗∗ is isomorphic to
⊕n

k=1Mk(Ck) for some (possibly trivial) abelian

von Neumann algebras C1, C2, . . . , Cn. If C is an abelian von Neumann algebra and if D

is a separable sub-C∗-algebra of Mk(C), then there is a (separable) sub-C∗-algebra D1 of

Mk(C) that contains D and such that D1
∼= Mk(C(X)), where X is a compact Hausdorff

space of dimension zero. In particular, D1 is an AF-algebra.

To see this, let D0 be the separable C∗-algebra generated by D and the matrix units

of Mk ⊆ Mk(C). Then D0 = Mk(D0) for some separable sub-C∗-algebra D0 of C. Any

separable sub-C∗-algebra of a (possibly non-separable) C∗-algebra of real rank zero is

contained in a separable sub-C∗-algebra of real rank zero. (This is obtained by successively

adding projections from the bigger C∗-algebra.) Hence D0 is contained in a separable real

rank zero sub-C∗-algebra D1 of C. It follows from [4] that D1
∼= C(X) for some zero-

dimensional compact Hausdorff space X. Hence D1 = Mk(D1) is as desired.

Assume now that B is an ASH-algebra, so that it is an inductive limit

B1

ψ1
// B2

ψ2
// B3

ψ3
// · · · // B,

where each Bn is a finite direct sum of sub-C∗-algebras of Mm(C0(Ω)). Passing to the

bi-dual we get a sequence of finite von Neumann algebras

B∗∗
1

ψ∗∗
1

// B∗∗
2

ψ∗∗
2

// B∗∗
3

ψ∗∗
3

// · · · .

Use the observation from in the first paragraph (now applied to direct sums of basic building

blocks) to find an AF-algebra D1 such that B1 ⊆ D1 ⊆ B∗∗
1 . Use the observation again to
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find an AF-algebra D2 such that C∗(ψ∗∗
1 (D1), B2) ⊆ D2 ⊆ B∗∗

2 . Continue in this way and

find, at the nth stage, an AF-algebra Dn such that C∗(ψ∗∗
n−1(Dn−1), Bn) ⊆ Dn ⊆ B∗∗

n . It

then follows that the inductive limit D of

D1

ψ∗∗
1

// D2

ψ∗∗
2

// D3

ψ∗∗
3

// · · · // D

is an AF-algebra that contains B. �

Theorem 4.2 (Ozawa) The cone CA = C0([0, 1), A) over any separable exact C∗-algebra

A admits a faithful embedding into an AF-algebra.

Proof: By a renowned theorem of Kirchberg any separable exact C∗-algebra can be em-

bedded into the Cuntz algebra O2 (see [11]), and hence into O∞ (the latter because O2

can be embedded—non-unitally—into O∞). It therefore suffices to show that CO∞ =

C0([0, 1)) ⊗O∞ is AF-embeddable. It is clear from the construction of B in Theorem 3.2

that C0([0, 1)) admits an embedding into the C∗-algebra B. (Actually, one can embed

C0([0, 1)) into any C∗-algebra that absorbs O∞.) As B ∼= B ⊗ O∞, we can embed CO∞

into B. Now, B is an AH-algebra and therefore AF-embeddable, cf. Proposition 4.1, so

CO∞ is AF-embeddable. �

Ozawa used his theorem in combination with a result of Spielberg to conclude that the

class of AF-embeddable C∗-algebras is closed under homotopy invariance, and even more:

If A is AF-embeddable and B is homotopically dominated by A, then B is AF-embeddable.

The suspension SA = C0((0, 1), A) is a sub-C∗-algebra of CA, and so it follows from

Theorem 4.2 that also the suspension over any separable exact C∗-algebra is AF-embeddable.

No simple AF-algebra contains a purely infinite sub-C∗-algebra. In fact, any AF-

algebra, that has a purely infinite sub-C∗-algebra, must have uncountably many ideals:

Proposition 4.3 Suppose that ϕ : A → B is an embedding of a purely infinite C∗-alge-

bra A into an AF-algebra B. Let a be a non-zero positive element in Im(ϕ). For each t

in [0, ‖a‖] let It be the closed two-sided ideal in B generated by (a − t)+. Then the map

t 7→ I‖a‖−t defines an injective order embedding of the interval [0, ‖a‖] into the ideal lattice

of B.

Proof: Since A is traceless (being purely infinite, cf. [12]), Im(ϕ) ∩ Dom(τ) ⊆ Ker(τ) for

every trace τ on B.

Let 0 ≤ t < s ≤ ‖a‖ be given. We show that Is is strictly contained in It. Find a

projection p in (a− t)+B(a− t)+ such that ‖(a − t)+ − p(a − t)+p‖ < s − t. There is a

trace τ , defined on the algebraic ideal in B generated by p, with τ(p) = 1. We claim that

Is ⊆ Ker(τ) ⊂ Dom(τ) ⊆ It,
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and this will prove the proposition. To see the first inclusion, there is d in B such that

(a− s)+ = d∗p(a− t)+pd (use for example [13, Lemma 2.2 and (2.1)]). Therefore (a− s)+

belongs to the algebraic ideal generated by p, whence (a−s)+ ∈ Im(ϕ)∩Dom(τ) ⊆ Ker(τ).

This entails that Is is contained in the kernel of τ .

The strict middle inclusion holds because 0 < τ(p) < ∞. The last inclusion holds

because p belongs to (a− t)+B(a− t)+ ⊆ It. �

It follows from Proposition 5.1 below that no AF-algebra can have ideal lattice isomorphic

to [0, 1], and so the order embedding from Proposition 4.3 can never be surjective. In

Section 6 we show that one can embed a (stably projectionless) purely infinite C∗-algebra

into the AF-algebra AΩ, where Ω is the Cantor set. The ideal lattice of AΩ is the totally

ordered and totally disconnected set Ω.

5 Further properties of the algebras AT

Nuclear separable C∗-algebras that absorb O∞ have been classified by Kirchberg in terms

of an ideal preserving version of Kasparov’s KK-theory, see [9]. It is not easy to decide

when two such C∗-algebras with the same primitive ideal space are KK-equivalent in this

sense. There is however a particularly well understood special case: If A and B are nuclear,

separable, stable C∗-algebras that absorb the Cuntz algebra O2, then A is isomorphic to

B if and only if A and B have homeomorphic primitive ideal spaces (cf. Kirchberg, [9]).

We show in this section that A[0,1]
∼= A[0,1] ⊗ O∞ and that A[0,1] is isomorphic to the

C∗-algebra B from Theorem 3.2. It is shown in a forthcoming paper, [14], that A[0,1]
∼=

A[0,1]⊗O2 (using an observartion that A[0,1] is zero homotopic in an ideal-system preserving

way, i.e., there is a ∗-homomorphism Ψ: A[0,1] → C0([0, 1), A[0,1]) such that ev0◦Ψ = idA[0,1]

and Ψ(J) ⊆ C0([0, 1), J) for every closed two-sided ideal J in A[0,1]). Thus it follows from

Kirchberg’s theorem that A[0,1] is the unique separable, nuclear, stable, O2-absorbing C∗-

algebra whose ideal lattice is (order isomorphic to) [0, 1]. It seems likely (but remains

open) that any separable, nuclear, traceless C∗-algebra with ideal lattice isomorphic to

[0, 1] must absorb O2 and hence be isomorphic to A[0,1].

Not all nuclear, separable C∗-algebras, whose ideal lattice is isomorphic to [0, 1], are

purely infinite (or traceless) as shown in Proposition 5.4 below.

We derive below a couple of facts about C∗-algebras that have ideal lattice isomorphic

to [0, 1]:

Proposition 5.1 Let D be a C∗-algebra with ideal lattice order isomorphic to [0, 1]. Then

D stably projectionless. If D moreover is purely infinite and separable, then D is necessarily

stable.
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Proof: Since D and D⊗K have the same ideal lattice it suffices to show that D contains

no non-zero projections. Let {It | t ∈ [0, 1]} be the ideal lattice of D (such that It ⊂ Is
whenever t < s). Suppose, to reach a contradiction, that D contains a non-zero projection

e. Let Is be the ideal in D generated by e. The ideal lattice of the unital C∗-algebra eDe

is then {eIte | t ∈ [0, s]} and eIte ⊂ eIre whenever 0 ≤ t < r ≤ s. This is in contradiction

with the well-known fact that any unital C∗-algebra has a maximal proper ideal.

Suppose now that D is purely infinite and separable. To show that D is stable it suffices

to show that D has no (non-zero) unital quotient, cf. [12, Theorem 4.24]. Now, the ideal

lattice of an arbitrary quotient D/Is of D is equal to {It/Is | t ∈ [s, 1]}, and this lattice

is order isomorphic to the interval [0, 1] (provided that Is 6= I1 = D). It therefore follows

from the first part of the proposition that D/Is has no non-zero projection and D/Is is

therefore in particular non-unital. �

Proposition 5.2 AT
∼= AT ⊗M2∞ ⊗ K for every compact subset T of R.

Proof: It was shown in Proposition 2.2 that AT is stable. We proceed to show that AT

is isomorphic to AT ⊗ M2∞ . Recall that An = C0(T0,M2n), put Ãn = C(T,M2n), and

consider the commutative diagram:

A1

ϕ1
//

_�

��

A2

ϕ2
//

_�

��

A3

ϕ3
//

_�

��

· · · // AT
_�

��

Ã1 ϕ̃1

// Ã2 ϕ̃2

// Ã3 ϕ̃3

// · · · // Ã,

where ϕn is as defined in (2.2), and where ϕ̃n : Ãn → Ãn+1 is defined using the same recipe

as in (2.2). The inductive limit C∗-algebra Ã is unital, each An is an ideal in Ãn, and AT

is (isomorphic to) an ideal in Ã.

We show that Ã ∼= Ã ⊗M2∞ . This will imply that AT is isomorphic to an ideal of

Ã ⊗ M2∞. Each ideal in Ã ⊗ M2∞ is of the form I ⊗ M2∞ for some ideal I in Ã. As

M2∞
∼= M2∞ ⊗M2∞ it will follow that AT

∼= AT ⊗M2∞ .

By [2, Proposition 2.12] (and its proof) to prove that Ã ∼= Ã ⊗M2∞ it suffices to show

that for each finite subset G of Ã and for each ε > 0 there is a unital ∗-homomorphism

λ : M2 → Ã such that ‖λ(x)g − gλ(x)‖ ≤ ε‖x‖ for all x ∈ M2 and for all g ∈ G. We may

assume that G is contained in ϕ̃∞,n(Ãn) for some natural number n. Put H = ϕ̃−1
∞,n(G).

It now suffices to find a natural number k and a unital ∗-homomorphism λ : M2 → Ãn+k

such that

‖λ(x)ϕ̃n+k,n(h) − ϕ̃n+k,n(h)λ(x)‖ ≤ ε‖x‖, x ∈M2, h ∈ H. (5.1)

Put tmin = minT , and find δ > 0 such that ‖h(t) − h(tmin)‖ ≤ ε/2 for all h in H
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and for all t in T with |t − tmin| < δ. Let {tn} be the dense sequence in T0 used in the

definition of AT . Find m ≥ n such that |tm − tmin| < δ. Put k = m + 1 − n, and organize

the elements in X = {tn, tn+1, . . . , tm+1} in increasing order and relabel the elements by

s1 ≤ s2 ≤ s3 ≤ · · · ≤ sk. Let F1, F2, . . . , F2k be the subsets of X ordered such that F1 = ∅

and

maxF2 = s1, maxF3 = maxF4 = s2, . . . , maxF2k−1+1 = · · · = maxF2k = sk.

Then |s1− tmin| < δ, and so ‖h◦χmax F1 −h◦χmax F2‖ ≤ ε for h ∈ H (we use the convention

max ∅ = tmin); and h ◦ χmax F2j−1
= h ◦ χmax F2j

when j ≥ 2 for all h.

We shall use the picture of ϕn+k,n given in (2.3), which is valid also for ϕ̃n+k,n. However,

since the sets F1, F2, . . . , Fk possibly have been permuted, ϕn+k,n and the expression in (2.3)

agree only up to unitary equivalence. Let λ : M2 → Ãn+k be the unital ∗-homomorphism

given by λ(x) = diag(x, x, . . . , x) (with 2k−1 copies of x). Use (2.3) and the estimate

∥∥x
(
h ◦ χmax F2j−1

0

0 h ◦ χmax F2j

)
−

(
h ◦ χmax F2j−1

0

0 h ◦ χmax F2j

)
x
∥∥

≤ ‖x‖‖h ◦ χmax F2j−1
− h ◦ χmax F2j

‖ ≤ ε‖x‖,

that holds for j = 1, 2, . . . , 2k−1, for h ∈ H, and for all x ∈M2(C) ⊆ C(T,M2), to conclude

that (5.1) holds, and hence that Ã ∼= Ã⊗M2∞. �

Propositions 5.2 together with Theorem 3.2 yield:

Corollary 5.3 The C∗-algebra A[0,1] is purely infinite and A[0,1]
∼= A[0,1] ⊗O∞.

We conclude this section by showing that the tracelessness of the C∗-algebras A[0,1] (es-

tablished in Proposition 3.1) is not a consequence of its ideal lattice being isomorphic to

[0, 1].

Proposition 5.4 Let {ln}
∞
n=1 be a sequence of positive integers, and let {tn}

∞
n=1 be a

dense sequence in [0, 1). Put k1 = 1, put kn+1 = (ln + 1)kn for n ≥ 1, and put Dn =

C0([0, 1),Mkn
). Let D be the inductive limit of the sequence

D1

ψ1
// D1

ψ2
// D2

ψ3
// · · · // D,

where ψn(f) = diag(f, f, . . . , f, f ◦ χtn) (with ln copies of f), and where χtn : [0, 1] → [0, 1]

as before is given by χtn(s) = max{s, tn}.

It follows that the ideal lattice of D is isomorphic to the interval [0, 1]. Moreover, if∏∞
n=1 ln/(ln + 1) > 0, then D has a non-zero bounded trace, in which case D is not stable

and not purely infinite.
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Proof: An obvious modification of the proof of Proposition 2.1 shows that the ideal lattice

of D is isomorphic to [0, 1]. As in the proof of Proposition 5.2 we construct a unital C∗-al-

gebra D̃, in which D is a closed two-sided ideal, by letting D̃ be the inductive limit of the

sequence

D1

ψ1
//

_�

��

D2

ψ2
//

_�

��

D3

ψ3
//

_�

��

· · · // D
_�

��

D̃1
ψ̃1

// D̃2
ψ̃2

// D̃3
ψ̃3

// · · · // D̃,

where D̃n = C([0, 1],Mkn
) and ψ̃n(f) = diag(f, . . . , f, f ◦ χtn). Remark that

D̃/D ∼= lim
−→

D̃n/Dn
∼= lim

−→
Mkn

is a UHF-algebra. If τ is a tracial state on D̃ that vanishes on D, then τ is the composition

of the quotient mapping D̃ → D̃/D and the unique tracial state on the UHF-algebra D̃/D.

It follows that there is only one tracial state τ on D̃ that vanishes on D.

Suppose now that
∏∞

n=1 ln/(ln + 1) > 0. It then follows, as in the construction of

Goodearl in [6], that the simplex of tracial states on D̃ is homeomorphic to the simplex

of probability measures on [0, 1] and hence that D̃ has a tracial state that does not vanish

on D. The restriction of this trace to D is then the desired non-zero bounded trace.

(Goodearl constructs simple C∗-algebras; and where f ◦χtn appears in our connecting map

ψ̃n, Goodearl uses a point evaluation, i.e., the constant function t 7→ f(tn). Goodearl’s

proof can nonetheless and without changes be applied in our situation.) �

6 An embedding into a concrete AF-algebra

Let T be a compact subset of R and set T0 = T \{maxT}. Then C0(T0,M2n) is an AF-

algebra if and only if T is totally disconnected. It follows that the C∗-algebra AT (defined

in (2.1)) is an AF-algebra whenever T is totally disconnected. Let Ω denote the Cantor set

(realized as the “middle third” subset of [0, 1], and with the total order it inherits from its

embedding in R). Actually any totally disconnected, compact subset of R with no isolated

points is order isomorphic to Ω.

We show here that the AF-algebra from Theorem 4.2, into which the cone over any

separable exact C∗-algebra can be embedded, can be chosen to be AΩ. The ideal lattice of

AΩ is order isomorphic to Ω (by Proposition 2.1). In the light of Proposition 4.3 and by

the fact that the ideal lattice of an AF-algebra is totally disconnected (in an appropriate

sense) the AF-algebra AΩ has the least complicated ideal lattice among AF-algebras that

admit embeddings of (stably projectionless) purely infinite C∗-algebras.
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We begin by proving a general result on when AS can be embedded into AT :

Proposition 6.1 Let S and T be compact subsets of R. Set T0 = T \ {maxT} and

S0 = S \{maxS}. Suppose there is a continuous, increasing, surjective function λ : T → S

such that λ(T0) = S0. Let {tn}
∞
n=1 be a sequence in T0 such that {tn}

∞
n=k is dense in T0

for every k, and put sn = λ(tn). Then {sn}
∞
n=k is dense in S0 for every k, and there is an

injective ∗-homomorphism λ] : AS → AT , when AT and AS are inductive limits as in (2.1)

with respect to the sequences {tn}
∞
n=1 and {sn}

∞
n=1, respectively. If λ moreover is injective,

then λ] is an isomorphism.

Proof: There is a commutative diagram:

C0(S0,M2)
ϕ1

//

λ̂
��

C0(S0,M4)
ϕ2

//

λ̂
��

C0(S0,M8)
ϕ3

//

λ̂
��

· · · // AS

λ]

��
�

�

�

C0(T0,M2)
ψ1

// C0(T0,M4)
ψ2

// C0(T0,M8)
ψ3

// · · · // AT

(6.1)

where λ̂(f) = f ◦ λ, and where

ϕn(f) =

(
f 0

0 f ◦ χsn

)
, ψn(f) =

(
f 0

0 f ◦ χtn

)
, (6.2)

cf. (2.2). Note that λ(tmax) = smax (because λ is surjective), and so λ̂(f)(tmax) = f(λ(tmax)) =

f(smax) = 0. To see that the diagram (6.1) indeed is commutative we must check that

λ̂ ◦ ϕn = ψn ◦ λ̂ for all n. By (6.2),

(λ̂ ◦ ϕn)(f) =

(
f ◦ λ 0

0 f ◦ χsn
◦ λ

)
, (ψn ◦ λ̂)(f) =

(
f ◦ λ 0

0 f ◦ λ ◦ χtn

)
,

for all f ∈ C0(S0,M2n), so it suffices to check that χsn
◦ λ = λ ◦ χtn . But

(χsn
◦ λ)(x) = max{λ(x), sn} = max{λ(x), λ(tn)} = λ

(
max{x, tn}

)
= (λ ◦ χtn)(x),

where the third equality holds because λ is increasing.

Each map λ̂ in the diagram (6.1) is injective (because λ is surjective), so the ∗-homo-

morphism λ] : AS → AT induced by the diagram is injective.

If λ also is injective, then each map λ̂ in (6.1) is an isomorphism in which case λ] is an

isomorphism. �

Combine (the proof of) Theorem 4.2 with Proposition 5.2 to obtain:
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Proposition 6.2 The cone and the suspension over any separable exact C∗-algebra admits

an embedding into the AH-algebra A[0,1].

Lemma 6.3 There is a continuous, increasing, surjective map λ : Ω → [0, 1] that maps

[0, 1) into Ω0, where Ω is the Cantor set and where Ω0 = Ω\{1}.

Proof: Each x in Ω can be written x =
∑

n∈F 2·3−n for a unique subset F of N. We can

therefore define λ by

λ
( ∑

n∈F

2·3−n
)

=
∑

n∈F

2−n, F ⊆ N.

It is straightforward to check that λ has the desired properties. �

Corollary 6.4 The cone and the suspension over any separable exact C∗-algebra admits

an embedding into the AF-algebra AΩ.

Proof: It follows from Proposition 6.1 and Lemma 6.3 that A[0,1] can be embedded into

AΩ. The corollary is now an immediate consequence of Proposition 6.2. �

By a renowned theorem of Elliott, [5], the ordered K0-group is a complete invariant for

the stable isomorphism class of an AF-algebra. We shall therefore go to some length to

calculate the ordered group K0(AΩ).

As K0(AΩ) does not depend on the choice of dense sequence {tn}
∞
n=1 used in the induc-

tive limit description of AΩ, (2.1), it follows in particular from Proposition 6.5 below that

the isomorphism class of AΩ is independent of this sequence.

The Cantor set Ω is realized as the “middle-third” subset of [0, 1] (so that 0 = min Ω

and 1 = max Ω). Consider the countable abelian group G = C0(Ω0,Z[1
2
]) where the

composition is addition, and where the group of Dyadic rationals Z[ 1
2
] is given the discrete

topology. Equip G with the lexicographic order, whereby f ∈ G+ if and only if either

f = 0 or f(t0) > 0 for t0 = sup{t ∈ Ω | f(t) 6= 0}. (The set {t ∈ Ω | f(t) 6= 0} is clopen

because Z[1
2
] is discrete, and so f(t0) 6= 0.) It is easily checked that (G,G+) is a totally

ordered abelian group, and hence a dimension group.

Proposition 6.5 The group K0(AΩ) is order isomorphic to the group C0(Ω0,Z[1
2
]) equip-

ped with the lexicographic ordering.

Proof: Let {tn}
∞
n=1 be any sequence in Ω0 = Ω\{1} such that {tk, tk+1, tk+2, . . . } is dense

in Ω0 for all k. Write AΩ as an inductive limit with connecting maps ϕn as in (2.1).

By continuity of K0 and because K0(C0(Ω0,M2n)) ∼= C0(Ω0,Z) (as ordered abelian

groups) (see eg. [18, Exercise 3.4]), the ordered abelian group K0(AΩ) is the inductive

limit of the sequence

C0(Ω0,Z)
α1

// C0(Ω0,Z)
α2

// C0(Ω0,Z)
α3

// · · · // K0(AΩ),
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where αn(f) = K0(ϕn)(f) = f + f ◦ χtn .

Choose for each n ∈ N a partition {A
(n)
1 , A

(n)
2 , . . . , A

(n)
2n } of Ω into clopen intervals

(written in increasing order) such that

(a) A
(n)
j = A

(n+1)
2j−1 ∪ A

(n+1)
2j ,

(b) tn ∈ A
(n)
1 for infinitely many n,

(c)
⋃∞

n=1{A
(n)
1 , A

(n)
2 , . . . , A

(n)
2n } is a basis for the topology on Ω.

Set F =
⋃∞

n=1{A
(n)
1 , A

(n)
2 , . . . , A

(n)
2n−1}, and set

Hn = span{1
A

(n)
j

| j = 1, 2, . . . , 2n − 1} ⊆ C0(Ω0,Z).

Note that 1
A

(n)
2n

does not belong to C0(Ω0,Z) because 1 ∈ A
(n)
2n .

We outline the idea of the rather lengthy proof below. We show first that αn(Hn) ⊆

Hn+1 for all n and that
⋃∞

n=1 α∞,n(Hn) = K0(AΩ), where α∞,n = K0(ϕ∞,n) is the in-

ductive limit homomorphism from C0(Ω0,Z) to K0(AΩ). We then construct positive,

injective group homomorphisms βn : Hn → C0(Ω0,Z[1
2
]) that satisfy βn+1 ◦ αn = βn for

all n, and which therefore induce a positive injective group homomorphism β : K0(AΩ) →

C0(Ω0,Z[1
2
]). It is finally proved that β is onto and that K0(AΩ) is totally ordered, and

from this one can conclude that β is an order isomorphism.

For each interval [r, s] ∩ Ω and for each t ∈ Ω,

1[r,s]∩Ω ◦ χt =





1[r,s]∩Ω, t < r,

1[0,s]∩Ω, r ≤ t ≤ s,

0, t > s.

(6.3)

Suppose that A1, A2, . . . , Am is a partition of Ω into clopen intervals, written in increasing

order, and that t ∈ Aj0. Then, by (6.3),

1Aj
+ 1Aj

◦ χt =





1Aj
, j < j0,

2·1Aj
+ 1Aj−1

+ · · ·+ 1A1 , j = j0,

2·1Aj
, j > j0.

(6.4)

The lexicographic order on G = C0(Ω0,Z[1
2
]) has the following description: If k ≤ n and if

r1, r2, . . . , rk are elements in Z[ 1
2
] with rk 6= 0, then

rk1Ak
+ rk−11Ak−1

+ · · ·+ r11A1 ∈ G+ ⇐⇒ rk > 0. (6.5)
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It follows from (6.4) that αn(Hn) = Hn ⊆ Hn+1. As F is a basis for the topology of

Ω, the set {1A | A ∈ F} generates C0(Ω0,Z). To prove that
⋃∞

n=1 α∞,n(Hn) = K0(AΩ) it

suffices to show that α∞,m(1A) belongs to
⋃∞

n=1 α∞,n(Hn) for every A in F and for every

m in N. Take A ∈ F and find a natural number n ≥ m such that 1A belongs to Hn. Let

A′ be the clopen interval in Ω consisting of all points in Ω that are smaller than minA.

Then 1A′ belongs to Hn, and αn,m(1A) belongs to span{1A′, 1A} ⊆ Hn by (6.4). Hence

α∞,m(1A) = α∞,n(αn,m(1A)) belongs to α∞,n(Hn).

The next step is to find a sequence of positive, injective group homomorphisms βn : Hn →

G such that βn+1 ◦ αn = βn. (This sequence will then induce a positive, injective group

homomorphism β : K0(AΩ) → G.) Each function {1
A

(n)
1
, 1

A
(n)
2
, . . . , 1

A
(n)
2n−1

} → G+ extends

uniquely to a positive group homomorphism Hn → G, and so it suffices to specify βn on

this generating set. We do so by setting

βn(1
A

(n)
j

) = δ(j, j, n)1
A

(n)
j

+

j−1∑

i=1

δ(j, i, n)1
A

(n)
i

, j = 1, 2, . . . , 2n − 1, (6.6)

for suitable coefficients, δ(j, i, n), in Z[ 1
2
]—to be contructed—such that δ(j, j, n) = 2−k > 0

for some k ∈ N, and such that 1
A

(n)
j

belongs to the image of βn for j = 1, 2, . . . , 2n − 1.

Positivity of βn will follow from (6.5), (6.6), and the fact that δ(j, j, n) > 0.

For n = 1 set β1(1A
(1)
1

) = 1
A

(1)
1

, so that δ(1, 1, 1) = 1. Suppose that βn has been found.

The point tn belongs to A
(n)
j0

for some j0. The equation βn+1(αn(1
A

(n)
j

)) = βn(1
A

(n)
j

) has by

(6.4) the solution:

βn+1(1A
(n)
j

) =





βn(1
A

(n)
j

), j < j0,

1
2
βn(1

A
(n)
j

) − 1
2

∑j−1
i=1 βn(1

A
(n)
i

), j = j0,

1
2
βn(1

A
(n)
j

), j > j0.

(6.7)
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Extend βn+1 from Hn to Hn+1 as follows:

βn+1(1A
(n+1)
2j−1

) = δ(j, j, n)1
A

(n+1)
2j−1

+

j−1∑

i=1

δ(j, i, n)1
A

(n)
i

, j = 1, . . . , j0 − 1,

βn+1(1A
(n+1)
2j

) = δ(j, j, n)1
A

(n+1)
2j

, j = 1, . . . , j0 − 1,

βn+1(1A
(n+1)
2j−1

) =
1

2
δ(j, j, n)1

A
(n+1)
2j−1

+
1

2

j−1∑

i=1

(
δ(j, i, n) −

j−1∑

k=i

δ(k, i, n)
)
1

A
(n)
i

, j = j0,

βn+1(1A
(n+1)
2j

) =
1

2
δ(j, j, n)1

A
(n+1)
2j

, j = j0,

βn+1(1A
(n+1)
2j−1

) =
1

2
δ(j, j, n)1

A
(n+1)
2j−1

+
1

2

j−1∑

i=1

δ(j, i, n)1
A

(n)
i

, j = j0 + 1, . . . , 2n − 1,

βn+1(1A
(n+1)
2j

) =
1

2
δ(j, j, n)1

A
(n+1)
2j

, j = j0 + 1, . . . , 2n − 1,

βn+1(1A
(n+1)
2n−1

) = 1
A

(n+1)
2n−1

.

The coefficients, implicit in these expressions for βn+1(1A
(n+1)
j

), will be our δ(j, i, n + 1).

It follows by induction on n that each coefficient δ(j, i, n) belongs to Z[ 1
2
] and that

δ(j, j, n) = 2−k for some k ∈ N (that depends on j and n). The formula above for βn+1 is

consistent with (6.7), and so βn+1 ◦ αn = βn. It also follows by induction on n that 1
A

(n)
j

belongs to Im(βn) for j = 1, 2, . . . , 2n − 1. This clearly holds for n = 1. Assume it holds

for some n ≥ 1. Then 1
A

(n)
j

belongs to Im(βn) ⊆ Im(βn+1) for j = 1, 2, . . . , 2n − 1, and

hence 1
A

(n+1)
2j

, 1
A

(n+1)
2j−1

= 1
A

(n)
j

− 1
A

(n+1)
2j

, and 1
A

(n+1)
2n−1

belong to Im(βn+1). It is now verified

that each βn is as desired.

To complete the proof we must show that the positive, injective, group homomorphism

β : K0(AΩ) → G is surjective and that β(K0(AΩ)+) = G+. The former follows from the

already established fact that 1A belongs to the image of β for all A ∈ F , and from the

fact, which follows from Proposition 5.2, that if f belongs to Im(β), then so does 1
2
f . The

latter identity is proved by verifying that K0(AΩ) is totally ordered.

To show that K0(AΩ) is totally ordered we must show that either f or −f is positive

for each non-zero f in K0(AΩ). Write f = α∞,n(g) for a suitable n and g ∈ C0(Ω0,Z). Let

r be the largest point in Ω for which g(r) 6= 0. Upon replacing f by −f , if necessary, we

can assume that g(r) is positive. There is a (non-empty) clopen interval A = [s, r] ∩ Ω for

which g(t) ≥ 1 for all t in A. Put Xk,n = {tn, tn+1, . . . , tn+k−1}, Yk,n = Xk,n ∩ [0, r], and
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Zk,n = Xk,n ∩ [0, s). By (6.3) and an analog of (2.3) we get

αn+k,n(g) =
∑

F⊆Xk,n

g ◦ χmax F =
∑

F⊆Yk,n

g ◦ χmax F

≥
∑

F⊆Zk,n

min g(Ω0) +
∑

F⊆Yk,n, F*Zk,n

1A ◦ χmax F

= 2|Zk,n| ·min g(Ω0) +
(
2|Yk,n| − 2|Zk,n|

)
·1[0,r]∩Ω.

Now,

lim
k→∞

(
|Yk,n| − |Zk,n|

)
= lim

k→∞
|Xk,n ∩ [r, s]| = ∞,

so αn+k,n(g) ≥ 0 for some large enough k. But then f = α∞,n+k(αn+k,n(g)) is positive.

�
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