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Abstract. It is proved that if X is a compact Hausdorff space of Lebesgue
dimension dim(X), then the squaring mapping αm : (C(X)sa)

m
→ C(X)+,

defined by αm(f1, . . . , fm) =
∑

m

i=1
f2

i
, is open if and only if m−1 ≥ dim(X).

Hence the Lebesgue dimension of X can be detected from openness of the
squaring maps αm. In the case m = 1 it is proved that the map x 7→ x2, from
the self-adjoint elements of a unital C∗-algebra A into its positive elements,
is open if and only if A is isomorphic to C(X) for some compact Hausdorff
space X with dim(X) = 0.

1. Introduction

A compact Hausdorff space X is defined to have Lebesgue dimension ≤ m if
for every closed subset F of X, each continuous map F → Sm has a continuous
extension X → Sm.

Various types of ranks for (unital) C∗-algebras have been inspired by cor-
responding prototypes in the classical dimension theory of (compact) spaces,
such as the one given above. While the Lebesgue dimension of a compact space
has numerous equivalent formulations, the extensions of these equivalent for-
mulations to non-commutative C∗-algebras most often differ. Examples of such
ranks for C∗-algebras are the stable rank defined by Rieffel in [7], the real rank

defined by Brown and Pedersen in [1], the analytic rank defined by Murphy in
[4], the tracial rank defined by Lin in [3], the completely positive rank consid-
ered by Winter in [8], and the bounded rank defined in [2] (see also [6] for the
definition of the exponential rank).

It was shown in [2] that a unital C∗-algebra A has real rank at most n if

the squaring map (x1, . . . , xn+1) 7→
∑n+1

i=1
x2

i , from the set of (n + 1)-tuples of
self-adjoint elements to the set of positive elements in A, is open; and it was
asked if the reverse also holds, in which case openness of the squaring maps
would determine the real rank of the C∗-algebra.

In the present note we answer this question in the affirmative in the com-
mutative case — and in the negative in the general (non-commutative) case.
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The latter — negative — answer follows from our result that the squaring map
x 7→ x2 (from the set of self-adjoint elements to the set of positive elements) is
open if and only if the C∗-algebra is commutative and of real rank zero. Hence
the squaring map x 7→ x2 is not open for the C∗-algebra M2 of 2 by 2 matrices,
but this C∗-algebra has real rank zero.

The athors would like to thank A. N. Dranishnikov for useful conversations
related to Proposition 2.2.

2. Results

For a C∗-algebra A we use the standard notation Asa and A+ to denote the
set of all self-adjoint and the set of all positive elements of A, respectively.
The real rank of a unital C∗-algebra A, denoted by RR(A), is in [1] defined as
follows: For each non-negative integer n, RR(A) ≤ n if for every (n + 1)-tuple
(x1, . . . , xn+1) in Asa and every ε > 0, there exists an (n+1)-tuple (y1, . . . , yn+1)
in Asa such that

∑n+1

k=1
y2

k is invertible and
∑n+1

k=1
‖xk − yk‖ < ε.

Let us say that a unital C∗-algebra A has an open m-squaring map if the map
αm : (Asa)

m → A+, defined by αm(x1, . . . , xm) =
∑m

k=1
x2

k, is open. Observe
that αm is open at (x1, . . . , xm) if for every ε > 0 there is δ > 0 such that for
all a ∈ A+ with ‖

∑m
k=1

x2
k − a‖ < δ there is an m-tuple (y1, . . . , ym) in Asa with∑m

k=1
y2

k = a and
∑m

k=1
‖xk − yk‖ < ε.

For the reader’s convenience we present a shorter proof of [2, Proposition 7.1].

Proposition 2.1. Let A be a unital C∗-algebra. If the (n+1)-squaring map on

A is open, then RR(A) ≤ n.

Proof. Let (x1, . . . , xn+1) be an (n + 1)-tuple of self-adjoint elements in A and
let ε > 0. By openness of the (n+1)-squaring map there is δ > 0 and an (n+1)-
tuple (y1, . . . , yn+1) of self-adjoint elements in A such that

∑n+1

k=1
‖xk − yk‖ < ε

and
∑n+1

k=1
y2

k =
∑n+1

k=1
x2

k + δ · 1, and the latter element is invertible (because
each x2

k is positive). �

Next, we prove the reverse of Proposition 2.1 in the commutative case.

Proposition 2.2. If X is a compact space such that dim X ≤ n, then C(X)
has open (n + 1)-squaring map.

Proof. Let f = f 2
1 + · · · + f 2

n+1. Put mi = sup fi for i = 1, . . . , n + 1 and let
m = max{mi}. Fix ε > 0 and let

δ = min

{
(ε/3)4

m2
,
(ε

3

)2
}

and U =

{
x ∈ X : f(x) >

(ε

3

)2
}

.

Let also A = f−1([0, (ε/3)2]) and S = f−1((ε/3)2). Then A and S are closed
subsets of X such that A = X\U and S ⊆ A.

Now consider the diagonal product
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F (x) = (f1(x), . . . , fn+1(x)) : X → R
n+1

and note that

A = F−1
(
Bn+1

)
and S = F−1 (Sn) ,

where

Bn+1 = Bn+1 (0, ε/3) and Sn = ∂Bn+1 (0, ε/3) .

Since dim A ≤ dim X ≤ n, the map F |S : S → Sn admits an extension
H : A → Sn (see, for instance, [5, Ch. 3, Theorem 2.2]). Let hi : A → R be
the i-th component of the map H. Since H(A) ⊆ Sn it follows that h2

1 + · · · +
h2

n+1 = (ε/3)2. Note also that since H|S = F |S we have hi|S = fi|S for each
i = 1, . . . , n + 1.

The last condition allows us to define for each i = 1, . . . , n + 1 a continuous

map h̃i on X by letting

h̃i(x) =

{
fi(x), if x ∈ U

hi(x), if x ∈ A

Observe that the function h̃ = h̃1

2

+ · · · + h̃2
n+1 is strictly positive on X.

Notice also that h̃|U = f |U and h̃|A = (ε/3)2.
Take next a positive function g in C(X) with ‖f−g‖∞ < δ. Define a function

λ on X by λ(x) =
(
g(x)/h̃(x)

)1/2
. Note that λ ≥ 0.

Now define gi for i = 1, . . . , n + 1, on X by the formula gi(x) = h̃i(x) · λ(x).
Clearly

g2

1(x) + · · ·+ g2

n+1(x) =
(
h̃1(x) · λ(x)

)2

+ · · · +
(
h̃n+1(x) · λ(x)

)2

=

λ2(x)
(
h̃2

1(x) + · · ·+ h̃2

n+1(x)
)

=
g(x)

h̃(x)
·
(
h̃2

1(x) + · · · + h̃2

n+1(x)
)

= g(x).

Next let us show that gi is sufficiently close to fi for each i = 1, . . . , n + 1.
Indeed, since ‖f − g‖∞ < δ we conclude that for each x ∈ A we have

g(x) < f(x) + δ <
(ε

3

)2

+
(ε

3

)2

.

Since g2
i ≤ g and f 2

i ≤ f , the last inequality implies that

|gi(x)| <

√
2
(ε

3

)2

< 2
ε

3
and |fi(x)| ≤

ε

3
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for all x ∈ A. Hence

|fi(x) − gi(x)| ≤ |fi(x)| + |gi(x)| <
ε

3
+ 2

ε

3
= ε

as required.

Further, if x ∈ U , then h̃(x) = f(x) and consequently

h̃(x) − δ < g(x) < h̃(x) + δ.

Hence

1 −
δ

h̃(x)
<

g(x)

h̃(x)
< 1 +

δ

h̃(x)
for x ∈ U . Since

h̃(x) = f(x) >
(ε

3

)2

for x ∈ U and δ ≤
(ε/3)4

m2

we have (for x ∈ U)

1 −
( ε

3m

)2

= 1 −
1

m2 ·
(

ε
3

)4

(
ε
3

)2
<

g(x)

h̃(x)
< 1 +

1

m2 ·
(

ε
3

)4

(
ε
3

)2
= 1 +

( ε

3m

)2

and

1 −
( ε

3m

)2

< λ2(x) < 1 +
( ε

3m

)2

.

Consequently,
∣∣1 − λ2(x)

∣∣ <
( ε

3m

)2

.

Since λ(x) ≥ 0, this implies

[1 − λ(x)]2 ≤ |1 − λ(x)| · |1 + λ(x)| = |1 − λ2(x)| <
( ε

3m

)2

.

Therefore

|1 − λ(x)| ≤
ε

3m
for any x ∈ U.

Finally we have

|fi(x) − gi(x)| = |1 − λ(x)| · |fi(x)| <
ε

3m
· m <

ε

3
for any x ∈ U.

This completes the verification of the fact that |fi(x) − gi(x)| < ε for each
x ∈ X and any i = 1, . . . , n + 1. �
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Corollary 2.3. Let A be a unital C∗-algebra. Then the following conditions are

equivalent:

(i) The squaring map x 7→ x2 from Asa to A+ is open.

(ii) A is commutative and RR(A) = 0.
(iii) A is isomorphic to a C∗-algebra of the form C(X) for a compact Haus-

dorff space X with dim X = 0.

Proof. The equivalence of (ii) and (iii) follows from Gelfand’s duality and [1,
Proposition 1.1].

The implication (iii) ⇒ (i) follows from Proposition 2.2.
(i) ⇒ (ii). Assume that (i) holds. Then RR(A) = 0 by Proposition 2.1. It

remains to show that A is commutative. Since A is of real rank zero it suffices
to show that any two projections p, q in A commute.

Take the symmetry s = p − (1 − p). Then s is self-adjoint and s2 = 1. By
openness of the squaring map there are self-adjoint elements sn in A such that
‖sn − s‖ → 0 and s2

n = 1 + n−1q. Define ϕ : R → R by ϕ(t) = max{0, t}. For
each n, the element ϕ(sn) commutes with sn, hence with s2

n, and hence with q.
Since ϕ(s) = p we obtain

pq − qp = lim
n→∞

(ϕ(sn)q − qϕ(sn)) = 0,

as desired. �

3. Related comments and open problems

Existence of square roots: Suppose that A is a unital C∗-algebra and that x
is a self-adjoint element in A. Does there exist a continuous square root ρx =
ρ : Ω → Asa (i.e., ρ(a)2 = a for all a ∈ Ω) defined on an open neighborhood
Ω ⊆ A+ of x2 such that ρ(x2) = x? If this is true for all self-adjoint elements a
in A, then the equivalent conditions of Corollary 2.3 are satisfied.

Suppose that A = C(X) for some 0-dimensional compact Hausdorff space
X (i.e., that the conditions of Corollary 2.3 are satisfied). Take a self-adjoint
(i.e., real valued) f ∈ C(X), and suppose that there is a clopen set U such
that f(x) ≥ 0 for all x ∈ U and f(x) ≤ 0 for all x ∈ X\U . Then the function
ρU : C(X)+ → C(X)sa defined by

ρU(g) =

{√
g(x), x ∈ U,

−
√

g(x), x ∈ X\U,

is a continuous square root with ρU(f 2) = f . It is not clear to the authors if
there are continuous square roots at arbitrary real valued functions f in C(X).

In the case where A = Mn, the C∗-algebra of n by n matrices, if x is a self-
adjoint element and if x2 has n distinct eigenvalues, then there is a continuous
square root ρ with ρ(x2) = x defined on some neighborhood of x2.
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In the case where A = M2, it follows from Corollary 2.3 (and its proof) that
there is no continuous square root ρ defined on a neighborhood of I such that
ρ(I) = diag(1,−1). It is easily checked explicitly that if r is a (small) non-zero
real number, then any square root of ( 1 r

r 1 ) is of the form ( a s
s a ), where a and s

are real numbers satisfying a2 + s2 = 1 and 2as = r, and any such square root
has distance at least 1 to diag(1,−1).

We end this note by listing some open problems related to openness of the
squaring maps:

Question 1. Let A be a unital C∗-algebra, let m be a positive integer, and
suppose that the squaring map αm (defined above Proposition 2.1) is open.
Does it follow that αn is open for all n ≥ m?

The answer to Question 1 is affirmative for commutative C∗-algebras by Propo-
sitions 2.1 and 2.2. The difficulty in this question lies in the fact that if Ω is
an open subset of A+ and if a ∈ A+, then a + Ω need not be open in A+. (For
instance, 1 + A+ is not open in A+.)

Question 2. Are Propositions 2.1 and 2.2 valid also in the non-unital case?
(For Proposition 2.2, this means that we will be talking about locally compact
Hausdorff spaces rather than compact Hausdorff spaces.) What is the relation-
ship between openness of αn on a non-unital C∗-algebra A and openness of αn

on its unitization?

Question 3. Are the squaring maps αm open for all m ≥ 2 when A is a unital
C∗-algebra of real rank zero?

Question 4. Does the class of C∗-algebras, for which the squaring map α2 is
open, have any nice properties? More generally, are there any justifications for
considering the rank of a C∗-algebra defined by openness of the squaring maps;
and will this rank reflect any “dimension like” properties of the C∗-algebra?
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