REAL RANK AND SQUARING MAPPINGS FOR UNITAL C^{*}-ALGEBRAS

A. CHIGOGIDZE, A. KARASEV, AND M. RØRDAM

Abstract

It is proved that if X is a compact Hausdorff space of Lebesgue dimension $\operatorname{dim}(X)$, then the squaring mapping $\alpha_{m}:\left(C(X)_{\text {sa }}\right)^{m} \rightarrow C(X)_{+}$, defined by $\alpha_{m}\left(f_{1}, \ldots, f_{m}\right)=\sum_{i=1}^{m} f_{i}^{2}$, is open if and only if $m-1 \geq \operatorname{dim}(X)$. Hence the Lebesgue dimension of X can be detected from openness of the squaring maps α_{m}. In the case $m=1$ it is proved that the map $x \mapsto x^{2}$, from the self-adjoint elements of a unital C^{*}-algebra A into its positive elements, is open if and only if A is isomorphic to $C(X)$ for some compact Hausdorff space X with $\operatorname{dim}(X)=0$.

1. Introduction

A compact Hausdorff space X is defined to have Lebesgue dimension $\leq m$ if for every closed subset F of X, each continuous map $F \rightarrow S^{m}$ has a continuous extension $X \rightarrow S^{m}$.

Various types of ranks for (unital) C^{*}-algebras have been inspired by corresponding prototypes in the classical dimension theory of (compact) spaces, such as the one given above. While the Lebesgue dimension of a compact space has numerous equivalent formulations, the extensions of these equivalent formulations to non-commutative C^{*}-algebras most often differ. Examples of such ranks for C^{*}-algebras are the stable rank defined by Rieffel in [7], the real rank defined by Brown and Pedersen in [1], the analytic rank defined by Murphy in [4], the tracial rank defined by Lin in [3], the completely positive rank considered by Winter in [8], and the bounded rank defined in [2] (see also [6] for the definition of the exponential rank).

It was shown in [2] that a unital C^{*}-algebra A has real rank at most n if the squaring map $\left(x_{1}, \ldots, x_{n+1}\right) \mapsto \sum_{i=1}^{n+1} x_{i}^{2}$, from the set of $(n+1)$-tuples of self-adjoint elements to the set of positive elements in A, is open; and it was asked if the reverse also holds, in which case openness of the squaring maps would determine the real rank of the C^{*}-algebra.

In the present note we answer this question in the affirmative in the commutative case - and in the negative in the general (non-commutative) case.

[^0]The latter - negative - answer follows from our result that the squaring map $x \mapsto x^{2}$ (from the set of self-adjoint elements to the set of positive elements) is open if and only if the C^{*}-algebra is commutative and of real rank zero. Hence the squaring map $x \mapsto x^{2}$ is not open for the C^{*}-algebra M_{2} of 2 by 2 matrices, but this C^{*}-algebra has real rank zero.

The athors would like to thank A. N. Dranishnikov for useful conversations related to Proposition 2.2.

2. Results

For a C^{*}-algebra A we use the standard notation $A_{\text {sa }}$ and A_{+}to denote the set of all self-adjoint and the set of all positive elements of A, respectively. The real rank of a unital C^{*}-algebra A, denoted by $\operatorname{RR}(A)$, is in [1] defined as follows: For each non-negative integer $n, \operatorname{RR}(A) \leq n$ if for every $(n+1)$-tuple $\left(x_{1}, \ldots, x_{n+1}\right)$ in A_{sa} and every $\varepsilon>0$, there exists an $(n+1)$-tuple $\left(y_{1}, \ldots, y_{n+1}\right)$ in A_{sa} such that $\sum_{k=1}^{n+1} y_{k}^{2}$ is invertible and $\sum_{k=1}^{n+1}\left\|x_{k}-y_{k}\right\|<\varepsilon$.

Let us say that a unital C^{*}-algebra A has an open m-squaring map if the map $\alpha_{m}:\left(A_{s a}\right)^{m} \rightarrow A_{+}$, defined by $\alpha_{m}\left(x_{1}, \ldots, x_{m}\right)=\sum_{k=1}^{m} x_{k}^{2}$, is open. Observe that α_{m} is open at $\left(x_{1}, \ldots, x_{m}\right)$ if for every $\varepsilon>0$ there is $\delta>0$ such that for all $a \in A_{+}$with $\left\|\sum_{k=1}^{m} x_{k}^{2}-a\right\|<\delta$ there is an m-tuple $\left(y_{1}, \ldots, y_{m}\right)$ in A_{sa} with $\sum_{k=1}^{m} y_{k}^{2}=a$ and $\sum_{k=1}^{m}\left\|x_{k}-y_{k}\right\|<\varepsilon$.

For the reader's convenience we present a shorter proof of [2, Proposition 7.1].
Proposition 2.1. Let A be a unital C^{*}-algebra. If the $(n+1)$-squaring map on A is open, then $\mathrm{RR}(A) \leq n$.

Proof. Let $\left(x_{1}, \ldots, x_{n+1}\right)$ be an $(n+1)$-tuple of self-adjoint elements in A and let $\varepsilon>0$. By openness of the $(n+1)$-squaring map there is $\delta>0$ and an $(n+1)$ tuple $\left(y_{1}, \ldots, y_{n+1}\right)$ of self-adjoint elements in A such that $\sum_{k=1}^{n+1}\left\|x_{k}-y_{k}\right\|<\varepsilon$ and $\sum_{k=1}^{n+1} y_{k}^{2}=\sum_{k=1}^{n+1} x_{k}^{2}+\delta \cdot 1$, and the latter element is invertible (because each x_{k}^{2} is positive).
Next, we prove the reverse of Proposition 2.1 in the commutative case.
Proposition 2.2. If X is a compact space such that $\operatorname{dim} X \leq n$, then $C(X)$ has open $(n+1)$-squaring map.
Proof. Let $f=f_{1}^{2}+\cdots+f_{n+1}^{2}$. Put $m_{i}=\sup f_{i}$ for $i=1, \ldots, n+1$ and let $m=\max \left\{m_{i}\right\}$. Fix $\varepsilon>0$ and let

$$
\delta=\min \left\{\frac{(\varepsilon / 3)^{4}}{m^{2}},\left(\frac{\varepsilon}{3}\right)^{2}\right\} \text { and } U=\left\{x \in X: f(x)>\left(\frac{\varepsilon}{3}\right)^{2}\right\} .
$$

Let also $A=f^{-1}\left(\left[0,(\varepsilon / 3)^{2}\right]\right)$ and $S=f^{-1}\left((\varepsilon / 3)^{2}\right)$. Then A and S are closed subsets of X such that $A=X \backslash U$ and $S \subseteq A$.

Now consider the diagonal product

$$
F(x)=\left(f_{1}(x), \ldots, f_{n+1}(x)\right): X \rightarrow \mathbb{R}^{n+1}
$$

and note that

$$
A=F^{-1}\left(B^{n+1}\right) \text { and } S=F^{-1}\left(S^{n}\right)
$$

where

$$
B^{n+1}=B^{n+1}(\mathbf{0}, \varepsilon / 3) \text { and } S^{n}=\partial B^{n+1}(\mathbf{0}, \varepsilon / 3) .
$$

Since $\operatorname{dim} A \leq \operatorname{dim} X \leq n$, the map $F \mid S: S \rightarrow S^{n}$ admits an extension $H: A \rightarrow S^{n}$ (see, for instance, [5, Ch. 3, Theorem 2.2]). Let $h_{i}: A \rightarrow \mathbb{R}$ be the i-th component of the map H. Since $H(A) \subseteq S^{n}$ it follows that $h_{1}^{2}+\cdots+$ $h_{n+1}^{2}=(\varepsilon / 3)^{2}$. Note also that since $H|S=F| S$ we have $h_{i}\left|S=f_{i}\right| S$ for each $i=1, \ldots, n+1$.

The last condition allows us to define for each $i=1, \ldots, n+1$ a continuous map $\widetilde{h_{i}}$ on X by letting

$$
\widetilde{h}_{i}(x)= \begin{cases}f_{i}(x), & \text { if } x \in U \\ h_{i}(x), & \text { if } x \in A\end{cases}
$$

Observe that the function $\widetilde{h}=\widetilde{h}_{1}^{2}+\cdots+\widetilde{h}_{n+1}^{2}$ is strictly positive on X. Notice also that $\left.\widetilde{h}\right|_{U}=\left.f\right|_{U}$ and $\left.\widetilde{h}\right|_{A}=(\varepsilon / 3)^{2}$.

Take next a positive function g in $C(X)$ with $\|f-g\|_{\infty}<\delta$. Define a function λ on X by $\lambda(x)=(g(x) / \widetilde{h}(x))^{1 / 2}$. Note that $\lambda \geq 0$.

Now define g_{i} for $i=1, \ldots, n+1$, on X by the formula $g_{i}(x)=\widetilde{h}_{i}(x) \cdot \lambda(x)$. Clearly

$$
\begin{aligned}
& g_{1}^{2}(x)+\cdots+g_{n+1}^{2}(x)=\left(\widetilde{h}_{1}(x) \cdot \lambda(x)\right)^{2}+\cdots+\left(\widetilde{h}_{n+1}(x) \cdot \lambda(x)\right)^{2}= \\
& \quad \lambda^{2}(x)\left(\widetilde{h}_{1}^{2}(x)+\cdots+\widetilde{h}_{n+1}^{2}(x)\right)=\frac{g(x)}{\widetilde{h}(x)} \cdot\left(\widetilde{h}_{1}^{2}(x)+\cdots+\widetilde{h}_{n+1}^{2}(x)\right)=g(x) .
\end{aligned}
$$

Next let us show that g_{i} is sufficiently close to f_{i} for each $i=1, \ldots, n+1$. Indeed, since $\|f-g\|_{\infty}<\delta$ we conclude that for each $x \in A$ we have

$$
g(x)<f(x)+\delta<\left(\frac{\varepsilon}{3}\right)^{2}+\left(\frac{\varepsilon}{3}\right)^{2}
$$

Since $g_{i}^{2} \leq g$ and $f_{i}^{2} \leq f$, the last inequality implies that

$$
\left|g_{i}(x)\right|<\sqrt{2\left(\frac{\varepsilon}{3}\right)^{2}}<2 \frac{\varepsilon}{3} \text { and }\left|f_{i}(x)\right| \leq \frac{\varepsilon}{3}
$$

for all $x \in A$. Hence

$$
\left|f_{i}(x)-g_{i}(x)\right| \leq\left|f_{i}(x)\right|+\left|g_{i}(x)\right|<\frac{\varepsilon}{3}+2 \frac{\varepsilon}{3}=\varepsilon
$$

as required.
Further, if $x \in U$, then $\widetilde{h}(x)=f(x)$ and consequently

$$
\widetilde{h}(x)-\delta<g(x)<\widetilde{h}(x)+\delta
$$

Hence

$$
1-\frac{\delta}{\widetilde{h}(x)}<\frac{g(x)}{\widetilde{h}(x)}<1+\frac{\delta}{\widetilde{h}(x)}
$$

for $x \in U$. Since

$$
\widetilde{h}(x)=f(x)>\left(\frac{\varepsilon}{3}\right)^{2} \text { for } x \in U \text { and } \delta \leq \frac{(\varepsilon / 3)^{4}}{m^{2}}
$$

we have (for $x \in U$)

$$
1-\left(\frac{\varepsilon}{3 m}\right)^{2}=1-\frac{\frac{1}{m^{2}} \cdot\left(\frac{\varepsilon}{3}\right)^{4}}{\left(\frac{\varepsilon}{3}\right)^{2}}<\frac{g(x)}{\widetilde{h}(x)}<1+\frac{\frac{1}{m^{2}} \cdot\left(\frac{\varepsilon}{3}\right)^{4}}{\left(\frac{\varepsilon}{3}\right)^{2}}=1+\left(\frac{\varepsilon}{3 m}\right)^{2}
$$

and

$$
1-\left(\frac{\varepsilon}{3 m}\right)^{2}<\lambda^{2}(x)<1+\left(\frac{\varepsilon}{3 m}\right)^{2}
$$

Consequently,

$$
\left|1-\lambda^{2}(x)\right|<\left(\frac{\varepsilon}{3 m}\right)^{2}
$$

Since $\lambda(x) \geq 0$, this implies

$$
[1-\lambda(x)]^{2} \leq|1-\lambda(x)| \cdot|1+\lambda(x)|=\left|1-\lambda^{2}(x)\right|<\left(\frac{\varepsilon}{3 m}\right)^{2}
$$

Therefore

$$
|1-\lambda(x)| \leq \frac{\varepsilon}{3 m} \text { for any } x \in U
$$

Finally we have

$$
\left|f_{i}(x)-g_{i}(x)\right|=|1-\lambda(x)| \cdot\left|f_{i}(x)\right|<\frac{\varepsilon}{3 m} \cdot m<\frac{\varepsilon}{3} \text { for any } x \in U
$$

This completes the verification of the fact that $\left|f_{i}(x)-g_{i}(x)\right|<\varepsilon$ for each $x \in X$ and any $i=1, \ldots, n+1$.

Corollary 2.3. Let A be a unital C^{*}-algebra. Then the following conditions are equivalent:
(i) The squaring map $x \mapsto x^{2}$ from A_{sa} to A_{+}is open.
(ii) A is commutative and $\operatorname{RR}(A)=0$.
(iii) A is isomorphic to a C^{*}-algebra of the form $C(X)$ for a compact Hausdorff space X with $\operatorname{dim} X=0$.

Proof. The equivalence of (ii) and (iii) follows from Gelfand's duality and [1, Proposition 1.1].

The implication (iii) \Rightarrow (i) follows from Proposition 2.2.
(i) \Rightarrow (ii). Assume that (i) holds. Then $\operatorname{RR}(A)=0$ by Proposition 2.1. It remains to show that A is commutative. Since A is of real rank zero it suffices to show that any two projections p, q in A commute.

Take the symmetry $s=p-(1-p)$. Then s is self-adjoint and $s^{2}=1$. By openness of the squaring map there are self-adjoint elements s_{n} in A such that $\left\|s_{n}-s\right\| \rightarrow 0$ and $s_{n}^{2}=1+n^{-1} q$. Define $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ by $\varphi(t)=\max \{0, t\}$. For each n, the element $\varphi\left(s_{n}\right)$ commutes with s_{n}, hence with s_{n}^{2}, and hence with q. Since $\varphi(s)=p$ we obtain

$$
p q-q p=\lim _{n \rightarrow \infty}\left(\varphi\left(s_{n}\right) q-q \varphi\left(s_{n}\right)\right)=0
$$

as desired.

3. Related comments and open problems

Existence of square roots: Suppose that A is a unital C^{*}-algebra and that x is a self-adjoint element in A. Does there exist a continuous square root $\rho_{x}=$ $\rho: \Omega \rightarrow A_{\mathrm{sa}}$ (i.e., $\rho(a)^{2}=a$ for all $a \in \Omega$) defined on an open neighborhood $\Omega \subseteq A_{+}$of x^{2} such that $\rho\left(x^{2}\right)=x$? If this is true for all self-adjoint elements a in A, then the equivalent conditions of Corollary 2.3 are satisfied.

Suppose that $A=C(X)$ for some 0-dimensional compact Hausdorff space X (i.e., that the conditions of Corollary 2.3 are satisfied). Take a self-adjoint (i.e., real valued) $f \in C(X)$, and suppose that there is a clopen set U such that $f(x) \geq 0$ for all $x \in U$ and $f(x) \leq 0$ for all $x \in X \backslash U$. Then the function $\rho_{U}: C(X)_{+} \rightarrow C(X)_{\text {sa }}$ defined by

$$
\rho_{U}(g)= \begin{cases}\sqrt{g(x)}, & x \in U \\ -\sqrt{g(x)}, & x \in X \backslash U\end{cases}
$$

is a continuous square root with $\rho_{U}\left(f^{2}\right)=f$. It is not clear to the authors if there are continuous square roots at arbitrary real valued functions f in $C(X)$.

In the case where $A=M_{n}$, the C^{*}-algebra of n by n matrices, if x is a selfadjoint element and if x^{2} has n distinct eigenvalues, then there is a continuous square root ρ with $\rho\left(x^{2}\right)=x$ defined on some neighborhood of x^{2}.

In the case where $A=M_{2}$, it follows from Corollary 2.3 (and its proof) that there is no continuous square root ρ defined on a neighborhood of I such that $\rho(I)=\operatorname{diag}(1,-1)$. It is easily checked explicitly that if r is a (small) non-zero real number, then any square root of $\left(\begin{array}{cc}1 & r \\ r & 1\end{array}\right)$ is of the form $\left(\begin{array}{cc}a & s \\ s & a\end{array}\right)$, where a and s are real numbers satisfying $a^{2}+s^{2}=1$ and $2 a s=r$, and any such square root has distance at least 1 to $\operatorname{diag}(1,-1)$.

We end this note by listing some open problems related to openness of the squaring maps:

Question 1. Let A be a unital C^{*}-algebra, let m be a positive integer, and suppose that the squaring map α_{m} (defined above Proposition 2.1) is open. Does it follow that α_{n} is open for all $n \geq m$?

The answer to Question 1 is affirmative for commutative C^{*}-algebras by Propositions 2.1 and 2.2. The difficulty in this question lies in the fact that if Ω is an open subset of A_{+}and if $a \in A_{+}$, then $a+\Omega$ need not be open in A_{+}. (For instance, $1+A_{+}$is not open in A_{+}.)

Question 2. Are Propositions 2.1 and 2.2 valid also in the non-unital case? (For Proposition 2.2, this means that we will be talking about locally compact Hausdorff spaces rather than compact Hausdorff spaces.) What is the relationship between openness of α_{n} on a non-unital C^{*}-algebra A and openness of α_{n} on its unitization?

Question 3. Are the squaring maps α_{m} open for all $m \geq 2$ when A is a unital C^{*}-algebra of real rank zero?

Question 4. Does the class of C^{*}-algebras, for which the squaring map α_{2} is open, have any nice properties? More generally, are there any justifications for considering the rank of a C^{*}-algebra defined by openness of the squaring maps; and will this rank reflect any "dimension like" properties of the C^{*}-algebra?

References

[1] L. G. Brown, G. K. Pedersen, C^{*}-algebra of real rank zero, J. Functional Anal. 99 (1991), 131-149.
[2] A. Chigogidze, V. Valov, Bounded rank of C^{*}-algebras, Preprint math.OA/0109100 (2001).
[3] H. Lin, The tracial topological rank of C^{*}-algebras, Proc. London Math. Soc. 83 (2001), 199-234.
[4] G. J. Murphy, The analytic rank of a C^{*}-algebra, Proc. Amer. Math. Soc. 115 (1992), 741-746.
[5] A. R. Pears, Dimension Theory of General Spaces, Cambridge University Press, Cambridge, 1975.
[6] N. C. Phillips, Simple C^{*}-algebras with the property (FU), Math. Scand. 69 (1991), 121151.
[7] M. A. Rieffel, Dimension and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc. 46 (1983), 301-333.
[8] W. Winter, Covering dimension for nuclear C^{*}-algebras, Preprint math.OA/0107218 (2001).

Department of Mathematics and Statistics, University of Saskatchewan, McLean Hall, 106 Wiggins Road, Saskatoon, SK, S7N 5E6, Canada

E-mail address: chigogid@math.usask.ca
Department of Mathematics and Statistics, University of Saskatchewan, McLean Hall, 106 Wiggins Road, Saskatoon, SK, S7N 5E6, Canada

E-mail address: karasev@math.usask.ca
Department of Mathematics, University of Copenhagen, Universitetsparken 5 , 2100 Copenhagen \emptyset, Denmark

E-mail address: rordam@math.ku.dk

[^0]: 1991 Mathematics Subject Classification. Primary: 46L05; Secondary: 46L85, 54F45.
 Key words and phrases. Real rank, bounded rank, Lebesgue dimension.
 The first named author was partially supported by NSERC research grant.

