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Abstract

This paper presents a survey of results on traces and quasitraces on C∗-algebras,
and it provides some new results on traces on ultraproducts and on the existence of
faithful traces. As for the former, we exhibit a sequence of traceless simple, separable,
unital, nuclear C∗-algebras whose ultraproduct does admit a quasitrace (and likely
also a trace). We characterize in different ways C∗-algebras that admit a faithful
trace, respectively, where each quotient of the C∗-algebra admits a faithful trace.

1 Introduction

The purpose of this article is to present a survey of a collection of important results on
traces and quasitraces on a C∗-algebra, and to add some new results to this collection.
Throughout we have occasion to mention several profound results by Eberhard Kirchberg
that offer interesting perspectives to the theory. The new results are in part contained in
the PhD thesis of the first-named author.

In Section 2 we discuss the interplay between quasitraces and traces with emphasis on
Kaplansky’s question if all quasitraces on C∗-algebras are traces, and we review results
on the existence of quasitraces on C∗-algebras. Section 3 is devoted to the existence of
traces and elements of Haagerup’s proof that all quasitraces on an exact C∗-algebra are
traces in the version of the Haagerup–Thorbjørnsen approach. Traces on ultraproducts
of a sequence of C∗-algebras is the topic of Section 4, and we present a new example
of a sequence of unital simple separable nuclear traceless C∗-algebras whose ultraproduct
admits a quasitrace. We leave it open if this quasitrace indeed is a trace. Section 5 contains
a discussion of so-called “almost traces” which necessarily are possessed by any sequence of
C∗-algebras whose ultraproduct admits a trace. Finally, in Section 6, we present conditions
ensuring that an (exact) C∗-algebra admits a faithful trace, respectively, that each quotient
of the C∗-algebra admits a faithful trace.

We thank the referee for several useful comments and for pointing out a gap in a proof
in the first draft of this paper.

∗The second named author was supported by a research grant from the Danish Council for Independent
Research, Natural Sciences.
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2 Traces and quasitraces on C∗-algebras

We review here some well-known results on traces and quasitraces on C∗-algebras with
emphasis on the existence of quasitraces and Kaplansky’s question if all quasitraces are
traces. For convenience we mostly restrict our attention to unital C∗-algebras. A trace on
a unital C∗-algebra A is a bounded linear functional τ on A satisfying the trace condition:
τ(x∗x) = τ(xx∗), for all x ∈ A. If τ , moreover, is a state, then τ is said to be a tracial
state. Whenever we henceforth talk about a trace we shall mean a tracial state, unless
otherwise stated.

A quasitrace τ on A is a function τ : A → C satisfying

• τ(x∗x) = τ(xx∗) ≥ 0, for all x ∈ A,

• τ is linear on commutative sub-C∗-algebras of A,

• τ(a+ ib) = τ(a) + iτ(b), for a, b ∈ Asa.

If, moreover, there exists a quasitrace τ̃ on A⊗M2(C) such that τ̃(a⊗ e11) = τ(a), for all
a ∈ A, then τ is said to be a 2-quasitrace.1 It was shown by Blackadar and Handelman in
[6] that every 2-quasitrace extends to a quasitrace on A⊗Mn(C), for all n ≥ 3. They also
showed, [6, II.1.6], that 2-quasitraces automatically are norm continuous. Kirchberg proved
(unpublished), see [24, p. 1099], using a contruction of Aarnes of a non-additive quasi-state
on C([0, 1]2), that there exists quasitraces that are not 2-quasitraces. For ease of notation
we shall here reserve the term quasitrace to mean a 2-quasitrace that is normalized.

We let T (A) and QT (A) denote the sets of all traces, respectively, quasitraces on A.
It is known that both of these sets (if non-empty) are Choquet simplices, [40, 3.1.8], [6,
Theorem II.4.4], and that T (A) is a face in QT (A), [6, Theorem II.4.5].

Quasitraces were first encountered in AW∗-algebras developed by Kaplansky in 1951–
52, [18] and [19]. A unital C∗-algebra is an AW∗-algebra if each of its MASAs are generated
by projections and if each orthogonal family of projections has a least upper bound. AW∗-
algebras can be divided into types as in the type decomposition for von Neumann algebras.
Every AW∗-algebra of type II1 admits a quasitrace, and an AW∗-factor of type II1 is a von
Neumann algebra if and only if it admits a trace, i.e., its unique quasitrace is a trace.
While it is known that not all AW∗-algebras are von Neumann algebras, it remains an
open problem — raised by Kaplansky — if every AW∗-factor of type II1 is a von Neumann
algebra. This question is equivalent to the following:

Question 2.1 (Kaplansky). Is every quasitrace on a C∗-algebra a trace?

Suppose we know that every AW∗-factor M of type II1 is a von Neumann algebra (and
hence that the unique quasitrace on M is a trace). Let τ be an extremal quasitrace on
some unital C∗-algebra A. By performing a suitable completion of A with respect to τ ,
see, e.g., [10, Proposition 3.12] for details, one obtains a unital ∗-homomorphism from A

1The extension of τ to τ̃ is non-canonical, unless τ is a trace.
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into an AW∗-factor M of type II1, so that τ extends to the (unique) quasitrace τ on M.
Hence τ is a trace if τ is a trace.

The best known partial answer to Kaplansky’s question was given by U. Haagerup,
[10], that appeared as a preprint in 1991, and was published in 2014.

Theorem 2.2 (Haagerup). Any quasitrace on any unital exact C∗-algebra is a trace.

Kirchberg, [22], extended Haagerup’s theorem to cover also non-unital C∗-algebras.
It is well understood when a unital C∗-algebra possesses a quasitrace. Recall that

a unital C∗-algebra A is said to be properly infinite if it contains two isometries with
orthogonal range projections (or, equivalently, two mutually orthogonal projections both
of which are Murray-von Neumann equivalent to 1A). We say that A is stably properly
infinite if Mn(A) is properly infinite for some n ≥ 1. Similarly, we say that A is stably
finite if Mn(A) is finite, for all n ≥ 1, where finite means that no projection is infinite, i.e.,
not equivalent to a proper subprojection of itself.

Theorem 2.3 (Cuntz, Blackadar–Handelman, [8], [13], [6]). A unital C∗-algebra admits a
quasitrace if and only if it is not stably properly infinite.

In the literature, existence of quasitraces is often expressed by the sufficient (but not
necessary) condition that the C∗-algebra be stably finite, which is a stronger condition
than not stably properly infinite. For simple C∗-algebras, the two properties “stably finite”
and “not stably properly infinite”, agree by Cuntz’ observation that infinite projections in
a simple C∗-algebra automatically are properly infinite.

It is easy to see that no properly infinite C∗-algebra can admit a quasitrace, and as
quasitraces extend to matrix algebras by convention, the “only if” part of Theorem 2.3
follows. To see the “if” part, consider the Cuntz semigroup Cu(A) of A and the element
〈1〉 ∈ Cu(A) representing the unit of A. Observe that if A is not stably properly infinite,
the map N0〈1〉 → R, given by n〈1〉 7→ n, is positive. By [7], this positive map extends
to a state on Cu(A), i.e., a dimension function on A, normalized at the unit of A. A
standard trick, cf. [6, I.5], produces a lower semi-continuous dimension function from this
dimension function, still normalized at the unit of A. Finally, by [6, Theorem II.2.2], any
lower semi-continuous dimension function extends to a quasitrace.

Kirchberg proved the theorem below in the mid 1990s, cf. [24, Theorem E], see also [36,
Theorem 4.1.10]. At that time it was not even known that the minimal tensor product of
two simple purely infinite C∗-algebras is again purely infinite!

Theorem 2.4 (Kirchberg). The minimal tensor product of two unital infinite-dimensional
simple C∗-algebras is purely infinite if one of them is not stably finite.

The theorem leaves open the following:

Question 2.5. Is the minimal tensor product of two unital simple stably finite C∗-algebras
again stably finite?
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If both C∗-algebras in the question above admit a tracial state, then so does the tensor
product, which will entail that the tensor product is stably finite. By Theorems 2.3 and
2.2, this is the case if both C∗-algebras are exact.

As it turns out, Question 2.1, Question 2.5 and the question if all AW∗ factors of type
II1 are von Neumann algebras are equivalent. We mentioned already the equivalence of
the former with the latter. If Kaplansky’s question has an affirmative answer, then all
unital stably finite C∗-algebras admit a tracial state, which entails stable finiteness of the
tensor product. Conversely, if Kaplansky’s question has a negative answer, then there is
an AW∗-factor A of type II1 that is not a von Neumann algebra, hence has no trace. By
(Haagerup’s) Theorem 3.1 below, this would imply that A ⊗ C∗λ(F∞) is properly infinite,
thus yielding a negative answer to Question 2.5. Throughout this text “⊗” denotes the
minimal tensor product.

A unital simple C∗-algebra A is said to be tensorially prime if it is not isomorphic to
a tensor product B ⊗ C, with B and C infinite dimensional.

Corollary 2.6. Let A be an exact simple unital C∗-algebra which is not tensorially prime.
Then A either admits a tracial state and is stably finite, or it is purely infinite.

It is known that this dichotomy does not hold without assuming non-primeness, [37]. The
corollary holds without the assumption of A being exact if and only if Kaplansky’s question
above has an affirmative answer, cf. the discussion above.

3 Existence of traces on C∗-algebras

We saw in the previous section that a unital C∗-algebra admits a quasitrace if and only if
it is not stably properly infinite. As we do not know if quasitraces are traces, the condition
for having a trace (in the non-exact case) is more involved. We have the following powerful
theorem by Haagerup, [10], with the extra condition (iv) added on by Pop, [31]:

Theorem 3.1 (Haagerup, Pop). The following conditions are equivalent for each unital
C∗-algebra A:

(i) A admits no tracial state,

(ii) there exist n ≥ 2 and x1, . . . , xn ∈ A satisfying

n∑
j=1

x∗jxj = 1A,
∥∥ n∑
j=1

xjx
∗
j

∥∥ < 1,

(iii) for each δ > 0, there exist n ≥ 2 and x1, . . . , xn ∈ A satisfying

n∑
j=1

x∗jxj = 1A,
∥∥ n∑
j=1

xjx
∗
j

∥∥ ≤ δ,
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(iv) there exists n ≥ 2 such that each a ∈ A is a sum of n commutators from A,

(v) A⊗ C∗λ(F∞) is properly infinite.

In (v), C∗λ(F∞) denotes the reduced group C∗-algebra associated with the free group, F∞,
with infinitely many generators (λ refers to the left-regular representation).

A few comments about the proof of this theorem: First, it is clear that each of the
conditions (ii)–(v) imply (i). The implications (i) ⇒ (iii) is obtained by passing to the
bidual A∗∗, which is a properly infinite von Neumann algebra when (i) holds. Any properly
infinite von Neumann algebra (or C∗-algebra) contains a sequence {sk}k≥1 of isometries
with pairwise orthogonal range projections. The elements xj = n−1/2sj, 1 ≤ j ≤ n, satisfy
(iii) with δ = 1/n. We review a proof of (iii) ⇒ (v) below. C. Pop gave a beautiful
self-contained short proof of (i) ⇒ (iv) in [31].

Corollary 3.2. A unital C∗-algebra A admits a tracial state if and only if there exists a
state ρ on A and λ ≥ 1 such that ρ(x∗x) ≤ λρ(xx∗), for all x ∈ A.

The standard way to prove the existence of a tracial state in a finite von Neumann algebra
is to first prove Corollary 3.2 (often in a quite different way than the one presented here),
and then prove the existence of states satisfying the condition of the corollary. See, e.g.,
[17, Section 8.2].

Proof. “Only if” is clear. Suppose that A admits no tracial state. Let ρ be any state on
A. Let δ > 0, and let x1, . . . , xn ∈ A be as in Theorem 3.1 (iii). Then

∑n
j=1 ρ(x∗jxj) = 1

and
∑n

j=1 ρ(xjx
∗
j) ≤ δ. It follows that ρ(x∗jxj) ≥ δ−1ρ(xjx

∗
j), for at least one j. As δ > 0

was arbitrary, this proves the “if” part of the corollary.

One can rephrase Corollary 3.2 as follows:

Corollary 3.3. A unital C∗-algebra A admits no tracial state if and only if for each state
ρ on A and each δ > 0 there exists x ∈ A such that ρ(x∗x) = 1 and ρ(xx∗) ≤ δ.

One can probably not control the norm of the element x ∈ A from Corollary 3.2 or 3.3,
see a further discussion on this matter in Remark 5.2. However, if A is properly infinite,
and hence admits a unital embedding of O∞, one can choose x to be an isometry.

The following (standard) lemma is a quantitative version of the well-known fact that the
Cuntz–Toeplitz algebra T2, generated by two isometries with orthogonal range projections,
is semiprojective:

Lemma 3.4. A unital C∗-algebra A is properly infinite if (and only if) it contains elements
a1, a2 satisfying ‖a∗jai − δji 1‖ < 1/2.

Proof. Set sj = aj|aj|−1, j = 1, 2, noting that a∗jaj is invertible with spectrum inside
[1/2, 3/2]. Then s1, s2 are isometries with range projections pj = sjs

∗
j . Since

‖p1p2‖ = ‖s∗1s2‖ = ‖|a1|−1a∗1a2|a2|−1‖ ≤ ‖a∗1a2‖ · ‖|a1|−1‖ · ‖|a2|−1‖ < 1,

it follows that up1u
∗ ≤ 1 − p2, for some unitary u ∈ A. Thus us1, s2 are isometries in A

with orthogonal range projections.
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The constant 1/2 in the lemma above is best possible, as witnessed by taking a1 = a2 = 1√
2
.

Lemma 3.5 (Haagerup, [10]). Let A be a unital C∗-algebra, and let x1, . . . , xn ∈ A be
such that

∑n
j=1 x

∗
jxj = 1. Let {sj}j≥1 be the canonical generators of the Cuntz algebra O∞,

and set

t1 =
n∑
j=1

xj ⊗ (sj + s∗j), t2 =
n∑
j=1

xj ⊗ (sj+n + s∗j+n),

in A ⊗ O∞. Then ‖t∗j ti − δji 1‖ ≤ 2
√
α + α, where α = ‖

∑n
j=1 xjx

∗
j‖. In particular,

C∗(1, t1, t2) is properly infinite if 2
√
α + α < 1/2.

Proof. Set

u1 =
n∑
j=1

xj ⊗ sj, u2 =
n∑
j=1

xj ⊗ sj+n, v1 =
n∑
j=1

xj ⊗ s∗j , v2 =
n∑
j=1

xj ⊗ s∗j+n.

A straightforward calculation shows that u∗ku` = δk,` 1A⊗1O∞ , and vkv
∗
k =

∑n
j=1 xjx

∗
j⊗1O∞ ,

so ‖vk‖ ≤
√
α.

Using free probability theory, Haagerup proved the following lemma (included in the proof
of [10, Theorem 2.4]):

Lemma 3.6 (Haagerup). There is an embedding ϕ : C∗λ(F∞)→ O∞ and a continuous func-
tion f : T→ R such that ϕ(f(uj)) = sj + s∗j , where {uj}j≥1 and {sj}j≥1 are the canonical
generators of C∗λ(F∞), respectively, O∞.

Combining the three previous lemmas one obtains a proof of (ii) ⇒ (v) of Theorem 3.1.
Following Haagerup–Thorbjørnsen, [11], we sketch how one can obtain a proof of The-

orem 2.2 using Theorem 3.1 and the deep fact, obtained in [11], that C∗λ(F∞) is MF. One
dosn’t quite get the entire Theorem 2.2, but rather that any exact unital C∗-algebra which
is not stably properly infinite admits a tracial state. To compactify the notation below,
we write Mk for the matrix algebra Mk(C).

That C∗λ(F∞) is MF means that there is a unital embedding Φ:∏
m≥1Mkm

π

��
C∗λ(F∞) Φ //

∏
m≥1Mkm/

⊕
m≥1Mkm

Let āj = {aj(m)}m≥1 ∈
∏

m≥1Mkm be self-adjoint lifts of aj := Φ(f(uj)), 1 ≤ j ≤ n, with
‖āj‖ = ‖aj‖, and where f is as in Lemma 3.6.

Let A be a unital exact C∗-algebra with no tracial state. We show that A is stably
properly infinite. Take x1, . . . , xn ∈ A such that

∑n
j=1 x

∗
jxj = 1 and α := ‖

∑n
j=1 xjx

∗
j‖ ≤
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1/25. Consider the elements

r1 =
n∑
j=1

xj ⊗ aj, r2 =
n∑
j=1

xj ⊗ aj+n in A⊗
( ∏
m≥1

Mkm/
⊕
m≥1

Mkm

)
,

r1(m) =
n∑
j=1

xj ⊗ aj(m), r2(m) =
n∑
j=1

xj ⊗ aj+n(m) in A⊗Mkm , m ≥ 1.

Then ‖r∗j ri − δji1‖ ≤ 2
√
α + α < 1/2 by Lemmas 3.5 and 3.6. By the assumed exactness

of A, the sequence

0 //
⊕
m≥1

(
A⊗Mkm

)
// A⊗

∏
m≥1

Mkm
id⊗π // A⊗

(∏
m≥1

Mkm/
⊕
m≥1

Mkm

)
// 0,

is exact. For x ∈ A ⊗
(∏

m≥1Mkm

)
⊂
∏

m≥1

(
A ⊗ Mkm), we can compute ‖x‖ =

supm≥1 ‖(id ⊗ πm)(x)‖, where πm :
∏

`≥1Mk` → Mkm is the quotient mapping. Exact-
ness of the sequence above further implies that

‖(id⊗ π)(x)‖ = lim sup
m→∞

‖(id⊗ πm)(x)‖.

This shows that

lim sup
m→∞

‖rj(m)∗ri(m)− δji1‖ = ‖r∗j ri − δji1‖ < 1/2. (∗)

Hence ‖rj(m)∗ri(m)−δji1‖ < 1/2, i, j = 1, 2, for some m ≥ 1, which by Lemma 3.4 implies
that A⊗Mkm is properly infinite.

One could speculate that there might be some hidden algebraic relations behind the
elements {aj(m)}, 1 ≤ j ≤ 2n, m ≥ 1, responsible for (∗) to hold, when rj(m) are defined
as above for any x1, . . . , xn ∈ A satisfying

∑n
j=1 x

∗
jxj = 1 and ‖

∑n
j=1 xjx

∗
j‖ ≤ 1/25.

If so, then (∗) would hold without assuming exactness of A, thus (almost) confirming
Kaplansky’s conjecture. However, following the arguments of [12, Proposition 4.9], one can
show that (∗) in fact fails for suitable x1, . . . , xn in the non-exact C∗-algebra A = C∗(F∞),
no matter what lift āj we choose for aj.

4 Ultraproducts and traces

Let {An}n≥1 be a sequence of unital C∗-algebras and let ω be a free ultrafilter on N.
Consider the ultraproduct ∏

ω

An :=
∏
n≥1

An/Iω({An}),

where
Iω({An}) =

{
{xn} ∈

∏
n≥1

An : lim
ω
‖xn‖ = 0

}
�
∏
n≥1

An.
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Denote the quotient mapping
∏

n≥1An →
∏

ωAn by πω.
Let Tω({An}) ⊆ T (

∏
ωAn) denote the set of tracial states τ on

∏
ωAn which are limits

of a sequence {τn} of traces τn ∈ T (An), in the following sense:

τ(πω({xn})) = lim
ω
τn(xn), {xn} ∈

∏
n≥1

An.

The trace τ defined above will be denoted limω τn. It is well-defined since the limit on the
right-hand side does not depend on the choice of the lift {xn}.

Theorem 4.1 (Ozawa, [29]). If {An} is a sequence of unital exact Z-absorbing C∗-alge-
bras, and if ω is a free ultrafilter on N, then Tω({An}) is weak∗ dense in T (

∏
ωAn).

Ozawa also remarked that the conclusion of his theorem fails without the assumption
on Z-stability. More recently, Antoine–Perera–Robert–Thiel, [4], gave several equivalent
conditions for weak∗ density of Tω({An}) in T (

∏
ωAn) in general, and in particular for the

case where An = A is fixed.
We proceed to construct a sequence {An} of traceless simple, unital, separable, nuclear

C∗-algebras where
∏

ωAn admits a quasitrace. Recall that a C∗-algebra is said to have
property (SP) if each non-zero hereditary sub-C∗-algebra contains a non-zero projection.

Lemma 4.2. Let A be a unital C∗-algebra with property (SP) which admits no finite
dimensional representations. Then, for all n ≥ 1, there is a (possibly non-unital) embedding
Mn(C)→ A.

Proof. By Glimm’s lemma there is a non-zero ∗-homomorphism ϕ : C0((0, 1])⊗Mn(C)→ A.
(For this we only need that A admits an irreducible representation of dimension at least
n.) Let ι ∈ C0((0, 1]) denote the function ι(t) = t, and let {eij} ⊆Mn(C) be a set of matrix
units. Set aj = ϕ(ι⊗ejj). Choose a non-zero projection q1 in the hereditary sub-C∗-algebra
a1Aa1. Set zj = ϕ(ι⊗ ej1), 2 ≤ j ≤ n, and note that |zj| = a1. Write zj = vj|zj|, with vj
a partial isometry in A∗∗. Then wj := vjq1 is a partial isometry in A satisfying w∗jwj = q1

and qj := wjw
∗
j ∈ ajAaj. It follows that q1, q2, . . . , qn are pairwise equivalent and pairwise

orthogonal projections in A, witnessing the existence of the embedding Mn(C)→ A.

The result below was obtained by the second named author in [37] and [39]:

Theorem 4.3. There exists a unital simple separable nuclear C∗-algebra P which is finite,
but where M2(P) is properly infinite. Moreover, P has property (SP), but is not of real
rank zero.

We can sharpen the first part of the theorem above as follows:

Theorem 4.4. For each n ≥ 1, there exists a unital C∗-algebra Pn, Morita equivalent to
the C∗-algebra P in the theorem above, such that Mk(Pn) is finite, for k ≤ n, and properly
infinite, for k > n.
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Proof. Let n ≥ 1 be given, and let P be as in Theorem 4.3 above. Use Lemma 4.2 to find
an embedding ϕ : Mn(C) → P . Let e = ϕ(e11), where {eij} are matrix units for Mn(C),
and set R = ePe. Then Mn(R) = ϕ(1)Pϕ(1), which is finite, because P is finite. As R
and P are Morita equivalent and since M2(P) is properly infinite, some matrix algebra
over R is properly infinite. Let m ≥ n be the largest integer for which Mm(R) is finite.
Write m = qn + r, with 0 ≤ r < n, and put Pn = Mq(R). Then Mn(Pn) = Mqn(R) is
finite, while Mn+1(R) = Mq(n+1)(R) is properly infinite.

Lemma 4.5. Let {An} be a sequence of unital C∗-algebras, let ω be a free ultrafilter on
N, and let k ≥ 1. Then Mk(

∏
ωAn) is properly infinite if and only if the set {n ≥ 1 :

Mk(An) properly infinite} belongs to ω.

Proof. Since Mk(
∏

ωAn) ∼=
∏

ωMk(An), it suffices to prove the lemma for k = 1. It is
clear that

∏
ωAn is properly infinite if An is properly infinite for all n in a set belonging to

ω. Conversely, suppose that
∏

ωAn is properly infinite, and take isometries s, t ∈
∏

ωAn
with orthogonal ranges. Write s = πω({sn}) and t = πω({tn}), with sn, tn ∈ An. Then

lim
n→ω
‖s∗nsn − 1‖ = lim

n→ω
‖t∗ntn − 1‖ = lim

n→ω
‖t∗nsn‖ = 0.

In particular, each of ‖s∗nsn−1‖, ‖t∗ntn−1‖, ‖t∗nsn‖ is less than 1/2, for all n in some subset
of ω, and An is properly infinite for those n, by Lemma 3.4.

The following is an immediate consequence of Lemma 4.5 above:

Theorem 4.6. Let Pn be as in Theorem 4.4. Then each Pn is traceless, while
∏

ω Pn does
admits a quasitrace.

We know that the ultraproduct
∏

ω Pn from the theorem above admits a quasitrace, but
we do not know if it admits a trace. It seems likely that it does (see also Remark 4.7
below), in which case we will have an example where Tω({Pn}) = ∅ and T (

∏
ω Pn) 6= ∅.

On the other hand, if T (
∏

ω Pn) = ∅, we would have a counterexample to Kaplansky’s
conjecture: a 2-quasitrace which is not a trace. In either case we have an example of a
quasitrace which is not obviously a trace.

In [4, Example 2.12] and [32, Example 3.11] an example was given of a sequence of
(non-simple) unital traceless C∗-algebras Bn whose ultraproduct

∏
ω Bn admits a character,

and hence a trace. A related example was established in [33], proving the existence of a
sequence of simple infinite dimensional unital C∗-algebras (admitting tracial states) whose
ultraproduct also admits a character. We do not know if our example in Theorem 4.6 —
as it stands — also would admit a character (we guess not), but it is easy to see that this
is not the case for a suitable choice of the sequence {Pn}. Indeed, using Theorem 4.4,
we can for each n ≥ 1 choose a unital C∗-algebra Qn Morita equivalent to P such that
Mk(Qn) is finite for k ≤ 2nn, and properly infinite for k > 2nn. Put Pn = M2n(Qn). Then
Pn satisfies the condition of Theorem 4.4, and so

∏
ω Pn admits a quasitrace, and it also

contains the UHF-algebra of type 2∞ as a unital sub-C∗-algebra.
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Remark 4.7. We shall here comment on the possibility of constructing a counterexample
to Kaplansky’s conjecture using ultraproducts as in Theorem 4.6 above. For each unital
C∗-algebra A, let µ(A) be the smallest integer n ≥ 1, for which Mn(A) is properly infinite,
and set µ(A) =∞, if no such n exists. Similarly, let ν(A) be the smallest integer n ≥ 1 for
which there exist x1, . . . , xn ∈ A satisfying

∑n
j=1 x

∗
jxj = 1 and ‖

∑n
j=1 xjx

∗
j‖ ≤ 1/2, and

set ν(A) = ∞ if no such finite set x1, . . . , xn exists. Then A admits a trace, respectively,
a quasitrace if and only if ν(A) =∞, respectively, µ(A) =∞, by Theorems 3.1 and 2.3.

If {An}n≥1 is a sequence of unital C∗-algebras such that µ(An) → ∞, then
∏

ωAn
is not stably properly infinite, and hence admits a quasitrace, for any ultrafilter ω. If,
at the same time, ν(An) remains bounded, then

∏
ωAn cannot admit a trace, and such

a — hypothetical — C∗-algebra will therefore provide a counterexample to Kaplansky’s
conjecture. A construction of a sequence of C∗-algebras with these properties is impossible
precisely if there exists a universal relation between µ and ν of the form µ(A) ≤ f(ν(A)), for
all traceless unital C∗-algebras A, where f : N→ N is a fixed function satisyfing f(n)→∞
as n→∞. The results of this section provide a class of (simple) C∗-algebras A, exhausing
all possible values of µ(A), which could be candidates for providing a counterexample to
Kaplansky’s conjecture via an ultraproduct construction.

5 Almost traces

We introduce in this section a notion of almost traces, and we show that an ultraproduct
of a sequence of C∗-algebras admits a trace if and only if the C∗-algebras in the sequence
admit almost traces. The arguments are very similar to those of [33, Section 8] addressing
existence of characters on ultraproducts of C∗-algebras.

As in the previous section, let {An} be a sequence of unital C∗-algebras and let ω be a
free ultrafilter on N. Analogous with the construction for traces in the previous section, let
Sω({An}) ⊆ S(

∏
ωAn) denote the set of states ρ on

∏
ωAn which are limits of a sequence

{ρn} of states ρn ∈ S(An) in the following sense:

ρ(πω({xn})) = lim
ω
ρn(xn), {xn} ∈

∏
ω

An.

We denote the state ρ by limω ρn. The result below is a slight modification of [23, Lemma
2.5] by Kirchberg.

Proposition 5.1 (Kirchberg). The set Sω({An}) is weak∗ dense in S(
∏

ωAn).

Observe that the statement above holds without any additional assumptions on the C∗-al-
gebras An, unlike the analogous situation for traces discussed in Section 4

Proof. Note first that Sω({An}) is convex. Indeed, if ρ = limω ρn and ρ′ = limω ρ
′
n belong

to Sω({An}), then tρ+(1−t)ρ′ = limω(tρn+(1−t)ρ′n) ∈ Sω({An}), for 0 < t < 1. Hence it
suffices to show that each pure state ρ on

∏
ωAn belongs to the weak∗ closure of Sω({An}).
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Take a pure state ρ on
∏

ωAn, let F be a finite subset of
∏

ωAn, and let ε > 0 be
given. The pure state ρ can be excised, [1], so there exists a positive element h ∈

∏
ωAn

satisfying ‖h‖ = 1 and ‖h1/2xh1/2 − ρ(x)h‖ < ε, for all x ∈ F . Write h = πω({hn}), with
hn ∈ An positive and ‖hn‖ = 1, and find states ρn on An such that ρn(hn) = ‖hn‖. Put
σ = limω ρn. Then σ(h) = limω ρn(hn) = 1. It follows that

|σ(x)− ρ(x)| =
∣∣σ(h1/2xh1/2 − ρ(x)h

)∣∣ ≤ ‖h1/2xh1/2 − ρ(x)h‖ < ε,

for all x ∈ F . This shows that ρ belongs to the weak∗ closure of Sω({An}).

Remark 5.2. In Corollary 3.3 we noted that to each state ρ on a unital traceless C∗-alge-
bra A there exists a sequence {xn} in A such that ρ(x∗nxn) = 1, while ρ(xnx

∗
n) → 0. One

could consider the (formally) stronger property of a state that this happens for a bounded
sequence {xn}. If all states on each C∗-algebra in a sequence {An} have this stronger
property, then the same holds for all states in the weak∗ dense subset Sω({An}), whence
no state in Sω({An}) could be a trace. This would not rule out the existence of a trace
on
∏

ωAn. Still, we expect that the sequences {xn} in A above, witnessing tracelessness,
cannot always be chosen to be bounded.

Definition 5.3. A unital C∗-algebra A is said to have (N, ε)-almost traces if for each set
x1, . . . , xN of contractions in A there exists a state ρ on A such that

|ρ(x∗jxj − xjx∗j)| ≤ ε, j = 1, 2, . . . , N.

Lemma 5.4. A unital C∗-algebra A has a tracial state if and only if it has (N, ε)-almost
traces for all N ≥ 1 and all ε > 0.

Proof. The “only if” part is clear. Assume that for each finite set F of the unit ball of A
and each ε > 0 we can find a state ρF ,ε on A such that |ρF ,ε(x∗x− xx∗)| < ε for all x ∈ F .
Let ρ be an an accumulation point of the net

{
ρF ,ε

}
. Let x ∈ A be a contraction and let

ε > 0. As ρ by assumption belongs to the closure of the set {ρF ,ε′ : x ∈ F , ε′ ≤ ε} we
conclude that |ρ(x∗x− xx)| < ε. This shows that ρ is a tracial state on A.

Proposition 5.5. Let {An} be a sequence of unital C∗-algebras, and let ω be a free ultra-
filter on N. The ultraproduct C∗-algebra

∏
ωAn admits a tracial state if and only if

IN,ε := {n ∈ N : An admits (N, ε)-almost traces } ∈ ω,

for each integer N ≥ 1 and each ε > 0.

Proof. “Only if”. Let τ be a tracial state on
∏

ωAn. Let (N, ε) be given. For each
n ∈ N\IN,ε, choose contractions x1(n), . . . , xN(n) ∈ An such that no state ρ on An satisfies
|ρ
(
xj(n)∗xj(n) − xj(n)xj(n)∗

)
| ≤ ε, for all j = 1, . . . , N . Choose arbitrary contractions

xj(n) ∈ An, for n ∈ IN,ε and j = 1, . . . , N , and set xj = πω({xj(n)}) ∈
∏

ωAn.
By Proposition 5.1 we can find states ρn on An such that

|(lim
ω
ρn)(x∗jxj)− τ(x∗jxj)| < ε/2, |(lim

ω
ρn)(xjx

∗
j)− τ(xjx

∗
j)| < ε/2,
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for all j = 1, . . . , N . Hence

lim
ω
|ρn
(
xj(n)∗xj(n)− xj(n)xj(n)∗

)
| = |(lim

ω
ρn)(x∗jxj − xjx∗j)| < ε,

for all j. This entails that N \ IN,ε does not belong to ω, so IN,ε ∈ ω as desired.
“If”. By Lemma 5.4 it suffices to show that

∏
ωAn admits (N, ε)-almost traces for all

(N, ε). Accordingly, let x1, . . . , xn be contractions in
∏

ωAn, and write xj = πω({xj(n)}n≥1)
with xj(n) ∈ An contractions. For each n ∈ IN,ε, we can find a state ρn on An such
that |ρn(xj(n)∗xj(n) − xj(n)xj(n)∗)| ≤ ε, for j = 1, 2, . . . , N . Choose arbitrary states
ρn ∈ S(An), for n /∈ IN,ε, and set ρ = limω ρn. Then

|ρ(x∗jxj − xjx∗j)| = lim
ω
|ρn(xj(n)∗xj(n)− xj(n)xj(n)∗)| ≤ ε,

for j = 1, 2, . . . , N . This shows that
∏

ωAn admits (N, ε)-almost traces.

6 Faithful traces

In this last section we shall consider when a unital C∗-algebra admits a faithful tracial
state, and also the stronger condition that each quotient of the C∗-algebra admits a tracial
state. The property that each quotient of the C∗-algebra admits a tracial state is denoted
QTS, and was considered by Murphy, [27], see also recent application for amenability of
the unitary group of the C∗-algebra in [3] and [30].

We begin by noting the following well-known characterization of C∗-algebras with a
faithful trace. The equivalence of (i) and (ii) was obtained in [9, Theorem 3.4] (we give a
different proof here). For each trace τ on a C∗-algebra A consider the its trace-kernel ideal
Iτ = {x ∈ A : τ(x∗x) = 0}.

Proposition 6.1. The following three conditions are equivalent for every unital separable
C∗-algebra A:

(i) A has a faithful tracial state,

(ii) A has a separating family of tracial states,

(iii) each non-zero closed two-sided ideal in A admits a non-zero positive bounded trace.

Proof. (i) ⇒ (ii) ⇒ (iii) are trivial.
(ii) ⇒ (i). We first show that for each non-zero positive element a ∈ A there exists a

tracial state τ on A such that ‖a+ Iτ‖ > ‖a‖/2, where Iτ is the trace-kernel ideal defined
above. We may assume that ‖a‖ = 1. Let g : [0, 1]→ [0, 1] be a continuous function which
is zero on the interval [0, 1/2] and with g(1) = 1. Then g(a) is positive and non-zero, so
by assumption there is a tracial state τ on A which is non-zero on g(a). It follows that
g(a+ Iτ ) = g(a) + Iτ 6= 0. This entails that ‖a+ Iτ‖ > 1/2.

Let now {an}∞n=1 be a countable dense subset of the set of positive elements inA of norm
1. For each n choose a tracial state τn such that ‖an + Iτn‖ > 1/2. Set τ =

∑∞
n=1 2−nτn.
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Then τ is a tracial state on A and Iτ =
⋂∞
n=1 Iτn . It follows that ‖an + Iτ‖ > 1/2 for all

n. This implies that ‖a+ Iτ‖ ≥ 1/2, for all positive elements a ∈ A with ‖a‖ = 1, proving
that τ is faithful.

(iii) ⇒ (ii). Each trace on A vanishes on the ideal I0 =
⋂
τ∈T (A) Iτ . Hence, I0 does not

admit any positive bounded trace, since any such would extend to a positive trace on A,
so I0 must be zero.

The conclusions of Proposition 6.1 do not hold without the assumption of separability. If
a C∗-algebra admits a faithful tracial state, then it cannot contain an uncountable family
of pairwise orthogonal non-zero positive elements, but such a C∗-algebra can admit a
separating family of tracial states. This is for example the case for the C∗-algebra `∞(X),
or the unitization of c0(X), where X is an uncountable set.

The following is an immediate corollary to Proposition 6.1:

Corollary 6.2. Every separable RFD C∗-algebra admits a faithful tracial state.

We mention also the following nice characterization from [9, Theorem 3.4] of C∗-algebras
admitting a separating family of traces:

Theorem 6.3 (Cuntz–Pedersen). A unital C∗-algebra A admits a separating family of
traces if and only if for all sequences {xn}n≥1 in A satisfying

∑∞
j=1 xjx

∗
j ≤

∑∞
j=1 x

∗
jxj

(with both sums being norm convergent) we have equality
∑∞

j=1 xjx
∗
j =

∑∞
j=1 x

∗
jxj.

We proceed to list some permanence properties of C∗-algebras with a faithful tracial state.

Proposition 6.4. Let A and B be unital C∗-algebras.

(i) If A and B are Morita equivalent, and if A admits a faithful trace, then so does B.

(ii) The minimal tensor product A⊗ B admits a faithful trace if and only if both A and
B do.

(iii) If I is an essential ideal in A, and if I admits a faithful bounded trace, then so does
A. In particular, I admits a faithful trace if and only if M(I) does.

(iv) If I is an ideal in A, then A admits a faithful trace if I and A/I do.

Proof. (i). This follows from the easily seen facts that if A admits a trace then so does
any matrix algebra over A and every corner pAp of A, with p a projection in A.

(ii). The “only if” is trivial because A and B both are sub-C∗-algebras of A ⊗ B. To
see the “if” part, take faithful traces τA and τB on A and B, respectively, and consider the
trace τ = τA ⊗ τB on A⊗ B. To show that τ is faithful we must show that its associated
trace-kernel ideal Iτ of A ⊗ B is zero. However, if Iτ were non-zero, then by Kirchberg’s
“slice lemma” (see, e.g., [36, Lemma 4.1.9]) it contains a non-zero elementary tensor a⊗ b.
But this would contradict faithfulness of τA and τB.

(iii). Take a faithful trace τ (of norm one) on I and extend it to a trace τ on A. Then
Iτ ∩ I = Iτ = 0, which entails that Iτ = 0, since I is essential.
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(iv). Suppose that I and A/I both admit faithful traces, and let I0 =
⋂
τ∈T (A) Iτ . Then

I ∩ I0 = 0 because I admits a faithful trace, and (I + I0)/I = 0 because A/I admits a
faithful trace, so I0 = 0.

We emphasize below the following special case of part (iii) of the proposition above.

Corollary 6.5. A (possibly non-unital) C∗-algebra I admits a faithful positive bounded

trace if and only if its multiplier algebra M(I) and/or its unitization Ĩ admit a faithful
trace.

Remark 6.6 (Obstructions to having a faithful trace). Every unital C∗-algebra with a
faithful tracial state must be stably finite (all projections in all matrix algebras over the
C∗-algebra are finite). Indeed, any faithful trace on a C∗-algebra extends to a faithful trace
on any matrix algebras over the C∗-algebra, and the presence of a faithful trace forces all
projections to be finite.

Secondly, a faithful trace on a C∗-algebra restricts to a non-zero bounded positive trace
on all the its sub-C∗-algebras. Stable C∗-algebras do not admit any bounded non-zero
trace, so no C∗-algebra with a faithful trace can contain a stable sub-C∗-algebra.2

Any C∗-algebra that contains a purely infinite C∗-algebra cannot have a faithful trace,
as purely infinite C∗-algebras are traceless. Purely infinite C∗-algebras need not have
projections, nor have stable sub-C∗-algebras, so this obstruction is not covered by the two
previously mentioned ones.

It follows in particular from Proposition 6.4 that A admits a faithful trace if and only if
its Z-stabilization A⊗Z admits a faithful trace.

Definition 6.7. A C∗-algebra A will be said to be n-stable, for some n ≥ 1, if Mn(A) is
stable. We say that A is matrix stable if it is n-stable, for some n ≥ 1.

More generally, we can consider the property that A⊗ B is stable, where B is some fixed
unital C∗-algebra. For two very special cases of B we can say the following:

Theorem 6.8. Let A be a separable C∗-algebra.

(i) If A is exact, then A⊗Z is stable if and only if A admits no bounded trace and has
no unital quotient.

(ii) A⊗O∞ is stable if and only if A has no unital quotient.

Proof. (i) follows from [14, Theorem 3.6] and [38], while (ii) follows from [25, Theorem
4.24], which states the more general result that any separable purely infinite C∗-algebra is
stable if and only if it has no unital quotient.

One can replace Z in (i) by any unital C∗-algebra that tensorially absorbs Z.

2A C∗-algebra A is stable if A⊗K ∼= A, where K is the C∗-algebra of compact operators on an infinite
dimensional separable Hilbert space, see also [15] for an intrinsic characterization of stability
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Remark 6.9. One can, for each n ≥ 2, find a simple separable C∗-algebra of stable rank
one which is n-stable but not (n− 1)-stable, cf. [34].

Taking a c0-direct sum of a sequence of such C∗-algebras, one obtains a C∗-algebra A
of stable rank one, which is not matrix stable, but where A⊗Z is stable. In the example
below we construct a simple (but not stable rank one) C∗-algebra which likewise is stable
after being tensored with Z, but not matrix stable.

Example 6.10. Take the C∗-algebra P from Theorem 4.3. Let e0 denote the identity
of M2(P), which is a properly infinite projection. Let e1 be a non-zero finite projection
in M2(P) such that e0 − e1 is properly infinite. As in the proof of Theorem 4.4, choose
inductively non-zero projections en ∈ M2(P), for n ≥ 2, such that en ⊗ 1n is finite, and
en is a proper subprojection of en−1, where e ⊗ 1n = diag(e, e, . . . , e) ∈ Mn(M2(P)), for
e ∈M2(P). Put

A =
∞⋃
n=1

(e0 − en)M2(P)(e0 − en).

Then A is simple and non-unital (hence no unital quotients), and A⊗Z is purely infinite,
because A is simple and not stably finite, so A⊗Z is stable by [25, Theorem 4.24]. Take
n ≥ 1, and observe that {(e0−ek)⊗1n}k≥1 is an approximate unit for Mn(A). If f ∈Mn(A)
is a projection which is orthogonal to (e0 − en) ⊗ 1n, then f - (en − ek) ⊗ 1n ≤ en ⊗ 1n,
for some k > n. This implies that f is finite, so no properly infinite projection is sub-
equivalent to f . In particular, we cannot have (e0 − en)⊗ 1n - f . By [15] this shows that
Mn(A) is not stable.

The property of having a faithful trace (or a separating family of traces) is not closed under
maximal tensor product. In fact, we have the following remarkable result of Kirchberg
from [20], see his proof of (B4)⇒ (B3) on p. 485, see also [26, Proposition 3.13] for a more
detailed proof.

Proposition 6.11 (Kirchberg). Let A and B be unital C∗-algebras. Then A⊗maxB admits
a faithful trace if and only if A⊗max B = A⊗ B and both A and B admit faithful traces.

Remark 6.12. Kirchberg proved in [20] that the Connes Embedding Problem (CEP) has
a positive answer if and only if C∗(F∞)⊗max C

∗(F∞) = C∗(F∞)⊗ C∗(F∞). Since C∗(F∞)
has a faithful tracial state, being RFD, Kirchberg thus shows that CEP is equivalent to the
existence of a faithful trace on C∗(F∞×F∞) ∼= C∗(F∞)⊗max C

∗(F∞). A negative solution
to the CEP has been announced in [16], which in this context implies that C∗(F∞) ⊗max

C∗(F∞) 6= C∗(F∞)⊗ C∗(F∞) and that C∗(F∞ × F∞) has no faithful trace.
For the reduced group C∗-algebras it is known, [2], that C∗λ(F∞) ⊗max C

∗
λ(F∞) 6=

C∗λ(F∞) ⊗ C∗λ(F∞), so the former does not admit a faithful tracial state, while C∗λ(F∞)
surely does.

It is known that there exists groups Γ for which C∗(Γ) does not admit a faithful tracial
state, e.g., Γ = SL(n,Z), for n ≥ 3, cf. [5]. We do not know which C∗-algebraic obstruction
prevents these C∗-algebras having a faithful trace. One interesting possibility is that they
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contain an infinite projection. We mention here that it is an open problem if there exists
a group Γ for which C∗(Γ) contains an infinite projection.

Similarly one can ask if there is an alternative understanding of Proposition 6.11:

Question 6.13. Is the kernel of the canonical map A⊗max B → A⊗ B always stable (or
matrix stable), whenever A and B are unital C∗-algebras?

Example 6.14. (i). A quotient of a C∗-algebra with a faithful trace need not admit a
(faithful) trace. The full group C∗-algebra C∗(F∞) is RFD and hence admits a faithful
trace. However, every separable C∗-algebra (including O∞) is a quotient of C∗(F∞).

(ii). The class of unital C∗-algebras admitting a faithful tracial state is not closed under

inductive limits. The unitization K̃ of the compact operators is an AF-algebra and hence
an inductive limit of finite dimensional C∗-algebras, but it does not admit a faithful tracial
state.

Proposition 6.15. A unital C∗-algebra has a faithful trace if and only if it embeds into a
type II1 von Neumann factor.

Proof. If a unital C∗-algebra A admits a faithful tracial state τ , then it embeds into the
finite von Neumann algebra M = πτ (A)′′, which again admits a faithful trace. It is well-
known that every finite von Neumann algebra with a faithful tracial state embeds (in a
trace preserving way) into a II1-factor. For a proof of this fact, due to Haagerup, see the
appendix of [28].

A unital C∗-algebra embeds into a von Neumann algebra of type II1 (not necessarily a
factor) if and only if it admits a separating family of traces.

In the theorem below we combine Theorem 6.8 (i) and Proposition 6.1 to get information
about when a unital exact C∗-algebra admits a faithful tracial state.

Theorem 6.16. Let A be a unital exact separable C∗-algebra.

(i) If A admits a faithful tracial state, then no non-zero ideal I of A is such that I ⊗Z
is stable.

(ii) If A has no non-zero ideal I for which either I⊗Z is stable or I has a stably properly
infinite unital quotient, then A admits a faithful tracial state.

(iii) If A has stable rank one, then A admits a faithful tracial state if and only if there is
no non-zero ideal I of A for which I ⊗Z is stable.

Proof. (i) is contained in Theorem 6.8 (and is also trivial, as a faithful tracial state on A
restricts to a non-zero bounded trace on I which, when tensored with the canonical trace
on Z, gives a bounded trace on I ⊗Z, which therefore cannot be stable).

(ii). By Proposition 6.1 it suffices to show, under the assumptions in (ii), that every
non-zero ideal I of A admits a non-zero bounded trace. By Theorem 6.8 (i) and the
assumption that I ⊗Z is not stable, either I has a bounded trace or a unital quotient I/J
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(or both). Assume that I/J is unital for some J / I / A. Then, by assumption, I/J is
not stably properly infinite, so it admits a quasitrace τ , by Theorems 2.3. Now, since A is
exact, so is I and I/J , the latter is a deep fact obtained by Kirchberg, [21], see also [41,
Corollary 9.3]. It therefore follows from Haagerup’s theorem (Theorem 2.2) that τ in fact
is a trace on I/J . By composition, τ lifts to a bounded trace on I, as desired.

(iii). If A has stable rank one, then so do all ideals of I and all quotients of all ideals
of A. As any C∗-algebra of stable rank one is stably finite, we conclude that no ideal of A
has a stably properly infinite quotient. The result now follows from (i) and (ii).

Remark 6.17. (i). If A is Z-stable, then we can replace “I⊗Z is stable” by “I is stable”
in Theorem 6.16 since any ideal of a Z-stable C∗-algebra automatically is Z-stable. In (ii)
we can also replace “I has a stably properly infinite unital quotient” by “I has a properly
infinite unital quotient”.

(ii). We can not in general replace “I⊗Z is stable” by “I is stable” in Theorem 6.16 (ii)
or (iii). Indeed, for any integer n ≥ 2, take a simple separable C∗-algebra I of stable rank
one which is n-stable but not (n − 1)-stable, cf. Remark 6.9. Then I admits no bounded

trace, so its unitization Ĩ does not admit a faithful tracial state, but Ĩ has no stable ideal
and no unital quotient other than C.

Also, one can not replace “I ⊗ Z is stable” by “I is matrix stable” in Theorem 6.16
(ii), by Example 6.10 and the argument above.

(iii). We do not know, however, if one can replace “I ⊗ Z is stable” by “I is matrix
stable” in Theorem 6.16 (iii). Suppose that A is a unital exact separable C∗-algebra of
stable rank one, and let I be an ideal in A, which is not matrix stable. Then, for each
n ≥ 1, it follows from [35, Proposition 3.6] that Mn(M(I)) = M(Mn(I)) is not properly
infinite, soM(I) admits a quasitrace by Theorem 2.3. The restriction of such a quasitrace
to I will be a bounded trace, because I is exact. However, it may be zero. Still, we do
not know of an example of a C∗-algebra I of stable rank one, for which M(I) admits a
quasitrace, but all quasitraces on M(I) vanish on I. Such examples do exists if we omit
the requirement of having stable rank one, see (v) below.

(iv). Relatedly, we do not know if one can find an example of a simple separable C∗-
algebra A of stable rank one for which A ⊗ Z is stable but A is not matrix stable, cf.
Example 6.10 and Remark 6.9. If such an example exists, which additionally is exact, then
its unitation would have no matrix stable ideals, but will fail to have a faithful trace.

(v). Take {Pn}n≥1 to be the sequence of unital simple traceless C∗-algebras from
Theorem 4.6. Then its c0-direct sum

⊕∞
n=1Pn admits no bounded trace (or quasitrace, as

it is nuclear), but its multiplier algebraM(
⊕∞

n=1Pn) =
∏∞

n=1Pn does admit a quasitrace,
since a quotient of it does, cf. Theorem 4.6.

It would be interesting to have a necessary and sufficient condition for the existence of
a faithful trace on a general (separable and exact) C∗-algebra, finding a suitable “middle
road” of (i) and (ii) in Theorem 6.16 above. Let us here remark that the condition in (i)
is not sufficient, and the conditions of (ii) are not necessary. Indeed, any unital properly
infinite simple C∗-algebra (e.g., A = On) satisfies (i) but has no trace. It was already
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noted in Example 6.14 (i) that C∗-algebras with a faithful trace can have a properly
infinite quotient.

The situation becomes more clear if, instead, we ask that A and all quotients of A
admit a faithful trace. We say that a C∗-algebra has the QFTS property if all its quotients
admit a faithful trace. If I / J /A are ideals, we refer to J/I as an intermediate quotient
of A.

Theorem 6.18. A unital exact separable C∗-algebra A has the QFTS property if and only
if it has no stably properly infinite quotients and no intermediate quotient that is stable
when tensored with Z.

If A moreover is Z-stable, then A has the QFTS property if and only if it has no stable
intermediate quotients and no properly infinite quotients.

Proof. We first prove the second part of the theorem. The argument resembles the proof
of Theorem 6.16 (ii). The “only if” part is easy and follows from Remark 6.6.

Suppose A does not have the QFTS property, and let I /A be such that A/I has no
faithful trace. Then, by Proposition 6.1, there is I / J /A such that J/I has no bounded
trace. Being Z-stable passes to intermediate ideals, so either J/I is stable or has a unital
quotient, by Theorem 6.8. In the latter case we will have an ideal I / K / J /A such that
J/K is unital. Since J/I has no bounded trace, neither does J/K, and as J/K is exact by
Kirchberg’s theorem that exactness passes to quotients, mentioned earlier, we infer that
J/K is stably properly infinite, and hence properly infinite, by Z-stability. Finally, since
J/K is a unital ideal in A/K, it is a direct summand, and therefore J/K is isomorphic to
a quotient of A.

The first part of the theorem follows from the second by applying it to A⊗Z. Use that
A has the QTFS property if and only if A ⊗ Z does, and that B ⊗ Z is properly infinite
if and only if B is stably properly infinite.
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