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Abstract. We give an overview of the development over the last 15 years of the theory
of simple C∗-algebras, in particular in regards to their classification and structure. We
discuss dimension theory for (simple) C∗-algebras, in particular the so-called stable and
real ranks, and we explain how properties of C∗-algebras of low dimension (stable rank
one and real rank zero) was used by the author and P. Friis to give a new and simple
proof of a theorem of H. Lin that almost commuting self-adjoint matrices are close to
exactly commuting self-adjoint matrices. Elliott’s classification program is explained and
is contrasted with recent examples of C∗-algebras of “high dimension”, including an
example of a simple C∗-algebra with a finite and an infinite projection.
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1. Introduction

A (represented) C∗-algebra is a norm closed self-adjoint sub-algebra of the bounded
operators on a Hilbert space. One can alternatively describe C∗-algebras axiomat-
ically as complex Banach algebras with an involution that satisfies ‖a∗a‖ = ‖a‖2,
thanks to a theorem of Gelfand, Naimark and Segal. Each commutative C∗-algebra
is isomorphic to C0(X) for some locally compact Hausdorff space X, and C0(X)
is isomorphic to C0(Y ) if and only if X and Y are homeomorphic. This justifies
the jargon that the study of C∗-algebras is non-commutative topology.

One can associate a C∗-algebra to each (locally compact) group, and the repre-
sentation theory of the group C∗-algebra coincides with with representation theory
of the group. Much of the early interest in C∗-algebras lay in their representation
theory, and in their connection with other objects (such as groups).

Nearly 50 years ago, Glimm constructed a class of C∗-algebras, now called UHF-
or Glimm algebras, that are the C∗-algebra analog of the hyperfinite II1-factor.
Unlike the situation for von Neumann algebras, there is not one UHF-algebra but
in fact uncountably many. Glimm classified UHF-algebras by an invariant that we
today can identify as the K0-group of the algebra. Glimm’s work was extended by
Bratteli and Elliott who classified the larger class of AF-algebras (approximately
finite dimensional C∗-algebras) that arise as inductive limits of finite dimensional
C∗-algebras (the latter are just direct sums of matrix algebras). All UHF-algebras
are simple, ie. have no non-trivial closed two-sided ideals. AF-algebras may or
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may not be simple, and far from all simple AF-algebras are UHF-algebras. Simple
AF-algebras need not have unique trace, actually any metrizable Choquet simplex
can arise as the trace simplex of a simple unital AF-algebra.

Many other interesting examples of (simple) C∗-algebras saw the light in the
1970s and 1980s. Cuntz invented his algebras On. These are, for 2 ≤ n < ∞,
generated by n isometries s1, s2, . . . , sn satisfying the relation 1 = s1s

∗
1 + s2s

∗
2 +

· · ·+ sns∗n. (For n = ∞ this relation is replaced with the relation that the support
projections sjs

∗
j are mutually orthogonal.) Cuntz proved that his algebras are

simple and purely infinite (see Definition 2.3) and independent on the choice of
generators. These were the first explicit examples of simple infinite separable C∗-
algebras. Cuntz and Krieger later associated a C∗-algebra to each finite Markov
chain. This construction has today been generalized considerably in parts by
Pimsner, who associated a Pimsner algebra to each Hilbert bi-module over a C∗-
algebra, and with the constructions of C∗-algebras associated with infinite graphs.
Many of these C∗-algebras are simple and purely infinite.

One can also obtain simple C∗-algebras from groups. The reduced groups C∗-
algebra C∗

red(G) associated with a (discrete) group is simple for many interesting
cases of non-amenable groups G, for example when G is a free group (other than
Z). These C∗-algebras are often exact, but never nuclear. Non-amenable groups
can act amenably on spaces and can in this way give rise to simple, purely infinite,
and nuclear C∗-algebra. Dynamical systems in general, also with amenable groups
and in particular with Z, give rise to many interesting examples of C∗-algebras,
many of which are simple.

The irrational rotation C∗-algebra, Aθ, associated with an irrational number
θ, is the universal C∗-algebra generated by two unitaries u and v satisfying the
commutation relation uv = e2πiθvu. They were first studied by Rieffel and shown
to be simple with a unique trace and being independent of the generators u and
v. The irrational rotation C∗-algebra Aθ contains the Harper operator u + u∗ +
λ(v +v∗), where λ is a non-zero real parameter, whose spectrum recently has been
shown to be a Cantor set.

These examples, and many more like them, have spurred the interest in un-
derstanding, and perhaps classifying, C∗-algebras, in particular the simple ones.
This study was first suggested by Dixmier in the 1960s, and later taken up by
Cuntz and Blackadar to mention just a few. It was investigated when finite sim-
ple C∗-algebras have a trace, and Cuntz studied the purely infinite C∗-algebras
(that resemble the type III1 von Neumann factors). The question, if all simple
C∗-algebras are either (stably) finite or purely infinite was left open until a few
years ago where the author found a counterexample inspired by ideas of Villadsen.

The most significant progress in our understanding of C∗-algebras comes from
the program initiated by Elliott, and known as Elliott’s classification program.
Elliott predicts that (simple) separable nuclear C∗-algebras can be classified by
natural invariants including K-theory as the most prominent ingredient. This
conjecture has now been verified for a surprisingly wide class of C∗-algebras, for
example for all simple separable nuclear purely infinite K-amenable C∗-algebras
(the Kirchberg–Phillips theorem). We also know that we must make modifications
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to the classification conjecture if we want to turn it into a theorem.
We give here an overview of the theory of simple C∗-algebras including some

of the recent examples of exotic “high-dimensional” simple C∗-algebras. We also
include a solution to a classical problem, if almost commuting matrices must be
close to commuting matrices, as the methods to solve this problem grew out of the
methods used to study (simple) C∗-algebras.

2. The structure of simple C∗-algebras

Von Neumann algebra factors were by their inventors, von Neumann and Mur-
ray, divided into types: In, I∞, II1, II∞, and III. The types are distinguished
by the dimension range of the projections in the factor, which for the 5 types
above are {0, 1, 2, . . . , n}, {0, 1, 2, . . . ,∞}, [0, 1], [0,∞], and {0,∞}, respectively.
A type In-factor, with n finite, is isomorphic to the algebra of n × n matrices,
and, more generally a type In factor is the algebra of all bounded operators on an
n-dimensional Hilbert space. Type II1-factors admit a unique tracial state, and
type III-factors are traceless. A separable von Neumann algebra is simple (has no
non-trivial closed two-sided ideals) if and only if it is a factor of type In, with n
finite, type II1, or of type III.

Can one similarly divide the (infinite dimensional) simple C∗-algebras into two
types; a finite type resembling the type II1-factors and an infinite type resembling
the type III-factors? Existence of traces and of finite and infinite projections should
be natural dividing criterions:

Definition 2.1. Two projections p and q in a C∗-algebra A are said to be (Murray-
von Neumann) equivalent, written p ∼ q, if p = v∗v and q = vv∗ for some (partial
isometry) v in A; and p is subequivalent to q, written p - q, if p is equivalent to a
subprojection of q.

A projection in a C∗-algebra A is said to be infinite if it is equivalent to a
proper subprojection of itself; and it is said to be finite otherwise.

A simple C∗-algebra A is called stably infinite if its stabilization A⊗K contains
an infinite projection, and it is called stably finite otherwise.

The notion of finiteness relate, as we would expect, to the existence of traces. As
C∗-algebras need not be unital, we allow our traces to be unbounded and densely
(not necessarily everywhere) defined.

The usual construction of a trace on an abstract C∗-algebra goes via a so-
called dimension function (a “measure” rather than the “integral”), which by
“integration” gives rise to a functional, which is slightly short of being a trace:
additivity is known to hold only on abelian subalgebras. Such functionals are
called quasitraces. Uffe Haagerup proved in [16] that quasitraces are in fact traces
on exact C∗-algebras (Haagerup proved this for unital C∗-algebras, and Kirchberg
extended the result to the non-unital case).

We have the following fundamental theorem on the existence of traces on simple
C∗-algebra:
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Theorem 2.2 (Blackadar-Cuntz-Haagerup). A simple C∗-algebra A admits a qu-
asitrace (and hence a trace, if A is exact) if and only if A is stably finite.

Outline of proof: Blackadar and Cuntz proved in [2] that the following three con-
ditions are equivalent for a simple stable C∗-algebra A: 1) A contains an infinite
projection, 2) A has no dimension function, and 3) A is algebraically simple. Any
dimension function lifts to a quasitrace by [3], so the equivalence of 1) and 2)
together with Haagerup’s result, that quasitraces on exact C∗-algebras are traces,
yields the theorem.

How finite are stably finite simple C∗-algebras? and how infinite are the stably
infinite ones? The definition below, due to Cuntz, is relevant for the discussion of
the latter.

Definition 2.3. A simple C∗-algebra A is said to be purely infinite if every non-
zero hereditary subalgebra of A contains an infinite projection.

Any subalgebra of the form xAx∗ is hereditary, and the converse holds in the
separable case. In other words, a simple C∗-algebra is purely infinite if one can
find infinite projections in all “arbitrarily small corners” of A. A purely infinite
C∗-algebra is clearly stably infinite. The opposite does not hold as we shall see in
Section 5.

2.1. Dimensions of C∗-algebras. A commutative C∗-algebra is isomor-
phic to C0(X) for some locally compact Hausdorff space X, and the space X is
determined up to homeomorphism by the isomorphism class of the C∗-algebra.
In the commutative case we can therefore define the dimension of the C∗-algebra
to be the classical dimension of the space X. What about the non-commutative
case? It turns out that there are several, and unfortunately mutually disagreeing,
ways of extending dimension to the non-commutative setting. The low dimension
cases are of most interest in particular in the study of simple C∗-algebras (many
nicely behaving simple C∗-algebras are of very low dimension). Two notions of
“low dimension” are particularly important:

Definition 2.4. Let A be a C∗-algebra. If the set of invertible elements in A (or
in the unitization of A, if A is non-unital) is dense in A, then A is said to be of
stable rank one, written sr(A) = 1.

If the set of self-adjoint invertible elements in A (or in the unitization of A, if
A is non-unital) is dense in the set of self-adjoint elements in A, then A is said to
be of real rank zero, written RR(A) = 0.

Rieffel introduced stable rank in his paper [24], and Brown and Pedersen introduced
real rank in [5]. A commutative C∗-algebra C0(X) is of stable rank one if dim(X) ≤
1, and of real rank zero if dim(X) = 0.

Brown and Pedersen show that a C∗-algebra is of real rank zero if and only
if the set of self-adjoint elements with finite spectrum is dense in the set of all
self-adjoint elements. All purely infinite simple C∗-algebras are of real rank zero:
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Proposition 2.5 (Cuntz [6], Zhang [35]). The following three conditions are equiv-
alent for any simple C∗-algebra (other than C):

(i) A is purely infinite,

(ii) for all non-zero positive elements a, b in A there exists x ∈ A such that
b = x∗ax,

(iii) RR(A) = 0 and all non-zero projections in A are infinite.

Stably infinite C∗-algebras are never of stable rank one (in fact they have stable
rank +∞). It was a surprise when Villadsen in [33] showed that stably finite simple
C∗-algebras need not be of stable rank one. Stably finite C∗-algebras can have very
few projections and hence have real rank greater than zero.

2.2. Comparison theory for C∗-algebras. Comparison theory for pro-
jections in von Neumann algebras is a crucial ingredient in the classification of von
Neumann factors into types and to proving existence of traces on finite von Neu-
mann algebras. Comparison of projections in a von Neumann factor is total: for
any two projections p, q one has either p - q or q - p (see Definition 2.1). The
comparison theory for C∗-algebras is far more delicate as is in parts reflected by
looking at the ordered K0-group. Any simple dimension group arises as the or-
dered K0-group of a simple AF-algebra, and such ordered groups easily fail to be
totally ordered. The second best thing after total comparison of projection is weak
(or almost) unperforation, described below.

The comparison properties for a C∗-algebra A are contained in the ordered
monoids V (A) and W (A) consisting of equivalence classes of projections and pos-
itive elements, respectively, in the (non-unital) ∗-algebra M∞(A) =

⋃∞
n=1 Mn(A).

Equivalence of projections is the usual Murray-von Neumann equivalence (see Def-
inition 2.1). Following Cuntz, comparison of positive elements a, b ∈ M∞(A) is
defined as follows: a - b if there is a sequence {xn} in M∞(A) such that x∗nbxn → a;
and by a ≈ b iff a - b and b - a one defines an equivalence relation on the posi-
tive elements, which by the way does not quite agree with Murray-von Neumann
equivalence when restricted to projections.

The sets V (A) and W (A) become ordered abelian semigroups by defining ad-
dition to be “orthogonal addition”:

[a] + [b] =
[(

a 0
0 b

) ]
,

and ordering to be induced by -. The ordering on V (A) coincides with the alge-
braic ordering: x ≤ y iff there is z such that y = x + z. The ordering on W (A)
is not algebraic. Both semigroups are positive in the sense that they have a zero
element which at the same time is the smallest element of the semigroup; hence
x ≤ x + y for all x, y. The semigroup V (A) is called the Murray-von Neumann
semigroup of A, and W (A) is called the Cuntz semigroup of A.

If A is generated as an ideal by its projections (which is the case for all simple
C∗-algebras with a non-trivial projection), then K0(A) is the Grothendieck group
of V (A), and the positive cone, K0(A)+, is the image of V (A) in K0(A).
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It was shown in [3] that there is a one-to-one correspondence between (lower
semi-continuous) states on W (A) and quasitraces on A, and by Haagerup’s theo-
rem in [16], quasitraces are traces on exact C∗-algebras. States on V (A) extends
(possibly non-uniquely) to (lower semi-continuous) states on W (A) as shown in
[4]. It follows in particular that each state on V (A) lifts to a trace on A if A is
exact. A new proof of this fact was recently given by Haagerup and Thorbjørnsen,
[17], using random matrix methods.

An ordered abelian positive semigroup (W,+,≤) is said to be almost unperfo-
rated if

∀n, m ∈ N ∀x, y ∈ W : nx ≤ my and n > m =⇒ x ≤ y.

(The negation of almost unperforation is strong perforation.) One can use a Hahn-
Banach type argument (see [15] and [29]) to show that (W,+,≤) is almost unper-
forated if and only if the order on W is determined by states on W . It follows in
particular, that if A is simple and exact, if V (A) is almost unperforated, and if p, q
are two projections in M∞(A), then p - q if τ(p) < τ(q) for all traces τ on A. A
similar statement, with dimension functions in the place of traces, holds for W (A)
(see [29]).

A simple C∗-algebra A is purely infinite if and only if W (A) has only one
non-zero element; and if W (A) is almost unperforated, then A is either purely
infinite or stably finite. It is known that W (A) and V (A) are almost unperforated
for many C∗-algebras of interest including, besides all purely infinite C∗-algebras,
also all C∗-algebras that tensorially absorb the Jiang-Su algebra Z (see [29]).

It is quite often the case that the semigroups V (A) and W (A) are almost
unperforated, but it is not true in general for simple C∗-algebras as shown in
the pioneering work of Villadsen (see Section 5). Almost unperforation can fail
spectacularly. For example there is a simple nuclear C∗-algebra A in which one
has elements x, y1, y2, y3, · · · ∈ V (A) satisfying 2x = 2y1 = 2y2 = · · · and x �
y1 + y2 + · · ·+ yn for all natural numbers n, see [26].

It is not known if such exotic phenomenons can occur for C∗-algebras of real
rank zero:

Question 2.6. Suppose that A is a simple C∗-algebra of real rank zero.

(i) Does it follow that A is either stably finite or purely infinite?

(ii) Does it follow that V (A) and W (A) are almost unperforated?

2.3. Tensor products and free products. Takesaki proved that the
minimal (= spatial) tensor product of two simple C∗-algebras is again simple. This
is at first thought perhaps not surprising, but one should bear in mind that the
minimal tensor product of two (non-simple and non-exact) C∗-algebras can have
unexpected and exotic ideals.

Following the similar notion from von Neumann factors we say that a simple
C∗-algebra is tensorially prime if it is not isomorphic to a tensor product A⊗ B,
where both A and B are (simple and) non-type I (i.e., are not isomorphic to the
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compact operators on a finite or infinite dimensional Hilbert space). We consider
here only the minimal tensor product, which we denote by ⊗.

Proposition 2.7 (Kirchberg, see [27]). Let A and B be simple non-type I C∗-
algebras. If A or B is stably infinite, then A⊗B is purely infinite. If A and B are
both stably finite and exact, then A⊗B is stably finite.

In particular, if D is a simple, exact, and non-tensorially prime C∗-algebra,
then D is either stably finite and admits a trace or D is purely infinite.

Note that we do not know if the tensor product of two (non-exact) stably finite sim-
ple C∗-algebras is stably finite. This would be the case if we knew that quasitraces
on arbitrary (non-exact) C∗-algebras are traces.

Several simple C∗-algebras are non-tensorially prime without obviously being
so. Jiang and Su constructed in [18] a simple separable unital stably finite non-type
I C∗-algebra Z, called the Jiang–Su algebra, that has the same K-theory (and the
same Elliott invariant, see Section 3) as the complex numbers. It has been shown
that many C∗-algebras are Z-absorbing, i.e., they satisfy A ∼= A⊗Z; Z-absorbing
C∗-algebras are obviously non-tensorially prime.

The most non-commutative product of two C∗-algebras is the free product (= the
“largest” C∗-algebra generated by copies of the two C∗-algebras). We also have
the unital free product A∗C B of two unital C∗-algebras A and B, which is defined
to be the “largest” unital C∗-algebras generated by a unital copy of A and a unital
copy of B.

Consider the C∗-algebra A = M2 ∗CO2, and let e ∈ M2 ⊆ A be a 1-dimensional
projection in M2. Then e ⊕ e is equivalent to 1A, which is a (properly) infinite
projection in A. The projection e is finite in A, intuitively because it is in free
position from O2 (a rigorous proof of this fact is non-trivial). The free product
C∗-algebra A however is very far away from being simple.

Voiculescu introduced the notion of reduced free products of C∗-algebras, or
rather of non-commutative probability spaces (A, ρA) and (B, ρB), where A and
B are unital C∗-algebras, and ρA and ρB are states on A and B, respectively.
The reduced free product is again a non-commutative probability space, denoted
(A ∗red B, ρA ∗ ρB). The associated C∗-algebra A ∗red B is very often simple (see
[1]), and it is exact if both A and B are exact (see [8] and [11]), but it is almost
never nuclear.

At a first glance one might expect that the (simple) reduced free product C∗-
algebra M2 ∗red O2 (with respect to suitable states on M2 and O2) would be an
example of an infinite C∗-algebra with a finite projection e ∈ M2 (as above). How-
ever, it turns out that most reduced free product C∗-algebras, including M2∗redO2,
have excellent comparison theory (eg., their Murray-von Neumann semigroup is al-
most unperforated), and one can show that the projection e from above is infinite
in the reduced free product, and, moreover, that M2∗redO2 (and other C∗-algebras
like it) is purely infinite. Results along these lines were obtained by Dykema and
the author in [9] and [10].
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3. Elliott’s classification conjecture

The possibility that C∗-algebras can be classified—up to ∗-isomorphism—by K-
theory was perhaps first suggested by Glimm’s classification of UHF-algebras (also
called Glimm algebras) by supernatural numbers, or, equivalently, by a subgroup
of the rational numbers, their K0-group. This classification was later extended to
AF-algebras by Bratteli and Elliott to yield a one-to-one correspondence between
dimension groups and AF-algebras. The former were axiomatically described by
Effros, Handelman, and Shen as being the unperforated ordered abelian groups
with the Riesz Interpolation Property. In the late 1980’s in [12] Elliott extended
the classification of AF-algebras to include a class of C∗-algebras, now called AT-
algebras, that arise as inductive limits of direct sums of matrix algebras over C(T),
with the added assumption that the inductive limit C∗-algebra is of real rank zero.
These algebras can have non-trivial K1-group. Elliott raised in the same paper the
possibility that his classification might encompass much more than this apparently
rather special class of C∗-algebras: many naturally occurring C∗-algebras might
be AT-algebras of real rank zero. Moreover, the same invariant, or possibly an ex-
panded version of it, might classify an even wider class of C∗-algebras. These ideas,
expressed in more detail below, are known as the Elliott classification conjecture.

Elliott’s prediction, that AT-algebras of real rank zero are rather frequently
occurring C∗-algebras, was shortly after confirmed by himself and Evans as they
discovered that the irrational rotation C∗-algebras mentioned in the introduction
are AT-algebras. Putnam showed around the same time that C∗-algebras associ-
ated with a minimal action on the Cantor set likewise are AT-algebras.

Turning to the precise formulation of the classification conjecture, we only
expect to be able to deal with separable and nuclear C∗-algebras (nuclearity is for
C∗-algebras what injectivity, or equivalently, hyperfiniteness, is for von Neumann
algebras). The K-theory of a C∗-algebra A consists of two abelian groups K0(A)
and K1(A). The K0-group has a distinguished subset, K0(A)+, (the image of V (A)
in K0(A), cf. Section 2), which gives K0(A) the structure of an ordered abelian
group when A has an approximate unit consisting of projections and when A is
stably finite.

To simplify its statement, and to state the conjecture in a situation, where no
counterexamples (yet) exist, we state formally the Elliott conjecture only in the
real rank zero case:

Conjecture 3.1 (Elliott—the real rank zero case). Let A and B be simple sepa-
rable nuclear unital C∗-algebras of real rank zero. Then

A ∼= B ⇐⇒ (K0(A),K0(A)+, [1A],K1(A)) ∼= (K0(B),K0(B)+, [1B ],K1(B)).

The isomorphism on the right-hand side asserts that there exist isomorphisms
α0 : K0(A) → K0(B) and α1 : K1(A) → K1(B) such that α0(K0(A)+) = K0(B)+

and α0([1A]) = [1B ]. The invariant can detect whether A is stably finite or sta-
bly infinite: K0(A)+ = K0(A) in the latter case, and K0(A) 6= 0 and K0(A) ∩
−K0(A)+ = 0 in the former case.
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The conjecture can—with due care—be extended to non-simple C∗-algebras.
We have already mentioned that Elliott’s results in [12] confirms his conjecture for
AT-algebras of real rank zero. Dadarlat and Gong, [7], later verified the conjecture
for the much wider class of so-called AH-algebras (of slow dimension growth) of
real rank zero. These classification results also hold in the non-simple case, but the
invariant becomes more complicated. It is an open problem if all simple separable
nuclear stably finite C∗-algebras of real rank zero are AH-algebras of slow dimen-
sion growth and hence classifiable. The range of the invariant has been completely
described by Elliott and Gong (see [27, Proposition 3.3]).

K-theory alone will not classify stably finite C∗-algebras not of real rank zero.
Intuitively, if a C∗-algebra has very few—or no—projections, then its K0-group
probably say less about the algebra, so we need more information in our invariant.
Goodearl produced a class of C∗-algebras (now known as Goodearl algebras) where
the trace simplex of the C∗-algebra cannot be detected from its K-theory. This
suggests that the trace simplex must be included in the invariant, and—as pointed
out by Thomsen—also the pairing between traces and K0. The resulting invariant
(see eg. [27, Chapter 3]) is known as the Elliott invariant. The literature contains
strong classification results in terms this invariant also for non-real rank zero C∗-
algebras, eg. the classification of all simple AH-algebras of bounded dimension
by Elliott, Gong and Li, [13], and there is a good description of the range of
the invariant for this class due to Villadsen (see [27, Proposition 3.3.7]). A more
ultimate result on the range of the invariant within the still not classified class
of so-called ASH-algebras due to Elliott and Thomsen can be looked up in [27,
Theorem 3.4.4].

The best classification results exist in the stably infinite case. There are no
traces on simple stably infinite C∗-algebras, and the order structure on K0 de-
generates: K+

0 = K0. The Elliott invariant therefore collapses to the two groups
K0(A) and K1(A) with no other structure except the position of the unit in K0(A)
in the unital case.

The classification result below, that confirms the Elliott conjecture for a sweep-
ing class of stably infinite C∗-algebras, was obtained independently by Kirchberg
and Phillips, [19] and [23]:

Theorem 3.2 (Kirchberg–Phillips). Let A and B be separable, nuclear, simple,
purely infinite, K-amenable, unital C∗-algebras. Then

A ∼= B ⇐⇒ (K0(A), [1A],K1(A)) ∼= (K0(B), [1B ],K1(B)).

A C∗-algebra A is K-amenable if it is KK-equivalent to an abelian C∗-algebra;
and the class of K-amenable C∗-algebras forms a bootstrap class, see [30]. Two
K-amenable C∗-algebras are KK-equivalent if and only if they have isomorphic K-
groups. One can remove the condition that A and B are K-amenable by replacing
the assumption that the K-groups are isomorphic with the assumption that A and
B are KK-equivalent. It is an important open problem if all nuclear C∗-algebras
are K-amenable.

The Kirchberg-Philips theorem verifies the Elliott conjecture in the stably in-
finite, real rank zero case modulo two open problems: Are all separable simple
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nuclear stably infinite C∗-algebras of real rank zero purely infinite (cf. Ques-
tion 2.6 (i))? And the problem above if all (separable, simple, purely infinite)
nuclear C∗-algebras are K-amenable.

The range of the invariant in the stably infinite case is easy to describe: all pairs
of countable abelian groups can arise as K0 and K1, and there are no restriction
on the position of the unit, see [27, Propositions 4.3.3 and 4.3.4]. The Elliott con-
jecture would predict that all separable nuclear simple stably infinite C∗-algebras
are actually purely infinite. As already mentioned, and as will be shown in Sec-
tion 5, this is not the case. It may still be that separable nuclear simple stably
infinite C∗-algebras of real rank zero are purely infinite, cf. Question 2.6 and that
the Elliott conjecture holds for these C∗-algebras.

The status for the Elliott conjecture is nonetheless open. It may be that the
invariant will be refined, so that it can distinguish also the “high-dimensional”
examples that we shall discuss in Section 5, but it may also be that the class
of C∗-algebras to be classified must be restricted, for example to the class of
Z-absorbing C∗-algebras (that briefly were discussed at the end of Section 2).
There are some positive results in this direction, eg. by W. Winter, [34], who
verified Elliott’s conjecture for Z-stable C∗-algebras of real rank zero and with
finite decomposition rank.

4. Almost commuting self-adjoint matrices: an ap-
plication of real rank zero and stable rank one

The classical problem, if two almost commuting self-adjoint matrices are close to
two exactly commuting self-adjoint matrices, was solved in the early 1990’s by
Huaxin Lin, [20], using techniques from C∗-algebras. His long and technical proof
was shortened significantly by Friis and the author, [14], where the analysis was
reduced to using known properties of C∗-algebras of real rank zero and stable rank
one. We outline the ideas of this argument here, and begin by stating the exact
formulation of Lin’s theorem:

Theorem 4.1. For each ε > 0 there is a δ > 0 such that for every natural number
n and for every pair of self-adjoint n× n matrices A and B satisfying

‖AB −BA‖ < δ, ‖A‖ ≤ 1, ‖B‖ ≤ 1,

there exists a pair of commuting self-adjoint n × n matrices A′ and B′ such that
‖A−A′‖ ≤ ε and ‖B −B′‖ ≤ ε.

As an instructive example of almost commuting self-adjoint matrices that not
obviously are close to commuting self-adjoint matrices, consider the following n×n
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matrices:

An =


1/n 0 0 · · · 0
0 2/n 0 · · · 0
0 0 3/n · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 Bn =


0 1/2 0 · · · 0

1/2 0 1/2 · · · 0
0 1/2 0 · · · 0
...

. . . . . . . . .
...

0 0 0 · · · 0

 .

Note that ‖AnBn − BnAn‖ ≤ 1/n → 0 as n → ∞. It follows from Theorem 4.1
that there are commuting n × n matrices A′

n and B′
n such that ‖An − A′

n‖ → 0
and ‖Bn − B′

n‖ → 0. Curiously, there are—to the knowledge of the author—no
known explicit choices for such sequences of matrices {A′

n} and {B′
n}.

The theorem is proved indirectly. If it were wrong, then there would exist
a counterexample: ε > 0 and sequences {An} and {Bn} of self-adjoint kn × kn

matrices all of norm at most one such that ‖AnBn−BnAn‖ → 0 and such that the
distance from (An, Bn) to a commuting pair of self-adjoint matrices is at least ε for
all n. We show that the existence of such a counterexample leads to a contradiction.

Set Tn = An + iBn, and note that ‖Tn‖ ≤ 2 and that ‖TnT ∗n − T ∗nTn‖ → 0.
Let A =

∏∞
n=1 Mkn

be the `∞-direct product of the matrix algebras and let I =∑∞
n=1 Mkn

be the c0-direct sum of matrix algebras. Then I is a closed two-sided
ideal in A, and so we can consider the quotient B = A/I and the quotient mapping
π : A → B. Put T = {Tn} ∈ A. Then TT ∗ − T ∗T belongs to I, and so π(T ) is a
normal operator in the C∗-algebra B.

If we could lift π(T ) to a normal operator S = {Sn} in A, then we would
have our contradiction: Write Sn = A′

n + iB′
n, with A′

n and B′
n self-adjoint—and

necessarily commuting, because Sn is normal—and note that ‖An −A′
n‖ → 0 and

‖Bn − B′
n‖ → 0 because {An − A′

n} and {Bn − B′
n} both belong to I. However,

we do not know if such a normal lift S exits.
To obtain the contradiction we need less: It suffices to find a normal operator

T ′ in B within distance ε/2 to π(T ) such that T ′ lifts to a normal operator in A.
This is shown in the three propositions below, as we remark that B is of real rank
zero, stable rank one, and has connected unitary group (these facts are easily seen
to hold for matrix algebras, and hence also for B).

For each ε > 0 let Γε be the one-dimensional grid in the complex plane con-
sisting of those points x + iy where either x or y belongs to εR.

Proposition 4.2. Let T be a normal operator in a unital C∗-algebra B of stable
rank one. Then for each ε > 0 there is a normal operator T ′ ∈ B such that
sp(T ′) ⊆ Γε and ‖T − T ′‖ < ε.

Outline of proof: By the definition of stable rank one, every element in B can be
approximated by invertible elements in B. It was shown in [25] that this implies
that any normal operator can be approximated by normal invertible operators.
By translation, one obtains that any normal operator can be approximated by
normal operators that do not have a given complex number in its spectrum; and
hence—by iteration—by normal operators whose spectrum do not intersect any
given finite set. Choosing a suitable finite set of points in the holes of the grid Γε
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one obtains a normal operator S close to T for which there is a continuous function
f : sp(S) → Γε (in fact, a retract), such that |f(t)− t| is small for all t; and we can
then take T ′ to be f(S).

The proposition below was first proved by Lin in [21]; a more direct proof is
given in [14].

Proposition 4.3. Let B be a unital C∗-algebra of real rank zero and with connected
unitary group. Let ε > 0 be given and let T be a normal operator in B with
sp(T ) ⊆ Γε. Then there is a normal operator T ′ in B with sp(T ′) finite such that
‖T − T ′‖ < ε.

By definition, a C∗-algebra is of real rank zero if any normal element with spec-
trum contained in the real line (a self-adjoint operator) can be approximated by a
normal element with finite spectrum. Passing from the spectrum being a subset of
the real line (a self-adjoint operator) to a more general one-dimensional spectrum
permitting loops (in our case: a closed subset of Γε), introduces extra compli-
cations that, besides making the proof harder, also force us to require that the
unitary group be connected.

Proposition 4.4. Let A and B be C∗-algebras and let π : A → B be a surjective
∗-homomorphism. Each normal operator in B of finite spectrum lifts to a normal
operator in A.

Proof. Let T be a normal operator in B with finite spectrum, and find continuous
functions f : sp(T ) → R and g : R → C such that (g ◦ f)(t) = t for all t ∈ sp(T ).
Lift the self-adjoint operator f(T ) to a self-adjoint operator A in A; then g(A) is
a normal operator in A that lifts T . (Note that g(A) not necessarily has finite
spectrum.)

5. High dimensional simple C∗-algebras

In Section 2 we discussed properties of a simple C∗-algebra A, including the some-
what technical notions of almost unperforation of the semigroup of equivalence
classes of projections, V (A), and of the Cuntz semigroup, W (A). Until the mid
1990’s it was believed that all simple C∗-algebras might enjoy these properties; then
Jesper Villadsen constructed a counterexample, [32], by taking an inductive limit of
algebras of the form Mk(n)(Xd(n)) for a suitable space X (eg. X = S2) and for suit-
able increasing sequences k(n) and d(n) of natural numbers. It is a crucial point in
the construction that the connecting mappings Mk(n)(Xd(n)) → Mk(n+1)(Xd(n+1))
be chosen in such a way that the inductive limit C∗-algebra becomes simple and—
at the same time—that certain high-dimensional properties of the spaces Xd(n)

are preserved. These techniques of Villadsen have since then been used by several
people, including Villadsen himself, to construct many other simple C∗-algebras
with various exotic properties, including the example by the author of a simple
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C∗-algebra with a finite and an infinite projection (and hence a simple stably in-
finite C∗-algebra which is not purely infinite) as well as various counterexamples
to Elliott’s classification conjecture (as formulated in Section 3).

5.1. The C∗-algebra associated with a multiplier endomor-
phism. The construction presented here is a special case of Pimsner’s construc-
tion of a class of C∗-algebras, called the Pimsner algebras, associated with Hilbert
bimodules over C∗-algebras. The construction is implicitly contained in our paper
[28], where the reader can find more details. Recall that the multiplier algebra,
M(A), of a C∗-algebra A is the largest unital C∗-algebra that contains A as an
essential closed two-sided ideal.

To each pair (A, ρ), where A is a (stable) C∗-algebra and ρ : A → M(A) is a
non-degenerate1 injective ∗-homomorphism, we associate a C∗-algebra C∗(A, ρ),
which in spirit is the crossed product of A by ρ. (We also use the term multiplier
endomorphism to denote a ∗-homomorphism from a C∗-algebra into its multiplier
algebra.)

The C∗-algebra C∗(A, ρ) is formally constructed as follows. Since ρ is non-
degenerate it extends (uniquely) to a strictly continuous unital ∗-homomorphism
ρ : M(A) →M(A). Put

B = C∗(A, ρ(A), ρ2(A), ρ3(A), . . . ) ⊆M(A),

note that ρ restricts to an endomorphism on B; form the inductive limit

B
ρ // B

ρ // B
ρ // · · · // B,

and extend ρ to an automorphism ρ on B. More explicitly, if µn : B → B is the
inductive limit map from the nth copy of B, n ≥ 0, then ρ(µn(b)) = µn(ρ(b)) =
µn−1(b), for b ∈ B. The inverse of ρ is given by (ρ)−1(µn(b)) = µn+1(b) for b ∈ B.
Put Ak−` = µ`(ρk(A)). Then A0 = A, ρ(An) = An+1 for all n ∈ Z, and

B = C∗(. . . , A−2, A−1, A0, A1, A2, . . . ).

Let C∗(A, ρ) be the crossed product B oρ Z.
Let u be the canonical unitary in the multiplier algebra of C∗(A, ρ) that im-

plements ρ. Then C∗(A, ρ) is the closure of the span of elements of the form
akuk, where k ∈ Z and ak ∈ C∗(An | n ∈ Z). C∗(An, An+1, . . . , Am) is a closed
two-sided ideal in C∗(An, An+1, . . . , Ak) whenever n ≤ m ≤ k. In particular,
A0 = A is a closed two-sided ideal in C∗(A0, A1). If we view C∗(A0, A1) as being
a sub-C∗-algebra of M(A), then ρ(a) = uau∗ holds for all a in A.

Proposition 5.1. If A is nuclear, then so is C∗(A, ρ).

1By non-degenerate we mean that ρ maps an approximate unit for A into a sequence that
converges strictly to 1 in M(A).
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Proof. This follows from the construction of C∗(A, ρ) and the fact that the class
of nuclear C∗-algebras is closed under extensions, inductive limits, and crossed
products by Z.

Proposition 5.2. C∗(A, ρ) is simple if ρ is minimal2 and if ρn is properly outer3

for every natural number n.

Proof. If ρ is minimal, then so is the automorphism ρ on B; and if all powers of
ρ are properly outer, then the same holds for all powers of ρ. The proposition
therefore follows from [22, Theorem 7.2].

If ρ is minimal, and if ρ(A)  A, as will be the case in the situation we consider
in the next subsection, then ρn is automatically properly outer for all n 6= 0.

We give below conditions that will ensure that a projection p in A is finite,
respectively, infinite in C∗(A, ρ).

Proposition 5.3. Let p be a projection in A.

(i) If there exists a projection q in A which is equivalent to p (relatively to A)
and is a proper subprojection of ρ(p), then p is infinite in C∗(A, ρ).

(ii) If C∗(A, ρ) is simple, and if there is a projection e in A such that e -| p ⊕
ρ(p) ⊕ ρ2(p) ⊕ · · · ⊕ ρn(p) (relatively to M(A)) for all natural numbers n,
then p is finite in C∗(A, ρ).

Recall that we have a canonical unitary u in the multiplier algebra of C∗(A, ρ)
that implements ρ, ie., ρ(a) = uau∗ for a ∈ A. In particular, ρ(p) ∼ p in C∗(A, ρ),
so the assumption in (i) implies that p is equivalent to a proper subprojection of
itself, and hence that p is infinite. Part (ii) is a more technical and is verified (in
a slightly different setting) in [28, Lemma 6.4].

5.2. A simple C∗-algebra with a finite and an infinite projec-
tion. We apply the crossed product construction from the previous section to
the stable C∗-algebra A = C(Z)⊗K = C(Z,K) where Z is the infinite Cartesian
product of 2-spheres, Z =

∏∞
n=1 S2, and where K denotes the compact operators

on a separable Hilbert space. The multiplier algebra M(A) coincides in this case
with the set of all bounded ∗-strongly continuous functions from Z into B(H), the
bounded operators on the Hilbert space on which the compact operators K acts.

The multiplier endomorphism ρ : A → M(A) of our construction is of the
form

∑∞
j=−∞ ρj , where each ρj is an endomorphism on A, and where the sum∑∞

j=−∞ ρj(a) is strictly convergent for each a ∈ A. (We ensure non-degeneracy
of ρ by replacing it with V ∗ρ( · )V for some isometry V in M(A) if necessary.)
Each endomorphism ρj is induced by a continuous function Z → Z of the form

2ρ is minimal if there are no non-trivial ρ-invariant closed two-sided ideals in A; and an ideal
I in A is said to be ρ-invariant if Aρ(I)A ⊆ I.

3An endomorphism ρ : A → M(A) is properly outer if its restriction to each non-zero ρ-
invariant ideal has norm distance 2 to a multiplier inner endomorphism.
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(z1, z2, . . . ) 7→ (c1, . . . , ck, zν(k+1), zν(k+2), . . . ) (or of the form
(z1, z2, . . . ) 7→ (zν(1), zν(2), . . . )) for suitable k ∈ N, points ci ∈ S2, and for a suit-
able “shuffle-map” ν : N→ N (that all depend on j). The points ci are chosen such
that ρ becomes minimal. As ρn(A)  A for all n, it follows from Proposition 5.2
that C∗(A, ρ) is simple. The shuffle maps ν (one for each j) are chosen in such a
way that certain projections (defined below) have non-trivial Euler class.

If e is a constant 1-dimensional projection in A, then ρ(e) is infinite dimensional
and constant, so e is equivalent to a proper subprojection of ρ(e) thus making e
infinite in C∗(A, ρ), cf. Proposition 5.3 (i).

It requires more effort to get a finite projection in C∗(A, ρ). For every non-
zero projection p in A the projection ρ(p) is a pointwise infinite dimensional in
M(A) (when viewed as a ∗-strongly continuous function Z → B(H)). We want
this projection to be finite in C∗(A, ρ); even more, p must satisfy the condition in
Proposition 5.3 (ii) wrt. some projection e.

To this end we take a one-dimensional projection p in C(S2,M2) with non-
trivial Euler class (p could be the “Bott projection” over S2). For each j ∈ N, define
pj ∈ C(Z,M2) ⊂ A by pj(z) = p(zj), where z = (z1, z2, . . . ) ∈ Z; so that pj is the
Bott projection over the jth copy of S2. For each finite set I = {j1, j2, . . . , jk} ⊆ N,
let pI ∈ C(Z,M2 ⊗M2 ⊗ · · · ⊗M2) ⊆ A be the projection given by

pI(z) = pj1(z)⊗ pj2(z)⊗ · · · ⊗ pjk
(z), z ∈ Z.

It is shown in [28] that p1, the Bott projection over the first copy of S2 in
Z, is a finite projection in C∗(A, ρ). The proof uses the precise definition of the
multiplier endomorphism ρ : A → M(A), Proposition 5.3 (ii) applied to p1 and
with e being a constant one-dimensional projection, and the proposition below (cf.
[28, Proposition 3.2]). (Note that if q is a projection in C(Z,K) with non-trivial
Euler class then e -| q by a fundamental property of the Euler class.)

Proposition 5.4. Let I1, I2, . . . , Im be non-empty finite subsets of N. Then the
following conditions are equivalent:

(i) The Euler class of pI1 ⊕ pI2 ⊕ · · · ⊕ pIm is non-trivial.

(ii) For all subsets F of {1, 2, . . . ,m} we have
∣∣∣⋃j∈F Ij

∣∣∣ ≥ |F |.
(iii) There is a matching t1 ∈ I1, t2 ∈ I2, . . . , tm ∈ Im.

Putting these results together we obtain the following main result from [28]:

Theorem 5.5. The C∗-algebra C∗(A, ρ), with A = C(Z,K), with Z =
∏∞

n=1 S2,
and with ρ : A → M(A) being the multiplier endomorphism described above, is
simple, separable, nuclear, and it contains an infinite projection and a non-zero
finite projection.

Corollary 5.6. There is a simple, separable, nuclear C∗-algebra that is stably
infinite but not purely infinite; and there is a simple, separable, nuclear, unital,
finite C∗-algebra that is not stably finite.
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Proof. The C∗-algebra B = C∗(A, ρ) from Theorem 5.5 is stably infinite (contain-
ing an infinite projection) and not purely infinite (because it contains a non-zero
finite projection). If p is a non-zero finite projection in B, then pBp is finite but
not stably finite.

5.3. Applications and other examples. The example of a simple C∗-
algebra with a finite and an infinite projection as well as other examples constructed
later by A. Toms give counterexamples to Elliott’s conjecture, or at least they show
that the Elliott invariant as defined in Section 3 does not suffice to classify separable
nuclear simple (unital) C∗-algebras.

Recall from Section 3 that if A is a stably infinite, simple, unital C∗-algebra,
then its Elliott invariant reduces to the triple (K0(A), [1A],K1(A)).

Theorem 5.7. There are simple, separable, nuclear, stably infinite unital C∗-
algebras A and B such that

(K0(A), [1A],K1(A)) ∼= (K0(B), [1B ],K1(B)) and A � B.

Proof. Let A be as in the first part of Corollary 5.6. There is a purely infinite
simple nuclear unital C∗-algebra B such that (K0(A), [1A],K1(A)) is isomorphic
to (K0(B), [1B ],K1(B)) (see [27, Proposition 4.3.3 and 4.3.4]). As B is purely
infinite and A is not, the two C∗-algebras are not isomorphic.

Note also that it follows from Proposition 2.7 that the C∗-algebra C∗(A, ρ) from
Theorem 5.5 is tensorially prime (see Subsection 2.3).

Toms used Villadsen’s techniques to construct simple stably finite (AH- and
ASH-algebras) with explicit strong perforation in K0 (eg. with (K0,K

+
0 ) isomor-

phic to (Z, S) where S can be almost any subsemigroup of Z+ with S − S = Z).
Recently, Toms also constructed ingenious counterexamples to Elliott’s conjecture
in the stably finite case, ie. pairs of non-isomorphic simple, separable, nuclear,
stably finite C∗-algebras with the same Elliott invariant (and for this matter also
other invariants, not normally included in the Elliott invariant) (see [31]).
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