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1 Introducton

In a recent paper, [1], by Ken Dykema, Uffe Haagerup and the author of this note it was
proved that any reduced free product of C*-algebras with respect to tracial states has
stable rank one, provided that the ingoing C*-algebras satisfy a certain (mild) condition
(called the Avitzour condition). Recall that a unital C*-algebra A has stable rank one if
its group GL(A) of invertible elements is a norm dense subset of A. This definition is due
to Marc Rieffel, [4], who associates the stable rank, a number in {1,2,3,...} U {0}, to
each C*-algebra, as an analogue of dimension for topological spaces.

Rieffel posed in his paper the problem of calculating the stable rank of some concrete
(simple, finite) C*-algebras of interest, namely the irrational rotation C*-algebras and the
C*-algebra Cf (F,) arising from the free group F,, of n generators, where 2 < n < oc.
Ian Putnam, [3], settled the first question by proving that all the irrational rotation C*-
algebras have stable rank one. It is proved in [1], as a corollary to its main theorem, that

* 4(Fn) has stable rank one for all 2 < n < occ.

The purpose of this note is to give a direct and self contained proof of this corollary.
The proof given here does not contain any new ideas, not already contained in [1], and
the papers it is based upon ([2] and [5]), but it is shorter, and perhaps also less technical,
having the privilege of dealing only with a special case of main theorem of [1].

It is a commonly asked question if every finite, simple C*-algebra has stable rank one.
(A unital C*-algebra is said to be finite if it contains no non-unitary isometries.) In Section
5 we give an example that shows that the approach taken in [1] cannot be generalized (in
any obvious way) to settle this conjecture for all finite, simple C*-algebras. This example,

I believe, has not been published before.



After a first draft of this note was written, Jesper Villadsen has constructed an example

of a finite, simple, unital C*-algebra which is not of stable rank one ([6]).

2 The distance to the invertible elements

We shall in this section give a direct proof of a theorem from [5] that states that if the set
of invertible elements in a unital C*-algebra is not dense, then the C*-algebra contains an
element with the largest possible distance to the invertibles.

Let A be a unital C*-algebra, and denote, as above, the group of invertible elements in
A by GL(A). Upon representing A faithfully on a Hilbert space H, we may assume that
A C B(H). Each element a € A has a polar decomposition a = v|a|, where v is a partial
1/2

isometry in B(H) and |a| = (a*a)'/* € A. For each o > 0, define projections

Pa = Lo (lal)s o = Liaon(la]);
on H. Observe that vp,v* = ¢q.

Lemma 2.1 Ifvp, = yp, for some a > 0 and for somey € GL(A), then dist(a, GL(A)) <

«.

Proof: Define f: R" — Rt by f(¢) = max{0,t — a}. Then (b =) vf(|la|]) = yf(Ja|). Since
y(f(la|)+e-1) € GL(A) for all ¢ > 0, we see that b belongs to the closure of GL(A). Hence

dist(a, GL(A)) < fla = bl = [lv(|al = f([a])I] = sup |t = f(t)] < o

t€llal)

U
For each @ > 0, let go: RT — R* be the function given by g,(t) = min{l,a"'t}. Set
bo = vga(|al) € A.

Lemma 2.2 If0 < a < 3 and if |[by — y|| < 1 for some y € GL(A), then there exists
y' € GL(A) such that vpg = y'pgs.



Proof: Observe first that

10" =y )vpall = [I(v* = y")gavll
= (v galla’]) = y")gall < [[v*ga(la™]) ="l
= e =yl = [lba —yll < 1.

11—y v)pal

Let h: RT — R" be a continuous function satisfying 0 < h < 1, h is zero on the interval

[0, ], and h is equal to 1 on the interval [3, cc0). Put
z=(1—-y")h(|a]) = (1 =y v)pah(|al).

Then z € A because h(0) = 0. Moreover, ||z]| < ||[(1 — y*v)p.|| < 1 and zps = (1 — y*v)ps.
Hence 1 — z € GL(A) and (1 — 2)pg = y*vpg. It follows that vpg = y'ps, when 3y =
(y)7'(1 - 2) € GL(A).

U

Theorem 2.3 ([5, Theorem 2.6]) If A has stable rank not equal to one, then there exists

an element © in A with
dist(z, GL(A)) = ||z|| = 1.

Proof: Assume that A is a unital C*-algebra of stable rank different from one. Then there
is an element a € A not in the closure of GL(A). Choose «, 3 such that

0 < a< g <dist(a, GL(A)).

If ||bo — y|| < 1 for some y € GL(A), then vpg = y'ps for some y’ € GL(A) by Lemma
2.2. However, from Lemma 2.1, this would entail that dist(a, GL(A)) < 3, in contradiction
with the choice of (.

It follows that dist(b,, GL(A)) > 1. In combination with the obvious fact that ||b,|| < 1,
this yields that ||z|| = dist(z, GL(A)) = 1, when z = b,.

0



3 A norm estimate

The two first lemmas of this section are from Uffe Haagerup’s paper [2]. Proposition 3.3 is
an easy consequence of these two lemmas, and it will, together with Theorem 2.3, go into
the proof of Theorem 4.2.

Let e; denote the generators of F),. Each element of the free group F,, is a finite word
in e; and their inverses. Such a word in F}, is called reduced if no occurrence of e; follows or
is followed by e; !. The length of a g € F,,, which is written [(g), is the number of factors
e; or e; ! appearing in the reduced representation of g.

Let \: F,, — B(¢%(F,)) be the left regular representation. Set

A, =span{A(g) | g € F}, AT =span{A(g) | g € Fr, U(g) = j}-

Then C*

* 4(Fn) is the norm closure of 2,,.

Cr.4(Fy) has a unique trace 7, which gives rise to an inner product on C},4(F;,) defined
by {a,b) = 7(b*a) and to the norm ||a||2 = (a, a)}/?. Denote by E; the orthogonal projection
from 2, onto Ql,(f).

Lemma 3.1 ([2, Lemma 1.3]) Let a € AP and b € A be given, and let j € N. Then
1 E;(ab)[|2 < llall2[|b]]2-
Moreover, if j < |k —1|, if j > k+1, orif k+1—j is odd, then E;(ab) = 0.

Proof: The last claims (about E;(ab) being zero) follow from the fact that if g,h € F,,
then I(gh) = (g) + I(h) — 2m for some 0 < m < min{l(g),l(h)}.

Suppose now that |k — | < j < k+1 and that k+ [ — j = 2m for some m € N. Let
g,h € F, with I(g) = k and [(h) = [. Write g = ¢g19> and h = hyh; as reduced words with
I(g2) = l(ho) = m (and consequently, I(g1) = k —m and [(h;) =1 — m). Then I(gh) = j if

and only if go = h; ! and g1hy is reduced. Hence

Ej(A(gh)) = (Ag2); A(h3 1)) Ej(Mg1h))
_ (A(g2), A(h3 ")) A(g1h1), if gihy is reduced,
0, otherwise.



Write

summing over all g1, gs, respectively hq, ho, such that i(¢1) = k — m, I(h1) =
1(g2) = U(h2)

g

a= Z Qg1 A(9192), b= Z Bhany Alhohy),

= m and such that ¢g,¢, and hyh; are reduced. Then,

1E;(ab)l5

1Y (D rgaBrans (A(92): Ah 1)) B (Mgah)) 15

g1,h1 g2,h2
_ 2
Z | Z O‘g1g2ﬁh2h1<)\(92), )\(hQ 1)>|
g91,h1  g2,h2
Z| Za.‘]l!]z 92), Zﬂhzhl (hs))
g1,h1
Z ”Z%m 92 H2 Hzﬂhzhl h2 H2
91,h1 g2
> O lagel?) Z|ﬂh2hl|
g1,h1 g2
Z Z |a9192| |/3h2h1|2
91,92 hi,h2
llall3115][3-

Lemma 3.2 ([2, Lemma 1.4]) For each k € N and for each a € span2'F),

lall < (2k + 1) lall2.

Proof: 1t suffices to show that

labllz < (2K + 1)l|all 6]l

[ —m,



for all b € A,. Put b, = E;(b). It follows from Lemma 3.1 that

Jj+k j+k
IEj@b)ll: = || Y Ei(ab)|, < D IE;(ab)l2
I=|j—k| I=|j—Fk|
j+k j4k s
< Y lallllbidl: < @k + DY all( D Bill3)
I=[j—k| I=|j—k|
Hence
oo oo jt+k
labl3 = D IE;@b)l3 < @k+Dllal3d > b3
=0 §=0 I=|j—k|
< (2k+1)%all3) bl = (2k + 1)*[lall3]0]13-
=0
O

Proposition 3.3 (c.f. [1, Lemma 3.5]) For each k € N and each a € spaankQng),
lall < (2k +1)*?all;-

Proof: Put a; = Ej(a). It follows from Lemma 3.2 that

k k
lall = 1D aill < > llal
j=0 j=0

k
< 27+ Dllaglla < 2k+1))_ llajllz
§=0

Jj=0

B

k
< @k+1D)E+DYY Nl = 2k + 1)k +1)all2

j=0

< (2k+1)*?all2.

O
One can replace the constant 2k + 1 in Lemma 3.2 and in Proposition 3.3 with £ + 1 by
using that E;(ab) = 0 whenever k£ + [ — j is odd (c.f. Lemma 3.1).



4 The stable rank of C? (F,)

As in Section 3 let 2, denote the dense subalgebra of C}, (F},) spanned by A(g), g € F,,

where 2 < n < oo.

Lemma 4.1 (c.f. [1, Lemma 3.7]) For each a € A, there exist unitaries u,v € A, such
that ||(uav)™||2 = ||al|5* for all m € N.

Proof: As before we let e; denote the generators of F),. It follows by the property of the
free groups that if g1, 9s,...,9m and hy, ho, ..., h, are elements in F, all of length < £k,
and if

e2htlg ehtlo2htly okl | o 2ktly ohtl _ (2htlp ohtlo2htlp okl o 2k+lp okl
g€, 9265 €7 gmes el hie, hoes el hpes ',

then g1 = hy, g2 = ha, ... g = him.
We can find k£ € N such that a € spaankQLff). Put u = A\(e2*™) and put v = A(ek™).
Write a = ;< @gA(g). Then

- 2k+1 k+1
uav = E agA(ef" " ges ),
lg)<k

and consequently

2k+1 . k+1 2k+1 k+1 2k+1 k+1
(uav)™ ZZ Zo‘glo‘gz “Qg, A€T T G163 G265 Gmes " ).
g1 g2

Since all g; have length < £ the argument in the first paragraph shows that the group
elements appearing in the expression above for (uav)™ are mutually distinct. It therefore

follows that

2
lwav) [ = D233 lonon - o]
m

g1 g2

= (Xloal) - (Xlaw) - (X laga ) = llaliz".

g1 92 gm



The spectral radius of an element = in a C*-algebra will be denoted by r(z). If t > r(wx)

for some unitary w in A, then z — tw* = w*(wx — t - 1) is invertible, and so
dist(z, GL(A)) < ||z — (z — tw™)|| = t.
This proves that

dist(z, GL(A)) < inf .
ist(z, GL(4)) < inf 'r(wz)
Theorem 4.2 ([1, Corollary 3.9]) The C*-algebras C'

* 4(Fn) have stable rank one for all
2<n< o0,

Proof: We begin by proving that

dist(a, GL(Ciq(Fn))) < lall

red

for all a € C}4(F,). By continuity it suffices to prove this for ¢ € A,,. Let u,v € 2, be
as in Lemma 4.1. Then uav € spaanleg) for some k, and (uav)™ € spaanka[g). By
Proposition 3.3 and Lemma 4.1 we get

d(a, GL(Ciy(Fn))) < r(vua) = r(uav)

red

— Tim3: m||l/m
lim inf | (uav)™|

< liminf (2mk + 1)%2™||(uav)™||3™ = ||al|s-

- m—00

Now, if C},(F,,) had stable rank different from one, then by Theorem 2.3 there would

exist an element z in C*

* 4(Fn) of norm one and distance one from the invertibles. That

would imply

1 = [lz]| = dist(z, GL(Crea (Fn))) < [lll2 < |2,

red

and hence ||z|| = ||z||2 = 1. Consequently, 7(1 — zz*) = 7(1 — z*z) = 1 — ||z||3 = 0, and
also 1 —zx* > 0, 1 —z*x > 0. Since 7 is faithful, this shows that z is unitary. But unitary

elements are invertible and do not have distance one to the invertibles. [



5 An example

In the proof of Theorem 4.2 it was shown that

inf <
wer @ oy T(r) < zllz

*

for all z in a dense sub-*-algebra of Cf 4

(F,), where r(-) is the spectral radius. Once this
is established, density of the invertibles in C*

red

(F,) follows easily from Theorem 2.3. One
might proceed to establish this estimate on the spectral radius for general C*-algebras
(with a unique trace), or appropriate generalizations thereof. For example, it is plausible
that if A is any simple, unital C*-algebra, and if x € A is a non-zero element such that

ar = 0 = za for some non-zero positive a € A, then
inf < .
o r(uz) <]

One could moreover hope that this holds for general (non-simple) unital C*-algebras pro-
vided that the element a above is assumed to be full. This is not the case, however, as
shown in Theorem 5.1 below.

Let A be any unital C*-algebra, let n,k,l € N be such that £+ < n, and let x be
any element in M, (A) such that at most k& rows and [ columns in the n X n matrix of
are non-zero. Then for some (unitary) permutation matrices u and v, uzv is strictly upper
triangular. It follows that uzv and vuz are nilpotent and hence that r((vu)z) = 0.

Let k£, € N, and let Xj; be the space of all complex k£ x [-matrices of (operator) norm
< 1. For each n > max{k, [} let 2" € M,(C(X;)) = C(Xyz, My(C)) be given by

n z|0
Zl(c,l) (z) = (T\T) , T € Xy
(n)

Clearly ||z,(c"l) | =1, and the argument above shows that if k+1 < n, then uz;; is nilpotent
for some unitary u € M, (C(Xy,)), and z,(c"l) belongs to the closure of the invertible elements
in Mn(C(Xk,l))

Theorem 5.1 If k+1 > n, then
dist (21", GL(M, (C(Xk,)))) = 207 = 1.

9



In particular, r(uz,(c"l)) =1 for all unitaries u € M, (C(Xy,;)).

Proof: We need only prove that ||z,(fl) —al| > 1 for all invertible a € M, (C(Xk,;)). (The
formula for the spectral radius will then follow from the inequality above Theorem 4.2.)
Suppose that a € M,,(C(Xy,)) and that ||z,(€nl) —a|| < 1. We show that a is not invertible.
Let ag € My (C(Xk,)) = C(Xk, Mk, (C)) be the upper left £ x [ block of the matrix of a.
We begin by proving that ag(z) = 0 for some zy € Xj .
Assume, to reach a contradiction, that ag(x) is non-zero for all x € Xy ;. Let Y;; C Xy,
be the set of all £ x [ matrices of norm equal to 1. Observe that Y}; is homeomorphic to

the sphere S?*=! and that Y}, therefore is not contractible. Observe also, that
o — ao(@)l| < 147 (@) — a(@)l| < 1, = € X
Define a function f: Yy, x [0, 2] — My, (C) by

_ ap(ty), 0<t<1
fo,1)= { t—1Dy+(2—1t)ag(y), 1<t<2

Then f is continuous, the function y — f(y,0) is constant, f(y,2) =y, and f(y,t) # 0 for
all (y,t). The function h: Yy, x [0,2] — Y, given by h(y,t) = f(y,t)/||f(y,t)|| is therefore
continuous, y — h(y,0) is constant, and h(y,2) = y. However, no such function h exists
because Y ; is not contractible.

To prove that @ is non-invertible, it suffices to show that a(zy) is non-invertible. Let

V1, V2, -..,0, € C* be the column vectors of a(x). Because ag(zo) = 0, it follows that
V1, Vg, ..., all lie in an (n — k)-dimensional subspace of C*. Since | > n — k, the set
(v1, V9, ..., v,) cannot be linearly independent, and therefore a(xy) is not invertible.

Ol
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