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Abstract

In [6] we constructed simple C∗-algebras that contain both finite and infinite projec-

tions. We show here, using ideas of Villadsen, that these C ∗-algebras are not of real

rank zero. However, these C∗-algebras do have the weaker property (SP).

1 Introduction

Simple C∗-algebras with “high-dimensional” behaviour were first constructed by Villadsen

in [7], where a finite simple C∗-algebra with strong perforation was exhibited. Strong

perforation is the converse of weak unperforation, and for a simple C∗-algebra A it is

equivalent to the existence of two projections p and q in A⊗K such that (n+ 1)[p] ≤ n[q]

and [p] � [q] (in the ordered semigroup of Murray-von Neumann equivalence classes of

projections in A⊗ K). Another high-dimensional phenomenon, which for simple C∗-alge-

bras so far only has been seen in the infinite case, is failure of (weak) cancellation, i.e.,

the existence of (non-zero) projections p, q, r in A ⊗ K such that [p] + [r] = [q] + [r] and

[p] 6= [q].

There are two notions of “low dimensionality” for a C∗-algebra A, that the stable rank

and the real rank are as small as possible: sr(A) = 1 and RR(A) = 0, respectively. The two

properties sr(A) = 1 and RR(A) = 0 are indenpendent: purely infinite simple C∗-algebras

are of real rank zero and have infinite stable rank, and there are simple C∗-algebras of

stable rank one and real rank one (for example certain simple AI- and AT-algebras, where

projections don’t separate traces). Villadsen found finite simple AH-algebras of stable rank

> 1 and of real rank > 0, [8]. Such AH-algebras cannot have slow dimension growth, and

these C∗-algebras are therefor “high-dimensional” in a very explicit way. It is not known

if there are finite simple C∗-algebras of real rank zero and stable rank > 1. It is also

unknown if all finite simple C∗-algebras must have the weak cancellation property or the

cancellation property.
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Every infinite simple C∗-algebra is of stable rank ∞, and every purely infinite simple

C∗-algebra is of real rank zero. In [6] the author found infinite simple C∗-algebras that

are not purely infinite (in fact, they contain both finite and infinite projections). These

examples are in some ways similar to those constructed by Villadsen, and they are build

from an infinite dimensional space (see Section 3). We show here that these algebras are

not of real rank zero. This has relevance for the still open problem if all simple infinite

C∗-algebras of real rank zero must be purely infinite.

Acknowledgements: I thank Pere Ara and Francesc Perera for inviting me to CRM,

Barcelona, where parts of the work presented in this note was done, and for stimulating

conversations on topics related to C∗-algebras of real rank zero. I also thank Andrew Toms

for directing my attention to Villadsen’s paper [8] in the context of this paper, and Hans

Jørgen Munkholm for useful discussions on Proposition 2.2.

2 Preliminaries: Results of Villadsen

We present here two observations that Villadsen in his paper [8] used to decide that his

C∗-algebras are not of real rank zero and not of stable rank one.

Lemma 2.1 (Villadsen) Let A be a unital C∗-algebra, let a be an invertible element in

A, and let p be a projection in A such that pap = 0. It follows that p - 1 − p.

Proof: Put x = pa(1 − p) and y = (1 − p)a−1p. Then

p = paa−1p = papa−1p+ pa(1 − p)a−1p = xy ∼ yx,

and yx is a sub-idempotent of 1 − p. �

Proposition 2.2 (Villadsen) Let M be a compact orientable manifold and let T be a

compact manifold which contains a submanifold T0 with a diffeomorphism λ0 : T0 → [−1, 1].

Let λ : T → [−1, 1] be a continuous extension of λ0. Let π1 : T ×M → T and π2 : T ×M →

M be the coordinate maps.

There is a dense subset D of the open ball

B := {f ∈ CR(T ×M) : ‖f − λ ◦ π1‖∞ < 1}
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such that if f ∈ D, then N := f−1({0}) ⊆ T×M is a finite CW complex and π∗ : H∗(M) →

H∗(N) is injective, where π = π2|N : N →M .

Proof: We show that the proposition follows from Villadsen’s [8, Theorem 1] (and its

proof). Let D be the set of smooth functions f in B such that 0 ∈ R is a regular value for

f and for f |T0×M . We show that the set D is dense in B. Let h ∈ B and ε > 0 be given with

ε < 1 − ‖h‖∞. Then there is a Morse function g : T ×M → R such that ‖h− g‖∞ < ε/2.

(That g is a Morse function means that g is smooth and that all but finitely many c ∈ R are

regular values for g.) By Sard’s theorem, the set of regular values for the smooth function

g|T0×M is dense in R, and this dense set remains dense after subtracting the finite set of

values c ∈ R at which g : T ×M → R is not regular. We can therefore find c ∈ R with

|c| < ε/2 and such that 0 is a regular value for g − c and for (g − c)|T0×M . It follows that

f = g − c belongs to D and ‖f − h‖∞ < ε. The latter implies that f belongs to B.

Take f ∈ D and put N = f−1({0}). Then N is a submanifold of T ×M (and hence a

finite CW complex) by the preimage theorem. Let ϕ : CR(T×M) → CR([−1, 1]×M) be the

surjective ∗-homomorphism given by ϕ(f) = f ◦ (λ−1
0 × idM), and put N0 = ϕ(f)−1({0}) ⊆

[−1, 1] ×M . Note that ϕ(f) is smooth and that 0 is a regular value for ϕ(f). It therefore

follows from [8, Theorem 1] (and its proof) that N0 is a submanifold of [−1, 1] ×M and

that σ∗ : H∗(M) → H∗(N0) is injective, when σ2 : [−1, 1] × M → M is the coordinate

mapping, and σ = σ2|N0
: N0 →M .

The commutative diagram

M

N

π
;;vvvvvvvvv

N0

σ
ddHHHHHHHHH

(λ−1
0 × idM)|N0

oo

at the level of spaces induces the commutative diagram

H∗(M)
π∗

xxrrrrrrrrrr
σ∗

&&MMMMMMMMMM

H∗(N)
(λ−1

0 × idM)|∗N0

// H∗(N0)

at the level of cohomology groups. As σ∗ is injective, so is π∗. �
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3 Preliminaries: The construction of two simple C∗-

algebras

We remind the reader of the construction in [6, Sections 5 and 6] of a simple, non-exact

(and non-separable) C∗-algebra B and of a nuclear, simple, separable C∗-algebra Doα Z,

both of which contain non-zero finite as well as infinite projections.

Take Z =
∏∞

n=1 S
2. The C∗-algebra B is the inductive limit

M(C(Z,K))
ϕ

// M(C(Z,K))
ϕ

// M(C(Z,K))
ϕ

// · · · // B,

with connecting map ϕ given as follows. Let p ∈ C(S2,M2) ⊂ C(S2,K) be the Bott

projection (a 1-dimensional projection with non-zero Euler class1 e(p) ∈ H2(S2,Z) ). For

each n ∈ N define pn = p ◦ πn ∈ C(Z,K), where πn : Z → S2 is the coordinate map onto

the nth copy of S2. For I = {n1, n2, . . . , nk} ⊆ N define pI ∈ C(Z,K) by

pI(x) = pn1
(x) ⊗ · · · ⊗ pnk

(x) ∈M2 ⊗ · · · ⊗M2 ⊆ K, x ∈ Z.

Choose an injective map ν : Z×N → N and define endomorphisms ϕj on C(Z,K) for each

j ∈ Z as follows. For j ≤ 0, for f ∈ C(Z,K), and for x = (x1, x2, . . . ) ∈ Z, set

ϕj(f)(x) = f(xν(j,1), xν(j,2), . . . ). (3.1)

For j ≥ 1, set Ij = {ν(j, 1), . . . , ν(j, j)} ⊆ N, and set

ϕj(f)(x) = τ
(
f(cj,1, . . . , cj,j, xν(j,j+1), xν(j,j+2), . . . ) ⊗ pIj

(x)
)
, (3.2)

where τ is an isomorphism from K⊗K onto K, and where ci,j are suitable points in S2 (see

[6, Section 5] for details). It follows from [6, Lemma 5.1 and (5.6)] that there is a sequence

{Sj}j∈Z of isometries in M(C(Z,K)) such that the sum of the right-hand side of

ϕ(f) =
∑

j∈Z

Sjϕj(f)S∗
j , f ∈ C(Z,K), (3.3)

is strictly convergent and the resulting ∗-homomorphism ϕ : C(Z,K) → M(C(Z,K))

is proper (i.e., maps an approximate unit for C(Z,K) onto a sequence that converges

1The Euler class in H2 dim(p)(X ; Z) of a projection p in C(X,K) is the Euler class of the associated
complex vector bundle over X .
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strictly to 1). The ∗-homomorphism ϕ can thus be extended to a unital endomorphism of

M(C(Z,K)) that here will be denoted by ϕ (it is denoted by ϕ in [6]). It is proved in [6,

Section 5] that B is a simple, infinite C∗-algebra that contains a non-zero finite projection.

Let ϕ∞,n be the inductive limit map from the nth copy of M(C(Z,K)) to B. Consider

the projection Q = ϕ∞,0(p1) ∈ B. Put Qn = ϕn(p1) ∈ M(C(Z,K)).

Lemma 3.1 For each n ≥ 1 there is a countable family In of finite subsets of N such that

Qn ∼
⊕

I∈In
pI .

None of the natural numbers sn, n ≥ 0, defined recursively by s0 = 2 and sn+1 =

ν(0, sn), belong to
⋃

I∈In
I.

Proof: The first claim follow by induction using [6, Lemma 5.5]. For the second claim, it

follows from [6, Lemma 5.4] that the families {In} are inductively given by I0 = {{1}} and

In+1 = {ν(j, I) | j ≤ 0, I ∈ In} ∪ {ν(j, I \ {1, . . . , j}) ∪ Ij | j ≥ 1, I ∈ In}, n ≥ 0.

Clearly s0 /∈
⋃

I∈I0
I = {1}.

It now suffices to show that if sn ∈ I for some I ∈ In, then sn−1 ∈ J for some J ∈ In−1.

Assume therefore that I ∈ In contains sn. Since sn ∈ ν(0,N), Ij ⊂ ν(j,N), and ν is

injective, sn does not belong to any of the sets Ij. It follows that sn ∈ ν(j, J) for some

j ∈ Z and some J ∈ In−1. Again by injectivity of ν, j = 0 and sn = ν(0, sn−1) ∈ ν(0, J),

whence sn−1 ∈ J . �

To formulate the next lemma we must set up a little notation.

For each (finite) subset I of N let πI : Z →
∏

j∈I S
2 be the coordinate mapping, and

let πI,J :
∏

j∈I S
2 →

∏
j∈J S

2 and πI,k :
∏

j∈I S
2 → S2 denote the coordinate mappings

whenever J ⊆ I ⊆ N and k ∈ I.

If X is a closed subset of Z, then the restriction mapping ψX : C(Z,K) → C(X,K)

extends to a strictly continuous unital surjective map ψX : M(C(Z,K)) → M(C(X,K)).

Lemma 3.2 Let J be a finite subset of N, let s be an element in J , and put J ′ = J \ {s}.

Let N ⊆
∏

j∈J S
2 be a closed finite CW-complex, and set π = πJ,J ′|N : N →

∏
j∈J ′ S2. Put

Ñ = π−1
J (N) ⊆ Z. Let g ∈ C(Z,K) be a trivial (= constant) 1-dimensional projection,

and let Qn ∈ M(C(Z,K)) be as defined above Lemma 3.1.

Suppose that π∗ : H∗(
∏

j∈J ′ S2) → H∗(N) is injective. Then ψÑ (g) -| ψÑ(Qn) for each

n ∈ N provided that s /∈
⋃

I∈In
I (cf. Lemma 3.1). If, in addition, ν : Z × N → N is

chosen as in [6, Section 6], then ψÑ (g) -|
⊕m

n=0 ψÑ(Qn) (relatively to M(C(Z,K))) for

each m ∈ N provided that s /∈
⋃m

n=0

⋃
I∈In

I.
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Proof: It follows from Lemma 3.1 that

Qn ∼
⊕

I∈In
pI,

⊕m
n=0 Qn ∼

⊕
I∈

⋃m
n=0

In
pI .

With the purpose of combining the proofs of the two statements in the lemma, we show that

ψÑ (g) -| ψÑ(R), when R is a projection in M(C(Z,K)) with R ∼
⊕

I∈J
pI for a countable

collection J of finite subsets of N for which |
⋃

I∈J0
I| ≥ |J0| for every finite subset J0 of J,

and s /∈
⋃

I∈J
I. (It follows from the displayed equations above and from inductive use of

[6, Lemmas 5.5 and 6.1] that Qn and
⊕m

n=0Qn are of this form.)

Suppose, to reach a contradiction, that ψÑ (g) - ψÑ(R) in M(C(Z,K)). Arguing as in

[6, Lemma 4.4] we then get

g|Ñ = ψÑ(g) -
⊕

I∈J0
ψÑ(pI) =

(⊕
I∈J0

pI

)
|Ñ in C(Ñ ,K) (3.4)

for some finite subset J0 of J. We observe that C(Ñ ,K) is the inductive limit of the

sequence

C(π−1
L1,J(N),K) // C(π−1

L2,J(N),K) // C(π−1
L3,J(N),K) // · · · // C(Ñ ,K),

when {Ln} is an increasing sequence of finite subsets of N, each of which contains J , and

with N =
⋃∞

n=1 Ln. The projection
( ⊕

I∈J0
pI

)
|Ñ belongs to (the image in C(Ñ ,K) of)

C(π−1
Ln,J(N),K) for some large enough n; and for a possibly larger n, the relation (3.4) holds

relatively to C(π−1
Ln,J(N),K), i.e., g|N -

(⊕
I∈J0

pI

)
|N in C(N,K), when N = π−1

Ln,J(N).

It follows in particular that the Euler class of
(⊕

I∈J0
pI

)
|N in H2|J0|(N) is zero.

Put L = Ln and put L′ = L \ {s}. As s /∈
⋃

I∈J
I, the projection

⊕
I∈J0

pI belongs to

C(
∏

j∈L′ S2,K) and its Euler class in H2|J0|(
∏

j∈L′ S2) is non-zero by [6, Proposition 3.2

and Lemma 4.1]. Put ρ = πL,L′|N : N →
∏

j∈L′ S2. By functoriality of the Euler class, ρ∗

maps the Euler class of
⊕

I∈J0
pI in H2|J0|(

∏
j∈L′ S2) to the Euler class of

(⊕
I∈J0

pI

)
|N

in H2|J0|(N). This contradicts the fact, established below, that ρ∗ : H2|J0|(
∏

j∈L′ S2) →

H2|J0|(N) is injective.

Note that N is the Cartesian product of the spaces N and
∏

j∈L\J S
2 and hence that

ρ = π × id : N = N ×
∏

j∈L\J S
2 →

∏
j∈J ′ S

2 ×
∏

j∈J\L S
2 =

∏
j∈L′ S

2.

We can therefore use the Künneth formula, which applies because H∗(
∏

j∈L\J S
2) is torsion

free and N is a finite CW complex (see [5, Theorem A6]), and the fact that π∗ is injective

to conclude that ρ∗ = (π × id)∗ is injective. �
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We now outline the construction from [6, Section 6] of the separable, nuclear, simple C∗-

algebra, D oα Z. As above, let ϕ∞,n be the inductive limit map from the nth copy of

M(C(Z,K)) to B. There is an automorphism α on B such that α ◦ ϕ∞,n = ϕ∞,n ◦ ϕ for

all n ≥ 0. Put D0 = ϕ∞,0(C(Z,K)) and put Dn = αn(D0) for n ∈ Z. Let D be the

sub-C∗-algebra of B generated by
⋃

n∈Z
Dn. Then α is an automorphism on D and the

crossed product D oα Z is a separable, nuclear, simple C∗-algebra with an infinite and a

non-zero finite projection (see [6, Section 6]).

The C∗-algebra D is the inductive limit

E
ϕ′

// E
ϕ′

// E
ϕ′

// · · · // D (3.5)

where

E = C∗
(
C(Z,K), ϕ(C(Z,K)), ϕ2(C(Z,K)), . . .

)
⊆ M(C(Z),K), (3.6)

and where ϕ′ = ϕ|E. The C∗-algebra E is of type I.

4 The real rank of two simple C∗-algebras

In this section, B andDoαZ are the simple C∗-algebras from Section 3. Take a submanifold

T0 of S2 such that T0 is diffeomorphic to [−1, 1], let λ : S2 → [−1, 1] be a continuous

extension of a diffeomorphism from T0 onto [−1, 1], and put λn = λ ◦ πn : Z → [−1, 1]. Let

f ∈ C(Z,K) be given by f(x) = λ2(x)p1(x) and put

a = ϕ∞,0(f) ∈ QDQ ⊆ QBQ ⊆ B, (4.1)

where Q = ϕ∞,0(p1) ∈ D.

Proposition 4.1 The distance from the element a defined in (4.1) to the self-adjoint in-

vertible elements of QBQ is 1.

Proof: Let f ∈ C(Z,K) be as above (4.1), and retain the notation from Section 3 (includ-

ing the endomorphism ϕ, the projections Qn, and the isometries Sj). It suffices to show

that the distance from ϕn(f) to the self-adjoint invertible elements of QnM(C(Z,K))Qn

is 1 for all n ∈ N.

Let sn be as in Lemma 3.1 and define natural numbers rn by the recursive formula:

r0 = 1 and rn+1 = ν(0, rn). Note that ϕn(f) = fn + gn, where fn ∈ C(Z,K) is given

by fn(x) = λsn
(x)qn(x) for some projection qn which is equivalent to prn

, and where
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gn ∈ (Qn − qn)M(C(Z,K))(Qn − qn). Indeed, this is satisfied for n = 0 with f0 = f ,

q0 = Q0 = p1, and g0 = 0. Assuming that the claim is proved for some n ≥ 0, set

fn+1 = S0ϕ0(fn)S∗
0 , set qn+1 = S0ϕ0(qn)S∗

0 , and set gn+1 =
∑

j 6=0 Sjϕj(fn)S∗
j + ϕ(gn).

Then ϕn+1(f) = fn+1 + gn+1 and

ϕ0(fn)(x) = fn(xν(0,1), xν(0,2), . . . ) = λν(0,sn)(x)ϕ0(qn)(x) = λsn+1
(x)ϕ0(qn)(x),

so fn+1(x) = λsn+1
(x)qn+1(x) and qn+1 is equivalent to ϕ0(prn

) = pν(0,rn) = prn+1
.

To arrive at a contradiction, suppose that there is n ∈ N and a self-adjoint invertible

element b′ ∈ QnM(C(Z,K))Qn with ‖ϕn(f) − b′‖ < 1. Then qnb
′qn = µ′qn for some

continuous function µ′ : Z → R, and ‖µ′ − λsn
‖∞ ≤ ‖ϕn(f) − b′‖ < 1. Find δ > 0 such

that δ < 1−‖ϕn(f)− b′‖ and such that every (self-adjoint) element c ∈ QnM(C(Z,K))Qn

within distance less than δ from b′ is invertible. There is a finite subset J of N, with sn ∈ J ,

and a continuous function µ′′ :
∏

j∈J S
2 → R such that ‖µ′ − µ′′ ◦ πJ‖∞ < δ/2.

Now, λsn
= (λ ◦ πJ,sn

) ◦ πJ and ‖µ′′ − λ ◦ πJ,sn
‖∞ < 1 − δ/2. Apply Proposition 2.2

to find a continuous function µ :
∏

j∈J S
2 → R with ‖µ − µ′′‖∞ < δ/2 such that N :=

µ−1({0}) ⊆
∏

j∈J S
2 is a finite CW complex and

π∗ : H∗(
∏

j∈J ′ S
2) → H∗(N)

is injective, when J ′ = J \ {sn} and π = πJ,J ′|N : N →
∏

j∈J ′ S2. Set

b = b′ + (µ ◦ πJ − µ′)qn ∈ QnM(C(Z,K))Qn.

Then ‖b− b′‖ < δ, b is self-adjoint and invertible, and qnbqn = (µ ◦ πJ)qn.

Put Ñ = π−1
J (N) ⊆ Z, and let ψÑ : M(C(Z,K)) → M(C(Z,K)) be the strictly

continuous extension of the restriction mapping C(Z,K) → C(Ñ ,K). By construction,

ψÑ (qnbqn) =
(
(µ ◦ πJ)qn

)
|Ñ = 0, and so ψÑ (qn) - ψÑ(Qn − qn) by Lemma 2.1. Hence

ψÑ (prn
) ⊕ ψÑ (prn

) ∼ ψÑ(qn) ⊕ ψÑ (qn) - ψÑ (Qn),

and as the trivial (constant) 1-dimensional projection g ∈ C(Z,K) is equivalent to a

subprojection of pr ⊕ pr (for all r), cf. [6, Proposition 4.5], we get ψÑ (g) - ψÑ(Qn). This,

however, is in contradiction with Lemma 3.2. �

Corollary 4.2 The real rank of B is not zero.

Proof: If RR(B) = 0, then RR(QBQ) = 0, cf. [1]; and it follows immediately from
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Proposition 4.1 that RR(QBQ) 6= 0. �

We proceed to consider the real rank of the algebra D oα Z. To this end we need some

lemmas.

Lemma 4.3 Let A be a C∗-algebra, let p, q be projections in A, and let a, b ∈ A be such

‖p− ab‖ < 1, aq = a, and qb = b. Then p - q.

Proof: The assumption implies that pabp is invertible in pAp, so there is an element

c ∈ pAp with p = cpabp = cabp. Put x = ca and y = bp. Then p = xy and yx ≤ q, whence

p - q. �

Let α be an automorphism on a C∗-algebra A and let A oα Z be the crossed product

C∗-algebra. Let u denote the unitary element in the multiplier algebra of A oα Z that

implements the automorphism α, and let E : Aoα Z → A denote the canonical conditional

expectation.

Lemma 4.4 Let A be a C∗-algebra, let α be an automorphism on A, and let A1 be a sub-

C∗-algebra of A. Let p ∈ A1 be a projection, let m ∈ N, and let b, c be self-adjoint elements

in the subspace
∑m

j=−mA1u
j of Aoα Z such that pb = b, cp = c, and ‖E(bc)− p‖ < 1. Let

A2 be a sub-C∗-algebra of A which contains
⋃m

j=−m α
j(A1). Let q ∈ A2 be a sub-projection

of p. Let I be a closed two-sided in A2 which contains qE(b)q, and let π : A2 → A2/I be

the quotient mapping. It follows that

π(q ⊕ q) -
⊕m

j=−mπ(αj(p)) in A2/I.

Proof: Write b =
∑m

j=−m bju
j and c =

∑m
j=−m cju

j, where bj, cj belong to A1. Then

E(bc) =
∑m

j=−m bjα
j(c−j). Let X ∈ M1,2m+1(A2) and Y ∈ M2m+1,1(A2) be the row and

the column matrix, respectively, with entries X1j = bj and Yj1 = αj(c−j), j = −m, . . . ,m,

so that XY = E(bc). Let Q and q̃ in M2m+1(A2) be the diagonal matrices with entries

Qjj = αj(p) and q̃jj = δ0,jq, j = −m, . . . ,m. Then X = XQ, QY = Y , and π(qXq̃) = 0

(where π is extended to all rectangular matrices over A2 entrywise).

Put X ′ = qX(Q− q̃) and Y ′ = (Q− q̃)Y q. Then

π(X ′Y ′) = π(qX(Q− q̃)Y q) = π(qXY q) − π(qXq̃Y q) = π(qE(bc)q),

which implies that ‖π(X ′Y ′) − π(q)‖ < 1. It now follows from Lemma 4.3 that π(q) -

π(Q− q̃). Hence π(q) ⊕ π(q) - π(Q) ∼
⊕m

j=−m π(αj(p)) relatively to A2/I. �
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Proposition 4.5 The distance from the element a defined in (4.1) to the self-adjoint in-

vertible elements of Q(D oα Z)Q is 1.

Proof: Suppose, to reach a contradiction, that there is a self-adjoint invertible element

b(1) in Q(D oα Z)Q with ‖b(1) − a‖ < 1. Take δ > 0, with δ + ‖b(1) − a‖ < 1, such that

the open ball in Q(D oα Z)Q with center b(1) and radius δ is contained in the open set of

invertible elements of Q(D oα Z)Q.

Let sn, rn be as in the proof of Proposition 4.1. Then, as in the proof of Proposition 4.1,

ϕn(f) = fn + gn, where fn ∈ C(Z,K) is given by fn(x) = λsn
(x)qn(x) for some projection

qn which is equivalent to prn
, and where gn ∈ (Qn−qn)E(Qn−qn) (where E ⊆ M(C(Z,K))

is as defined in (3.6)).

For large enough integers n,m ≥ 0 there are self-adjoint elements b(2) and c in the

subspace
∑m

j=−mQ(ϕ∞,n(E)uj)Q such that ‖b(2) − b(1)‖ ≤ δ/2 and ‖b(2)c − Q‖ < 1. Let

η > 0 be such that η ≤ δ/2 and ‖bc−Q‖ < 1 for every b ∈ Q(Doα Z)Q with ‖b(2)−b‖ < η.

As in the proof of Proposition 4.1 there is a finite subset J of N, with sn ∈ J , and a self-

adjoint element

b =

m∑

j=−m

ϕ∞,n(bj)u
j, bj ∈ E,

such that ‖b(2) − b‖ < η, b = QbQ, and qnb0qn = (µ ◦ πJ)qn, where µ ∈ C(
∏

j∈J S
2,K) ⊆

C(Z,K) has the following property: The set N = µ−1({0}) ⊆
∏

j∈J S
2 is a finite CW com-

plex and π∗ : H∗(
∏

j∈J ′ S2) → H∗(N) is injective, when J ′ = J\{sn} and π = πJ,J ′|N : N →∏
j∈J ′ S2. Note that ‖bc−Q‖ < 1, whence ‖E(bc) −Q‖ < 1.

As in the proof of Proposition 4.1, put Ñ = π−1
J (N) ⊆ Z, and let ψÑ : M(C(Z,K)) →

M(C(Z,K)) is the strictly continuous extension of the restriction mapping C(Z,K) →

C(Ñ ,K). By construction, ψÑ (qnbqn) =
(
(µ◦πJ)qn

)
|Ñ = 0. We shall now apply Lemma 3.2

(with A1 = ϕ∞,n(E), A2 = ϕ∞,n+m(E), p = Q, q = ϕ∞,n(qn), and π(ϕ∞,n+m(x)) = ψÑ (x)

for x ∈ E). Note that αj(ϕ∞,n(E)) ⊆ ϕ∞,n+m(E) for |j| ≤ m, because αj(ϕ∞,n(x)) =

ϕ∞,n(ϕ
j(x)) = ϕ∞,n+m(ϕj+m(x)) when j ≥ 0, and αj(ϕ∞,n(x)) = ϕ∞,n−j(x) when −n ≤

j < 0. Note also

αj(Q) = αj(ϕ∞,n+m(Qn+m)) = αj(ϕ∞,n+m(ϕm(Qn)))

= ϕ∞,n+m(ϕm+j(Qn)) = ϕ∞,n+m(Qn+m+j)

for |j| ≤ m. Let g ∈ C(Z,K) be a trivial (constant) 1-dimensional projection. We conclude

from [6, Proposition 4.5 (ii)], from the expression for αj(Q) above, and from Lemma 3.2
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that

ψÑ (g) - ψÑ (prn
⊕ prn

) ∼ ψÑ(qn ⊕ qn) -
⊕m

j=−mψÑ (Qn+m+j) ≤
⊕n+m

j=0 ψÑ(Qj)

However, this is in contradiction with Lemma 3.2. �

As in the proof of Corollary 4.2 the corollary below follows immediately from Proposi-

tion 4.5

Corollary 4.6 The real rank of D oα Z is not zero.

5 Property (SP)

Recall that C∗-algebra A is said to have property (SP) if every non-zero hereditary sub-

C∗-algebra of A contains a non-zero projection. A simple C∗-algebra with property (SP)

is purely infinite (and hence of real rank zero) if and only if all non-zero projections are

infinite. The simple C∗-algebras B and D oα Z (defined in Section 3) are here shown to

have property (SP), and were shown to have real rank different from zero in the previous

section.

Lemma 5.1 Let A be a C∗-algebra, let a and b be positive elements in A, and suppose

that ‖t∗at− b‖ < λ < ‖b‖ for some t ∈ A and some real number λ. Then aAa contains a

non-zero projection if (b− λ)+A(b− λ)+ does.

Proof: The assumption ‖t∗at − b‖ < λ implies that there exists s ∈ A with (b − λ)+ =

s∗t∗ats (see eg. [3]). Put x = a1/2ts. Then

(b− λ)+A(b− λ)+ = x∗xAx∗x ∼= xx∗Axx∗ ⊆ aAa,

(see eg. [3] for the isomorphism), and this proves the lemma. �

Recall in the next lemma that ϕ∞,n is the inductive limit map from the nth copy of

M(C(Z,K)) to B.

Lemma 5.2 Let A be a sub-C∗-algebra of B such that
⋃∞

n=0 Im(ϕ∞,n) ∩ A is dense in A

and ϕ∞,n(C(Z,K)) is contained in A for every n ≥ 0. Then A has property (SP).
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Proof: We must show that aAa contains a non-zero projection for every non-zero positive

element a ∈ A. Put An = ϕ−1
∞,n(A) ⊆ M(C(Z,K)). Then A is the inductive limit of the

sequence A1 → A2 → · · · with connecting maps ϕ|An
. Each An is assumed to contain

C(Z,K).

Find an integer n ≥ 0 and a positive element b ∈ An such that ‖ϕ∞,n(b)− a‖ < ‖a‖/2.

Then ‖b‖ > ‖a‖/2. If λ is such that ‖ϕ∞,n(b) − a‖ < λ < ‖b‖ and if the hereditary

sub-C∗-algebra of A generated by ϕ∞,n((b− λ)+) contains a projection, then so does aAa.

The former holds if ϕ∞,n(c)Aϕ∞,n(c) contains a non-zero projection for some (non-zero)

positive element c in (b− λ)+C(Z,K)(b− λ)+ ⊆ C(Z,K) ⊆ An. Take any such element c.

Identify C(
∏m

j=1 S
2,K) with a sub-C∗-algebra of C(Z,K). Then

⋃∞
m=1 C(

∏m
j=1 S

2,K)

is dense in C(Z,K). Find a natural number m and a positive element d ∈ C(
∏m

j=1 S
2,K)

such that ‖c − d‖ < ‖c‖/2. Take a real number µ with ‖c − d‖ < µ < ‖c‖/2 ≤ ‖d‖, and

put e = (d− µ)+ ∈ C(
∏m

j=1 S
2,K). Then e is a non-zero positive element in C(Z,K), and

the problem is reduced to finding a non-zero projection in ϕ∞,n(e)Aϕ∞,n(e). This is done

below by showing that ϕ(e)An+1ϕ(e) contains a non-zero projection.

Following the definition of ϕ (see Equations (3.1), (3.2), and (3.3)), for each j ∈ Z

the hereditary sub-C∗-algebra of An+1 generated by ϕ(e) contains the hereditary sub-C∗-

algebra of C(Z,K) generated by Sjϕj(e)S
∗
j . The hereditary sub-C∗-algebras of C(Z,K)

generated by Sjϕj(e)S
∗
j and ϕj(e), respectively, are isomorphic, and so it suffices to show

that ϕj(e)C(Z,K)ϕj(e) contains a non-zero projection for some j. But ϕj(e) is a constant

function whenever j > m. By the density property of the points cj,i ∈ S2, used in the

construction of ϕj for j ≥ 1, we have ϕj(e) 6= 0 for some j > m. Take such a j. Then ϕj(e)

is a non-zero, positive, constant function in C(Z,K), and the hereditary sub-C∗-algebra of

C(Z,K) generated by ϕj(e) clearly contains a non-zero projection. �

If we apply Lemma 5.2 to A = B, then we get:

Proposition 5.3 The C∗-algebra B has property (SP).

Lemma 5.4 Let A be a C∗-algebra and let α be an automorphism on A such that all

non-zero powers of α are properly outer (cf. [2]). If A has property (SP), then so does

Aoα Z.

Proof: Take a non-zero positive element a in Aoα Z. Let E : Aoα Z → A be the (faithful)

conditional expectation associated with the crossed product. It is proved in [4, Lemma 3.2]

that for each ε > 0 there is a (positive) element h in A such that ‖hah − hE(a)h‖ < ε

and ‖hE(a)h‖ ≥ ‖E(a)‖ − ε. It follows in particular that there is h ∈ A and λ ∈ R
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such that ‖hah − hE(a)h‖ < λ < ‖hE(a)h‖. Put b = (hE(a)h − λ)+. The (non-zero)

hereditary sub-algebra bAb contains a non-zero projection (by assumption on A) and is

contained in b(Aoα Z)b. It thus follows from Lemma 5.1 that a(Aoα Z)a contains a

non-zero projection. �

Proposition 5.5 The C∗-algebra D oα Z has property (SP).

Proof: It is shown in [6, Lemma 6.9] that all non-zero powers of α are properly outer

(relatively to D). By Lemma 5.4 it thus suffices to prove that D has property (SP). This,

however, follows from Lemma 5.2 and (3.6). �
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