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Abstract

The literature contains interesting examples of inclusions of simple C∗-algebras with the
property that all intermediate C∗-algebras likewise are simple. In this article we take up
a systematic study of such inclusions, which we refer to as being C∗-irreducible by the
analogy that all intermediate von Neumann algebras of an inclusion of factors are again
factors precisely when the given inclusion is irreducible.

We give an intrinsic characterization of when an inclusion of C∗-algebras is C∗-
irreducible, and use this to revisit known and exhibit new C∗-irreducible inclusions arising
from groups and dynamical systems. Using a theorem of Popa one can show that an inclu-
sion of II1-factors is C∗-irreducible if and only if it is irreducible with finite Jones index.
We further show how one can construct C∗-irreducible inclusions from inductive limits,
and we discuss how the notion of C∗-irreducibility behaves under tensor products.

1 Introduction

Jones’ index of subfactors, [17], and the subsequent classification of subfactors of finite depth,
are famous examples of the rich mathematical structure possessed by inclusions of operator
algebras. The classification of hyperfinite von Neumann factors was an inspiration for the
recently (almost) completed classification of simple nuclear C∗-algebras (the Elliott program),
and the Jones’ theory of subfactors has likewise been a model for understanding inclusions of
C∗-algebras, see for example [15].

Inclusions of C∗-algebras are ubiquitous in operator algebras, and are perhaps most often
encountered in C∗-dynamics. If a group Γ acts on a C∗-algebra A, then both A and the
group C∗-algebra of Γ are sub-algebras of the crossed product of A with Γ; and the fixed-
point algebra AΓ is a subalgebra of A. An inclusion of groups Λ ⊆ Γ gives rise to an inclusion
of group C∗-algebras and von Neumann algebras, and, whenever Γ acts on a given C∗-algebra,
also of their crossed products.

Given an inclusion B ⊆ A of C∗-algebras, it is natural to consider the lattice of inter-
mediate C∗-algebras. In some special cases of interest one can even classify these, or one
can show that each intermediate algebra shares properties with A and B. Perhaps the best
understood inclusions are those arising from crossed products: B ⊆ B ored Γ, where B is
simple and the action Γ y B is outer. It is an easy consequence of classical results of Kishi-
moto, Olesen–Pedersen from ca. 1980 that any intermediate C∗-algebra of these inclusions
are simple, making the inclusions C∗-simple, see Section 5. Moreover, there is a Galois type
correspondance between intermediate C∗-algebras of such an inclusion and subgroups of Γ as
shown by Izumi, [15], and Cameron an Smith, [8]. A similar Galois type correspondance was
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established in [7] of intermediate C∗-algebras of the inclusion of a groupoid C∗-algebra and
its canonical Cartan subalgebra in terms of sub-groupoids.

Amrutam and Kalantar show in [3] that the inclusion C∗λ(Γ) ⊆ Aored Γ is C∗-irreducible
under certain “mixing” conditions on the action, and Amrutam and Ursu proved a Galois
correspondance for the intermediate C∗-algebras of these inclusions under some further condi-
tions. In Theorem 5.12 we improve the first mentioned result, giving a necessary and sufficient
condition for the inclusion C∗λ(Γ) ⊆ Aored Γ to be C∗-irreducible.

Izumi–Longo–Popa established in [16] a Galois correspondance between intermediate von
Neumann algebras of the inclusionMG ⊆M and subgroups of G, whereM is a factor and G
is a compact group equipped with a minimal action onM. Izumi established in [15] a similar
Galois correspondance for the inclusion AΓ ⊆ A arising from an outer action of a finite group
Γ on a unital simple C∗-algebra A. In particular, the inclusion AΓ ⊆ A is C∗-irreducible.

Another Galois correspondance was established by Suzuki, [32], who proved that any
intermediate C∗-algebra of an inclusion C(Y )oΓ ⊆ C(X)oΓ is of the form C(Z)oΓ (under
suitable conditions explained in Section 2 below).

The purpose of this paper is to explain when an inclusion of C∗-algebras is C∗-irreducible,
i.e., has the property that all intermediate C∗-algebras are simple, and to provide (new)
examples of such inclusions. We expect that the lattice of intermediate C∗-algebras of such
inclusions will exhibit a more rigid structure allowing for a better understanding; and, indeed
as described above, complete classifications of the lattice of intermediate C∗-algebras of C∗-
irreducible inclusions have been obtained in several cases of interest. In Chapter 3 we give an
intrinsic characterization of when an inclusion of simple C∗-algebras is C∗-irreducible. The
condition states that an inclusion B ⊆ A of unital C∗-algebras is C∗-irreducible if and only
if each non-zero positive element in A is full relatively to B (as defined in Chapter 3). This
condition is clearly sufficient for C∗-irreducibility, and we prove it is also necessary.

Being C∗-irreducible is a stronger property than the usual notion of irreducibility of an
inclusion, namely that the relative commutant is trivial. In Section 4 we consider when an
inclusion of von Neumann factors is C∗-irreducible. By a theorem of Popa, this happens
for an inclusion of II1-factors if and only if the inclusion is irreducible (in the usual sense)
and of finite Jones’ index. In Section 5 we consider when inclusions arising from groups
and dynamical systems are C∗-irreducible, and we revisit here some of the results mentioned
above.

We show in Section 6 how to construct C∗-irreducible inclusions from inductive limits.
In particular we give examples of C∗-irreducible inclusions of UHF-algebras. The construc-
tion involves the relative position of finite dimensional sub-C∗-algebras inside another finite
dimensional C∗-algebra, and leads to the notion that we call everywhere non-orthogonal sub-
algebras.

Finally, in Section 7, we show how C∗-irreducible inclusions behave under taking ten-
sor products. We begin in Section 2 by explaining in more detail some key examples that
motivated this paper.

I thank Pierre de la Harpe, Adrian Ioana, Mehrdad Kalantar, Tron Omland, Sorin Popa
and Yuhei Suzuki for their very helpful input to this paper.
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2 Inclusions of C∗-algebras and their intermediate C∗-algebras

This section contains a review of some results on inclusions of C∗-algebras that prompted
me to formalize the idea of a C∗-irreducible inclusion and to write this paper. We focus in
particular on results that provide an analog of the Galois correspondance stating that all
intermediate C∗-algebras of a given inclusion share common properties or arise in a certain
way. One famous example of this situation is found in the tensor splitting theorem below by
Ge and Kadison on intermediate von Neumann factors of an inclusion of tensor products, as
well as a C∗-analog of this result.

Theorem 2.1 (Ge–Kadison, [12]). Let M be a von Neumann factor, let N be an arbitrary
von Neumann algebra, and let P be a von Neumann algebra such that M⊗C ⊆ P ⊆M⊗N .
Then P =M⊗N0 for some von Neumann subalgebra N0 of N .

In the theorem above ⊗ denotes the (spatial) von Neumann algebra tensor product. We let
⊗ denote the minimal C∗-tensor product.

Let A and B be a unital C∗-algebras. For each ϕ ∈ A∗ there exists a bounded linear map
Rϕ : A⊗ B → B, called a slice map, satisfying Rϕ(a⊗ b) = ϕ(a)b, for a ∈ A and b ∈ B. The
C∗-algebra A is said to have Wassermann’s property (S) if for each unital inclusion B0 ⊆ B
of C∗-algebras and for each x ∈ A⊗ B, one has x ∈ A⊗ B0 if and only if Rϕ(x) ∈ B0, for all
ϕ ∈ A∗, cf. [34]. Wassermann proved in [35] that all nuclear C∗-algebras have property (S).

The result below was obtained independently by Zsido, [37], and Zacharias, [36].

Theorem 2.2 (Zacharias, Zsido). Let E be a unital C∗-algebra. Then E is simple and has
property (S) of Wassermann if and only if for each unital C∗-algebra B and each intermediate
C∗-algebra E ⊗ C ⊆ D ⊆ E ⊗ B, one has D = E ⊗ B0 for some sub-C∗-algebra B0 of B.

This theorem immediately implies simplicity of any intermediate C∗-algebra of an inclusion
E ⊗ B ⊆ E ⊗ A, where E is simple and has property (S) and B ⊆ A is C∗-irreducible, cf.
Theorem 7.1. Indeed, any such intermediate C∗-algebra will be of the form E ⊗ D for some
C∗-algebra B ⊆ D ⊆ A. Hence D is simple, so E ⊗ D is also simple by Takesaki’s theorem.

Describing all intermediate C∗-algebras of inclusion of the more general form B1 ⊗ B2 ⊆
A1 ⊗ A2, when Bj ⊆ Aj are C∗-irreducible, j = 1, 2, is more tricky. We shall give partial
results about such inclusions in Section 7.

We now turn to inclusions arising from dynamical systems. We already mentioned in the
introduction inclusions of C∗-algebras arising from crossed products, and we shall get back
to those examples in Section 5. Suzuki, [32], established another Galois type correspondance
between intermediate locally compact Hausdorff spaces equipped with an action of a fixed
group Γ, and of their associated crossed product C∗-algebras:

Theorem 2.3 (Suzuki, [32, Theorem 2.3]). Let Γ be a discrete group with the approximation
property (AP) of Haagerup and Kraus. Let X and Y be locally compact Hausdorff spaces with
free Γ-actions for which there is a surjective continuous Γ-equivariant map Y → X.

It follows that the map Z 7→ C0(Z) ored Γ is a bijection from the lattice of Γ-spaces Z
between X and Y to the lattice of intermediate C∗-algebras of the inclusion C0(X) ored Γ ⊆
C0(Y ) ored Γ.

In other words, each intermediate C∗-algebra C0(X)ored Γ ⊆ D ⊆ C0(Y )ored Γ is of the form
D = C0(Z) ored Γ for some Γ-equivariant intermediate C∗-algebra C0(X) ⊆ C0(Z) ⊆ C0(Y ),
under the assumption of Theorem 2.3.
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We mention also the following result on the existence of “tight inclusions” from [32]
establishing situations where the lattice of intermediate C∗-algebras is trivial for non-trivial
reasons:

Theorem 2.4 (Suzuki, [32, Theorem 5.1]). Let A be a simple C∗-algebra that tensorially
absorbs the Cuntz algebra O∞. Then A admits an endomorphism σ for which the inclusion
σ(A) ⊆ A on the one hand is non-trivial in the sense that there is no conditional expectation
A → σ(A), while on the other hand it has no proper intermediate C∗-algebras, i.e., the
inclusion is tight.

Suzuki has more results about tight inclusions in [31].
A discrete group Γ is said to be C∗-simple if its reduced group C∗-algebra C∗λ(Γ) is simple.

Amrutam and Kalantar prove in [3, Theorem 1.1] that for certain actions of a C∗-simple group
Γ on a unital C∗-algebra A, each intermediate C∗-algebra D of the inclusion C∗λ(Γ) ⊆ Aored Γ
is simple. As a corollary they obtain that for each minimal action of a C∗-simple group Γ
on a compact Hausdorff space X, each intermediate C∗-algebra C∗λ(Γ) ⊆ D ⊆ C(X)ored Γ is
simple. In Theorem 5.12 we extend these results and provide a (partly) new proof based on
the techniques developed here.

Amrutam and Ursu, [4], consider the more general situation of a group Γ acting minimally
on compact Hausdorff spaces X and Y , where Y is a Γ-invariant factor of X, ensuring that we
have a Γ-equivariant inclusion C(Y ) ⊆ C(X). They show that if C(Y ) ored Γ is simple, then
so is each intermediate C∗-algebra of the inclusion C(Y )ored Γ ⊆ C(X)ored Γ, cf. [4, Theorem
1.5]. If one further assumes that Γ has property (AP) and the action is free, then Suzuki’s
Theorem 2.3 implies that any such intermediate C∗-algebra is of the form C(Z)ored Γ, which
again yields simplicity.

The strategy of proof used in both the Amrutam–Kalantar and the Amrutam–Ursu papers
rely on clever generalizations of the Powers’ averaging property, which in its original form
states that

τ0(x) · 1 ∈ conv{u∗sxus : s ∈ Γ},

for each x ∈ C∗λ(Γ), when Γ is a free group (on two or more generators), where τ0 is the
canonical trace on C∗λ(Γ), and where {ut}t∈Γ is the unitary representation of Γ in C∗λ(Γ). This,
in turn, implies that C∗λ(Γ) is simple with unique trace. It was later shown independently
by Haagerup, [13], and Kennedy, [18], that the Powers’ averaging property above, in fact,
characterizes C∗-simple groups Γ.

3 Irreducible inclusions of C∗-algebras

Here is the main definition of this paper:

Definition 3.1. A unital inclusion B ⊆ A of simple unital C∗-algebras is said to be C∗-
irreducible if each intermediate C∗-algebra B ⊆ D ⊆ A is simple. (The inclusion B ⊆ A is
unital if the unit of A belongs to B.)

It will be shown in Remark 3.8 below that any C∗-irreducible inclusion B ⊆ A is irreducible (in
the sense that B′∩A = C), while the converse is not true in general, even under the additional
assumption that A and B are simple. In some instances, irreducibility and C∗-irreducibility
do agree, see for example Theorem 5.8, and see also Theorem 4.4.
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Further justification of the terminology of Definition 3.1 will be given in the next section.
We proceed to give an intrinsic description of C∗-irreducible inclusions. First we need the
following:

Lemma 3.2. Let A be a unital C∗-algebra and let W be a subset of A. Let a ∈ A+, and
suppose that there exist x1, . . . , xn ∈ span(W) such that

∑n
j=1 x

∗
jaxj ≥ 1A. Then there exist

w1, . . . , wm ∈ W such that
∑m

j=1w
∗
jawj ≥ 1A.

Proof. It suffices to show that for each x ∈ span(W) there exist w1, . . . , wk ∈ W such that∑k
j=1w

∗
jawj ≥ x∗ax. Write x =

∑`
j=1 λjwj , with wj ∈ W and λj ∈ C. Since v∗aw+w∗av ≤

v∗av + w∗aw, for all v, w ∈ A, we get

x∗ax =
∑̀
i,j=1

(λjwj)
∗a(λiwi) ≤ `

∑̀
j=1

|λj |2w∗jawj .

Upon repeating each wj at least ` · |λj |2 times, and after relabelling the wj ’s, we obtain

x∗ax ≤
∑k

j=1w
∗
jawj , as desired.

An element a in a C∗-algebra A is full if it is not contained in any proper closed two-sided
ideal of A. The following lemma is elementary and well-known, see eg. [30, Exercise 4.8] for
(i) ⇒ (ii), and use Lemma 3.2 to see that (ii) ⇒ (iii):

Lemma 3.3. The following conditions are equivalent for each positive element a in a unital
C∗-algebra A:

(i) a is full in A,

(ii) there exist x1, . . . , xn ∈ A such that
∑n

j=1 x
∗
jbxj ≥ 1A,

(iii) there exist unitaries u1, . . . , um ∈ A such that
∑m

j=1 u
∗
jbuj ≥ 1A.

Definition 3.4. Let B ⊆ A be a unital inclusion of C∗-algebras. A positive element a ∈ A is
said to be full relatively to B if there exist elements x1, . . . , xn ∈ B such that

∑n
j=1 x

∗
jaxj ≥ 1A.

The property of being relatively full as defined above can be reformulated as follows:

Lemma 3.5. Let B ⊆ A be a unital inclusion of C∗-algebras. Let W be a subset of B such
that span(W) is dense in B. Then the following conditions are equivalent for each positive
element a ∈ A:

(i) a is full relatively to B,

(ii) there exist x1, . . . , xn ∈ B such that
∑n

j=1 x
∗
jaxj is invertible in A,

(iii) there exist w1, . . . , wm ∈ W such that
∑m

j=1w
∗
jawj ≥ 1A,

(iv) there exist unitaries u1, . . . , um ∈ B such that
∑m

j=1 u
∗
jauj ≥ 1A.

Proof. (iv) ⇒ (i) ⇒ (ii) are trivial, and (iii) ⇒ (iv) follows from the fact that any unital
C∗-algebra is the span of its unitary elements.

(ii)⇒ (iii). Note that the sum
∑n

j=1 x
∗
jaxj is invertible if and only if

∑n
j=1 x

∗
jaxj ≥ δ ·1A,

for some δ > 0. Approximate each xj by elements yj ∈ span(W) close enough so that∑n
j=1 y

∗
jayj ≥ (δ/2) · 1A. Multiplying each yj by (δ/2)−1/2 we obtain that

∑n
j=1 y

∗
jayj ≥ 1A.

It now follows from Lemma 3.2 that (iii) holds for suitable w1, . . . , wm ∈ W.
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The next result connects the notion of relative fullness to the usual notion of fullness:

Proposition 3.6. Let B ⊆ A be a unital inclusion of C∗-algebras. A positive element a ∈ A
is full relatively to B if and only if a is full (in the usual sense) in the C∗-algebra C∗(B, a)
generated by B and a.

Proof. If a is full relatively to B, then a is full in C∗(B, a) (eg., by Lemma 3.3).
Suppose conversely that a is full in C∗(B, a). Let W be the set of elements in C∗(B, a) of

the form w = b1ab2 · · · br−1abr, with r ≥ 1 and bj ∈ B. As we may take b1 and/or br to be
1B, we see that span(W) is dense in C∗(B, a).

By Lemma 3.5 there exist w1, . . . , wm ∈ W such that
∑m

j=1w
∗
jawj ≥ 1A. To complete

the proof we show that whenever w = b1ab2 · · · br−1abr ∈ W, with bj ∈ B, then there exists
x ∈ B such that x∗ax ≥ w∗aw. There is nothing to prove if r = 1. For r ≥ 2 we may write
w = vab, where v ∈ W and b ∈ B. Now,

w∗aw = b∗av∗avab = b∗a1/2
(
a1/2v∗ava1/2

)
a1/2b ≤ ‖a1/2v∗ava1/2‖ b∗ab = x∗ax,

when x = ‖a1/2v∗ava1/2‖1/2b ∈ B.

For the next result, that characterizes C∗-irreducible inclusions, recall that a C∗-algebra is
said to have property (SP) (for small projections) if each non-zero hereditary sub-C∗-algebra
contains a non-zero projection. Clearly all C∗-algebras of real rank zero (and hence all von
Neumann algebras) have property (SP).

When a is a positive element in a C∗-algebra A and ε > 0, let (a−ε)+ denote the positive
part of the self-adjoint element a− ε 1A.

Proposition 3.7. A unital inclusion B ⊆ A of C∗-algebras is C∗-irreducible if and only if
each non-zero positive element A is full relatively to B.

If A has property (SP), then it suffices to verify that each non-zero projection in A is full
relatively to B.

Proof. Take an intermediate C∗-algebra B ⊆ D ⊆ A. If each non-zero positive element A is
full relatively to B, then each non-zero positive element of D is full in D, whence D is simple.
Suppose, conversely, that B ⊆ A is a C∗-irreducible inclusion. Let a ∈ A be a non-zero
positive element. Then a is full in the (necessarily simple) intermediate C∗-algebra C∗(B, a),
so a is full relatively to B by Proposition 3.6.

Suppose finally that A has property (SP). Let a be a non-zero positive element in A and
choose 0 < ε < ‖a‖. Then (a− ε)+ is non-zero and positive, so the hereditary sub-C∗-algebra
(a− ε)+A(a− ε)+ contains a non-zero projection p, which by assumption is full relatively to
B. As a ≥ εp, it follows that a is full relatively to B.

Remark 3.8. If B ⊆ A is a C∗-irreducible inclusion of C∗-algebras, then B′ ∩ A = C, i.e.,
the inclusion is irreducible. Indeed, if B′ ∩ A 6= C and if a is a positive non-zero and non-
invertible element in B′∩A, then a is not full in C∗(B, a), cf. Proposition 3.6 and Lemma 3.5,
and C∗(B, a) is therefore is a non-simple intermediate C∗-algebra. (More generally, C∗(B, a)
is non-simple whenever a ∈ B′ ∩ A is non-zero and non-invertible.)

In particular, if E and B are unital simple C∗-algebras with B 6= C, then E ⊗ C ⊆ E ⊗ B
is not irreducible and hence not C∗-irreducible. Also, there are no non-trivial C∗-irrecucible
inclusions of finite dimensional C∗-algebras.

6



The converse does not hold, even under the additional (necessary) assumption that A and
B are simple, see Example 5.14. For another example, any irreducible inclusion N ⊆ M of
II1 factors with infinite Jones index fails to be C∗-irreducible, cf. Theorem 4.4 below.

Remark 3.9. Neither irreducibility nor C∗-irreducibility are “transitive” in the sense that if
C ⊆ B ⊆ A are unital inclusions of C∗-algebras such that C ⊆ B and B ⊆ A are irreducible,
respectively, C∗-irreducible, then one cannot conclude that C ⊆ A has the same property.

Consider, for an example, an irreducible inclusion N ⊆M of II1 factors with finite Jones
index, and let M1 = (M∪ {eN})′′ be the standard construction of Jones. Then M ⊆ M1

is irreducible and [M1 : M] = [M : N ] < ∞. Hence N ⊆ M and M ⊆ M1 are both
C∗-irreducible by Theorem 4.4, but N ′ ∩M1 6= C1 (since eN ∈ N ′ ∩M1), so N ⊆M1 is not
irreducible, and hence not C∗-irreducible.

Here is another example: Take a unital simple C∗-algebra B and an outer action α of a

cyclic group Zd on B. Let α̂ be the dual action of Ẑ/d on B oα Zd. Then B ⊆ B oα Zd and

B oα Zd ⊆ (B oα Zd) oα̂ Ẑd are C∗-irreducible by Theorem 5.8. However, by Takai duality

the inclusion B ⊆ (B oα Zd) oα̂ Ẑd is conjugate to the inclusion B ⊗ 1d ⊆ B ⊗Md, which is
not C∗-irreducible, cf. Remark 3.8 above.

The proof of the second part of the lemma below is essentially identical with the proof of [29,
Proposition 2.2].

Lemma 3.10. Let B ⊆ A an inclusion of unital C∗-algebras. Suppose that B is simple, and
let a ∈ A be positive. Then a is full in B if there exist x ∈ B and a positive non-zero element
b ∈ B such that either b ≤ x∗ax or ‖b− x∗ax‖ < ‖b‖.

Proof. Note first that b is full in B by simplicity of B, so if b ≤ x∗ax, then x∗ax, and hence
a, are full relatively to B.

Suppose that ‖b − x∗ax‖ < ‖b‖. Set δ = ‖b − x∗ax‖, and choose δ < ε < ‖b‖. Choose a
continuous function ϕ : R+ → R+ which is zero on [0, δ] and 1 on [ε,∞). Then

(b− ε)+ = ϕ(b)(b− ε)+ϕ(b) ≤ ϕ(b)(b− δ · 1A)ϕ(b) ≤ ϕ(b)x∗axϕ(b).

The latter claim now follows from the former.

We conclude this section by reviewing some related properties of unital inclusions of C∗-al-
gebras:

Definition 3.11. A unital inclusion B ⊆ A of C∗-algebras is said to have the relative Dixmier
property if CB(a) ∩ C·1B 6= ∅, for all a ∈ A, where CB(a) denotes the closure of the convex
hull of {u∗au : u ∈ U(B)}.

It was shown in [14] that a unital simple C∗-algebra A has the Dixmier property (i.e., CA(a)∩
C·1A 6= ∅, for all a ∈ A), if and only if A has at most one tracial state.

Clearly, if B ⊆ A has the relative Dixmier property, then both A and B have the Dixmier
property. Moreover, if A has a tracial state τ , then this trace must be unique, its restriction
to B is a unique trace on B, and CB(a) ∩ C·1B = {τ(a)·1B}, for all a ∈ A.

Popa proved in [27, Theorem 2.1] that B ⊆ A has the relative Dixmier property if (i) B
has the Diximier property, (ii) the inclusion has finite index with respect to some conditional
expectation E : A → B (i.e., there exists λ > 0 such that E(a) ≥ λa, for all a ∈ A+), and
(iii) πϕ(B)′ ∩ πϕ(A)′′ = C, for some state ϕ on A (and where πϕ is the associated GNS
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representation). Condition (i) is also necessary, but condition (ii) is not (see [27, Corollary
4.1] and also Theorem 5.8). If B ⊆ A has the relative Dixmier property, then B′ ∩ A = C,
which is weaker than condition (iii).

Observe that B ⊆ A has the relative Dixmier property if and only if CB(a) ∩ B 6= ∅, for
all a ∈ A, and B has the Dixmier property. Neither of these two properties hold in general
for C∗-irreducible inclusions B ⊆ A. Indeed, one can construct C∗-irreducible inclusions
B ⊆ A where B has unique trace and A has more than one trace (use, e.g., Theorem 5.12
or Theorem 5.8), and for such inclusions we must have CB(a) ∩ B 6= ∅, for some a ∈ A; and
one can use Theorem 5.8 to construct the inclusion such that B has more than one trace,
in which case B does not have the Dixmier property. It follows easily from Lemma 3.5 and
Proposition 3.7 that B ⊆ A is C∗-irreducible if and only if CB(a) contains an invertible
element (in A) for each non-zero positive element a ∈ A. This proves the following:

Proposition 3.12. A unital inclusion B ⊆ A of C∗-algebras is C∗-irreducible if it has the
relative Dixmier property and A has a faithful tracial state.

Definition 3.13. A unital inclusion B ⊆ A of C∗-algebras with a conditional expectation
E : A → B is said to have the pinching property if for each non-zero positive element a ∈ A
and each ε > 0 there exists a contraction h ∈ B such that ‖h∗ah − h∗E(a)h‖ ≤ ε and
‖h∗E(a)h‖ ≥ ‖E(a)‖ − ε.

Definition 3.14. A unital inclusion B ⊆ A of C∗-algebras is said to have the relative excision
property with respect to a state ψ onA if there is a net {hα} of positive elements in B satisfying

‖hα‖ = 1 and limα ‖h1/2
α ah

1/2
α − ψ(a)hα‖ = 0, for all a ∈ A.

Kwasniewski and Meyer consider in [20] a related version of the pinching property leading
to their notion of aperiodic inclusions, meaning an inclusion B ⊆ A of C∗-algebras for which
for each a ∈ A, each non-zero hereditary sub-C∗-algebra H of A, and each ε > 0 there exists
x ∈ H+ with ‖x‖ = 1 and b ∈ B such that ‖xax− b‖ < ε. They show, under some additional
assumption on the inclusion, that aperiodicity of B ⊆ A implies that B “detects ideals” of all
intermediate C∗-algebras of the inclusions, which in particular implies C∗-irreducibility when
B is simple, see [20, Theorems 7.2 and 7.3].

Definition 3.14 is a relative version of the usual excision property for a state ψ on a C∗-
algebra A, in which the net {hα} resides in A. The excision property is known to hold for
all pure states, and more generally for all states in the weak∗ closure of the pure states, and
hence for all states if the C∗-algebra is antiliminal, see [1].

The relative excision property behaves well with respect to tensor products, see Propo-
sition 7.2, and holds in some naturally occuring cases, see, e.g., Lemma 5.7. It would be
interesting to understand which states satisfy the relative excision property with respect to a
given inclusion B ⊆ A.

Proposition 3.15. Let B ⊆ A be a unital inclusion of C∗-algebras which either has the
pinching property with respect to some faithful conditional expectation E : A → B, or has the
relative excision property with respect to a faithful state ψ on A. If, in addition, B is simple,
then B ⊆ A is C∗-irreducible.

Proof. Assume first B ⊆ A has the pinching property with respect to a faithful conditional
expectation E : A → B. Let a ∈ A be non-zero and positive. Then we can find a contraction
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h ∈ B such that ‖h∗ah− h∗E(a)h‖ < 1
2‖E(a)‖ ≤ ‖h∗E(a)h‖. Hence a is full relatively to B,

by Lemma 3.10.
Assuming instead that B ⊆ A has the relative excision property, for a ∈ A non-zero and

positive, take h ∈ B+ with ‖h‖ = 1 such that ‖h1/2ah1/2 − ψ(a)h‖ < ‖ψ(a)h‖. Then, again
by Lemma 3.10, we conclude that a is full relatively to B.

Izumi proved in [15, Theorem 3.3] that if B ⊆ A is a unital inclusion of C∗-algebras with a
conditional expectation E : A → B of finite index, and if A, respectively, B is simple, then
B, respectively, A, is a finite direct sum of simple C∗-algebras. In particular, if the inclusion
B ⊆ A is irreducible, then A is simple if and only if B is simple. This proves the following:

Corollary 3.16 (Izumi). A unital inclusion B ⊆ A of C∗-algebras of finite index with respect
to some conditional expectation E : A → B is C∗-irreducible if and only if it is irreducible.

4 Irreducible inclusions of von Neumann algebras

An inclusion N ⊆M of von Neumann factors is irreducible if N ′ ∩M = C. Since P ′ ∩ P ⊆
N ′ ∩ M = C for each intermediate von Neumann algebra N ⊆ P ⊆ M, each such von
Neumann algebra P is a factor. This analogy with C∗-irreducible inclusions goes further as
shown in the remark below and in Theorem 4.4.

Remark 4.1. An inclusion N ⊆ M of von Neumann factors is irreducible if and only if∨
u∈U(N ) u

∗pu = 1 for each non-zero projection p ∈ M. Indeed,
∨
u∈U(N ) u

∗pu is easily seen

to belong to N ′ ∩M; and if p ∈ N ′ ∩M, then
∨
u∈U(N ) u

∗pu = p.
By Proposition 3.7 and Lemma 3.5, N ⊆ M is C∗-irreducible if and only if for each

non-zero projection p ∈ M there exist finitely many unitaries u1, . . . , un ∈ N such that∑n
j=1 u

∗
jpuj ≥ 1. Now,

∑n
j=1 u

∗
jpuj ≥ 1 implies

∨n
j=1 u

∗
jpuj = 1, while

∨n
j=1 u

∗
jpuj = 1 does

not even imply that
∑n

j=1 u
∗
jpuj is invertible. Nonetheless, the following question may still

have a positive answer.

Question 4.2. Is an inclusion N ⊆M of von Neumann factors C∗-irreducible if and only if
for each non-zero projection p ∈ M there exist finitely many unitaries u1, . . . , un ∈ N such
that

∨n
j=1 u

∗
jpuj = 1?

Definition 4.3. A state φ on a von Neumann algebra M is singular if for each non-zero
projection p ∈M there exists a non-zero projection q ≤ p in M such that φ(q) = 0.

A maximality argument shows that if φ is a singular state on M, then, for each projection
p ∈ M, there is a family (pi)i∈I of pairwise orthogonal non-zero projections in M satisfying
p =

∑
i∈I pi and φ(pi) = 0, for all i ∈ I. Hence the restriction of φ to each corner pMp is

non-normal.
The theorem below is essentially a restatement of the main result from Popa’s paper [26].

I thank Adrian Ioana for pointing this out to me and also for explaining how to obtain (i) ⇒
(iii) via results of Pop, [25], and Popa, [26].

Theorem 4.4 (Popa). The following conditions are equivalent for any inclusion N ⊆M of
II1-factors with separable predual.

(i) N ⊆M is C∗-irreducible,
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(ii) N ⊆M has the relative Dixmier property,

(iii) N ⊆M is irreducible with finite Jones index.

Proof. The equivalence of (ii) and (iii) is [26, Theorem 2.1] by Popa.
(i) ⇒ (iii). Suppose that N ⊆ M is C∗-irreducible. Then N ′ ∩M = C, as observed in

Remark 3.8. We must show that [M : N ] <∞.
Let τ denote the tracial state onM and onN . Following the proof of Pop, [25, Proposition

3.3], we first show that there is no singular state φ on M which extends the trace on N .
Indeed, as shown in [25, Proposition 3.3], if such a state φ exists, then there is a singular
positive N -bimodular map E : M → L2(N , τ) extending the identity map on N . Being
singular implies that there exists a non-zero projection e ∈M with E(e) = 0. Since N ⊆M
is C∗-irreducible we can find unitaries u1, . . . , un in N such that

∑n
j=1 u

∗
jeuj ≥ 1M. This

leads to the contradiction:

1M = E(1M) ≤ E(
n∑
j=1

u∗jeuj) =
n∑
j=1

u∗jE(e)uj = 0.

On the other hand, Popa shows in [26] (p. 763) that if [M : N ] = ∞, then there exist a
singular state φ on M that extends the trace on N , so we conclude that [M : N ] <∞.

We include for completeness a brief sketch of Popa’s argument from [26]. It was shown in
[24] that

[M : N ]−1 = sup{λ ≥ 0 : EN (x) ≥ λx, ∀x ∈M+},
where EN is the canonical trace preserving conditional expectation onto N . Assuming, to
reach a contradiction, that [M : N ] =∞, Popa constructs, for each n ≥ 1, a positive element
an ∈ M such that EN (an) = 1N and τ(s(an)) ≤ 2−n, where s(an) denotes the support
projection of an. Define, for each n ≥ 1, a (normal) state ψn on M by ψn(x) = τ(xan),
x ∈M. Then ψn(y) = τ(yan) = τ(yEN (an)) = τ(y), for all y ∈ N .

Let ψ be a weak∗ accumulation point of the sequence {ψn}. Then ψ(y) = τ(y), for all
y ∈ N . Set pm =

∨∞
n=m s(an). Then {pm} is a decreasing sequence of projections in M with

limit
∧∞
n=1 pn = 0, because

τ
( ∞∧
n=1

pn
)

= inf
n
τ(pn) ≤ inf

n

∞∑
j=n

τ(s(aj)) ≤ inf
n

2−n+1 = 0.

On the other hand, ψn(s(an)) = τ(s(an)an) = τ(an) = 1, for all n ≥ 1, so ψn(pm) = 1, for all
n ≥ m, which implies that ψ(pm) = 1, for all m ≥ 1. Thus 1− pn → 1M while ψ(1− pn) = 0,
which shows that ψ is singular.

(ii) ⇒ (i) holds by Proposition 3.12.

The condition of finite index appearing in Theorem 4.4 above does not carry over to gen-
eral unital inclusions of simple C∗-algebras B ⊆ A as noted in [26, Corollary 4.5], see also
Example 5.4, Theorem 5.8 and Proposition 7.2.

Remark 4.5. It follows from Popa’s theorem (the equivalence of (ii) and (iii) in the theorem
above) that if Ni ⊆ Mi, i = 1, 2, are inclusions of II1-factors with the relative Dixmier
property, then N1⊗N2 ⊆ M1⊗M2 also has the relative Dixmier property; and further that
this fails for infinite tensor products.

Question 4.6. Is each irreducible inclusion N ⊆M of type III factors C∗-irreducible?
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5 Inclusions arising from groups and dynamical systems

Inclusions of both von Neumann algebras and C∗-algebras arise from groups and dynamical
systems in several interesting ways. In Section 2 we already mentioned results of Amrutam–
Kalantar and Amrutam–Ursu stating when inclusions of the form C∗λ(Γ) ⊆ A ored Γ and
C(Y ) ored Γ ⊆ C(X) ored Γ are C∗-irreducible. We shall here add further related examples
to the list. At the end of the section we revisit the Amrutam–Kalantar theorem.

Inclusions arising from subgroups

We consider in this subsection the case of an inclusion Λ ⊆ Γ of discrete groups, which gives
rise to inclusions L(Λ) ⊆ L(Γ) and C∗λ(Λ) ⊆ C∗λ(Γ) of the associated finite von Neumann
algebras, respectively, their reduced group C∗-algebras.

We say that Γ is an icc group relatively to Λ if {tst−1 : t ∈ Λ} is infinite for all s ∈ Γ\{e}.
This condition implies that both Λ and Γ are icc, and hence that both L(Λ) and L(Γ) are
II1-factors. We first note the following straightforward result:

Proposition 5.1. The following conditions are equivalent for any inclusion Λ ⊆ Γ of discrete
groups:

(i) Γ is an icc group relatively to Λ,

(ii) L(Λ)′ ∩ L(Γ) = C,

(iii) C∗λ(Λ)′ ∩ C∗λ(Γ) = C.

Moreover, L(Λ) ⊆ L(Γ) is C∗-irreducible if and only if Γ is an icc group relatively to Λ and
[Γ : Λ] <∞.

Proof. (i) ⇒ (ii). If T ∈ L(Λ)′ ∩ L(Γ), then the function s 7→ (Tδe)(s), s ∈ Γ, is constant on
each Λ-conjugacy class (where {δt}t∈Γ is the standard orthonormal basis for `2(Γ)). Hence
(Tδe)(s) = 0, for s 6= e. This implies that T = cI, where c = (Tδe)(e).

(ii) ⇒ (iii) follows from the fact that L(Λ)′ = C∗λ(Λ)′ and C∗λ(Γ) ⊆ L(Γ). (iii) ⇒ (i). If
S := {t−1st : t ∈ Λ} is finite, for some s 6= e, then a =

∑
t∈S ut belongs to C∗λ(Λ)′ ∩ C∗λ(Γ)

and a /∈ C, where λ : t 7→ ut is the left-regular unitary representation of Γ on `2(Γ).
The last claim follows from Theorem 4.4 combined with the equivalence of (i) and (ii) and

the fact that [L(Γ) : L(Λ)] = [Γ : Λ].

We proceed to consider when an inclusion of discrete groups gives rise to a C∗-irreducible
inclusion of their reduced group C∗-algebras. This is much more subtle than the corresponding
question for von Neumann algebras covered in the proposition above. First, the reduced group
C∗-algebra of an icc group need not be simple, and second, even when Λ and Γ both are C∗-
simple and Γ is icc relatively to Λ, it is still not the case that C∗λ(Λ) ⊆ C∗λ(Γ) is C∗-irreducible,
although this is true when Λ is normal in Γ.

We remind the reader of the recently developed deep characterization of C∗-simple groups.
The breakthrough came with the paper by Breuillard–Kalantar–Kennedy–Ozawa, [6], where
the equivalence of (i) and (ii) below was established (among many other results). It was
followed up by Haagerup, [13], who proved the equivalence of (ii), (iii) and (iv), which was
independently discovered by Kennedy, [18], who moreover added conditions (v) and (vi) to
the list.
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Theorem 5.2 (Breuillard–Kalantar–Kennedy–Ozawa, Haagerup, Kennedy). The following
conditions are equivalent for a discrete group Γ:

(i) Γ is C∗-simple,

(ii) Γ acts freely on its Furstenberg boundary ∂FΓ,

(iii) τ0 belongs to the weak∗ closure of {s.ϕ : s ∈ Γ}, for each state ϕ on C∗λ(Γ),

(iv) Γ satisfies the Powers’ averaging property: for all ε > 0 and for all s1, . . . , sn ∈ Γ \ {e}
there exist t1, . . . , tm ∈ Γ such that ‖ 1

m

∑m
k=1 ut−1

k sjtk
‖ < ε, for j = 1, . . . , n.

(v) Γ has no non-trivial amenable residually normal subgroups,

(vi) Γ has no non-trivial amenable uniformly recurrent subgroups.

Condition (iv) is equivalent to the following more standard formulation of the Powers’ av-
eraging property: for all ε > 0 and for all x ∈ C∗λ(Γ) there exist t1, . . . , tm ∈ Γ such that
‖ 1
m

∑m
k=1 u

∗
tk
xutk − τ0(x) · 1‖ < ε.

A few words about the terminology of the theorem. As before, τ0 denotes the canonical
trace on C∗λ(Γ). If ϕ is a state on C∗λ(Γ) and s ∈ Γ, then s.ϕ denotes the state (s.ϕ)(x) =
ϕ(u∗sxus), x ∈ C∗λ(Γ).

A subgroup Λ of a group Γ is residually normal1 if there is a finite subset F of Γ \ {e}
such that F ∩ t−1Λt 6= ∅, for all t ∈ Γ. Let Sub(Γ) denote the compact Hausdorff space of all
subgroups of Γ (viewed as a closed subset of the compact Cantor space P(Γ) = {0, 1}Γ of all
subsets of Γ). The group Γ acts on Sub(Γ) by conjugation. A uniformly recurrent subgroup
is a minimal closed Γ-invariant subspace X of Sub(Γ). It is amenable if all subgroups in X
are amenable, and it is trivial if X is the singleton consiting of the trivial group {e}.

Analogous to the situation in Proposition 5.1, natural relative versions of the conditions
in Theorem 5.2 suggest themselves as candidates for ensuring C∗-irreducibility of the reduced
C∗-algebras of the inclusion of groups. I thank Mehrdad Kalantar for suggesting the present
formulation of (ii), which is an adjustment of our first version of this condition.

Theorem 5.3. Consider the following conditions for an inclusion Λ ⊆ Γ of C∗-simple groups.

(i) The inclusion C∗λ(Λ) ⊆ C∗λ(Γ) is C∗-irreducible,

(ii) there is a topologically free boundary action Γ y X such that, for each probability
measure µ on X, the weak∗ closure of the orbit Λ.µ contains a point mass δx, for some
x ∈ X on which Γ acts freely,

(iii) τ0 belongs to the weak∗ closure of {s.ϕ : s ∈ Λ}, for each state ϕ on C∗λ(Γ),

(iv) τ0 belongs to the weak∗ closure of conv{s.ϕ : s ∈ Λ}, for each state ϕ on C∗λ(Γ),

(v) Γ has the Powers’ averaging property relatively to Λ: for all ε > 0 and for all s1, . . . , sn ∈
Γ \ {e} there exist t1, . . . , tm ∈ Λ such that ‖ 1

m

∑m
k=1 ut−1

k sjtk
‖ < ε, for j = 1, . . . , n,

(vi) the inclusion C∗λ(Λ) ⊆ C∗λ(Γ) has the relative Dixmier property.

Then (ii) ⇒ (iii) ⇒ (iv) ⇔ (v) ⇒ (vi) ⇒ (i), and (i) ⇒ (vi) if [Γ : Λ] <∞.

1Group theorists say that Λ is a confined subgroup in this case.
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Condition (v) is in the papers [2] and [33] referred to as Λ being a plump subgroup of Γ, and
it can equivalently be expressed as

τ0(x)·1 ∈ conv{u∗txut : t ∈ Λ},

for all x ∈ C∗λ(Γ).
In [33], Ursu proved a number of reformulations of (v) in the case where Λ is normal in

Γ, including that the action Γ y ∂FΛ is free2. This implies that (ii) holds, and hence entails
that conditions (ii)–(v) above all are equivalent when Λ is normal in Γ.

In the work, [22], still under preparation, Tron Omland further proved that, in fact, all
conditions (i)–(vi) above are equivalent when Λ is normal in Γ and, moreover, that (i) holds if
and only if Γ and Λ are C∗-simple and Γ is icc relatively to Λ, i.e., that C∗λ(Λ)′ ∩C∗λ(Γ) = C.
Moreover, if Λ is C∗-simple and Γ is icc relatively to Λ, then Γ is automatically C∗-simple.
We thus have a complete understanding of when normal inclusions of C∗-simple groups give
rise to C∗-irreducible inclusions of their reduced C∗-algebras.

Omland proved in the same paper that one can find a (necessarily non-normal and infi-
nite index) inclusion Λ ⊆ Γ of C∗-simple groups such that the inclusion C∗λ(Λ) ⊆ C∗λ(Γ) is
irreducible not C∗-irreducible.

Proof. (ii) ⇒ (iii). The proof is almost identical to the proof of “(i) ⇒ (ii)” of [13, Theorem
4.5]. Take a state ϕ on C∗λ(Γ), extend it to a state ψ on C(X) ored Γ, and let ρ be the
restriction of ψ to C(X). By assumption there is a net {si} in Λ such that si.ρ converges in
the weak∗ topology to a point-evaluation δx, for some x ∈ X on which Γ acts freely. Upon
passing to a subnet we may assume that {si.ψ} converges to some state ψ′ on C(X) ored Γ.
Let ϕ′ be the restriction of ψ′ to C∗λ(Γ). Since Γ acts freely on x it follows from [13, Lemma
3.1] that ϕ′ = τ0. Hence (iii) holds.

(iii) ⇒ (iv) is trivial. (iv) ⇒ (v) is a standard Hahn-Banach argument, cf. the proof of
(iii) ⇒ (iv) ⇒ (v) of [13, Theorem 4.5].

(v)⇒ (iv). Let x1, . . . , xn ∈ C∗λ(Γ) and ε > 0 be given. Repeated application of (v) shows
that there exist m ≥ 1 and t1, . . . , tm ∈ Λ such that

∣∣τ0(xj) · 1−m−1
m∑
k=1

u∗tkxjutk
∣∣ < ε,

for j = 1, . . . , n. It follows that |τ0(xj)−m−1
∑m

k=1(tk.ϕ)(xj)| < ε, for all states ϕ on C∗λ(Γ).
This proves that (iv) holds.

(v) ⇒ (vi) is trivial, and (vi) ⇒ (i) follows from Proposition 3.15, since C∗λ(Γ) has a
faithful trace.

For the last claim, suppose that (i) holds and that [Γ : Λ] < ∞. Then the canonical
conditional expectation E : C∗λ(Γ) → C∗λ(Λ) has finite index. Moreover, (i) implies that
L(Λ)′ ∩ L(Γ) = C, cf. Proposition 5.1 and Remark 3.8. Lastly, C∗λ(Λ) has the Dixmier
property (being simple with a unique tracial state), so it follows from [27, Theorem 2.1] (cf.
the comments below Definition 3.11) that (vi) holds.

Example 5.4. For each (non-empty) index set I, let FI denote the free group with generating
set I. If I ⊂ J and |I| ≥ 2, then the inclusion C∗λ(FI) ⊆ C∗λ(FJ) is C∗-irreducible. Indeed,
Powers proved in his influential paper [28] that C∗λ(FI) is simple whenever |I| ≥ 2 (he actually

2The action Λ y ∂F Λ extends uniquely to an action Γ y ∂F Λ, when Λ is normal in Γ, cf. [23, Lemma 21].
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only considered the case |I| = 2, but the general result clearly follows from his proof).
Theorem 1 of [28] precisely states that (iv) of Theorem 5.2 holds for Γ = F2. Inspection of
his proof of this theorem (via Lemmas 3–6) shows that condition (v) of Theorem 5.3 holds
with Γ = FJ and Λ = FI , as long as |I| ≥ 2.

Further examples of inclusions of C∗-simple groups Λ ⊆ Γ for which Λ is a plump subgroup
of Γ, and hence C∗λ(Λ) ⊆ C∗λ(Γ) is C∗-irreducible, can be found in [33, Section 5]. It would
be interesting to expand the dictionary of such inclusions of groups even further.

Question 5.5. Which of the “missing” implications in Theorem 5.3 hold?

Condition (i) of Theorem 5.3 does not imply that [Γ : Λ] < ∞, and we do not know if the
implication (i) ⇒ (iv) holds in general without assuming finite index.

Question 5.6. For which (C∗-irreducible) inclusions C∗λ(Λ) ⊆ C∗λ(Γ) is it the case that all
intermediate C∗-algebras are of the form C∗λ(Π) for some intermediate group Λ ⊆ Π ⊆ Γ?

Inclusions arising from crossed products

An action Γ y B of a group Γ on a simple C∗-algebra B gives in a canonical way rise to
two inclusions of C∗-algebras, namely B ⊆ B ored Γ and C∗λ(Γ) ⊆ B ored Γ. The first class
of inclusions is very well understood, but for completeness of the exposition we review when
such inclusions are C∗-irreducible and what we know about their intermediate C∗-algebras.
Part (i) of the following lemma is contained in [21, Lemma 7.1], see also [19]. Recall that an
automorphism on a unital simple C∗-algebra is properly outer if it is not inner.

Lemma 5.7. Let B be a unital simple infinite dimensional C∗-algebra, and let Γ be a discrete
group with an outer action on B. Let E : BoredΓ→ B be the canonical conditional expectation.

(i) For each non-zero positive element a ∈ B ored Γ and each ε > 0 there exists a positive
contraction h ∈ B such that ‖hah − hE(a)h‖ ≤ ε and ‖hE(a)h‖ ≥ ‖E(a)‖ − ε. In
particular, B ⊆ B ored Γ has the pinching property (Definition 3.13) with respect to E.

(ii) For each non-zero hereditary sub-C∗-algebra B0 ⊆ B, for each finite subset F ⊆ B, and
for each ε > 0 there exists a positive element h ∈ B0 with ‖h‖ = 1 and ‖h(a−E(a))h‖ ≤
ε, for all a ∈ F .

(iii) The inclusion B ⊆ B ored Γ has the relative excision property (cf. Definition 3.14) with
respect to each state ψ on B ored Γ that factors through E.

Proof. Let t 7→ ut, t ∈ Γ, denote the unitary representation of Γ in the crossed product
Bored Γ. Then A0 := span{But : t ∈ Γ} is dense in Bored Γ. To see that (i) follows from [21,
Lemma 7.1], note that we may assume that a ∈ A0.

(ii). We may assume that F ⊆ A0. Moreover, by replacing each a ∈ F with a − E(a),
we may further assume that E(a) = 0. In the case where F = {a1} is a singleton, we can
use [21, Lemma 7.1] (with a0 any non-zero positive element in B0) to find positive elements
h1, h

′
1 ∈ B0 with ‖h1‖ = ‖h′1‖ = 1 such that h1h

′
1 = h′1 and ‖h1a1h1‖ ≤ ε. If F = {a1, a2},

then take a positive elements h2, h
′
2 in h′1Bh′1 with ‖h2‖ = ‖h′2‖ = 1 such that h2h

′
2 = h′2 and

‖h2a2h2‖ ≤ ε, and note that we still have ‖h2a1h2‖ ≤ ε. Continue like this until all elements
in F have been exhausted.
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(iii). Let ε > 0 and a finite subset F of A be given. Write ψ = ρ ◦ E for some state ρ
on B. Since B is simple and infinite dimensional, ρ can be excised. It follows that there is a
non-zero hereditary sub-C∗-algebra B0 ⊆ B such that ‖h1/2E(a)h1/2 − ρ(E(a))h‖ ≤ ε/2 for
all positive h in B0 with ‖h‖ = 1, and for all a ∈ F .

By (ii) we can find a positive element h ∈ B0 such that ‖h1/2(a − E(a))h1/2‖ ≤ ε/2, for
all a ∈ F , and ‖h‖ = 1. It follows that ‖h1/2ah1/2 − ψ(a)h‖ ≤ ε, for all a ∈ F . This proves
that ψ has the relative excision property as desired.

The theorem below is essentially a corollary to [21, Lemma 7.1] (= Lemma 5.7 (i) above). The
implication (ii) ⇒ (i) also follows from Theorem 5.9 below. It is curious that (i) and (iii) are
equivalent, while this is not the case in the situation of Theorem 5.12 below, cf. Example 5.14.

Theorem 5.8. Let B be a unital simple C∗-algebra, and let Γ be a discrete group acting on
B. Then the following conditions are equivalent:

(i) B ⊆ B ored Γ is C∗-irreducible,

(ii) the action Γ y B is outer,

(iii) B′ ∩ (B ored Γ) = C.

Moreover, if B has the Dixmier property (i.e., has at most one tracial state), then each of the
equivalent conditions above implies that B ⊆ B ored Γ has the relative Dixmier property.

Proof. (ii) ⇒ (i) follows from Lemma 5.7 and Lemma 3.10, and (i) ⇒ (iii) holds for all
inclusions, cf. Remark 3.8. (iii) ⇒ (ii). Denote the action Γ y B by α, and suppose that αt
is inner, for some t 6= e. Then there is a unitary u ∈ B such that uxu∗ = αt(x) = utxu

∗
t , for

x ∈ B. It follows that u∗ut ∈ (B ored Γ) ∩ B′, and u∗ut /∈ C by construction of the crossed
product C∗-algebra.

The last part of the theorem follows from [27, Corollary 4.1].

As mentioned in the introduction, there is a Galois correspondence between intermediate C∗-
algebras of the inclusions considered in Theorem 5.8 above and subgroups of Γ, cf. the theorem
below, which is due to Izumi, [15] in the case where Γ is finite, and to Cameron-Smith, [8],
in the general case.

Theorem 5.9 (Izumi–Cameron-Smith). Let B be a unital simple C∗-algebra, and let Γ be
a discrete group acting outerly on B. Then each intermediate C∗-algebra D of the inclusion
B ⊆ B ored Γ is of the form D = B ored Λ, for some subgroup Λ of Γ.

With his permission we give a simple proof, due to Sorin Popa, of this theorem in the case
where B has the Dixmier property (i.e., has at most one tracial state). The proof uses the
following lemma, of independent interest, that is embedded in the proof of [27, Corollary 4.1]:

Lemma 5.10 (Popa). Let B be a unital simple C∗-algebra with the Dixmier property, let
α1, . . . , αn be outer automorphisms on B, let b1, . . . , bn ∈ B, and let ε > 0. Then there exist
m ≥ 1 and unitaries v1, . . . , vm ∈ B such that∥∥∥ 1

m

m∑
j=1

vjbiαi(vj)
∗
∥∥∥ < ε, i = 1, 2, . . . , n.
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It seems likely that this lemma holds more generally for all unital simple C∗-algebras (without
the assumption of the Dixmier property), in which case the proof below would hold in this
general case as well.

Proof of Theorem 5.9 (in the case where B has the Dixmier property). Denote the action of
Γ on B by α, and let t 7→ ut, t ∈ Γ, be the unitary representation of Γ in the crossed product.

For each x ∈ B ored Γ, written formally as x =
∑

t∈Γ atut, with at ∈ B, let supp(x) be
the set of those t ∈ Γ for which at 6= 0. It suffices to show that us ∈ C∗(B, x) whenever
x ∈ B ored Γ and s ∈ supp(x). Indeed, if D is an intermediate C∗-algebra, then let Λ be the
subgroup of Γ spanned by

⋃
x∈D supp(x). It then easily follows from the claim above that

D = B ored Λ.
Take x ∈ B ored Γ, s ∈ supp(x), and ε > 0. As above, write x =

∑
t∈Γ atut with

as 6= 0. By simplicity of B, which implies that B is algebraically simple, there are n ≥ 1 and
elements c1, . . . , cn, d1, . . . , dn ∈ B such that 1 =

∑n
i=1 ciasdi. Set y =

∑n
i=1 cixα

−1
s (di). Then

y ∈ C∗(B, x), and y =
∑

t∈Γ btut, with bt ∈ B and bs = 1.
Choose y0 ∈ B ored Γ such that ‖y − y0‖ ≤ ε/3 and such that F := supp(y0) is finite.

Write y0 =
∑

t∈F b
′
tut, for some b′t ∈ B, and note that ‖1−b′s‖ ≤ ε/3. Use Lemma 5.10 to find

unitaries v1, . . . , vm in B such that ‖m−1
∑m

j=1 vjb
′
tαts−1(vj)

∗‖ ≤ ε(3|F |)−1, for all t ∈ F \{s}.
It then follows that ∥∥ 1

m

m∑
j=1

vj(y0 − b′sus)αs−1(vj)
∗∥∥ ≤ ε/3,

and hence that

∥∥ 1

m

m∑
j=1

vjyαs−1(vj)
∗ − us

∥∥ =
∥∥ 1

m

m∑
j=1

vj(y − us)αs−1(vj)
∗∥∥ ≤ ε.

Since
∑m

j=1 vjyαs−1(vj)
∗ belongs to C∗(B, x), we conclude that us ∈ C∗(B, x). �

Example 5.11. For 2 ≤ n < ∞ consider the Cuntz algebra On and its sub-C∗-algebra Bn
isomorphic to the UHF-algebra of type n∞, which arises as the fixed point algebra under
the canonical circle action of On. Let E : On → Bn be the canonical conditional expectation
(obtained by integrating with respect to the circle action). Then E is faithful and has the
pinching property, cf. [10] (use the projection Q constructed in the proof of Proposition 1.7).
Hence Bn ⊆ On is C∗-irreducible.

It is well-known that On = C∗(Bn, s1), and that the isometry s1 induces a (non-unital)
endomorphism ρ on Bn by ρ(b) = s1bs

∗
1. It this sense we can write On as a crossed product

Bn oρ N over the semigroup N. Similar to the situation of Theorem 5.9, each proper inter-
mediate C∗-algebra of the inclusion Bn ⊆ On is equal to Bn oρ dN, for some d ≥ 2. This
claim can be proved using the same methods as in the proof of Theorem 5.9 presented above
(details can be found on the website of the author). The crossed product Bnoρ dN is equal to

C∗(Bn, sd1) and also to the fixed-point algebra OZ/d
n with respect to the order d automorphism

on On given by sj 7→ ωsj , where ω is a primitive dth root of the unit.

We end this section by considering inclusions of the form C∗λ(Γ) ⊆ B ored Γ, and we offer in
the theorem below a sharpening of [3, Theorem 1.1].
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Theorem 5.12. Let Γ be a discrete countable C∗-simple group acting on a unital C∗-algebra
B. Then the following conditions are equivalent:

(i) C∗λ(Γ) ⊆ B ored Γ is C∗-irreducible,

(ii) for each non-zero positive a ∈ B there exist t1, . . . , tn ∈ Γ such that
∑n

j=1 u
∗
tjautj ≥ 1B,

(iii) each state φ on B is Γ-faithful, i.e., if φ(u∗taut) = 0, for some positive a ∈ B and for all
t ∈ Γ, then a = 0,

(iv) there exists µ ∈ Prob(Γ) such that each µ-stationary state φ on B is faithful.

A state φ on B is µ-stationary if µ ∗ φ = φ, where µ ∗ φ =
∑

t∈Γ µ(t) t.φ is the convolution of
φ by µ, and where (t.φ)(a) = φ(u∗taut), for t ∈ Γ and a ∈ B.

It was shown in [3, Theorem 1.1] that (iv) ⇒ (i) holds with the extra assumption that
µ is C∗-simple (i.e., the canonical trace τ0 on C∗λ(Γ) is the only µ-invariant state on C∗λ(Γ)).
The condition in [3, Theorem 1.1] is hence formally stronger than the condition in (iv). As
shown in the proof of (iii) ⇒ (iv) below, one can in (iv) take any µ ∈ Prob(Γ) as long as the
support of µ generates Γ as a semi-group.

In the case of an abelian C∗-algebra B condition (ii) above is equivalent to the action being
minimal (cf. [3, Corollary 1.2]). In general, condition (ii) implies minimality of the action,
and it can be viewed as a strong “mixing property”. Recall that it was shown in [6, Theorem
1.8] that B ored Γ is simple whenever Γ is C∗-simple and the action Γ y B is minimal.

It was shown in [2] that each intermediate C∗-algebra of the inclusion C∗λ(Γ) ⊆ B ored Γ
is of the form B ored Γ for some Γ-invariant sub-C∗-algebra of B if Γ has the approximation
property (AP) of Haagerup and Kraus, and if the kernel of the action Γ y B is a plump
subgroup (i.e., that condition (v) of Theorem 5.3 holds). This provides yet another example
showing that C∗-irreducible inclusions are “rigid”.

The assumption of countability of Γ is only used to prove the implication (iv) ⇒ (iii).

Proof. (ii) ⇒ (i). Take a non-zero positive element b ∈ Bored Γ. We must prove that b is full
relatively to C∗λ(Γ). Note that E(b) ∈ B is positive and non-zero, where E : B ored Γ → B is
the canonical conditional expectation.

Consider the dense subset A0 = span{aut : a ∈ B, t ∈ Γ} of B ored Γ. Assuming that (ii)
holds, we can find s1, . . . , sm ∈ Γ such that

∑m
j=1 u

∗
sjE(b)usj ≥ 1B. Set b′ =

∑m
j=1 u

∗
sjbusj .

Then E(b′) =
∑m

j=1E(u∗sjbusj ) =
∑m

j=1 u
∗
sjE(b)usj ≥ 1B. Find b′′ ∈ A0 such that E(b′′) =

E(b′) ≥ 1B and ‖b′ − b′′‖ < 1/3.
It was shown in [3, Lemma 2.1] that

∥∥ 1

n

n∑
j=1

u∗tjaurutj
∥∥ ≤ ‖a‖∥∥ 1

n

n∑
j=1

ut−1
j rtj

∥∥,
for each a ∈ B and all r, t1, . . . , tn ∈ Γ. Combining this estimate with Theorem 5.2 shows
that one can find elements t1, . . . , tn ∈ Γ such that

∥∥ 1

n

n∑
j=1

u∗tj (b
′′ − E(b′′))utj

∥∥ < 1/3.

Hence 1
n

∑n
j=1 u

∗
tjb
′′utj ≥ 2

3 · 1B, so 1
n

∑n
j=1 u

∗
tjb
′utj ≥ 1

3 · 1B. This shows that b′, and hence b,
are full relatively to C∗λ(Γ), so (i) holds.
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(iii) ⇒ (ii). Suppose that (ii) fails and take a positive non-zero element a ∈ B witnessing
the failure of (ii). Then, for each finite subset F ⊆ Γ, the element

∑
t∈F u

∗
taut is non-

invertible, so the set T (F) of all states φ on B for which φ(u∗taut) = 0, for all t ∈ F , is
non-empty. Hence T =

⋂
F T (F) is also non-empty (the intersection is over all finite subsets

F of Γ) and any state φ in T will satisfy φ(utau
∗
t ) = 0, for all t ∈ Γ. This shows that (iii)

fails.
(iii) ⇒ (ii) is trivial, and (ii) ⇒ (i) follows from Lemma 3.5.
(iii) ⇒ (iv). Let a ∈ B be positive. For µ ∈ Prob(Γ) and for each state φ on B we have

(µ ∗ φ)(a) = 0 if and only if φ(u∗taut) = 0, for all t ∈ supp(µ). Note also that supp(µk) is the
set of all t ∈ Γ that can be written as a product of k elements from supp(µ). Hence, if φ is
µ-stationary, then φ(a) = 0 if and only if φ(u∗taut) = 0, for all t in the semi-group generated
by supp(µ).

Thus, if (iii) holds, and if we take µ ∈ Prob(Γ) such that supp(µ) = Γ (or such that the
semigroup generated by supp(µ) is Γ), then all µ-stationary states on B are faithful.

(iv) ⇒ (iii). Suppose that (iii) does not hold, and let µ ∈ Prob(Γ). Let a ∈ B be a
non-zero positive element for which there exists a state φ on B such that φ(u∗taut) = 0, for all
t ∈ Γ. Then (µk ∗ φ)(a) = 0, for all k ≥ 0. Set φn = n−1

∑n
k=1 µ

k ∗ φ, and let φ0 be a weak∗

accumulation point for the sequence {φn}∞n=1. Then φ0 is µ-stationary and non-faithful, since
φ0(a) = 0. Hence (iv) does not hold.

The example below shows that C∗-irreducibility and usual irreducibility (trivial relative com-
mutant) are not equivalent properties for the class of inclusions covered by Theorem 5.12.
We first need an elementary lemma, whose proof is left to the reader (the given estimate is
hardly best possible, but suffices for our purposes).

Lemma 5.13. Let A be a unital C∗-algebra, let x ∈ A, and let f1, f2, f3 ∈ A be pairwise
orthogonal projections. Then

‖x‖ ≤ 2

3∑
j=1

‖(1− fj)x(1− fj)‖.

Example 5.14. We show here that any C∗-simple group Γ admits an action on the Cuntz
algera O∞ such that the inclusion C∗λ(Γ) ⊆ O∞ ored Γ is irreducible, but not C∗-irreducible,
while both algebras of the inclusion are simple.

Choose an action of Γ on N such that for each finite subset F ⊆ N there exists t ∈ Γ such
that t.F ∩ F = ∅ (eg., take the action Γ y Γ given by left multiplication, and identify the
latter copy of Γ with N). Let α denote the action of Γ on O∞ given by αt(sk) = st.k, for k ∈ N
and t ∈ Γ, where {sk}∞k=1 are the canonical generators of O∞. Set ek = sks

∗
k. Then {ek}∞k=1

are pairwise orthogonal projections, and αt(ek) = et.k. We conclude that (ii) in Theorem 5.12
does not hold with a = e1, so C∗λ(Γ) ⊆ O∞ ored Γ is not C∗-irreducible.

Since Γ is icc, being C∗-simple, it follows that C∗λ(Γ)′∩ (O∞ored Γ) = OΓ
∞. We claim that

OΓ
∞ = C. Take x ∈ OΓ

∞. Let A0 be the dense ∗-algebra generated by the isometries {sk}∞k=1.
Let ε > 0, and choose y ∈ A0 with ‖x− y‖ ≤ ε. Then there is a finite set F of multi-indices
in
⋃
`≥0 N` such that

y = α0 · 1 + y0, y0 =
∑

(µ,ν)∈G

αµ,ν sµs
∗
ν , α0, αµ,ν ∈ C,
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where G = (F × F) \ {(∅, ∅)}. Let F ⊆ N be the union of the supports of the multi-indices
in F . Set e =

∑
k∈F ek. Then sµ = esµ and s∗ν = s∗νe, for all µ, ν ∈ F \ {∅}. It follows that

(1− e)(y − α0 · 1)(1− e) = (1− e)y0(1− e) = 0.
Choose t1, t2 ∈ Γ such that the sets F, t1.F, t2.F are pairwise disjoint. Set fj = αtj (e) =∑
k∈tj .F ek. Then

(1− fj)(y − α0 · 1)(1− fj) = αtj
(
(1− e)(α−1

tj
(y)− α0 · 1− y + α0 · 1)(1− e)

)
,

so ‖(1−fj)(y−α0 ·1)(1−fj)‖ ≤ ‖α−1
tj

(y)−y‖ ≤ 2ε, for j = 1, 2. By Lemma 5.13 we conclude
that ‖y − α0 · 1‖ ≤ 8ε. This shows that dist(x,C) ≤ 9ε, so x ∈ C.

6 Inductive limits

In this section we consider when a unital inclusion of C∗-algebra arising from inductive limits
is C∗-irreducible. The general set-up is as follows: Given a commutative diagram:

B1
µ1 //

ι1
��

B2
µ2 //

ι2
��

B3
µ3 //

ι3
��

· · · // B
ι
��

A1
λ1 // A2

λ2 // A3
λ3 // · · · // A

(6.1)

where B and A are the inductive limit C∗-algebras of the sequence of C∗-algebras in the first,
respectively, the second row. We will assume that all maps in the diagram are injective. Let
µm,n : Bn → Bm and µ∞,n : Bn → B denote the (composed) connecting maps, and likewise for
λm,n : An → Am and λ∞,n : An → A.

We say that the diagram is regular if ιn(Bn) = An ∩ λ−1
∞,n(ι(B)), for all n ≥ 1. If all maps

in the diagram above are the inclusion mappings, then this condition reads: Bn = An ∩ B.
Using this notation we always have Bn ⊆ An ∩ B, and we can make any diagram as above
regular by replacing Bn with An ∩B. If one just assumes that An ∩Bn+1 = Bn, for all n ≥ 1,

then it follows that An ∩
(⋃∞

k=1 Bk
)

= Bn, for all n ≥ 1.

For an example of a non-regular diagram take any inductive limit representing A with non-
surjective connecting mappings λn, and set B1 = C, Bn = An−1, ιn = λn−1, and µn = λn−1,
for n ≥ 2. Then ι is surjective (so the resulting inclusion is trivial), but the inclusions
ιn : Bn → An are non-trivial.

Suppose that we are given A as the inductive limit as in (6.1) and a unital inclusion
ι : B → A. Then B arises as in (6.1) if and only if ι(B) =

⋃∞
n=1 ι(B) ∩ λ∞,n(An), in which

case one can take Bn = λ−1
∞,n(ι(B)) ⊆ An, for n ≥ 1, which, in addition, will make the diagram

(6.1) regular.

Lemma 6.1. Let B ⊆ A be a unital inclusion of C∗-algebras and let A0 be a dense sub-∗-
algebra of A closed under continuous function calculus. Then B ⊆ A is C∗-irreducible if each
non-zero positive element in A0 is full relatively to B.

Proof. Let a be a non-zero positive element in A and find a positive element a0 ∈ A0 with
δ := ‖a − a0‖ < ‖a0‖. Choose δ < ε < ‖a0‖. As in the proof of Lemma 3.10 we find
that (a0 − ε)+ ≤ ϕ(a0)aϕ(a0). By assumption, and because (a0 − ε)+ is a non-zero positive
element in A0, there exist x1, . . . , xn ∈ B such that

∑n
j=1 x

∗
j (a0− ε)+xj ≥ 1A. It follows that∑n

j=1 y
∗
jayj ≥ 1A, when yj = ϕ(a0)xj ∈ B.
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It is a well-known and heavily used fact that one can construct simple C∗-algebras as the
inductive limit A = lim−→An of possibly non-simple C∗-algebras An. One just has to make sure
that each non-zero element in any of the C∗-algebras An eventually becomes full in Am, for
some m ≥ n. A similar result holds for constructing C∗-irreducible inclusions:

Proposition 6.2. Suppose we are given a system as in (6.1). Then ι : B → A is C∗-
irreducible if and only if for each n ≥ 1 and each non-zero positive element a ∈ An there
exists m ≥ n such that λm,n(a) ∈ Am is full relatively to ιm(Bm).

In particular, if each inclusion ιn : Bn → An is C∗-irreducible, then so is ι : B → A.

Proof. We show that each non-zero positive element a0 in A0 :=
⋃∞
n=1 λ∞,n(An) ⊆ A is

full in B, cf. Lemma 6.1. Write a0 = λ∞,n(a) for some n ≥ 1 and some non-zero pos-
itive element a ∈ An. By assumption we may find m ≥ n and x1, . . . , xk ∈ Bm with∑k

j=1 ιm(xj)
∗λm,n(a)ιm(xj) ≥ 1Am . Set yj = µ∞,m(xj) ∈ B. Then

k∑
j=1

ι(yj)
∗a0 ι(yj) = λ∞,m

( k∑
j=1

ιm(xj)
∗λm,n(a)ιm(xj)

)
≥ 1A,

as desired.

Proposition 6.3. Given a diagram as in (6.1), and suppose that for each n ≥ 1 there is a
conditional expectation EAn,Bn of An onto Bn making each square

An
λn //

EAn,Bn
��

An+1

EAn+1,Bn+1

��
Bn

µn // Bn+1

commutative. Then (6.1) is regular and there is a conditional expectation E : A → B com-
muting with each EAn,Bn, for n ≥ 1.

Proof. For ease of notation suppose that all maps µn, λn and ιn are inclusion mappings.
By the commutativity assumption, the conditional expectations EAn,Bn extend to a contrac-
tive positive linear map E0 :

⋃∞
n=1An →

⋃∞
n=1 Bn, which again, by continuity, extends to

a conditional expectation E : A → B commuting with the EAn,Bn . If a ∈ An ∩ B, then
a = E(a) = EAn,Bn(a) ∈ Bn, so (6.1) is regular.

If B ⊆ A is an inclusion of finite dimensional C∗-algebras, then B′ ∩ A = C implies B = A,
so the inclusion can never be C∗-irreducible, unless it is trivial. One can still construct C∗-
irreducible inclusions of AF-algebras using the more general setting of Proposition 6.2, that
simplifies a bit further in the case of inductive limits of finite dimensional C∗-algebras.

Lemma 6.4. Let B ⊆ A be a unital inclusion of finite dimensional C∗-algebras B and A. Let
E : A → A∩ B′ be the conditional expectation defined by

E(x) =

∫
U(B)

uxu∗ dµ(u), x ∈ A,

where µ is the Haar measure on U(B). The following conditions are equivalent for each
positive element a ∈ A:
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(i) a is full relatively to B,

(ii) E(a) is invertible,

(iii) no non-zero projection p ∈ A ∩ B′ is orthogonal to a.

Proof. Note first that E defined in the lemma indeed is a conditional expectation onto A∩B′.
(ii) ⇒ (i): Approximate E(a) by finite Riemann sums to obtain an invertible positive

element in conv{uau∗ : u ∈ U(B)} that witnesses that a is full relatively to B.
(i) ⇒ (iii): Choose elements x1, . . . , xn ∈ B such that

∑n
j=1 x

∗
jaxj ≥ 1A. Let p ∈ A ∩ B′

be non-zero. Then 0 6= p ≤
∑n

j=1 x
∗
jpapxj , so p is not orthogonal to a.

(iii) ⇒ (ii): To show that E(a) is invertible it suffices to show that pE(a)p 6= 0 for all
non-zero projections p ∈ A ∩ B′. By the definition of E we have pE(a)p = E(pap). Since E
is faithful and pap 6= 0 by (iii) we conclude that pE(a)p 6= 0.

One can replace projections in Lemma 6.4 (iii) with positive elements.
Say that two sub-C∗-algebras B1 and B2 of a common C∗-algebra A are everywhere non-

orthogonal if no pair of non-zero positive elements b1 ∈ B1 and b2 ∈ B2 are orthogonal to
each other. For example, the C∗-algebras B1⊗1 and 1⊗B2 are everywhere non-orthogonal in
B1⊗B2 for any pair of (non-zero) C∗-algebras B1 and B2. On the other hand, B is everywhere
non-orthogonal to itself if and only if B = C (since otherwise B contains pairwise orthogonal
non-zero positive elements).

Corollary 6.5. Suppose we are given a system as in (6.1) and that each C∗-algebra An and
Bn are finite dimensional. Then ι : B → A is C∗-irreducible if the algebras λn(An) ⊆ An+1

and An+1 ∩ ιn+1(Bn+1)′ ⊆ An+1 are everywhere non-orthogonal, for all n ≥ 1.

Proof. This follows immediately from Proposition 6.2 and Lemma 6.4.

Lemma 6.6. Let k ≥ d ≥ 2 be integers. Then there exists a unitary u in Md⊗Mk such that
the C∗-algebras Md ⊗ 1k and u∗(Md ⊗ 1k)u are everywhere non-orthogonal in Md ⊗Mk.

Proof. Choose a projection f ∈ Mk of dimension d and choose a unital ∗-homomorphism
ρ : Md → fMkf . The two (unital) ∗-homomorphisms Md → Md ⊗Mk given by x 7→ x ⊗ 1k
and x 7→ 1d ⊗ ρ(x) + x ⊗ (1k − f) are unitarily equivalent, and hence there exists a unitary
u ∈ Md ⊗ Mk such that u∗(x ⊗ 1k)u = 1d ⊗ ρ(x) + x ⊗ (1k − f), for all x ∈ Md. Since
(x ⊗ 1k)

(
1d ⊗ ρ(y) + y ⊗ (1k − f)

)
= x ⊗ ρ(y) + xy ⊗ (1k − f) is non-zero for all non-zero

x, y ∈Md, it follows that Md ⊗ 1k and u∗(Md ⊗ 1k)u are everywhere non-orthogonal.

Remark 6.7. In the situation of Lemma 6.6, if d, k ≥ 2 are integers and there exists a
unitary u in Md ⊗Mk such that the C∗-algebras Md ⊗ 1k and u∗(Md ⊗ 1k)u are everywhere
non-orthogonal, then k2 ≥ d+ 1, as we shall show below.

For each unit vector x ∈ Cd, let px be the 1-dimensional projection onto Cx. If u ∈
Md ⊗Mk is as claimed, then u∗(px ⊗ 1k)u(py ⊗ 1k) 6= 0, and hence (px ⊗ 1k)u(py ⊗ 1k) 6= 0,

for all unit vectors x, y ∈ Cd. Let {ρj}k
2

j=1 be a basis for M∗k and set uj = (idd⊗ ρj)(u) ∈Md.
Then (px ⊗ 1k)u(py ⊗ 1k) 6= 0 if and only if there exists j such that

pxujpy = (idd ⊗ ρj)
(
(px ⊗ 1k)u(py ⊗ 1k)

)
6= 0,

21



which in turns is equivalent to 〈ujy, x〉 6= 0. If this holds for all non-zero x ∈ Cd, then uj ,
1 ≤ j ≤ k2, must satisfy

span{ujy : 1 ≤ j ≤ k2} = Cd

for all unit vectors y ∈ Cd. This clearly implies that k2 ≥ d. At closer inspection we can
improve this estimate to k2 ≥ d + 1, since for any j 6= j′ there exists a unit vector y ∈ Cd
such that ujy and uj′y are proportional.

The smallest number k for which the conclusion of Lemma 6.6 holds, for a given d ≥ 2,
must therefore satisfy

√
d+ 1 ≤ k ≤ d. I leave it as a curious problem to narrow down this

interval, or to derive an exact formula for k. Relatedly, the smallest number m of matrices
A1, . . . , Am ∈Md for which span{Aj y : 1 ≤ j ≤ m} = Cd, for all unit vectors y ∈ Cd, satisfies
d+ 1 ≤ m ≤ k2 by the argument above.

Theorem 6.8 below is an application of Corollary 6.5 and Lemma 6.6. The theorem and its
proof provide a recipe for how to construct C∗-irreducible inclusions of UHF-algebras, and,
we expect, also of simple AF-algebras.

Theorem 6.8. Let A and B be UHF-algebras so that B admits a unital embedding into A.
Then there exists a C∗-irreducible embedding ι : B → A.

Proof. Choose sequences {kn}∞n=1 and {`n}∞n=1 of integers ≥ 2, such that kn is a proper
divisor in `n, for all n ≥ 1, and A =

⊗∞
n=1M`n and B =

⊗∞
n=1Mkn . Write `n = kndn. Upon

replacing kn+1 with kn+1kn+2 · · · kn+m, for some m ≥ 1, and likewise for `n+1 — which does
not change B or A — we may assume that kn+1 ≥ d1d2 · · · dn.

We construct a commuting diagram:

Mk1

ι1
��

//Mk1 ⊗Mk2

ι2
��

//Mk1 ⊗Mk2 ⊗Mk3

ι3
��

// · · · // B
ι

��
M`1

//M`1 ⊗M`2
//M`1 ⊗M`2 ⊗M`3

// · · · // A

(6.2)

where the horisontal maps are the canonical ones x 7→ x⊗ 1kn+1 , respectively, x 7→ x⊗ 1`n+1 ,
and where the vertical maps ιn will be defined to be unital ∗-homomorphisms such that the
two algebras

ιn+1(Mk1 ⊗ · · · ⊗Mkn+1)′ ∩M`1 ⊗ · · · ⊗M`n+1 and M`1 ⊗ · · · ⊗M`n ⊗ 1`n+1 (6.3)

are everywhere non-orthogonal. This will ensure that ι : B → A is C∗-irreducible, cf. Corol-
lary 6.5.

Choose ι1 to be any unital ∗-homomorphism. Suppose that n ≥ 1 and that ιn has been
constructed. We proceed to construct ιn+1. Set k = k1k2 · · · kn, ` = `1`2 · · · `n, and d =
d1d2 · · · dn, so that ` = dk. Identify Mk1 ⊗ · · · ⊗Mkn with Mk and M`1 ⊗ · · · ⊗M`n with
Mk ⊗Md in such a way that ιn(x) = x ⊗ 1`. Identify M`n+1 with Mkn+1 ⊗Mdn+1 . In this
notation, the nth square in the diagram (6.2) above takes the form:

Mk

ιn=idk⊗1d
��

idk⊗1kn+1 //Mk ⊗Mkn+1

ιn+1=idk⊗j
��

Mk ⊗Md
idk⊗idd⊗1kn+1

⊗1dn+1

//Mk ⊗Md ⊗Mkn+1 ⊗Mdn+1
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where the ∗-homomorphism j : Mkn+1 → Md ⊗Mkn+1 ⊗Mdn+1 is defined as follows ensuring
that Equation (6.3) holds. Choose a unitary u ∈ Md ⊗Mkn+1 such that Md ⊗ 1kn+1 and
u∗(Md ⊗ 1kn+1)u are everywhere orthogonal. Set j(x) = u∗(1d ⊗ x)u⊗ 1dn+1 , for x ∈ Mkn+1 .
Then

ιn+1(Mk ⊗Mkn+1) = Mk ⊗ u∗(1d ⊗Mkn+1)u⊗ 1dn+1 .

The commutant of this algebra is 1k ⊗ u∗(Md ⊗ 1kn+1)u ⊗Mdn+1 , which by the choice of u
is everywhere non-orthogonal to Mk ⊗Md ⊗ 1kn+1 ⊗ 1dn+1 = M`1 ⊗ · · · ⊗M`n ⊗ 1`n+1 , as
desired.

Remark 6.9. It seems plausible that the conclusion of Theorem 6.8 holds more generally
for any pair of infinite dimensional simple unital AF-algebras A and B whenever the latter
admits a unital embedding into the former.

Remark 6.10. While AF-algebras are completely classified by their ordered K0-group, the
question of classifying inclusions B ⊆ A of UHF-algebras (or AF-algebras) is far more subtle
(even under the extra assumptions such as C∗-irreducibility). An inclusion B → A between
AF-algebras induces a map K0(B)→ K0(A) which classifies the inclusion up to approximate
unitary equivalence. To understand the inclusion (up to conjugacy) we will need a classifica-
tion of the inclusion map up to unitary equivalence.

It is well-known that sub-C∗-algebras of an AF-algebra need not be AF. Blackadar, [5],
constructed an example of a Z/2-action α of the CAR-algebra A so that the fixed point
algebra Aα is not AF (in fact, Aα is a Bunce-Deddens algebra). The inclusion Aα ⊆ A is
C∗-irreducible and of index 2. This example still leaves open the following question (that
probably has a negative answer):

Question 6.11. Let B ⊆ A be a C∗-irreducible inclusion of simple AF-algebras. Is it true
that every intermediate C∗-algebra is also AF?3

Example 6.12. Here is another—more conceptual—example of C∗-irreducible inclusions of
UHF-algebras (that admits many generalizations): Let B =

⊗∞
n=1Mkn(C) be a UHF-algebra

with respect to some sequence {kn} of integers ≥ 2. Let d ≥ 2 be an integer and choose
an outer action of Zd on B with the property that it leaves invariant each finite dimensional
sub-C∗-algebra

⊗N
n=1Mkn(C) of B. One can for example take α =

⊗∞
n=1 Adun , where un is

a unitary in Mkn(C) of order d, and such that ukn is non-scalar when k = 1, 2, . . . , d − 1. It
then follows from Theorem 5.8 that B ⊆ B o Zd is C∗-irreducible. Moreover,

B o Zd = lim−→
( N⊗
n=1

Mkn(C) o Zd
)
,

and
⊗N

n=1Mkn(C)oZd is isomorphic to the direct sum of d copies of
⊗N

n=1Mkn(C), so BoZd
is an AF-algebra.

We conclude this section by showing that any unital inclusion B ⊆ A of AF-algebras (simple
or not) admits an inductive limit decomposition as in (6.1). For sub-C∗-algebras A,B of a
common C∗-algebra E , write B ⊆δ A if dist(b,A) ≤ δ, for all b in the unit ball of B.

We shall use the following powerful theorem of Christensen:

3This question has subsequently been answered in the negative in [11].
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Theorem 6.13 (Christensen, [9]). Let E be a unital C∗-algebra, let A,B be unital sub-C∗-
algebras of E, with B finite dimensional, let 0 < δ < 10−4, and assume that B ⊆δ A. Then
there exist a unitary element u ∈ E such that uBu∗ ⊆ A and ‖1− u‖ ≤ 120 δ1/2.

The lemma below is standard AF-algebra knowledge. It is an easy consequence of Chris-
tensen’s theorem above, but can be proved directly with less heavy machinery using stable
relations of matrix units.

Lemma 6.14. Given a unital inclusion B ⊆ E, where B is finite dimensional and E is an
AF-algebra, and given a finite subset F ⊆ E, and ε > 0. Then there exists a unital finite
dimensional intermediate C∗-algebra B ⊆ A ⊆ E such that and dist(f,A) < ε, for all f ∈ F .

We shall need Christensen’s theorem in the following adaption:

Lemma 6.15. Given an integer n ≥ 1 and ε > 0. Then there exists δ > 0 such that whenever
E is a unital AF-algebra with unital finite dimensional sub-C∗-algebras

B1 ⊆ B2 ⊆ · · · ⊆ Bn ⊆ Aj , j = 1, 2,

satisfying A1 ⊆δ A2, then there exist a unitary u ∈ E with ‖1 − u‖ ≤ ε, uA1u
∗ ⊆ A2, and

uBju∗ = Bj, for 1 ≤ j ≤ n.

Proof. We prove this by repeated applications of Christensen’s theorem as follows. For δ > 0
(to be determined below), set γn+1 = 120 δ1/2 and define ηj > 0 and γj > 0, 1 ≤ j ≤ n,
inductively as follows: ηj = 120 (2γj+1)1/2 and γj = γj+1 + ηj . Choose 0 < δ < 10−4 such
that γ1 ≤ ε and such that 2γj < 10−4, for 2 ≤ j ≤ n.

At step one use Christensen’s theorem to find a unitary u0 ∈ E with ‖1− u0‖ ≤ γn+1 and
u0A1u

∗
0 ⊆ A2. Then Bn ⊆2γn+1 u0Bnu∗0. Note that Bn and u0Bnu∗0 both are sub-C∗-algebras

of A2. Hence there exists a unitary vn ∈ A2 with ‖1− vn‖ ≤ ηn and vnBnv∗n = u0Bnu∗0. Set
un = v∗nu0. It follows that unBnu∗n = Bn, unA1u

∗
n ⊆ A2, and ‖1− un‖ ≤ γn.

For the next step, note that Bn−1 ⊆2γn unBn−1u
∗
n and Bn−1, unBn−1u

∗
n both are sub-C∗-

algebras of Bn. Hence there exists a unitary vn−1 in Bn with vn−1Bn−1v
∗
n−1 = unBn−1u

∗
n and

‖1− vn−1‖ ≤ ηn−1. The unitary element un−1 = v∗n−1un then satisfies un−1Bju∗n−1 = Bj , for
j = n− 1, n, un−1A1u

∗
n−1 ⊆ A2, and ‖1− un−1‖ ≤ γn−1.

Continue like this until we have arrived at a unitary u2 ∈ E satisfying u2Bju∗2 = Bj , for
2 ≤ j ≤ n, u2A1u

∗
2 ⊆ A2, and ‖1 − u2‖ ≤ γ2. Then B1 ⊆2γ2 u2B1u

∗
2 and B1, u2B1u

∗
2 are

both sub-C∗-algebras of B2. Hence there exists a unitary v1 in B2 with v1B1v
∗
1 = u2B1u

∗
2 and

‖1− v1‖ ≤ η1. The unitary element u := u1 = v∗1u2 then has the desired properties.

Proposition 6.16. Let B ⊆ A be a unital inclusion of AF-algebras. Then there exist an
increasing sequence {An}∞n=1 of finite dimensional sub-C∗-algebras of A such that

A =
∞⋃
n=1

An, and B =
∞⋃
n=1

(An ∩ B).

In particular, with Bn = An ∩ B, the inclusion B ⊆ A arises from a diagram as in (6.1) with
all Bn and An finite dimensional.

Proof. Let {Bn}∞n=1 be an increasing sequence of finite dimensional sub-C∗-algebras of B
whose union

⋃∞
n=1 Bn is dense in B, and choose a dense sequence {an}∞n=1 in A. For each

n ≥ 1 we find a finite dimensional C∗-algebra Ãn and a unitary un ∈ A such that
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(a) unÃnu∗n ⊆ Ãn+1,

(b) Bn ⊆ Ãn,

(c) unBju∗n = Bj , for 1 ≤ j ≤ n,

(d) ‖1− un‖ ≤ 2−n,

(e) dist(aj , Ãn) < 1/n, for 1 ≤ j ≤ n.

To start, it follows from Lemma 6.14 that we can find a finite dimensional sub-C∗-algebra
Ã1 of A satisfying (b) and (e).

Suppose that n ≥ 1 and that we have found Ã1, Ã2, . . . , Ãn and unitaries u1, . . . , un−1 as
above. (If n = 1, then no unitary uj has been found yet.) Choose δ > 0 as in Lemma 6.15
corresponding to our given n ≥ 1 and to ε = 2−n. Use Lemma 6.14 to find a finite dimensional
sub-C∗-algebra Ãn+1 of A satisfying (b), (e) and Ãn ⊆δ Ãn+1, and then use Lemma 6.15 to
find a unitary un ∈ A satisfying (a), (c) and (d).

Set vn = limN→∞ uNuN−1 · · ·un (the sequence converges by (d)). Then vn is a unitary
element in A and ‖vn − 1‖ ≤ 2−n+1. Set An = vnÃnv∗n. Then Bn ⊆ An by (b) and (c). As
vn+1 = vnun we see from (a) that An ⊆ An+1, for all n ≥ 1. Since

dist(aj ,An) ≤ dist(aj , Ãn) + ‖aj − vnajv∗n‖ ≤ 1/n+ 2‖vn − 1‖‖aj‖,

for 1 ≤ j ≤ n, we conclude that
⋃∞
n=1An is dense in A. Finally,

⋃∞
n=1(An ∩ B) is dense in B

because Bn ⊆ An ∩ B. This completes the proof.

7 Tensor products

We investigate here how the property of being C∗-irreducible behaves under forming tensor
products. Using the theorem of Zacharias and Zsido (Theorem 2.2) we already mentioned
(and proved) the following:

Theorem 7.1. Let B ⊆ A be a C∗-irreducible inclusion and let E be a unital simple C∗-algebra
with Wassermann’s property (S). Then E ⊗ B ⊆ E ⊗A is C∗-irreducible.

Recall that all nuclear C∗-algebras have property (S). The Zacharias–Zsido theorem further
says that the map D 7→ E ⊗D gives a bijection between the set of intermediate C∗-algebras of
the inclusion B ⊆ A and the set of intermediate C∗-algebras of the inclusion E ⊗ B ⊆ E ⊗A.

It follows in particular that whenever you have a C∗-irreducible inclusion, one can arrange
to make it Z-stable, O∞-stable, O2-stable etc upon tensoring by Z, O∞, and O2, respectively.

Proposition 7.2. Let Bi ⊆ Ai, i ∈ I, be a (finite or infinite) family of unital inclusions of
C∗-algebras. Set B =

⊗
i∈I Bi and A =

⊗
i∈I Ai.

(i) If each Bi ⊆ Ai has the relative Dixmier property with respect to some faithful tracial
state τi on Ai, then B ⊆ A also has the relative Dixmier property with respect to the
faithful tracial state τ = ⊗i∈I τi. In particular, the inclusion B ⊆ A is C∗-irreducible.

(ii) If each Bi ⊆ Ai has the relative excision property with respect to a faithful state ψi on
Ai, for each i ∈ I, then B ⊆ A has the excision property relatively to the faithful state
ψ = ⊗i∈I ψi on A. In particular, if each Bi is simple, then the inclusion B ⊆ A is
C∗-irreducible.
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Proof. Denote by �i∈IBi and �i∈IAi the set of elementary tensors of the form ⊗i∈Ici with
ci ∈ Bi, respectively, ci ∈ Ai, and with ci 6= 1 for only finitely many i ∈ I. Note that A is the
closure of the span of �i∈IAi, and similarly for B.

(i). For each i ∈ I, set Ei = conv{Adu : u ∈ U(Bi)} and let E be the set of self-maps on A
of the form E = ⊗i∈IEi, where Ei ∈ Ei and Ei 6= idAi for at most finitely many i ∈ I. Let X
be the set of elements a ∈ A for which the relative Dixmier property holds in the following
sense: for each ε > 0 there exists E ∈ E such that ‖E(a)− τ(a) · 1‖ < ε.

The assumption that each inclusion Bi ⊆ Ai has the relative Dixmier property implies
that �i∈IAi ⊆ X. Secondly, since each E ∈ E maps �i∈IAi into itself, we conclude that also
the span of �i∈IAi is contained in X. Finally, as X is closed, it follows that X = A.

(ii). By assumption we can, for each i ∈ I, find nets {h(α, i)}α (indexed over the same
upwards directed set) of positive elements in Bi with ‖h(α, i)‖ = 1 such that

lim
α
‖h(α, i)1/2ah(α, i)1/2 − ψi(a)h(α, i)‖ = 0, a ∈ Ai.

For each finite subset I0 of I and each α set h(α, I0) = ⊗i∈I h̃(α, i), where h̃(α, i) = h(α, i),
when i ∈ I0 and where h̃(α, i) = 1Bi , when i /∈ I0. Then {h(α, I0)}(α,I0) is a net of positive
elements in B with ‖h(α, I0)‖ = 1 and

lim
(α,I0)

‖h(α, I0)1/2ah(α, I0)1/2 − ψ(a)h(α, I0)‖ = 0, a ∈ A,

thus proving that ψ can be excised relatively to B.
The claims about C∗-irreducibility in both (i) and (ii) follows from Proposition 3.15.

The lattice of intermediate sub-C∗-algebras between
⊗

i∈I Bi ⊆
⊗

i∈I Ai contains all C∗-al-
gebras of the form

⊗
i∈I Di, with Bi ⊆ Di ⊆ Ai. However, not all intermediate sub-C∗-al-

gebras are of this form. If I = {1, 2} and Bi ⊂ Ai are strict unital inclusions of C∗-alge-
bras, then, for example, C∗(B1 ⊗ A2,A1 ⊗ B2) is a proper intermediate C∗-algebra, which
is not a tensor product of intermediate C∗-algebras. A possible generalization of the tensor
splitting theorem to this situation could be that each intermediate C∗-algebra of the inclusion⊗

i∈I Bi ⊆
⊗

i∈I Ai is generated by C∗-algebras of the form
⊗

i∈I Di, with Bi ⊆ Di ⊆ Ai.

Question 7.3. Let Bi ⊆ Ai, i ∈ I, be a (finite or infinite) family of C∗-irreducible unital
inclusions of C∗-algebras. Is it true that

⊗
i∈I Bi ⊆

⊗
i∈I Ai is also C∗-irreducible?

Proposition 7.2 answers this question in the affirmative under somewhat stronger conditions
on the inclusions Bi ⊆ Ai. In particular, if Ni ⊆ Mi, i ∈ I, are (proper) inclusions of
II1-factors with [Mi : Ni] < ∞, for all i ∈ I, then the inclusion

⊗
i∈I Ni ⊆

⊗
i∈IMi is C∗-

irreducible, cf. Theorem 4.4, (where the tensor products are the minimal C∗-tensor product).
If I is finite, then the inclusion

⊗
i∈INi ⊆

⊗
i∈IMi of II1-factors is also C∗-irreducible, while

this fails when I is infinite, because the inclusion has infinite Jones index.
Note also that it suffices to answer Question 7.3 when |I| = 2. An easy induction argument

will namely then settle the cases where the index set is finite, and the general case will finally
follow from Proposition 6.2.
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