On Example 5.11 from my paper "Irreducible inclusions of simple C^{*}-algebras

We provide here details of the claim made in [5, Example 5.11]. One needs the following version of [5, Lemma 5.10]:
Lemma 1. Let $n \geq 2$ be an integer and consider the tensor powers $\mathcal{A}=\bigotimes_{j \in \mathbb{Z}} M_{n}(\mathbb{C})$ and $\mathcal{B}=\bigotimes_{j \in \mathbb{N}} M_{n}(\mathbb{C})$, and view \mathcal{B} as a subalgebra of \mathcal{A} in the canonical way. Let σ denote the Bernoulli shift on \mathcal{A} and denote also by σ its restriction to \mathcal{B} (which is the one-sided shift).

Then, for each $N \geq 1$ and each $\varepsilon>0$, there exist $m \geq 1$ and unitaries v_{1}, \ldots, v_{m} in \mathcal{B} (and hence also in \mathcal{A}) such that

$$
\left\|\frac{1}{m} \sum_{j=1}^{m} v_{j} \sigma^{k}\left(v_{j}\right)^{*}\right\| \leq \varepsilon, \quad\left\|\frac{1}{m} \sum_{j=1}^{m} \sigma^{k}\left(v_{j}\right) v_{j}^{*}\right\| \leq \varepsilon
$$

for all $1 \leq k \leq N$.
Proof. The existence of the unitaries v_{1}, \ldots, v_{m} in \mathcal{A} with the stated properties follows from [5. Lemma 5.10] (with $b_{j}=1$) since all non-zero powers of the shift σ are outer. Since $\lim _{p \rightarrow \infty} \operatorname{dist}\left(\sigma^{p}(x), \mathcal{B}\right)=0$, for each $x \in \mathcal{A}$, upon replacing the unitaries v_{j} with $\sigma^{p}\left(v_{j}\right)$ for a suitably large $p \geq 1$, and then perturbing them sligthly, we obtain unitaries in \mathcal{B} with the desired properties.

Example 2. For $2 \leq n<\infty$ consider the Cuntz algebra \mathcal{O}_{n} and its sub- C^{*}-algebra \mathcal{B}_{n} isomorphic to the UHF-algebra of type n^{∞}, which arises as the fixed point algebra under the canonical circle action of \mathcal{O}_{n}. Let $E: \mathcal{O}_{n} \rightarrow \mathcal{B}_{n}$ be the conditional expectation (obtained by integrating with respect to the circle action). Then E is faithful and has the pinching property, cf. [2] (use the projection Q constructed in the proof of Proposition 1.7). Hence $\mathcal{B}_{n} \subseteq \mathcal{O}_{n}$ is C^{*}-irreducible.

It is well-known that $\mathcal{O}_{n}=C^{*}\left(\mathcal{B}_{n}, s_{1}\right)$, and that the isometry s_{1} induces an endomorphism ρ on \mathcal{B}_{n} by $\rho(b)=s_{1} b s_{1}^{*}$. It this sense we can write \mathcal{O}_{n} as a crossed product $\mathcal{B}_{n} \rtimes_{\rho} \mathbb{N}$ over the semigroup \mathbb{N}. Similar to the situation of [5, Theorem 5.9], each proper intermediate C^{*} algebra of the inclusion $\mathcal{B}_{n} \subseteq \mathcal{O}_{n}$ is equal to $\mathcal{B}_{n} \rtimes_{\rho} d \mathbb{N}$, for some $d \geq 2$. The crossed product $\mathcal{B}_{n} \rtimes_{\rho} d \mathbb{N}$ is equal to $C^{*}\left(\mathcal{B}_{n}, s_{1}^{d}\right)$ and also to the fixed-point algebra $\mathcal{O}_{n}^{\mathbb{Z} / d}$ with respect to the order d automorphism on \mathcal{O}_{n} given by $s_{j} \mapsto \omega s_{j}$, where ω is a primitive d th root of the unit.

We proceed to justify the claim made above. The proof follows the same lines as the proof of [5. Theorem 5.9], but one must adjust for dealing with endomorphisms instead of automorphisms. Each $x \in \mathcal{O}_{n}$ can be written as a formal sum

$$
x=\sum_{k=1}^{\infty}\left(s_{1}^{*}\right)^{k} a_{-k}+a_{0}+\sum_{k=1}^{\infty} a_{k} s_{1}^{k},
$$

for some $a_{k} \in \mathcal{B}_{n}$, with $a_{k}=a_{k} s_{1}^{k}\left(s_{1}^{*}\right)^{k}$ and $a_{-k}=s_{1}^{k}\left(s_{1}^{*}\right)^{k} a_{-k}$, for all $k \geq 1$. As in the proof of [5] Theorem 5.9], it suffices to show that if $\ell \in \operatorname{supp}(x)$, i.e., $a_{\ell} \neq 0$, then s_{1}^{ℓ}, respectively, $\left(s_{1}^{*}\right)^{-\ell}$, belong to $C^{*}\left(\mathcal{B}_{n}, x\right)$ (the former when $\ell \geq 0$ and the latter when $\ell<0$). Consider the case $\ell \geq 1$ (the case where $\ell \leq-1$ is treated in a similar manner). By (algebraic) simplicty of \mathcal{B}_{n} we can find $c_{i}, d_{i} \in \mathcal{B}_{n}$ such that $\sum_{i=1}^{r} c_{i} a_{\ell} d_{i}=1$. Put $e_{i}=\left(s_{1}^{*}\right)^{\ell} d_{i} s_{1}^{\ell} \in \mathcal{B}_{n}$. Then $y:=\sum_{i=1}^{r} c_{i} x e_{i}$ belongs to $C^{*}\left(\mathcal{B}_{n}, x\right)$, and $y=\sum_{k=1}^{\infty}\left(s_{1}^{*}\right)^{k} b_{-k}+b_{0}+\sum_{k=1}^{\infty} b_{k} s_{1}^{k}$, with

$$
b_{\ell} s_{1}^{\ell}=\sum_{i=1}^{r} c_{i} a_{\ell} s_{1}^{\ell} e_{i}=\sum_{i=1}^{r} c_{i} a_{\ell} s_{1}^{\ell}\left(s_{1}^{*}\right)^{\ell} d_{i} s_{1}^{\ell}=\sum_{i=1}^{r} c_{i} a_{\ell} d_{i} s_{1}^{\ell}=s_{1}^{\ell} .
$$

Let $\varepsilon>0$ and take $y_{0}=\sum_{k=1}^{N}\left(s_{1}^{*}\right)^{k} b_{-k}^{\prime}+b_{0}^{\prime}+\sum_{k=1}^{N} b_{k}^{\prime} s_{1}^{k}$ in \mathcal{O}_{n} with $b_{k}^{\prime} \in \mathcal{B}_{n}$ and $\|x-y\| \leq \varepsilon / 3$. Use Lemma 1 to find unitaries $v_{1}, \ldots, v_{m} \in \mathcal{B}_{n}$ such that

$$
\left\|\frac{1}{m} \sum_{j=1}^{m} v_{j} \sigma^{k}\left(v_{j}\right)^{*}\right\| \leq \frac{\varepsilon}{12 N}, \quad\left\|\frac{1}{m} \sum_{j=1}^{m} \sigma^{k}\left(v_{j}\right) v_{j}^{*}\right\| \leq \frac{\varepsilon}{12 N}, \quad 1 \leq k \leq N .
$$

Identifying \mathcal{B}_{n} with $\bigotimes_{j \in \mathbb{N}} M_{n}(\mathbb{C})$, the (one-sided) shift σ from Lemma 1 is given by $\sigma(b)=$ $\sum_{j=1}^{n} s_{j} b s_{j}^{*}$. Hence $s_{1}^{k} b\left(s_{1}^{*}\right)^{k}=\sigma^{k}(b) s_{1}^{k}\left(s_{1}^{*}\right)^{k}=s_{1}^{k}\left(s_{1}^{*}\right)^{k} \sigma^{k}(b)$, for all $b \in \mathcal{B}$ and all $k \geq 1$. One now checks that

$$
\sigma^{\ell}\left(v_{j}\right) b_{k}^{\prime} s_{1}^{k} v_{j}^{*}=\sigma^{\ell}\left(v_{j}\right) b_{k}^{\prime} \sigma^{k}\left(v_{j}\right)^{*} s_{1}^{k}, \quad \sigma^{\ell}\left(v_{j}\right)\left(s_{1}^{*}\right)^{k} b_{-k}^{\prime} v_{j}^{*}=\left(s_{1}^{*}\right)^{k} \sigma^{\ell+k}\left(v_{j}\right) b_{-k}^{\prime} v_{j}^{*}
$$

Since $\left[\sigma^{p}(b), b^{\prime}\right] \rightarrow 0$ as $p \rightarrow \infty$, for all $b, b^{\prime} \in \mathcal{B}_{n}$, upon replacing each v_{j} with $\sigma^{p}\left(v_{j}\right)$ for a sufficiently large p, both expressions above can be made less than $\varepsilon /(6 N)$, when $k \neq \ell$. Hence we obtain

$$
\left\|\frac{1}{m} \sum_{j=1}^{m} \sigma^{\ell}\left(v_{j}\right)\left(y_{0}-b_{\ell}^{\prime} s_{1}^{\ell}\right) v_{j}^{*}\right\| \leq \varepsilon / 3,
$$

which in turn yields

$$
\left\|\frac{1}{m} \sum_{j=1}^{m} \sigma^{\ell}\left(v_{j}\right) y v_{j}^{*}-s_{1}^{\ell}\right\|=\left\|\frac{1}{m} \sum_{j=1}^{m} \sigma^{\ell}\left(v_{j}\right)\left(y-s_{1}^{\ell}\right) v_{j}^{*}\right\| \leq \varepsilon .
$$

Since $m^{-1} \sum_{j=1}^{m} \sigma^{\ell}\left(v_{j}\right) y v_{j}^{*} \in C^{*}\left(\mathcal{B}_{n}, x\right)$, this proves that $s_{1}^{\ell} \in C^{*}\left(\mathcal{B}_{n}, x\right)$.

References

[1] J. Cameron and R. R. Smith, A Galois correspondence for reduced crossed products of simple C^{*}-algebras by discrete groups, Canad. J. Math. 71 (2019), no. 5, 1103-1125.
[2] J. Cuntz, Simple C ${ }^{*}$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185.
[3] M. Izumi, Inclusions of simple C ${ }^{*}$-algebras, J. Reine Angew. Math. 547 (2002), 97-138.
[4] S. Popa, On the relative Dixmier property for inclusions of C^{*}-algebras, J. Funct. Anal. 171 (2000), no. 1, 139-154.
[5] M. Rørdam, Irreducible inclusions of simple C^{*}-algebras, preprint 2021.

Mikael Rørdam
Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5, DK-2100, Copenhagen \emptyset
Denmark
Email: rordam@math.ku.dk

