On Example 5.11 from my paper "Irreducible inclusions of simple C^* -algebras

We provide here details of the claim made in [5, Example 5.11]. One needs the following version of [5, Lemma 5.10]:

Lemma 1. Let $n \geq 2$ be an integer and consider the tensor powers $\mathcal{A} = \bigotimes_{j \in \mathbb{Z}} M_n(\mathbb{C})$ and $\mathcal{B} = \bigotimes_{j \in \mathbb{N}} M_n(\mathbb{C})$, and view \mathcal{B} as a subalgebra of \mathcal{A} in the canonical way. Let σ denote the Bernoulli shift on \mathcal{A} and denote also by σ its restriction to \mathcal{B} (which is the one-sided shift).

Then, for each $N \ge 1$ and each $\varepsilon > 0$, there exist $m \ge 1$ and unitaries v_1, \ldots, v_m in \mathcal{B} (and hence also in \mathcal{A}) such that

$$\left\|\frac{1}{m}\sum_{j=1}^{m}v_{j}\sigma^{k}(v_{j})^{*}\right\| \leq \varepsilon, \qquad \left\|\frac{1}{m}\sum_{j=1}^{m}\sigma^{k}(v_{j})v_{j}^{*}\right\| \leq \varepsilon$$

for all $1 \leq k \leq N$.

Proof. The existence of the unitaries v_1, \ldots, v_m in \mathcal{A} with the stated properties follows from [5, Lemma 5.10] (with $b_j = 1$) since all non-zero powers of the shift σ are outer. Since $\lim_{p\to\infty} \operatorname{dist}(\sigma^p(x), \mathcal{B}) = 0$, for each $x \in \mathcal{A}$, upon replacing the unitaries v_j with $\sigma^p(v_j)$ for a suitably large $p \ge 1$, and then perturbing them slightly, we obtain unitaries in \mathcal{B} with the desired properties.

Example 2. For $2 \leq n < \infty$ consider the Cuntz algebra \mathcal{O}_n and its sub- C^* -algebra \mathcal{B}_n isomorphic to the UHF-algebra of type n^{∞} , which arises as the fixed point algebra under the canonical circle action of \mathcal{O}_n . Let $E: \mathcal{O}_n \to \mathcal{B}_n$ be the conditional expectation (obtained by integrating with respect to the circle action). Then E is faithful and has the pinching property, cf. [2] (use the projection Q constructed in the proof of Proposition 1.7). Hence $\mathcal{B}_n \subseteq \mathcal{O}_n$ is C^* -irreducible.

It is well-known that $\mathcal{O}_n = C^*(\mathcal{B}_n, s_1)$, and that the isometry s_1 induces an endomorphism ρ on \mathcal{B}_n by $\rho(b) = s_1 b s_1^*$. It this sense we can write \mathcal{O}_n as a crossed product $\mathcal{B}_n \rtimes_{\rho} \mathbb{N}$ over the semigroup \mathbb{N} . Similar to the situation of [5, Theorem 5.9], each proper intermediate C^* -algebra of the inclusion $\mathcal{B}_n \subseteq \mathcal{O}_n$ is equal to $\mathcal{B}_n \rtimes_{\rho} d\mathbb{N}$, for some $d \geq 2$. The crossed product $\mathcal{B}_n \rtimes_{\rho} d\mathbb{N}$ is equal to $C^*(\mathcal{B}_n, s_1^d)$ and also to the fixed-point algebra $\mathcal{O}_n^{\mathbb{Z}/d}$ with respect to the order d automorphism on \mathcal{O}_n given by $s_i \mapsto \omega s_i$, where ω is a primitive dth root of the unit.

We proceed to justify the claim made above. The proof follows the same lines as the proof of [5, Theorem 5.9], but one must adjust for dealing with endomorphisms instead of automorphisms. Each $x \in \mathcal{O}_n$ can be written as a formal sum

$$x = \sum_{k=1}^{\infty} (s_1^*)^k a_{-k} + a_0 + \sum_{k=1}^{\infty} a_k s_1^k,$$

for some $a_k \in \mathcal{B}_n$, with $a_k = a_k s_1^k (s_1^*)^k$ and $a_{-k} = s_1^k (s_1^*)^k a_{-k}$, for all $k \ge 1$. As in the proof of [5, Theorem 5.9], it suffices to show that if $\ell \in \operatorname{supp}(x)$, i.e., $a_\ell \ne 0$, then s_1^ℓ , respectively, $(s_1^*)^{-\ell}$, belong to $C^*(\mathcal{B}_n, x)$ (the former when $\ell \ge 0$ and the latter when $\ell < 0$). Consider the case $\ell \ge 1$ (the case where $\ell \le -1$ is treated in a similar manner). By (algebraic) simplicity of \mathcal{B}_n we can find $c_i, d_i \in \mathcal{B}_n$ such that $\sum_{i=1}^r c_i a_\ell d_i = 1$. Put $e_i = (s_1^*)^\ell d_i s_1^\ell \in \mathcal{B}_n$. Then $y := \sum_{i=1}^r c_i x e_i$ belongs to $C^*(\mathcal{B}_n, x)$, and $y = \sum_{k=1}^\infty (s_1^*)^k b_{-k} + b_0 + \sum_{k=1}^\infty b_k s_1^k$, with

$$b_{\ell}s_{1}^{\ell} = \sum_{i=1}^{r} c_{i}a_{\ell}s_{1}^{\ell}e_{i} = \sum_{i=1}^{r} c_{i}a_{\ell}s_{1}^{\ell}(s_{1}^{*})^{\ell}d_{i}s_{1}^{\ell} = \sum_{i=1}^{r} c_{i}a_{\ell}d_{i}s_{1}^{\ell} = s_{1}^{\ell}.$$

Let $\varepsilon > 0$ and take $y_0 = \sum_{k=1}^N (s_1^*)^k b'_{-k} + b'_0 + \sum_{k=1}^N b'_k s_1^k$ in \mathcal{O}_n with $b'_k \in \mathcal{B}_n$ and $||x - y|| \le \varepsilon/3$. Use Lemma 1 to find unitaries $v_1, \ldots, v_m \in \mathcal{B}_n$ such that

$$\left\|\frac{1}{m}\sum_{j=1}^{m}v_{j}\sigma^{k}(v_{j})^{*}\right\| \leq \frac{\varepsilon}{12N}, \qquad \left\|\frac{1}{m}\sum_{j=1}^{m}\sigma^{k}(v_{j})v_{j}^{*}\right\| \leq \frac{\varepsilon}{12N}, \quad 1 \leq k \leq N$$

Identifying \mathcal{B}_n with $\bigotimes_{j\in\mathbb{N}} M_n(\mathbb{C})$, the (one-sided) shift σ from Lemma 1 is given by $\sigma(b) = \sum_{j=1}^n s_j b s_j^*$. Hence $s_1^k b(s_1^*)^k = \sigma^k(b) s_1^k(s_1^*)^k = s_1^k(s_1^*)^k \sigma^k(b)$, for all $b \in \mathcal{B}$ and all $k \ge 1$. One now checks that

$$\sigma^{\ell}(v_j)b'_k s^k_1 v^*_j = \sigma^{\ell}(v_j)b'_k \sigma^k(v_j)^* s^k_1, \qquad \sigma^{\ell}(v_j)(s^*_1)^k b'_{-k} v^*_j = (s^*_1)^k \sigma^{\ell+k}(v_j)b'_{-k} v^*_j.$$

Since $[\sigma^p(b), b'] \to 0$ as $p \to \infty$, for all $b, b' \in \mathcal{B}_n$, upon replacing each v_j with $\sigma^p(v_j)$ for a sufficiently large p, both expressions above can be made less than $\varepsilon/(6N)$, when $k \neq \ell$. Hence we obtain

$$\left\|\frac{1}{m}\sum_{j=1}^m \sigma^\ell(v_j)(y_0 - b'_\ell s_1^\ell)v_j^*\right\| \le \varepsilon/3,$$

which in turn yields

$$\left\|\frac{1}{m}\sum_{j=1}^{m}\sigma^{\ell}(v_{j})yv_{j}^{*}-s_{1}^{\ell}\right\| = \left\|\frac{1}{m}\sum_{j=1}^{m}\sigma^{\ell}(v_{j})(y-s_{1}^{\ell})v_{j}^{*}\right\| \le \varepsilon.$$

Since $m^{-1} \sum_{j=1}^{m} \sigma^{\ell}(v_j) y v_j^* \in C^*(\mathcal{B}_n, x)$, this proves that $s_1^{\ell} \in C^*(\mathcal{B}_n, x)$.

References

- J. Cameron and R. R. Smith, A Galois correspondence for reduced crossed products of simple C*-algebras by discrete groups, Canad. J. Math. 71 (2019), no. 5, 1103–1125.
- [2] J. Cuntz, Simple C^{*}-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173–185.
- [3] M. Izumi, Inclusions of simple C^{*}-algebras, J. Reine Angew. Math. 547 (2002), 97–138.
- [4] S. Popa, On the relative Dixmier property for inclusions of C*-algebras, J. Funct. Anal. 171 (2000), no. 1, 139–154.
- [5] M. Rørdam, Irreducible inclusions of simple C^* -algebras, preprint 2021.

Mikael Rørdam Department of Mathematical Sciences University of Copenhagen Universitetsparken 5, DK-2100, Copenhagen Ø Denmark Email: rordam@math.ku.dk