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Abstract

We consider three notions of divisibility in the Cuntz semigroup of a C∗-algebra,
and show how they reflect properties of the C∗-algebra. We develop methods to
construct (simple and non-simple) C∗-algebras with specific divisibility behaviour.
As a byproduct of our investigations, we show that there exists a sequence (An) of
simple unital infinite dimensional C∗-algebras such that the product

∏∞
n=1An has a

character.

1 Introduction

A unital embedding of a matrix algebra Mm(C) into a unital C∗-algebra A can exist only
if the equation mx = [1A] has a solution x ∈ K0(A). Thus, only C∗-algebras in which the
class of the unit in K0 is m-divisible admit a unital embedding of Mm(C). Whereas all von
Neumann algebras (with no central summand of type In for n finite) have this divisibility
property for all m, the same is not true for C∗-algebras, even for the simple ones. C∗-
algebras can fail to have non-trivial projections. Even if they have many projections, as
in the real rank zero case, one cannot expect to solve the equation mx = [1A] exactly in
K0(A). This paper is concerned with different weaker notions of divisibility, phrased in
terms of the Cuntz semigroup of the C∗-algebra, and with how they relate to embeddability
properties of the C∗-algebra. Instead of solving the equation mx = [1A] for x ∈ K0(A),
one should look for less restrictive notions of divisibility. One can try, for example, to solve
the inequalities mx ≤ 〈1A〉 ≤ nx in the Cuntz semigroup of A for fixed positive integers
m and n (typically with m < n). We say that A is (m,n)-divisible if one can solve this
inequality. This is one of three divisibility properties we shall consider in this paper. We
show that there is a full ∗-homomorphism from CMm(C), the cone over Mm(C), into A if
and only if A is (m,n)-divisible for some n.

Let us mention three embedding problems that served as motivation for this paper.
Let A be a unital C∗-algebra with no non-zero finite dimensional representations. Can one
always find an embedding of some unital simple infinite dimensional C∗-algebra into A?
Can one always find an embedding of CM2(C) into A whose image is full in A? Can one
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always find two positive mutually orthogonal full elements in A? An affirmative answer
to the former problem will imply an affirmative answer to the second problem, which is
known as the “Global Glimm Halving problem”. An affirmative answer to the Global
Glimm Halving problem will imply an affirmative answer to the last mentioned problem.
We suspect that all three problems may have negative answers.

The second and the third problem led us to consider two new notions of divisibility
properties. In more detail, we say that A is weakly (m,n)-divisible if there are elements
x1, . . . , xn in Cu(A) such that mxj ≤ 〈1A〉 ≤ x1 + · · · + xn. Weak divisibility measures
the rank of A in the sense that A is weakly (m,n)-divisible for some n if and only if A
has no non-zero representations of dimension < m. In particular, A has no non-zero finite
dimensional representations if and only if for every m there is n such that A is weakly
(m,n)-divisible. We say that A is (m,n)-decomposable if there are elements y1, . . . , ym in
Cu(A) such that y1 + · · ·+ ym ≤ 〈1A〉 ≤ nyj. For a given m, A is (m,n)-decomposable for
some n if and only if A contains m pairwise orthogonal, pairwise equivalent full positive
elements.

It was shown in [DHTW09] that there exists a simple unital infinite dimensional C∗-al-
gebra which does not admit a unital embedding of the Jiang-Su algebra Z. This answered
in the negative a question posed by the second named author. It is implicit in [DHTW09]
that this simple C∗-algebra has bad divisibility properties, cf. Remark 3.14. This leads us
to a useful observation, which loosely can be formulated as follows: if A and B are unital
C∗-algebras, and if there is a unital ∗-homomorphism from A to B, then the divisibility
properties of B are no worse than those of A. In other words, if A has better divisibility
properties than B, then you can not unitally embed A into B.

Comparability in the Cuntz semigroup is concerned with the extent to which one can
conclude that x ≤ y if the “size” of x (e.g., measured in terms of states) is (much) smaller
than the “size” of y. Comparability and divisibility are probably the two most fundamental
properties of the Cuntz semigroup. Good comparability and divisibility properties are
necessary and sufficient conditions in Winter’s theorem, [Win], to conclude that a simple,
separable, unital C∗-algebra with locally finite nuclear dimension tensorially absorbs the
Jiang-Su algebra. Also, good comparability and divisibility properties are both necessary
and sufficient conditions to ensure that the Cuntz semigroup of a simple, separable, unital,
exact C∗-algebra A is (naturally) isomorphic to Aff(T (A)) t V (A), cf. [PT07], [BPT08],
and [ERS].

The existence of simple C∗-algebras with bad comparability properties was discovered
by Villadsen, [Vil98], in the mid 1990’s. This discovery was the first indication that the
Elliott conjecture could be false (in general), and it was also the first example of a simple
C∗-algebra exhibiting “infinite dimensional” behaviour. Villadsen’s example in [Vil98] has
been generalized extensively by several authors (including Villadsen himself) to exhibit
simple C∗-algebras with various kinds of unexpected behaviour, including many ways of
failing to have good comparability properties. However, little work has been done to
construct simple C∗-algebras with bad divisibility behaviour, and the literature does not
contain systematic ways of producing such examples. In this paper we show that there is
a duality between comparability and divisibility (Lemma 6.1), and we use this duality to
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construct examples of simple and non-simple C∗-algebras with bad divisibility behaviour.
We use Lemma 6.1 to obtain a result that concerns the structure of C∗-algebras that

arise as the tensor product of a sequence of unital (simple non-elementary) C∗-algebras.
Each such C∗-algebra will of course have non-trivial central sequences. Dadarlat and Toms
proved in [DT09] that if the infinite tensor power

⊗∞
n=1A of a fixed unital C∗-algebra

A contains a unital copy of an AHS-algebra without characters, then it automatically
absorbs the Jiang-Su algebra. It is not known if this condition always is satisfied, even
when A is simple and non-elementary. We show in Section 6 that

⊗∞
n=1A has the Corona

Factorization Property for every unital A without characters (and in particular for every
unital simple C∗-algebra A 6= C). In the other direction we give, in Section 7, an example of
a sequence of simple unital infinite dimensional C∗-algebras whose tensor power,

⊗∞
n=1An,

does not absorb (or admit an embedding of) the Jiang-Su algebra.
Non-divisibility of a C∗-algebra can be interpreted as a degree of inhomogeneity (or

“lumpiness”) of the C∗-algebra. Simple C∗-algebras are sometimes thought of as being
very homogeneous, as for example in [KOS03]. From this point of view it may at first be
surprising that a simple infinite dimensional C∗-algebra can fail to have good divisibility
properties. We show that there exists a sequence (An) of simple, unital, infinite dimen-
sional C∗-algebras such that

∏∞
n=1An (and also the associated ultrapowers of (An)) has a

character. None of the C∗-algebras An can have a character (being simple and not equal
to C), however we can show that they posses “almost characters” as defined in Section 8.

In Section 9 we consider what one might call “super-divisibility”, which leads to a
(new) notion of infiniteness of positive elements (and which implies that a multiple of the
given element is properly infinite). We use this to reformulate the Corona Factorization
Property of semigroups considered in [OPR]. We study variations of examples, originally
due to Dixmier and Douady, and answer in this way two questions from [KR00] in the
negative: The sum of two properly infinite positive elements need not be properly infinite,
and the multiplier algebra of a C∗-algebra which has a properly infinite strictly positive
element need not be properly infinite.

We thank the referee for several useful suggestions that improved the exposition of our
paper.

2 Preliminaries

Let A be a C∗-algebra, and let Cu(A) denote the Cuntz semigroup of A. We remind the
reader of the basic ingredients of the Cuntz semigroup: If a and b are positive elements in
A ⊗ K, then a is Cuntz smaller than b, denoted a - b, if d∗nbdn → a for some sequence
(dn) in A. If a - b and b - a, then a and b are Cuntz equivalent. The Cuntz equivalence
class containing a ∈ A ⊗ K is denoted by 〈a〉. The Cuntz semigroup is the set of Cuntz
equivalence classes endowed with the sum arising from orthogonal addition of positive
elements and the order arising from the Cuntz relation -. In [CEI08], Coward, Elliott
and Ivanescu give an alternative picture of the Cuntz semigroup where Cu(A) consists
of suitable equivalence classes of countably generated Hilbert C∗-modules over A. When
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using the Hilbert modules picture of Cu(A), we shall denote the equivalence class of a
countably generated Hilbert module H by [H].

We present here some well-known definitions and facts about the Cuntz semigroup. The
reader is referred to [ABG+] for a general account of the theory of the Cuntz semigroup.
First of all, we shall frequently use the axioms of the category Cu, of which Cu(A) is always
an object (see [CEI08]). An ordered abelian semigroup S is an object in the category Cu
if

(A1) every increasing sequence in S has a supremum,

(A2) for every u ∈ S there exists a sequence (ui) in S such that ui � ui+1 and supi ui = u,

(A3) if u′ � u and v′ � v, then u′ + v′ � u+ v,

(A4) if (ui) and (vi) are increasing sequences then supi ui + supi vi = supi(ui + vi).

Recall that u� v in S if whenever v = supi vi for some increasing sequence (vi) in S, then
u ≤ vi for some i. An element u ∈ S is called compact if u� u.

We also note the following two additional properties of the Cuntz semigroup of a C∗-
algebra which are not listed among the axioms of Cu. The first of them asserts that the
Cuntz semigroup of a C∗-algebra almost has the Riesz Decomposition Property, and the
second states that its order relation is almost the algebraic order.

(P1) if u′ � u ≤ v+w, then there exist v′ and w′, with v′ ≤ u, v and w′ ≤ u,w, and such
that u′ � v′ + w′.

(P2) if u′ � u ≤ v, then there exists w such that u′ + w ≤ v ≤ u+ w.

For the proofs of these facts, see [Rob11, Proposition 5.1.1] for the first and [RW10, Lemma
7.1 (i)] for the second.

We will also make use of the sequential continuity with respect to inductive limits of
the functor Cu(·) proved in [CEI08] (see also the proof of [ERS, Theorem 4.8]). It can be
stated as follows:

Proposition 2.1 ([CEI08]). Let A = lim−→(Ai, ϕi,j) be a sequential inductive limit of C∗-al-
gebras.

(i) For every u ∈ Cu(A) there exists an increasing sequence (ui)
∞
i=1 with supremum u

and such that each ui belongs to
⋃
j Im(Cu(ϕj,∞)).

(ii) If u, v ∈ Cu(Ai) are such that Cu(ϕi,∞)(u) ≤ Cu(ϕi,∞)(v), then for every u′ � u
there exists j such that Cu(ϕi,j)(u

′) ≤ Cu(ϕi,j)(v).

Remark 2.2 (Equivalence of positive elements). Two positive elements a and b in a C∗-al-
gebra A are said to be equivalent, denoted a ∼ b, if a = xx∗ and b = x∗x for some element
x ∈ A.
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Remark 2.3 (The cone over a matrix algebra). Let m be a positive integer, and let
CMm(C) denote the cone over Mm(C), i.e., the C∗-algebra of all continuous functions
f : [0, 1]→Mm(C) that vanish at 0.

For each i, j = 1, 2, . . . ,m, let eij denote the (i, j)th matrix unit in Mm(C), and denote
by eij ⊗ ι the function t 7→ teij in CMm(C). Then (eii ⊗ ι)mi=1 are positive contractions
in CMm(C) which are pairwise equivalent (in the sense defined in Remark 2.2 above) and
orthogonal.

We recall the following well-known universal property of CMm(C) (see for example
[RW10, Propositions 2.3 and 2.4]): Let A be any C∗-algebra and let a1, a2, . . . , am be pos-
itive contractions in A. Then there exists a ∗-homomorphism ϕ : CMm(C)→ A satisfying
ϕ(ejj ⊗ ι) = aj if and only if a1, a2, . . . , am are pairwise orthogonal and pairwise equivalent
in A.

The following lemma is well-known:

Lemma 2.4. Let A be a C∗-algebra and let a, b1, b2, . . . , bn be positive elements in A. Then:

(i) 〈a〉 ≤
∑n

i=1〈bi〉 if and only if for each ε > 0 there exist d1, d2, . . . , dn ∈ A such that
(a− ε)+ =

∑n
i=1 dibid

∗
i .

(ii)
∑n

i=1〈bi〉 ≤ 〈a〉 if and only if for each ε > 0 there exist mutually orthogonal positive
elements a1, a2, . . . , an in aAa such that ai ∼ (bi − ε)+ for all i.

Proof. (i). If 〈a〉 ≤
∑n

i=1〈bi〉, then a - b1 ⊕ b2 ⊕ · · · ⊕ bn, whence

(a− ε)+ = d∗(b1 ⊕ b2 ⊕ · · · ⊕ bn)d =
n∑
i=1

d∗i bidi

for some d = (d1, d2, . . . , dn)t ∈Mn,1(A). The converse statement is trivial.
(ii). Suppose that

∑n
i=1〈bi〉 ≤ 〈a〉. Then (b1 − ε)+ ⊕ (b2 − ε)+ ⊕ · · · ⊕ (bn − ε)+ = d∗ad

for some d = (d1, d2, . . . , dn) in M1,n(A). Thus d∗jadi = 0 if j 6= i and d∗i adi = (bi − ε)+ for

all i. Put ai = a1/2did
∗
i a

1/2. It is now straightforward to verify that the ai’s are as desired.
The converse statement is trivial.

Here is another lemma that we will use frequently:

Lemma 2.5. Let a and b be positive elements in A⊗K with ‖a‖ ≤ 1, and let m ∈ N. The
following are equivalent:

(i) m〈a〉 ≤ 〈b〉,

(ii) for each ε > 0 there exist mutually orthogonal positive elements b1, b2, . . . , bm in
b(A⊗K)b such that 〈bi〉 = 〈(a− ε)+〉 for all i.

(iii) for each ε > 0 there exists a ∗-homomorphism ϕ : CMm(C) → b(A⊗K)b such that
〈ϕ(e11 ⊗ ι)〉 = 〈(a− ε)+〉.
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Proof. The implications (iii) ⇒ (ii) ⇒ (i) are clear, cf. Remark 2.3 and Lemma 2.4. Let
us show that (i) implies (iii). Let ε > 0 be given. By Lemma 2.4 (ii) there are mutually
orthogonal positive elements b1, b2, . . . , bm in b(A⊗K)b such that each bj is equivalent to
(a− ε)+. By the universal property of the cone CMm(C), see Remark 2.3, there is a ∗-ho-
momorphism ϕ : CMm(C)→ b(A⊗K)b satisfying ϕ(ejj ⊗ ι) = bj. Hence (iii) holds.

3 Three divisibility properties

Definitions and basic properties

Definition 3.1. Let A be a C∗-algebra and fix u ∈ Cu(A). Let m,n ≥ 1 be integers.
Then:

(i) u is (m,n)-divisible if for every u′ ∈ Cu(A) with u′ � u there exists x ∈ Cu(A) such
that mx ≤ u and u′ ≤ nx.

The least n such that u is (m,n)-divisible is denoted by Divm(u,A), with Divm(u,A) =
∞ if no such n exists.

(ii) u is (m,n)-decomposable if for every u′ ∈ Cu(A) with u′ � u there exist elements
x1, x2, . . . , xm ∈ Cu(A) such that x1 + x2 + · · · + xm ≤ u and u′ ≤ nxj for all
j = 1, 2, . . . ,m.

The least n such that u is (m,n)-decomposable is denoted by Decm(u,A), with
Decm(u,A) =∞ if no such n exists.

(iii) u is weakly (m,n)-divisible if for every u′ ∈ Cu(A) with u′ � u there exist elements
x1, x2, . . . , xn ∈ Cu(A) such that mxj ≤ u for all j = 1, 2, . . . ,m and u′ ≤ x1 + x2 +
· · ·+ xn.

The least n such that u is weakly (m,n)-divisible is denoted by w-Divm(u,A), with
w-Divm(u,A) =∞ if no such n exists.

Remark 3.2. In the case that u in Definition 3.1 is compact (e.g., when A is unital and
u = 〈1A〉), the conditions above read a little easier:

(i) u is (m,n)-divisible if there exists x ∈ Cu(A) such that mx ≤ u ≤ nx.

(ii) u is (m,n)-decomposable if there exist elements x1, x2, . . . , xm ∈ Cu(A) such that
x1 + x2 + · · ·+ xm ≤ u ≤ nxj for all j = 1, 2, . . . ,m.

(iii) u is weakly (m,n)-divisible if there exist elements x1, x2, . . . , xn ∈ Cu(A) such that
mxj ≤ u ≤ x1 + x2 + · · ·+ xn.

The three divisibility properties above are related as follows:

Proposition 3.3. Let m,n ∈ N and u ∈ Cu(A). Then

w-Divm(u,A) ≤ Divm(u,A), Decm(u,A) ≤ Divm(u,A), w-Divm(u,A) ≤ Decm(u,A)m.
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Proof. The two first inequalities are clear (take xi = x in both cases).
To prove the last inequality, suppose that u is (m,n)-decomposable. We show that u

is weakly (m,nm)-divisible. Let u′ � u and find u′′ such that u′ � u′′ � u. There exist
elements x1, . . . , xm in Cu(A) such that

∑m
i=1 xi ≤ u and u′′ ≤ nxi for all i. We proceed to

find elements

ỹ(i1, . . . , ik), y(i1, . . . , ik) ∈ Cu(A), k = 1, . . . ,m, ij = 1, . . . , n,

satisfying

(a) ỹ(i1, . . . , ik)� y(i1, . . . , ik),

(b) ỹ(i1, . . . , ik−1)�
∑n

i=1 y(i1, . . . , ik−1, i) if k ≥ 2, and u′ �
∑n

i=1 y(i),

(c) ỹ(i1, . . . , ik−1) ≤
∑n

i=1 ỹ(i1, . . . , ik−1, i) if k ≥ 2, and u′ ≤
∑n

i=1 ỹ(i),

(d) y(i1, . . . , ik) ≤ xk,

(e) y(i1, . . . , ik−1, ik) ≤ y(i1, . . . , ik−1) if k ≥ 2, and y(i) ≤ u′′.

The elements above are constructed inductively after k using the following fact:

(∗) if x′ � x ≤ nz in Cu(A), then there exist y1, . . . , yn ∈ Cu(A) such that x′ �
∑n

i=1 yi,
yi ≤ x, and yi ≤ z,

which follows from Property (P1) of the Cuntz semigroup stated in the previous section.
Take first k = 1. The existence of y(i), with i = 1, . . . , n, satisfying (b), (d) and (e)

follows from (∗) applied to u′ � u′′ ≤ nx1. The existence of ỹ(i) � y(i) satisfying (a)
and (c) then follows from Axiom (A2) of the Cuntz semigroup from the previous section.
Assume that 2 ≤ k ≤ m and that ỹ(i1, i2, . . . , ik−1) and y(i1, i2, . . . , ik−1) have been found.
The existence of y(i1, . . . , ik−1, i), with i = 1, . . . , n, satisfying (b), (d) and (e) follows from
(∗) applied to

ỹ(i1, . . . , ik−1)� y(i1, . . . , ik−1) ≤ nxk.

(To see that the latter inequality holds, note that y(i1, . . . , ik−1) � u′′, which follows by
repeated use of (e).) The existence of ỹ(i1, i2, . . . , ik) satisfying (a) and (c) follows from
Axiom (A2).

We claim that the nm elements
(
y(i1, . . . , im)

)
witness the weak (m,nm)-divisibility of

u. Indeed, it follows from (d) and (e) that y(i1, . . . , im) ≤ xj for all j = 1, . . . ,m, whence

m·y(i1, . . . , im) ≤ x1 + x2 + · · ·+ xm ≤ u.

It follows from (b) and (c) that the sum of the elements y(i1, . . . , im) is greater than or
equal to u′.

If any of the divisibility numbers Divm(u,A), Decm(u,A), and w-Divm(A) is less than m,
then u (or a multiple of u) must be properly infinite, as shown below. We shall pursue this
and related questions in more detail in Section 9.

7



Proposition 3.4. Let A be a C∗-algebra and let u ∈ Cu(A).

(i) If u is properly infinite, then Divm(u,A) = 1 for all integers m ≥ 1.

(ii) If 1 ≤ n < m are integers and if u is either (m,n)-divisible, (m,n)-decomposable or
weakly (m,n)-divisible, then nu is properly infinite, i.e., nu = 2nu.

(iii) If 1 ≤ n < m are integers and if u is compact and (m,n)-divisible, then u is properly
infinite.

Proof. (i). If u is properly infinite, then mu ≤ u for all m, whence Divm(u,A) = 1 .
(ii). Assume that u is weakly (m,n)-divisible and take u′ � u. Then there exist

x1, . . . , xn such that mxi ≤ u for all i, and u′ ≤
∑n

i=1 xi. Thus,

mu′ ≤
n∑
i=1

mxi ≤ nu.

As this holds for all u′ � u, we get ((m − n) + n)u = mu ≤ nu. This entails that
(k(m− n) + n)u ≤ nu for all positive integers k, whence `u ≤ nu for all positive integers
`. In particular, 2nu ≤ nu, which implies that nu is properly infinite.

Next, suppose that u is (m,n)-decomposable and let u′ � u. Then there exist
x1, . . . , xm such that

∑m
i=1 xi ≤ u and u′ ≤ nxi for all i. Thus,

mu′ ≤ n
m∑
i=1

xi ≤ nu.

Arguing as before, we conclude that nu is properly infinite.
Finally note that if u is (m,n)-divisible, then it is both (m,n)-decomposable and weakly

(m,n)-divisible, whence nu is properly infinite.
(iii). Since Divm(u,A) = n < m and u � u, there exists x such that mx ≤ u ≤ nx.

Arguing as in the proof of part (ii) this implies that `x ≤ nx for all positive integers `.
This shows that 2u ≤ 2nx ≤ nx ≤ mx ≤ u, whence u is properly infinite.

Remark 3.5. By functoriality, each ∗-homomorphism ϕ : A → B between C∗-algebras A
and B induces a morphism Cu(ϕ) : Cu(A)→ Cu(B) which preserves order, addition, and
the relation of compact containment. Thus, for each u ∈ Cu(A), and with v = Cu(ϕ)(u),
we have:

Divm(v,B) ≤ Divm(u,A), Decm(v,B) ≤ Decm(u,A), w-Divm(v,B) ≤ w-Divm(u,A).

In particular, if A and B are unital C∗-algebras, and if Divm(〈1B〉, B) > Divm(〈1A〉, A)
for some m (or if the corresponding inequality holds for one of the other two divisibility
numbers), then one can not find a unital embedding of A into B. Divisibility numbers thus
serve as an obstruction for embedding a unital C∗-algebra with nice divisibility properties
into a unital C∗-algebra with less nice divisibility properties.
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The three divisibility properties behave well with respect to inductive limits thanks to the
sequential continuity of the functor Cu(·):

Proposition 3.6. Let A = lim−→(Ai, ϕi,j) be a sequential inductive limit of C∗-algebra. Let
u ∈ Cu(A1) and, for each i, denote by ui ∈ Cu(Ai) and u∞ ∈ Cu(A) the images of u in
Cu(Ai) and Cu(A), respectively. Then:

Divm(u∞, A) ≤ inf
i

Divm(ui, Ai), Decm(u∞, A) ≤ inf
i

Decm(ui, Ai),

w-Divm(u∞, A) ≤ inf
i

w-Divm(ui, Ai).

If u is compact (i.e., if u� u), then the above inequalities are equalities.

Proof. We will only prove the statements above in the former case; the proofs for the two
other cases are similar.

The inequalities Divm(u∞, A) ≤ Divm(ui, Ai), with i = 1, 2, . . . , follow from Re-
mark 3.5. Suppose now that u is compact. Set Divm(u∞, A) = n. Then there exists
x ∈ Cu(A) such that mx ≤ u∞ ≤ nx. By Proposition 2.1 (i) and compactness of u∞,
it follows that x is the image of some y ∈ Cu(Ai) for some i. By Axiom (A2) of the
Cuntz semigroup and by compactness of u∞ there exists y′ � y in Cu(Ai) such that
u∞ ≤ nCu(ϕi,∞)(y′). Since the ui’s are compact, Proposition 2.1 (ii) implies that there
exists j > i such that

mCu(ϕi,j)(y
′) ≤ uj ≤ nCu(ϕi,j)(y

′).

Thus uj is (m,n)-divisible in Cu(Aj).

Definition 3.7. Let A be a σ-unital C∗-algebra. Then A contains a strictly positive
element. This element represents a class in Cu(A), which is independent of the choice
of the strictly positive element, and which we shall denote by 〈A〉. If A is unital, then
〈A〉 = 〈1A〉. We shall write w-Divm(A), Decm(A), and Divm(A) for w-Divm(〈A〉, A),
Decm(〈A〉, A), and Divm(〈A〉, A), respectively.

If A and B are unital C∗-algebras such that there exist unital ∗-homomorphisms A → B
and B → A, then, by Remark 3.5, we must have

Divm(A) = Divm(B), Decm(A) = Decm(B), w-Divm(A) = w-Divm(B)

for all m. This applies in particular to the situation where A is any unital C∗-algebra and
B = A ⊗ D for some unital C∗-algebra D which has a character. In general, if D is any
unital C∗-algebra, possibly without characters, the divisibility numbers associated with
A⊗D are smaller than or equal to those of A.

Examples and remarks

Let us first examine the divisibility numbers for matrix algebras:
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Example 3.8. Let m ≥ 2 and k ≥ 2 be integers. Using that(
Cu(Mk(C)), 〈1〉

) ∼= ({0, 1, 2, 3, . . . ,∞}, k),
an elementary algebraic argument yields that

w-Divm(Mk(C)) = Decm(Mk(C)) = Divm(Mk(C)),

and

Divm(Mk(C)) =


⌈

k

b k
mc

⌉
, if m ≤ k,

∞, if m > k.
(3.1)

Here d·e and b·c are the “ceiling” and “floor” functions. In particular, Divm(Mk(C)) = m
if and only if m |k, and Divm(Mk(C)) = m+ 1 if m -k and m(m− 1) ≤ k.

Definition 3.9 (The rank of a C∗-algebra). Let A be a C∗-algebra. Let rank(A) denote
the smallest positive integer n for which A has an irreducible representation on a Hilbert
space of dimension n, and set rank(A) = ∞ if A has no finite dimensional (irreducible)
representation.

Note that rank(A) = 1 if and only if A has a character. We remind the reader about the
following classical result due to Glimm. (We include a short proof, as this is an important
result for our paper, and because we didn’t find an exact reference for this statement.)

Proposition 3.10 (Glimm). Let A be a (not necessarily unital) C∗-algebra and let n ≥ 1
be an integer. Then there is a non-zero ∗-homomorphism CMn(C) → A if and only if A
admits at least one irreducible representation on a Hilbert of dimension ≥ n.

Proof. “Only if” is clear. To prove the “if”-part of the proposition, let π be an irreducible
representation of A on a Hilbert space H of dimension ≥ n. Let P be an n-dimensional
projection on H. By Kadison’s transitivity theorem for each unitary operator U : P (H)→
P (H) there is a contraction a ∈ A such that π(a)P = U . As a is a contraction, this
entails π(a)P = Pπ(a). Let B be the sub-C∗-algebra of A consisting of all elements a such
that π(a)P = Pπ(a), and define a ∗-homomorphism ϕ : B → Mn(C) by ϕ(a) = Pπ(a)P ,
a ∈ B. The argument above shows that ϕ is surjective. Hence, there is an isomorphism
Mn(C) → B/ker(ϕ). By projectivity of CMn(C) this isomorphism lifts to a (non-zero)
∗-homomorphism CMn(C)→ B ⊆ A.

It follows from Remark 3.5 that w-Divm(A), Decm(A), and Divm(A) are greater than or
equal to Divm(Mn(C)) if rank(A) = n. In particular, these three quantities are infinite
when m > rank(A).

Example 3.11 (Simple C∗-algebras). If A is a simple, unital, infinite dimensional C∗-
algebra, then Divm(A), Decm(A), and w-Divm(A) are finite for all positive integers m.
Indeed, by the assumption that A is infinite dimensional, it follows that there is a non-zero
x ∈ Cu(A) such that mx ≤ 〈1A〉. As every simple unital C∗-algebra is algebraically simple,
it follows that 〈1A〉 ≤ nx for some positive integer n, i.e., 〈1A〉 is (m,n)-divisible. Hence
Divm(A) ≤ n, which entails that also Decm(A) ≤ n and w-Divm(A) ≤ n.
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Example 3.12. The dimension drop C∗-algebra Zp,q, associated with the positive integers
p and q, is defined to be

Zp,q = {f ∈ C([0, 1],Mp ⊗Mq | f(0) ∈Mp ⊗ C1q, f(1) ∈ C1p ⊗Mq}.

Note that rank(Zp,q) = min{p, q}. It was shown in [Rør04, Lemma 4.2] (and its proof)
that Divm(Zm,m+1) = m+ 1. By Remark 3.5, it follows that if Zm,m+1 maps unitally into
A, then Divm(A) ≤ m+ 1. Moreover, as shown in [RW10, Proposition 5.1], if A is a unital
C∗-algebra of stable rank one, then Divm(A) ≤ m+ 1 if and only if Zm,m+1 maps unitally
into A.

Remark 3.13 (Almost divisibility). The property “almost divisibility” of a C∗-algebra is
expressed by saying that Divm(A) ≤ m+ 1 for all integers m ≥ 1. If every dimension drop
algebra Zm,m+1 maps unitally into A, or if the Jiang-Su algebra maps unitally into A, then
A is almost divisible.

Remark 3.14 (Non-embeddability of the Jiang-Su algebra). It was shown in [DHTW09]
that there is a simple unital infinite dimensional nuclear C∗-algebra A such that the dimen-
sion drop C∗-algebra Z3,4, and hence the Jiang-Su algebra Z, do not embed unitally into A.
The divisibility properties of A were not explicitly mentioned in [DHTW09], but it is easily
seen (using Lemma 6.1, that is paraphrased from [Rør04, Lemma 4.3]) that Div3(A) > 4.
We shall in Section 7 give further examples of simple unital infinite dimensional C∗-algebras
where the divisibility numbers attain non-trivial values.

Remark 3.15 (Real rank zero C∗-algebras). It was shown in [PR04, Proposition 5.7] that
if A is a unital C∗-algebra of real rank zero, then rank(A) ≥ n if and only if there exists a
unital embedding of a finite dimensional C∗-algebra of rank ≥ n into A. Combining this
with Remark 3.8 we see that Divm(A) ≤ m + 1 whenever A is a unital C∗-algebra of real
rank zero and with rank(A) ≥ m(m− 1). In particular, every unital C∗-algebra A of real
rank zero and with rank(A) =∞ is almost divisible.

Kirchberg considered in [Kir06] a covering number of a unital C∗-algebra B. Let us recall
the definition:

Definition 3.16 (Kirchberg). Let m ∈ N. The covering number of a unital C∗-alge-
bra B, denoted by cov(B,m), is the least positive integer n such that there exist finite
dimensional C∗-algebras F1, F2, . . . , Fn with rank(Fi) ≥ m, ∗-homomorphisms ϕi : CFi →
B, and d1, d2, . . . , dn ∈ B such that 1B =

∑n
i=1 d

∗
iϕi(1Fi

⊗ ι)di, where CFi = Fi⊗C0((0, 1])
and ι(t) = t.

Kirchberg’s covering number cov(B,m) relates to our w-Divm(B) as follows.

Proposition 3.17. Let B be a unital C∗-algebra and let m be a positive integer.

(i) cov(B,m) is the least n for which there exist x1, x2, . . . , xn ∈ Cu(B) such that

xi ≤ 〈1B〉 ≤ x1 + x2 + · · ·+ xn, xi =

ki∑
j=i

mijyij (3.2)

for some integers mij ≥ m, some positive integers ki, and some yij ∈ Cu(A).
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(ii) cov(B,m) ≤ w-Divm(B) ≤ (2m− 1) cov(B,m).

Proof. (i). Assume that n ≥ cov(B,m) and let Fi, ϕi : CFi → B, and di ∈ B be as in
Definition 3.16. Write Fi =

⊕ki
j=1Mmij

(C) with mij ≥ m. Let e(ij) be a one-dimensional
projection in Mmij

(C). It then follows from Lemma 2.4 that the elements

xi = 〈ϕi(1Fi
⊗ ι)〉, yij = 〈ϕi(e(ij) ⊗ ι)〉

satisfy the relations in (3.2).
Suppose, conversely, that n ≥ 1 is chosen such that there are elements xi and yij in

Cu(B) satisfying (3.2). Put Fi =
⊕ki

j=1Mmij
(C). By the assumption that

∑ki
j=imijyij ≤

〈1B〉 it follows from Lemma 2.4 (ii) that there are mutually orthogonal positive elements
aijr in B, where 1 ≤ i ≤ n, 1 ≤ j ≤ ki, 1 ≤ r ≤ mij, such that 〈aijr〉 = yij. We can
further assume that the r positive elements aij1, . . . , aijr are pairwise equivalent. It then
follows from the universal property of the cone over a matrix algebra (see Remark 2.3)
that there are ∗-homomorphisms ϕi : CFi → B such that 〈ϕi(e(ij) ⊗ ι)〉 = yij, where e(ij)

is a one-dimensional projection in the summand Mmij
(C) of Fi. The existence of di ∈ B

with 1B =
∑n

i=1 d
∗
iϕi(1Fi

⊗ ι)di follows from Lemma 2.4 (i). Thus cov(B,m) ≤ n.
(ii). To prove the first inequality, assume that w-Divm(B) = n <∞ and take y1, . . . , yn

such that myj ≤ 〈1B〉 ≤ y1 + · · ·+ yn. Then (3.2) holds with ki = 1 and xi = myi.
Assume next that cov(B,m) = n < ∞, and find elements xi and yij satisfying the

relations in (3.2). Upon replacing yij with an integral multiple of yij we can assume that
m ≤ mij < 2m for all i and j. Let zik, 1 ≤ k ≤ 2m− 1, be the sum of a suitable subset of

the yij’s such that
∑2m−1

k=1 zik =
∑ki

j=imijyij = xi. The (2m− 1)n elements (zik) will then
witness that w-Divm(B) ≤ (2m− 1)n.

4 The asymptotic divisibility numbers

One can collect the sequence of divisibility numbers
(
Divm(A)

)∞
m=2

of a unital C∗-algebra
A into a single divisibility number as follows:

Div∗(A) = lim inf
m→∞

Divm(A)

m
.

In a similar way one can define Dec∗(A) and w-Div∗(A). Propositions 4.1 and 4.2 below
hold verbatim for those quantities as well. However, to keep the exposition bounded, we
only treat the case of “Div”.

It follows from Proposition 3.4 that Div∗(A) = 0 if and only if A is properly infinite
and that Div∗(A) ≥ 1 if A is not properly infinite.

Proposition 4.1. Let A be a unital C∗-algebra.

(i) Divm(A) ≤ mDiv∗(A) + 1 for all integers m ≥ 2.

(ii) Div∗(A) = limm→∞Divm(A)/m (the limit always exists, but is possibly equal to ∞).
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(iii) If A is not properly infinite, then Div∗(A) = 1 if and only if Divm(A) ≤ m + 1 for
all integers m ≥ 2.

It follows from Proposition 3.4 and from (iii) above, that A is almost divisible if and only
if Div∗(A) ≤ 1 (i.e., if and only if Div∗(A) = 0 or Div∗(A) = 1).

Proof. (i). If Div∗(A) = ∞ there is nothing to prove. If Div∗(A) = 0, then A is properly
infinite and so the inequality holds trivially. Assume that 1 ≤ Div∗(A) < ∞. Let m ≥ 2
be given. Let L be the smallest integer strictly greater than mDiv∗(A). We show that
Divm(A) ≤ L. Choose α > 1 and a positive integer r0 such that

α
r0 + 1

r0
mDiv∗(A) ≤ L.

By the definition of Div∗(A) there is k ≥ r0m such that ` := Divk(A) ≤ αkDiv∗(A). Take
x ∈ Cu(A) such that kx ≤ 〈1A〉 ≤ `x. Write k = rm+d, with 0 ≤ d < m and r ≥ r0. Also,
write ` = tr − d′, with 0 ≤ d′ < r and t ≥ 1. Put y = rx ∈ Cu(A). Then my ≤ 〈1A〉 ≤ ty.
With d · e denoting the ceiling function, we have

Divm(A) ≤ t = d `
r
e

=
⌈ `

k − d
m
⌉

≤
⌈
α

k

k − d
mDiv∗(A)

⌉
≤

⌈
α
r + 1

r
mDiv∗(A)

⌉
≤

⌈
α
r0 + 1

r0
mDiv∗(A)

⌉
≤ L.

(ii). It follows from (i) that

lim sup
m→∞

Divm(A)

m
≤ Div∗(A) = lim inf

m→∞

Divm(A)

m
,

and so the claims follows.
(iii). The “if” part is trivial, and the “only if” part follows from (i).

We proceed to discuss how Div∗( · ) behaves under forming matrix algebras:

Proposition 4.2. Let A be a unital C∗-algebra.

(i) Div∗(Mn(A)) ≤ Div∗(A) for all integers n ≥ 2.

(ii) If Cu(A) is almost unperforated, then Div∗(Mn(A)) = Div∗(A) for all integers n ≥ 2.
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Proof. (i) follows from Remark 3.5 (as A embeds unitally into Mn(A)).
(ii). Assume that Cu(A) is almost unperforated. We show first that

Div∗(A) ≤ n+ 1

n− 1
Div∗(Mn(A)) (4.1)

for all n ≥ 2. To see this take any integer m ≥ 2, and use Proposition 4.1 (i) to see that
` := Divm(Mn(A)) ≤ mDiv∗(Mn(A)) + 1. Write m = r(n + 1) + d and ` = t(n− 1)− d′,
where r and t are positive integers, 0 ≤ d < n+ 1, and 0 ≤ d′ < n− 1.

Identify Cu(Mn(A)) with Cu(A) in the canonical way, where 〈1Mn(A)〉 ∈ Cu(Mn(A)) is
identified with n〈1A〉. Under this identification we can find x ∈ Cu(A) such that mx ≤
n〈1A〉 ≤ `x. In particular,

(n+ 1)rx ≤ n〈1A〉 ≤ (n− 1)tx,

which by the assumption that Cu(A) is almost unperforated implies that rx ≤ 〈1A〉 ≤ tx.
This shows that

Divr(A)

r
≤ t

r
= r−1

⌈ `

n− 1

⌉
≤ r−1

( `

n− 1
+ 1
)

≤ r−1
(mDiv∗(Mn(A)) + 1

n− 1
+ 1
)

≤ n+ 1

n− 1
Div∗(Mn(A)) + r−1

n

n− 1
Div∗(Mn(A)) + r−1

n

n− 1
.

Now, r →∞ as m→∞, and so (4.1) follows by letting m tend to infinity.
To complete the proof of (ii), take n ≥ 2. By (i) and (4.1) we have:

Div∗(A) ≤ kn+ 1

kn− 1
Div∗(Mnk(A)) ≤ kn+ 1

kn− 1
Div∗(Mn(A))

for all k ≥ 1, which shows that Div∗(A) ≤ Div∗(Mn(A)).

We have previously remarked that Divm(A) = ∞ whenever m > rank(A). It follows
that Div∗(A) = ∞ whenever rank(A) < ∞, i.e., whenever A admits a non-zero finite
dimensional representation.

Remark 4.3. It can happen that Div∗(Mn(A)) < Div∗(A). Take for example A such
that Mn(A) is properly infinite, but A itself is not properly infinite, cf. [Rør03]. Then
Div∗(Mn(A)) = 0 and Div∗(A) ≥ 1.

It is an important open problem if Div∗(A) ≤ 1 (i.e., if A is almost divisible) for every
(simple) unital infinite dimensional C∗-algebra A for which Cu(A) is almost unperforated.
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5 Finite-, infinite-, and ω-divisibility

The property that any of the divisibility numbers Divm(A), Decm(A), and w-Divm(A) is
finite, when A is a unital C∗-algebra, has interpretations in terms of structural properties
of the C∗-algebra A. We have already noted that the divisibility numbers always are finite
when A is a simple C∗-algebra, and the corresponding structural properties of the C∗-al-
gebra are, as we shall see, trivially satisfied for simple C∗-algebras. The correct definition
of “finite divisibility” in the non-unital case is what we call (m,ω)-divisibility as defined
below.

Definition 5.1. Let A be a C∗-algebra, let u ∈ Cu(A), and let m be a positive integer.
Then:

(i) u is (m,ω)-divisible if for all u′ ∈ Cu(A) with u′ � u there exists x ∈ Cu(A) such
that mx ≤ u and u′ ≤ nx for some positive integer n.

(ii) u is (m,ω)-decomposable if for all u′ ∈ Cu(A) with u′ � u there exist elements
x1, x2, . . . , xm ∈ Cu(A) such that x1 + x2 + · · · + xm ≤ u and u′ ≤ nxj for some
positive integer n and for all j.

(iii) u is weakly (m,ω)-divisible if for all u′ ∈ Cu(A) with u′ � u there exist elements
x1, x2, . . . , xn in Cu(A) such that mxj ≤ u for all j and u′ ≤ x1 + x2 + · · ·+ xn.

Remark 5.2. If u in Definition 5.1 is compact, then u is (m,ω)-divisible, (m,ω)-decompo-
sable, respectively, weakly (m,ω)-divisible if and only if Divm(u,A) <∞, Decm(u,A) <∞,
respectively, w-Divm(u,A) <∞, cf. Remark 3.2.

In the next result we express (m,ω)-divisibility in terms of structural properties of the
C∗-algebra. Part (iii) is almost contained in [Kir06] (see [Kir06, Definition 3.1] and [Kir06,
Remark 3.3 (7)] and compare with Definition 3.16 and Proposition 3.17). Recall the defini-
tion of the rank of a C∗-algebra from Definition 3.9, and that CMm(C) = Mm(C)⊗C0((0, 1])
is the cone over Mm(C).

Theorem 5.3. Let A be a σ-unital C∗-algebra and let e be a strictly positive element of
A. (If A is unital, we can take e to be the unit of A.) Put u = 〈e〉 = 〈A〉.

(i) u is (m,ω)-divisible if and only if for every ε > 0 there exists a ∗-homomorphism
ϕ : CMm(C) → A such that (e − ε)+ belongs to the closed two-sided ideal generated
by the image of ϕ.

(ii) u is (m,ω)-decomposable if and only if for every ε > 0 there exist mutually orthogonal
positive elements b1, b2, . . . , bm in A such that (e− ε)+ belongs to the closed two-sided
ideal generated by bi for each i.

(iii) The following are equivalent:

(a) u is weakly (m,ω)-divisible,
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(b) rank(A) ≥ m,

(c) there exist ∗-homomorphisms ϕi : CMm(C) → A, i = 1, 2, . . . , n, for some n,
such that (e − ε)+ belongs to the closed two-sided ideal generated by the union
of the images of the ϕi’s.

Proof. (i). Let us assume that u is (m,ω)-divisible. Let ε > 0. Find x ∈ Cu(A) and a
positive integer n such that mx ≤ u and 〈(e − ε/2)+〉 ≤ nx. Choose a positive element
a in A ⊗ K such that x = 〈a〉, and choose η > 0 such that 〈(e − ε)+〉 ≤ n〈(a − η)+〉.
By Lemma 2.5 there exists ϕ : CMm(C) → A such that 〈ϕ(e11 ⊗ ι)〉 = 〈(a − η)+〉. Then
〈(e− ε)+〉 ≤ n〈ϕ(e11⊗ ι)〉 which implies that (e− ε)+ belongs to the closed two-sided ideal
generated by the image of ϕ.

Suppose conversely that for every ε > 0 there exists ϕ : CMm → A such that (e− ε)+
is in the closed two-sided ideal generated by ϕ(e11⊗ ι). Set 〈ϕ(e11⊗ ι)〉 = x. Then mx ≤ u
by Lemma 2.5, while 〈(e − 2ε)+〉 ≤ nx for some positive integer n. This shows that u is
(m,ω)-divisible.

(ii). “Only if”. Let ε > 0 and suppose that b1, b2, . . . , bm in A exist with the stipulated
properties. Set 〈bj〉 = xj ∈ Cu(A). Then

x1 + x2 + · · ·+ xm = 〈b1 + b2 + · · ·+ bm〉 ≤ u.

Since (e− ε)+ belongs to the closed two-sided ideal generated by bj, 〈(e− 2ε)+〉 ≤ nxj for
some integer n ≥ 1. It follows that u is (m,ω)-decomposable.

“If”. If u = 〈e〉 is (m,ω)-decomposable and if ε > 0, then there are positive elements
a1, a2, . . . , am in A ⊗ K such that 〈a1〉 + 〈a2〉 + · · · + 〈am〉 ≤ u and 〈(e − ε/2)+〉 ≤ n〈aj〉
for some positive integer n. Choose η > 0 such that 〈(e − ε)+〉 ≤ n〈(aj − η)+〉 for all j.
By Lemma 2.4 (ii) there are pairwise orthogonal positive elements b1, b2, . . . , bm in A such
that bj ∼ (aj − η)+. Then the closed two-sided ideal generated by bj contains (e− ε)+ for
each j.

(iii). (a) ⇒ (b). Assume that u is weakly (m,ω)-divisible. Suppose that A has an
irreducible representation π : A → B(Ck) = Mk(C) of finite positive dimension k. Then
π is necessarily surjective. Since (m,ω)-divisibility is preserved by ∗-homomorphisms (cf.
Remark 3.5), we conclude that Mk(C) is weakly (m,ω)-divisible. But then k ≥ m, cf.
Example 3.8. Hence (b) holds.

(b) ⇒ (c). Assume that (b) holds. Let (ϕi)i∈I be the family of all non-zero ∗-ho-
momorphisms ϕi : CMm(C) → A and let I be the closed two-sided ideal in A generated
by the images of all ϕi’s. Thus each ϕi maps CMm(C) into I. We claim that I = A.
Assume, to reach a contradiction, that I 6= A. By the assumption that rank(A) ≥ m,
all irreducible representations of A/I have dimension at least m. It follows from Glimm’s
lemma (Proposition 3.10) that there is a non-zero ∗-homomorphism CMm(C) → A/I,
which by projectivity lifts to a ∗-homomorphism ϕ : CMm(C)→ A. But the image of ϕ is
not contained in I, which is a contradiction.

For each finite subset F of I consider the closed two-sided ideal IF of A generated by⋃
i∈F ϕi(CMm(C)). Then A is the closure of the union of the upwards directed family of
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ideals (IF ). Hence, for each ε > 0, there is a finite subset F of I such that (e− ε)+ belongs
to IF . Thus (c) holds.

(c) ⇒ (a). Assume that (c) holds. Set zi = 〈ϕi(e11 ⊗ ι)〉 for i = 1, 2, . . . , n. Then
mzi ≤ u for all i. Moreover, (a − ε)+ belongs to the algebraic ideal generated by the n
elements ϕi(e11 ⊗ ι), whence 〈(a− ε)+〉 ≤

∑n
j=1 njzj for suitable positive integers nj. Put

N =
∑
nj and let x1, x2, . . . , xN be a listing of the elements z1, . . . , zn, with zj repeated

nj times. Then mxj ≤ u and (a− ε)+ ≤ x1 + x2 + · · ·+ xN . This shows that u is weakly
(m,ω)-divisible.

The theorem above can be simplified in the case where u is compact, and in particular in
the case where A is unital:

Corollary 5.4. Let A be a unital C∗-algebra, and let m be a positive integer. Then:

(i) Divm(A) <∞ if and only if there exists a ∗-homomorphism ϕ : CMm(C)→ A whose
image is full in A.

(ii) Decm(A) < ∞ if and only if there exist full, pairwise orthogonal positive elements
b1, b2, . . . , bm in A.

(iii) The following are equivalent:

(a) w-Divm(A) <∞,

(b) rank(A) ≥ m,

(c) there exist ∗-homomorphisms ϕi : CMm(C) → A, i = 1, 2, . . . , n, for some n,
such that the union of their images is full in A.

Propositions 3.10 (Glimm), Proposition 3.3, and Corollary 5.4 (i) immediately imply:

Corollary 5.5. If A is a unital, infinite dimensional, simple C∗-algebra, then the three
divisibility numbers Divm(A), Decm(A), and w-Divm(A) are finite for every integer m ≥ 1.

Let us also note what it means to have infinite w-Divm( · ) numbers:

Corollary 5.6. Let A be a unital C∗-algebra.

(i) A admits a character if and only if w-Div2(A) =∞.

(ii) A admits a finite dimensional representations if and only if w-Divm(A) = ∞ for
some integer m ≥ 2.

Remark 5.7 (The Global Glimm Halving Problem). Glimm’s lemma (Proposition 3.10)
says that there exists a non-zero ∗-homomorphism from CMn(C) into a C∗-algebra A if and
only if A admits an irreducible representation of dimension at least n. It is not known how
“large” one can make the image of such a ∗-homomorphism. In particular, it is not known
for which C∗-algebras A one can find a ∗-homomorphism CMn(C)→ A whose image is full
in A (i.e., the image is not contained in any proper closed two-sided ideal in A). For n = 2
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this problem is known as the “Global Glimm Halving Problem” (see [BK04a], [BK04b] and
[KR02]). A unital C∗-algebra A is said to have the Global Glimm Halving Property if there
is a ∗-homomorphism CM2(C)→ A with full image.

More specifically, one can ask if any (unital) C∗-algebra, which admits no finite di-
mensional representation, satisfies the Global Glimm Halving Property. In view of Corol-
lary 5.4, this problem for unital C∗-algebras A may be restated as follows: Does Div2(A) =
∞ imply that w-Divm(A) = ∞ for some positive integer m? For a non-unital C∗-algebra
A, the one can restate the problem in the following way: Does Div2(A) = ∞ imply that
〈A〉 fails to be (m,ω)-divisible for some positive integer m.

It is shown in [KR02] that if A is a weakly purely infinite C∗-algebra, then A is purely
infinite if and only if all hereditary sub-C∗-algebras of A have the Global Glimm Halving
Property. (It is easy to see that the rank of any weakly purely infinite C∗-algebra is
infinite.) It is an open problem if all weakly purely infinite C∗-algebras are purely infinite.

Remark 5.8. Let A be a unital C∗-algebra. It follows from Proposition 3.3 (and also from
Corollary 5.4) that

Divm(A) <∞ =⇒ Decm(A) <∞ =⇒ w-Divm(A) <∞

for all positive integers m. None of the two reverse implications hold in general.
For each integer m ≥ 2 let p in C(S2m) ⊗ K be a projection of (complex) dimension

m and with non-zero Euler class (the existence of such p is guaranteed by [Hus94, p.
278, Corollary 9.8]). As all projections in C(S2m) ⊗ K of dimension < m have trivial
Euler class, it follows that p has no non-trivial subprojection. The unital C∗-algebra A =
p(C(S2m)⊗K)p is a homogeneous C∗-algebra of rank m. Hence w-Divm(A) <∞. Suppose
that Decm(A) <∞. Then, by Corollary 5.4 (ii), there would exist full, pairwise orthogonal,
positive elements b1, . . . , bm in A. This would entail that each bj is one-dimensional in each
fiber of A, and hence that fj.bj is a one-dimensional projection for some fj ∈ C(S2m). But
this contradicts the fact that p has no proper subprojections.

To see that Decm(A) < ∞ does not imply Divm(A) < ∞, consider the C∗-algebra
B = C(S2)⊗K, let p ∈ B be the “Bott projection” (i.e., the rank one projection associated
to the Hopf line bundle over S2) and let q ∈ B be a trivial (m− 1)-dimensional projection
orthogonal to p. Put A = (p+ q)B(p+ q). It follows from a K-theoretical argument that
p + q cannot be written as the sum of m pairwise orthogonal and equivalent projections
(because [p+q] is not divisible by m in K0(A)). The unit of A can be written as the sum of
m (necessarily full) projections, so Decm(A) <∞. Assume that Divm(A) <∞. Then, by
Corollary 5.4 (i), there is a ∗-homomorphism ϕ : CMm(C) → A whose image is full in A.
As explained in Remark 2.3, this entails that there exist full, pairwise orthogonal, pairwise
equivalent, positive elements b1, b2, . . . , bm in A. Arguing as in the paragraph above, we can
assume that each bj is in fact a projection. But that contradicts the fact that 1A = p + q
is not the sum of m pairwise equivalent projections.
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6 Divisibility and comparability

Let A and B be C∗-algebras. Then there is a natural bi-additive map

Cu(A)× Cu(B)→ Cu(A⊗B), (x, y) 7→ x⊗ y,

defined as follows: If x = 〈a〉 and y = 〈b〉 with a a positive element in A ⊗ K and b a
positive element in B⊗K, then x⊗ y = 〈a⊗ b〉, where we identify (A⊗K)⊗ (B⊗K) with
A⊗B ⊗K. Note that x1 ⊗ y1 ≤ x2 ⊗ y2 if x1 ≤ x2 and y1 ≤ y2.

Part (i) of the following result was (implicitly) proved in [Rør04, Lemma 4.3], and was
used to prove that Cu(A⊗Z) is almost unperforated for all unital C∗-algebras A.

Lemma 6.1. Let A and B be unital C∗-algebras and let 1 ≤ m < n be integers.

(i) Let x, y ∈ Cu(A) be such that nx ≤ my. If B is (m,n)-divisible, then x ⊗ 〈1B〉 ≤
y ⊗ 〈1B〉.

(ii) Let x1, x2, . . . , xm, y ∈ Cu(A) be such that nxj ≤ y for all j. If B is (m,n)-decompo-
sable, then

(x1 + x2 + · · ·+ xm)⊗ 〈1B〉 ≤ y ⊗ 〈1B〉.

(iii) Let x, y1, y2, . . . , yn ∈ Cu(A) be such that x ≤ myj for all j. If B is weakly (m,n)-
divisible, then

x⊗ 〈1B〉 ≤ (y1 + y2 + · · ·+ yn)⊗ 〈1B〉.

Proof. (i). Take z ∈ Cu(B) such that mz ≤ 〈1B〉 ≤ nz. Then

x⊗ 〈1B〉 ≤ x⊗ nz = nx⊗ z ≤ my ⊗ z = y ⊗mz ≤ y ⊗ 〈1B〉.

(ii). Take z1, z2, . . . , zm ∈ Cu(B) such that z1 + z2 + · · ·+ zm ≤ 〈1B〉 ≤ nzj. Then

(x1 + x2 + · · ·+ xm)⊗ 〈1B〉 ≤ x1 ⊗ nz1 + x2 ⊗ nz2 + · · ·+ xm ⊗ nzm
= nx1 ⊗ z1 + nx2 ⊗ z2 + · · ·+ nxm ⊗ zm
≤ y ⊗ (z1 + z2 + · · ·+ zm)

≤ y ⊗ 〈1B〉.

(iii). Take z1, z2, . . . , zn ∈ Cu(B) such that mzj ≤ 〈1B〉 ≤ z1 + z2 + · · ·+ zn. Then

(y1 + y2 + · · ·+ yn)⊗ 〈1B〉 ≥ y1 ⊗mz1 + y2 ⊗mz2 + · · ·+ yn ⊗mzn
= my1 ⊗ z1 +my2 ⊗ z2 + · · ·+myn ⊗ zn
≥ x⊗ (z1 + z2 + · · ·+ zn)

≥ x⊗ 〈1B〉.
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The lemma above can loosely be paraphrased as follows: Good divisibility properties of B
ensure good comparability properties of A⊗B, and bad comparability properties of A⊗B
entail bad divisibility properties of B.

We proceed to show that infinite tensor products of (suitable) unital C∗-algebras cannot
have very bad comparability properties.

Lemma 6.2. Let n ≥ 1 be an integer and let A1, A2, . . . , An be unital C∗-algebras such
that N := max

1≤k≤n
w-Div2(Ak) <∞. Then

w-Divm(
n⊗
k=1

Ak) ≤ N dlog2me,

whenever 2 ≤ m ≤ 2n.

Proof. Put r = dlog2me. We show that w-Div(
⊗r

k=1Ak) ≤ N r. This will show that
w-Div(

⊗n
k=1Ak) ≤ N r by Remark 3.5 because r ≤ n.

For each k = 1, 2, . . . , r and i = 1, 2, . . . , N , find z
(k)
i ∈ Cu(Ak) such that 2z

(k)
i ≤

〈1Ak
〉 ≤

∑N
i=1 z

(k)
i . Given a multi-index (i1, i2, . . . , ir) ∈ {1, . . . , N}r, put

zi1,i2,...,ir = z
(1)
i1
⊗ z(2)i2

⊗ · · · ⊗ z(r)ir ∈ Cu
( r⊗
k=1

Ak

)
.

Then

m · zi1,i2,...,ir ≤ 2n · zi1,i2,...,ir = (2z
(1)
ii

)⊗ (2z
(2)
i2

)⊗ · · · ⊗ (2z
(r)
ir

)

≤
〈
1A1 ⊗ 1A2 ⊗ · · · ⊗ 1Ar

〉
≤
( N∑
i=1

z
(1)
i

)
⊗
( N∑
i=1

z
(2)
i

)
⊗ · · · ⊗

( N∑
i=1

z
(r)
i

)
=

N∑
i1,i2,...,ir=1

zi1,i2,...,ir .

The N r elements (zi1,i2,...,ir) thus witness that
⊗r

k=1Ak is weakly (m,N r)-divisible.

Recall that a C∗-algebra A has the Corona Factorization Property if and only if all full
projections inM(A⊗K) are properly infinite. It was shown in [OPR] that if A is a sepa-
rable C∗-algebra, then A and all its closed two-sided ideals have the Corona Factorization
Property if and only if for every integer m ≥ 2, and for all x′, x, y1, y2, . . . in Cu(A) such
that x′ � x and x ≤ myj for all j, one has x′ ≤ y1 + y2 + · · ·+ yN for some integer N ≥ 1.

Proposition 6.3. Let
(
Ak
)∞
k=1

be a sequence of unital C∗-algebras such that

sup
k

w-Div2(Ak) <∞.

It follows that the C∗-algebra
⊗∞

k=1Ak and all its closed two-sided ideals have the Corona
Factorization Property. In particular, if A is a unital C∗-algebra without characters then⊗∞

k=1A and all its closed two-sided ideals have the Corona Factorization Property.
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Proof. Put B =
⊗∞

k=1Ak, and for each n ≥ 1 put Bn =
⊗n

k=1Ak and Dn =
⊗∞

k=n+1Ak.
We shall view (Bn)∞n=1 as an increasing sequence of sub-C∗-algebras of B such that

⋃∞
n=1Bn

is dense in B, and we shall identify B with Bn ⊗Dn for all n.
Let m ≥ 1 be an integer and let x′, x, y1, y2, y3, . . . in Cu(B) be such that x′ � x and

x ≤ myj for all j. By Lemma 6.2 there is a positive integer N such that w-Divm(Dn) ≤ N
for all n. We show that x′ ≤ y1 + y2 + · · · + yN . This will prove that B has the Corona
Factorization Property.

Repeated use of Proposition 2.1 (i) and (ii) shows that there exists a positive integer
n, and elements x′′, y′1, y

′
2, . . . , y

′
N in Cu(Bn) such that

x′ ≤ x′′ ⊗ 〈1Dn〉 ≤ x, y′j ⊗ 〈1Dn〉 � yj in Cu(B); x′′ � my′j in Cu(Bn),

where x 7→ x ⊗ 〈1Dn〉 denotes the canonical embedding Cu(Bn) → Cu(B). We can now
apply Lemma 6.1 (iii) to deduce that

x′ ≤ x′′ ⊗ 〈1Dn〉 ≤ (y′1 + y′2 + · · ·+ y′N)⊗ 〈1Dn〉 ≤ y1 + y2 + · · ·+ yN

as desired.

7 Obstructions to Divisibility

A trivial obstruction to (weak) divisibility of a C∗-algebra is its rank: w-Divm(A) < ∞ if
and only if m ≤ rank(A) (by Corollary 5.4 (iii)). In this section we shall discuss ways of
obtaining homogeneous C∗-algebras with large rank and large weak divisibility constant.
We use these techniques to construct unital simple C∗-algebras with large weak divisibility
constants.

We remark first that Lemma 6.1 provides non-trivial obstructions to divisibility in B.
Indeed, it follows by that lemma that if there exists a unital C∗-algebra A and x, y ∈ Cu(A)
such that nx ≤ my but x ⊗ 〈1B〉 � y ⊗ 〈1B〉, then Divm(B) > n. Similarly, if there exist
x1, . . . , xm, y in Cu(A) such that nxj ≤ y for all j while

(x1 + x2 + · · ·+ xm)⊗ 〈1B〉 � y ⊗ 〈1B〉,

then Decm(B) > n. Finally, if there exist x, y1, . . . , yn ∈ Cu(A) such that x ≤ myj for all
j while

x⊗ 〈1B〉 � (y1 + y2 + · · ·+ yn)⊗ 〈1B〉,
then w-Divm(B) > n.

We introduce below another way to obtain bad divisibility behaviour:

Lemma 7.1. Let u, v ∈ Cu(A) be compact elements. If Div2(u + v, A) ≤ N then there
exist x1, x2, . . . , xN in Cu(A) such that 2xi ≤ v for all i and

2v ≤ v + (2N + 1)u+
N∑
i=1

2xi.
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Proof. By assumption there exists x such that 2x ≤ u+ v ≤ Nx. By compactness of u+ v
we can find x′′ � x′ � x such that u + v ≤ Nx′′. Since x′ � x ≤ u + v, it follows from
Property (P1) of the Cuntz semigroup (see Section 2) (leaving u unchanged) that there
exists v1 such that

x′ ≤ u+ v1, v1 ≤ x, v1 ≤ v.

As x′′ � u + v1 there is v′1 � v1 such that x′′ ≤ u + v′1. Apply (P2) to the relation
v′1 � v1 ≤ v to obtain v2 satisfying

v′1 + v2 ≤ v ≤ v1 + v2.

By compactness of v we can find v′2 � v2 such that v ≤ v1 + v′2. Now,

v′2 � v2 ≤ u+ v ≤ Nx′′ ≤ Nu+Nv′1,

and so we can use (P1) (leaving Nu unchanged) to find x1, . . . , xN such that

v′2 ≤ Nu+
N∑
j=1

xj, xj ≤ v′1, xj ≤ v2.

It follows that 2xj ≤ v′1 + v2 ≤ v and that

2v ≤ 2v1 + 2v′2 ≤ 2x+ 2Nu+ 2
N∑
j=1

xj ≤ v + (2N + 1)u+ 2
N∑
j=1

xj,

as desired.

The corollary below illustrates how the preceding lemma can be used to find elements with
bad divisibility properties:

Corollary 7.2. Let X be a compact Hausdorff space and suppose that p ∈ C(X) ⊗ K is
a projection such that [1] � (2N + 1)[p] in K0(C(X)), where 1 denotes the unit of C(X).
Then Div2(〈1〉+ 〈p〉, C(X)) > N .

Proof. Consider the compact elements u = 〈p〉 and v = 〈1〉 of Cu(C(X)). Note that
2x ≤ 〈1〉 implies x = 0 and that 2〈1〉 � 〈1〉 + (2N + 1)〈p〉. The desired conclusion now
follows from Lemma 7.1.

The relation [1] � (2N + 1)[p] in K0(C(X)) is satisfied whenever the (2N + 1)-fold direct
sum of p with itself is a projection with non-trivial Euler class (as explained in more detail
below). It is known that for each integer d ≥ 1 and for each positive integer N there exist
X and p ∈ C(X)⊗ K such that (2N + 1)[p] has non-trivial Euler class and p has rank d.
The unital C∗-algebra A = (p⊕ 1)

(
C(X)⊗K

)
(p⊕ 1) with this choice of X and p will then

satisfy rank(A) = d+ 1 and Div2(A) > N .
We will now give a different method for constructing elements with large divisibility

constants and large rank, where we get upper bounds and where we also can give sharper
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lower bounds for the weak divisibility constant. Let S2 denote the 2-dimensional sphere.
Let p denote the “Bott-projection” in C(S2) ⊗ M2 ⊆ C(S2) ⊗ K, i.e., the projection
associated to the Hopf line bundle over S2. For each 1 ≤ j ≤ N , let pj ∈ C((S2)N)⊗K be
given by

pj(x1, x2, . . . , xN) = p(xj), (x1, . . . , xN) ∈ (S2)N .

Since 〈1〉 ≤ 2〈p〉 in Cu(C(S2)), we have

N〈1〉 ≤ 2
〈 N⊕

i=1

pi

〉
.

As another obstruction to weak divisibility, we shall use the following corollary of Lemma 6.1
(iii), cf. the remarks at the beginning of this section, applied to the relations 〈1〉 ≤ 2〈pi〉,
i = 1, 2 . . . , N .

Corollary 7.3. Let X be a locally compact Hausdorff space, and let q ∈ C0(X) ⊗ K be a
projection. Let (pi)

N
i=1 be the projections in C((S2)N)⊗K defined in the preceding paragraph.

Suppose that

q ⊗ 1 -| q ⊗
N⊕
i=1

pi.

Then w-Div2(〈q〉, C0(X)) > N .

Let us now give examples of projections to which the corollary above can be applied.
We will make use of characteristic classes of vector bundles. Recall that projections in
C(X) ⊗ K, with X compact and Hausdorff, give rise to vector bundles over X: if p is
a projection, then ηp = (Ep, X, π), with Ep = {(x, v) ∈ X × l2(N) | p(x)v = v} is the
vector bundle associated to p. Up to Murray-von Neumann equivalence of projections
and isomorphism of vector bundles, this correspondence is a bijection. We denote by
e(ηp) ∈ H∗(X), or simply e(p), the Euler class of ηp. For the cartesian product of spheres
(S2)N we have (e.g., by the Künneth formula) that

H∗((S2)N) ∼= C[z1, z2, . . . , zN ]/(z21 , z
2
2 , . . . , z

2
N).

With this identification, the Euler classes of the projections pi ∈ C((S2)N) ⊗ K defined
earlier can be shown to be e(pi) = zi.

Proposition 7.4. Let X be a compact Hausdorff space and let q ∈ C(X)⊗K be a projection
such that e(q)N 6= 0. Then

w-Div2(〈1⊕ q〉, C(X)) > N.

Proof. By Corollary 7.3 it suffices to show that

(1X ⊕ q)⊗ 1(S2)N -| (1X ⊕ q)⊗
N⊕
i=1

pi (7.1)
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in Cu(C(X) ⊗ C((S2)N)), where 1X denotes the unit in C(X). (In the formulation of
the proposition above, we denoted 1X simply by 1.) Observe that the trivial rank one
projection is a subprojection of the projection on the left-hand side of (7.1). Thus, it
suffices to show that the right side of (7.1) has non-zero Euler class.

Set rank(q) = k. For each positive integer i, let ci(q) ∈ H2i(X) denote the ith char-
acteristic class of q (so that ck(q) = e(q)). By the Künneth Theorem ([MS74, Theorem
A.6]), we can identify H∗(X × (S2)N) with H∗(X)⊗H∗((S2)N). Then

e
(
(1X ⊕ q)⊗

N⊕
i=1

pi
)

= e
(
1X ⊗

N⊕
i=1

pi
)
e
(
q ⊗

N⊕
i=1

pi
)

=
N∏
i=1

e(1X ⊗ pi)
N∏
i=1

e(q ⊗ pi)

=
N∏
i=1

e(pi)
N∏
i=1

k∑
j=0

ck−j(q)e(pi)
j

=
N∏
i=1

e(pi) e(q)
N 6= 0.

In the above computation we have used that e(1X ⊗ pi) = e(1X) + e(pi) = e(pi) and that
e(q⊗ p) =

∑k
j=0 ck−j(q)e(p)

j, for q a projection of rank k and p a projection of rank 1. To

obtain the last equality we have used that e(pi)
2 = 0 for all i.

Let us now give examples of families of projections to which the above proposition can be
applied. We shall here and in the following, whenever p is a projection (in a C∗-algebra)
and n is a positive integer, let n·p denote the n-fold direct sum, p⊕p⊕· · ·⊕p, (in a matrix
algebra over the given C∗-algebra) of the projection p.

Example 7.5. Let N be a positive integer, and let CPN denote the 2N -dimensional
complex projective space. Let η denote the tautological line bundle over CPN and pη the
rank 1 projection associated to it. It is known that e(pη) = z2 ∈ C[z2]/(z2N), where we
have identified H∗(CPN) with C[z2]/(z2N). Let d, d′ be positive integers such that dd′ < N .
Then e(d·pη)d

′
= z2dd

′ 6= 0. It follows that⌊
N − 1

d

⌋
< w-Div2(〈1⊕ d·pη〉, C(CPN)) ≤ Div2(〈1⊕ d·pη〉, C(CPN)) ≤

⌈
N + d+ 1/2

bd/2c

⌉
.

Indeed, the first inequality follows from Proposition 7.4 and the calculations made above.
The second inequality follows from Proposition 3.3. The last inequality can be proved as
follows: Put x = bd/2 c〈pη〉. Then 2x ≤ 〈1 ⊕ d ·pη〉. By a classical result about vector
bundles (see [Hus94, Chapter 9, Proposition 1.1]) we have that 1 - k ·pη if 2N ≤ 2k − 1.
It follows that

1⊕ d·pη - n bd/2 c pη,
or, equivalently, that 〈1⊕ d·pη〉 ≤ nx, if n bd/2 c ≥ N + d+ 1/2.
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Simple C∗-algebras with bad divisibility

In this and the following two subsections we give examples of unital simple C∗-algebras with
bad divisibility behaviour. We use the Euler class obstruction described in the following
example.

Example 7.6. Let d be a positive integer. Following the notation in [Rør03], for each set
I = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , d}, let pI be the one-dimensional projection in C((S2)d)⊗K
given by

pI(x) = pi1(x)⊗ pi2(x)⊗ · · · ⊗ pik(x), x ∈ (S2)d,

where pi is as defined above Corollary 7.3. It is shown in [Rør03, Proposition 4.5] that if
I1, I2 . . . , Ir are subsets of {1, 2, . . . , d} that admit a matching (i.e., |

⋃
i∈F Ii| ≥ |F | for all

subset F of {1, 2, . . . , r}) then the Euler class of pI1 ⊕ pI2 ⊕ · · · ⊕ pIr is non-zero.

The examples constructed in this and the following two subsections are built on the same
template described in the following lemma (which is a variation of one of Villadsen’s con-
structions). We retain the terminology from the example above throughout the rest of this
section.

Lemma 7.7. Let
(
Jj
)∞
j=1

be a sequence of pairwise disjoint finite subsets of N. Choose

dn ∈ N large enough so that all Jj, j = 1, 2, . . . , n, are contained in the set {1, 2, . . . , dn}.
Consider the projection qn of rank 2n in C((S2)dn)⊗K given by

qn = 1⊕ pJ1 ⊕ 2·pJ2 ⊕ · · · ⊕ 2n−1 ·pJn .

It follows that there is a simple unital AH-algebra A which is the inductive limit of the
sequence

q1
(
C((S2)d1)⊗K

)
q1

ϕ1 // q2
(
C((S2)d2)⊗K

)
q2

ϕ2 // · · · // A,

where the connecting mappings ϕn are unital.

Proof. Set Xn = (S2)dn and An = qn
(
C(Xn)⊗K

)
qn. Write

Xn+1 = Xn × (S2)dn+1−dn ,

let πn : Xn+1 → Xn be the projection mapping, and let πm,n : Xn → Xm denote the
composition map πm ◦ πm+1 ◦ · · · ◦ πn−1. Choose xn ∈ Xn for each n such that the set
{πm,n(xn) | n ≥ m} is dense in Xm for all m ≥ 1.

Define a ∗-homomorphism ϕ0
n : C(Xn,K)→ C(Xn+1,K) by

ϕ0
n(f)(x) = f(πn(x)) ⊕

(
f(xn)⊗ pJn+1(x)

)
, f ∈ C(Xn,K), x ∈ Xn+1,

where we in a suitable way have identified K ⊕ (K ⊗ K) with a subalgebra of K. We also
identify C(X)⊗K with C(X,K). We make another identification: if

J ⊆ {1, 2, . . . , dn} ⊆ {1, 2, . . . , dn+1},
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then the projection pJ is defined both in C(Xn)⊗K and in C(Xn+1)⊗K and pJn = pJn ◦πn
(where the former occurrence of pJn is viewed as an element in the former algebra, and the
latter in the latter). We shall use the same notation for the two projections. Taking these
identification a step further, we have qn = qn ◦ πn and that qn+1 = qn ⊕ 2n ·pJn+1 . (These
identification hold, strictly speaking, only up to conjugation with an inner automorphism
on K.) In this notation we get

ϕ0
n(qn)(x) = qn(πn(x)) ⊕

(
qn(xn)⊗ pJn+1(x)

)
= qn(πn(x)) ⊕ rank(qn)·pJn+1(x) = qn+1(x),

for all x ∈ Xn+1, i.e., ϕ0
n(qn) = qn+1 (possibly after composing ϕ0

n with an inner automor-
phism on K). This shows that ϕ0

n maps An unitally into An+1. Let ϕn denote the unital
∗-homomorphism that arises in this way, i.e., ϕn is the restriction of ϕ0

n to An (and the
co-restriction to An+1), and let A be the inductive limit of the sequence

A1
ϕ1 // A2

ϕ2 // A3
ϕ3 // · · · // A.

Let ϕm,n : Am → An denote the composition map ϕn−1◦ϕn−2◦· · ·◦ϕm whenm ≤ n. One can
check that ϕm,n(f)(x) is non-zero for all x ∈ Xn if f is a function in Am = qmC(Xm,K)qm
which is non-zero on at least one point in the set {πm,k(xk) | m ≤ k ≤ n}. By the choice
of the points xn, it follows that for each m and for each non-zero f in Am there is n ≥ m
such that ϕm,n(f) is full in An (i.e., that ϕm,n(f)(x) 6= 0 for all x ∈ Xn). This entails that
A is simple.

Lemma 7.8. Let N be a positive integer. In the notation of Lemma 7.7 choose the sequence
(Jj)

∞
j=1 such that |Jj| = N ·2n−1. It then follows that

w-Div2

(
〈qn〉, C((S2)dn)

)
> N, Div2

(
〈q2〉, C((S2)d2

)
≤ 3N + 4.

for all n.

Proof. We use Proposition 7.4 to prove the first claim. It suffices to show that the Euler
class of the projection N ·pJ1 ⊕ 2N ·pJ2 ⊕ · · ·⊕ 2n−1N ·pJn is non-zero. But this follows from
[Rør03, Proposition 4.5], cf. Example 7.6 above, and from the choice of the sets Jn.

To prove the second claim, put x = 〈pJ2〉 and note that 2x ≤ 〈q2〉. It follows from
[Dup76, Proposition 1] that q2 - M ·pJ2 if M − 4 ≥ (2d2 − 1)/2 = 3N − 1/2. This shows
that 〈q2〉 ≤ (3N + 4)x.

Theorem 7.9. For each positive integer N there exists a simple unital infinite dimensional
AH-algebra A such that N < w-Div2(A) ≤ Div2(A) ≤ 3N + 4.

Proof. Let A be the simple C∗-algebra constructed in Lemma 7.7 based on the choice of
(Jj)

∞
j=1 made in Lemma 7.8. Then A is the inductive limit of the sequence of C∗-algebras

An = qn
(
C((S2)dn) ⊗ K

)
qn with unital connecting mappings. It follows from Lemma 7.8

that w-Div2(An) > N for all n, and that Div2(A2) ≤ 3N + 4.
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By Proposition 3.6 and Remark 3.5,

w-Div2(A) = inf
n∈N

w-Div2(An) > N,

and Div2(A) ≤ Div2(A2) ≤ 3N + 4.

Remark 7.10 (Initial objects). Suppose that C is a class of unital C∗-algebra. An element
A in C is an inital object in C if there exists a unital ∗-homomorphism A→ B for every B
in C.

It is well-known that the Cuntz algebra O∞ is an initial object in the class of unital
properly infinite C∗-algebras. In fact, a unital C∗-algebra is properly infinite if and only if
it contains O∞ as a unital sub-C∗-algebra. Every properly infinite unital sub-C∗-algebra of
O∞ is then also an initial object in the class of unital properly infinite C∗-algebras. Hence
the Cuntz-Toeplitz algebras, Tn, n ≥ 2, are initial objects and so are all unital Kirchberg
algebras A for which the assignment [1A] 7→ 1 extends to a homomorphism K0(A)→ Z.

It was shown in [ER06] that also the class of unital C∗-algebras of real rank zero and
of infinite rank has initial objects. One can even find initial objects to this class which
are simple AF-algebras (necessarily with infinite dimensional trace simplex). It follows in
particular that the class of unital simple infinite dimensional C∗-algebras of real rank zero
has initial objects.

Clearly, C is an initial object in the category of all unital C∗-algebras, and so is any
unital C∗-algebra that admits a character. (Note that we do not require the unital ∗-ho-
momorphism A→ B to be injective.)

The corollary below shows that initial objects do not exist in the general non-real rank
zero case.

Corollary 7.11. The class of unital simple infinite dimensional C∗-algebras and the class
of unital C∗-algebras of infinite rank do not have initial objects. In fact, there is no unital
C∗-algebra without characters that maps unitally into every unital simple infinite dimen-
sional C∗-algebra.

Proof. If A is a unital C∗-algebra that maps unitally into every unital simple infinite dimen-
sional C∗-algebra, then w-Div2(A) ≥ w-Div2(B) for all unital simple infinite dimensional
C∗-algebras B, cf. Remark 3.5, whence w-Div2(A) = ∞ by Theorem 7.9. On the other
hand, if A has no character, then w-Div2(A) <∞ by Corollary 5.6.

The asymptotic divisibility numbers

We can give a lower and an upper bound on the asymptotic divisibility constant (discussed
in Section 4) for the C∗-algebra considered above:

Corollary 7.12. Let N be a positive integer, and let A be the simple AH-algebra con-
structed in Theorem 7.9 associated with N . It follows that

(N − 1)/2 < Div∗(A) ≤ 2N + 2.
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Proof. By Proposition 4.1 we get that Div∗(A) ≥ (Div2(A) − 1)/2 > (N − 1)/2. To
prove the reserve inequality, take any positive integer n and put m = 2n−1. We show that
Divm(An) ≤ (2N + 2)m, where An is as in the proof of Theorem 7.9. In the notation of
Lemma 7.8, let x = 〈pJn〉, put u = 〈qn〉, and recall that qn is the unit of the C∗-algebra
An. By the definition of qn (in Lemma 7.8) it follows that mx ≤ u. As

dim((2 + 2N)m·pJn)− dim(qn) = (2N + 2)m− 2n = 2nN ≥ dim(Xn)− 1

2
,

if follows from [Dup76, Proposition 1] that (2 + 2N)m·pJn - qn, whence u ≤ (2N + 2)mx.
This proves that Divm(An) ≤ (2N + 2)m.

It follows from Remark 3.5 that Divm(A) ≤ (2N + 2)m whenever m is a power of 2,
and this entails that

Div∗(A) = lim inf
m→∞

Divm(A)/m ≤ lim inf
n→∞

Div2n−1(A)/2n−1 ≤ 2N + 2,

as desired.

We can use Lemma 7.7 to construct a unital, simple AH-algebra A such that Div∗(A) =∞.
The proof requires the following sharpening of Corollary 7.3 that may have independent
interest.

Corollary 7.13. Let X be a locally compact Hausdorff space, and let q ∈ C0(X) ⊗ K
be a projection. Let m and N be positive integers, let I1, I2, . . . , IN be pairwise disjoint
subsets of N with |Ii| = m − 1 for all i, and let (pIi)

N
i=1 be the associated projections in

C((S2)(m−1)N)⊗K defined in Example 7.6. Suppose that

q ⊗ 1 -| q ⊗
N⊕
i=1

pIi .

Then w-Divm(〈q〉, C0(X)) > N .

Proof. Apply Lemma 6.1 (iii) to x = 〈1〉 and yi = 〈pIi〉, and note that x ≤ myi, cf.
Example 7.6.

Lemma 7.14. Let (Jj)
∞
j=1 be a sequence of pairwise disjoint subsets of N with |Jj| = 22j−1 j.

Then, in the notation of Lemma 7.7, we have

2k k < w-Div2k
(
〈qn〉, C((S2)dn)

)
<∞

if n ≥ k, and that w-Div2k
(
〈qn〉, C((S2)dn)

)
=∞ if n < k.

Proof. We use Corollary 7.13 with N = 2k k and m = 2k to prove the first claim. As 1 - qn
it suffices to show that qn ⊗

⊕N
i=1 pIi has non-trivial Euler class, when I1, . . . , IN are as in

Corollary 7.13. Write

qn ⊗
N⊕
i=1

pIi =
n⊕
j=0

N⊕
i=1

2max{0,j−1} ·pJj ⊗ pIi =
n⊕
j=0

N⊕
i=1

2max{0,j−1} ·pJj∪Ii .
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As explained in Example 7.6, to prove non-triviality of the Euler class of the projection
qn ⊗

⊕N
i=1 pIi one needs to verify the combinatorial fact that the family of sets (Jj ∪ Ii),

j = 0, . . . , n, i = 1, . . . , N , and with the set Jj ∪ Ii repeated 2max{0,j−1} times, satisfies the
Marriage Lemma condition.

By first exhausting the elements in the sets Ii, and using that
∑k−1

j=0 2max{0,j−1} = 2k−1 <
|Ii|, it suffices to show that the family of sets (Jj), j = k, . . . , n, with each set repeated
2j−1N = 2j+k−1k times, satisfies the Marriage Lemma condition. However, this holds
because |Jj| = 22j−1j ≥ 2j+k−1k when j ≥ k.

The second claim follows from the fact that the dimension of the projection qn is 2n

and that w-Divm(〈qn〉, C((S2)dn)) =∞ whenever m > dim(qn).

Theorem 7.15. There is a simple unital infinite dimensional AH-algebra A which satisfies
Div∗(A) =∞.

Proof. Let A be the simple AH-algebra constructed in Lemma 7.7 with respect to the
choice of (Jj) from Lemma 7.14. Recall that A is an inductive limit of a sequence of unital
C∗-algebras A1 → A2 → · · · , where

An = qn
(
C((S2)dn)⊗K

)
qn.

It follows from Lemma 7.14 that w-Div2k(An) > 2k k when n ≥ k, and w-Div2k(An) = ∞
when n < k. This entails that Div2k(A) > 2k k by Proposition 3.6. Finally, by Proposi-
tion 4.1 (ii),

Div∗(A) = lim sup
k→∞

Div2k(A)/2k =∞.

As remarked in Section 4, if A is any unital C∗-algebra, then Div∗(A) = 0 if and only if A
is properly infinite, and Div∗(A) ∈ [1,∞] otherwise. Moreover, Div∗(A) = 1 if and only if
A is almost divisible (and not properly infinite). In other words, the range of the invariant
Div∗( · ) is contained in the set {0} ∪ [1,∞], and Div∗(A) ≤ 1 if and only if A is almost
divisible.

We can easily produce examples of simple, unital, infinite dimensional C∗-algebras A
such that Div∗(A) = 0 (eg., A could be a Cuntz algebra), or such that Div∗(A) = 1 (eg., A
is any simple, unital, infinite-dimensional C∗-algebra of real rank zero, cf. Example 3.15).
The theorem above provides an example of a simple, unital, infinite dimensional C∗-algebra
A where Div∗(A) =∞.

It follows from Corollary 7.12 that Div∗( · ) attains infinitely many values in the interval
(1,∞), when restricted to the class of unital, simple, infinite dimensional C∗-algebras, and
that the possible values of Div∗( · ) in this interval is upwards unbounded. We do not know
if all values in the interval (1,∞) are thus attained. For that matter we cannot exhibit
any number in the interval (1,∞) which for sure is the value of Div∗(A) for some simple
unital infinite dimensional C∗-algebra A.
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Divisibility of infinite tensor products

We end this section by giving yet another class of examples of simple unital C∗-algebras
with bad divisibility properties. The ones we construct below are of the form

⊗∞
j=1Aj,

where the Aj’s are unital simple infinite dimensional C∗-algebras. In particular, such C∗-
algebras need not absorb the Jiang-Su algebra tensorially. It remains an open problem if⊗∞

j=1A absorbs the Jiang-Su algebra whenever A is a simple unital infinite dimensional
C∗-algebra (or a unital C∗-algebra without characters), cf. [DT09].

It was shown in [HRW07, Example 4.8] that there exists a sequence (An) of homoge-
neous C∗-algebras of rank two such that

⊗∞
n=1An does not absorb the Jiang-Su algebra

tensorially. (It is an easy consequence of this that the Jiang-Su algebra cannot embed
unitally into

⊗∞
n=k An for some k.) Of course, one can regroup the tensor factors An to get

a new sequence (Bn) of unital C∗-algebras each of which has infinite rank and where the
Jiang-Su algebra does not embed into

⊗∞
n=1Bn. It is not known if every unital C∗-algebra

of infinite rank admits an embedding of a unital simple infinite dimensional C∗-algebra. If
it were true, then Theorem 7.17 below would follow from [HRW07, Example 4.8] .

We introduce some notation to keep track of the combinatorics. Define a total order
on the set N× N0 by

(k, j) ≤ (`, i) ⇐⇒ k + j < `+ i or (k + j = `+ i and k ≤ `).

For each (k, j) ∈ N × N0 and for each integer m ≥ k let S(m; k, j) denote the set of all
m-tuples (i1, i2, . . . , im) ∈ Nm0 such that ik = j and (`, i`) < (k, j) for all ` 6= k.

Lemma 7.16. Let N ≥ 1 be an integer. For each integer k ≥ 1, let (J
(k)
j )∞j=1 be a sequence

of subsets of N such that J
(k)
j ∩ J

(`)
i = ∅ whenever (k, j) 6= (`, i), and such that

|J (k)
j | = max

m≥k

∑
(i1,...,im)∈S(m;k,j)

N
m∏
t=1

2max{it−1,0}.

(The quantity on the right-hand side is finite because S(m; k, j) is finite for all (k, j) and

all m ≥ k, and S(m; k, j) = ∅ when m > k + j.) Let d
(k)
n ∈ N and q

(k)
n ∈ C((S2)d

(k)
n )⊗ K

be as defined in Lemma 7.7 associated with the sequence (J
(k)
j )∞j=1. It then follows that

w-Div2

(〈
q(1)n ⊗ q(2)n ⊗ · · · ⊗ q(m)

n

〉
, C((S2)d

(1)
n )⊗ C((S2)d

(2)
n )⊗ · · · ⊗ C((S2)d

(m)
n )
)
> N,

for all positive integers n and m.

Proof. Let T (n,m) be the set of all non-zero m-tuples (i1, i2, . . . , im) ∈ Nm0 such that

ik ≤ n for all k = 1, 2, . . . ,m. Adopt the convention J
(k)
0 = ∅ for all k and let p∅ denote

the trivial (= constant) one-dimensional projection. We can then express the projection

q
(1)
n ⊗ q(2)n ⊗ · · · ⊗ q(m)

n as follows:

1⊕
∑

(i1,...,im)∈T (n,m)

( m∏
t=1

2max{it−1,0}
)
· p

J
(1)
i1

⊗ p
J
(2)
i2

⊗ · · · ⊗ p
J
(m)
im

.
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By Proposition 7.4 it suffices to show that the Euler class of the projection

∑
(i1,...,im)∈T (n,m)

(
N

m∏
t=1

2max{it−1,0}
)
· p

J
(1)
i1

⊗ p
J
(2)
i2

⊗ · · · ⊗ p
J
(m)
im

is non-zero, or, equivalently, that the Euler class of the projection

∑
(i1,...,im)∈T (n,m)

(
N

m∏
t=1

2max{it−1,0}
)
· p

J
(1)
i1
∪J(2)

i2
∪···∪J(m)

im

is non-zero. By [Rør03, Proposition 4.5], cf. Example 7.6, it suffices to show that the

family of sets J
(1)
i1
∪ J (2)

i2
∪ · · · ∪ J (m)

im
, where (i1, . . . , im) ∈ T (n,m) and where the set

J
(1)
i1
∪ J (2)

i2
∪ · · · ∪ J (m)

im
is repeated N ·

∏m
t=1 2max{it−1,0} times, admits a matching.

Construct a matching by selecting the matching elements for the N ·
∏m

t=1 2max{it−1,0}

copies of the set J
(1)
i1
∪ J (2)

i2
∪ · · · ∪ J (m)

im
inside the subset J

(k)
j , where (k, j) is the largest

of the elements (1, i1), (2, i2), . . . , (m, im). To check that this works, i.e., to see that J
(k)
j

is large enough, let T (n,m; k, j) be the set of those m-tuples (i1, i2, . . . , im) in T (n,m) for
which

(k, j) = max{(1, i1), (2, i2), . . . , (m, im)}.

Then T (n,m; k, j) ⊆ S(m; k, j), and so it follows by the assumption on |J (k)
j | that

|J (k)
j | ≥

∑
(i1,...,im)∈T (n,m;k,j)

N
m∏
t=1

2max{it−1,0}.

The suggested matching is therefore possible.

The theorem below shows that an infinite tensor product of simple unital infinite di-
mensional C∗-algebras does not necessarily have good divisibility properties. Any such
C∗-algebra A =

⊗∞
n=1An will have (many) non-trivial central sequences, i.e., the central

sequence algebra Aω ∩A′ with respect to an ultrafilter ω on N is non-trivial. For example,
CMm(C) embeds into Aω ∩ A′ for all m, albeit, not necessarily with full image. However,
in the example constructed below, one cannot embed the Jiang-Su algebra into Aω ∩ A′.

Theorem 7.17. For each integer N > 2, there exists a sequence (An) of unital simple
infinite dimensional C∗-algebras (in fact, AH-algebras) such that

w-Div2

( ∞⊗
n=1

An

)
> N.

In particular,
⊗∞

n=1An does not absorb the Jiang-Su algebra Z, and it does not even admit
a unital embedding of Z.
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Proof. Let Ak be the simple unital AH-algebra constructed in Lemma 7.7 associated with
the sequence

(
J
(k)
j

)∞
j=1

from Lemma 7.16. Then Ak is an inductive limit of a sequence,

Ak(1) → Ak(2) → · · · , of unital homogeneous C∗-algebras with unital connecting maps,
where

Ak(n) = q(k)n

(
C((S2)d

(k)
n )⊗K

)
q(k)n .

The infinite tensor product
⊗∞

n=1An is the inductive limit of the sequence

A1 → A1 ⊗ A2 → A1 ⊗ A2 ⊗ A3 → · · ·

with unital connecting maps. It therefore suffices to show that w-Div2

(⊗m
k=1Ak

)
> N for

every m, cf. Proposition 3.6. Now,
⊗m

k=1Ak is the inductive limit of the sequence

m⊗
k=1

Ak(1)→
m⊗
k=1

Ak(2)→
m⊗
k=1

Ak(3)→ · · · ,

with unital connecting mappings, and so, again by Proposition 3.6, it suffices to show that

w-Div2

( m⊗
k=1

Ak(n)
)
> N

for every m and n. The latter is precisely the content of Lemma 7.16.

8 Ultrapowers

In this section we show that our divisibility properties behave well with respect to taking
direct products and ultrapowers of sequences of unital C∗-algebras. This has the surprising
consequence that such products and ultrapowers may admit characters even if all the C∗-
algebras in the ingoing sequence are unital, simple and infinite dimensional.

We define the notion of “almost characters” and show that the existence of such is
related to the invariant w-Div2( · ). It follows in particular that simple unital infinite
dimensional C∗-algebras can have almost characters.

First we need some technical lemmas:

Lemma 8.1. Let A be a unital C∗-algebra and let (Iλ) be an upward directed family of
ideals of A. Set

⋃
Iλ = I. It follows that

Divm(A/I) = inf
λ

Divm(A/Iλ), Decm(A/I) = inf
λ

Decm(A/Iλ)

w-Divm(A/I) = inf
λ

w-Divm(A/Iλ)

for all positive integers m.
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Proof. The inequality “≤” in all three cases follows from Remark 3.5 since we have a unital
∗-homomorphism A/Iλ → A/I for each λ. We prove the reverse inequality “≥” only in the
case of Decm( · ); the proofs of the other two instances are similar.

Set Decm(A/I) = n, and let us show that Decm(A/Iλ) ≤ n for some λ. Find x1 . . . , xm
in Cu(A/I) be such that

x1 + x2 + · · ·+ xm ≤ 〈1〉 ≤ nxj

for all j. Find positive contractions a1, . . . , am in A ⊗ K such that xj = 〈bj〉, where
bj ∈ A/I ⊗ K is the image of aj under the quotient mapping A → A/I. Find ε > 0 such
that 〈1〉 ≤ n〈(bj−ε)+〉 for all j. It follows from [KR00, Lemma 4.12] that there are positive
elements c, c′1, . . . , c

′
m in I ⊗K such that

〈(a1 − ε/2)+〉+ · · ·+ 〈(am − ε/2)+〉 ≤ 〈1〉+ 〈c〉, 〈1〉 ≤ n〈(aj − ε)+〉+ 〈c′j〉

for all j. There is δ > 0 such that

〈(a1 − ε)+〉+ · · ·+ 〈(am − ε)+〉 ≤ 〈1〉+ 〈(c− δ)+〉, 〈1〉 ≤ n〈(aj − ε)+〉+ 〈(c′j − δ)+〉.

Since
⋃
Iλ is dense in I, it follows that (c−δ)+ and (c′j−δ)+ all belong to Iλ⊗K for some

λ. Let zj ∈ Cu(A/Iλ) be the Cuntz class of the image of the element (aj − ε)+ under the
quotient mapping A→ A/Iλ. Then z1+· · ·+zm ≤ 〈1〉 ≤ nzj, whence Decm(A/Iλ) ≤ n.

For each ε > 0, let hε : R+ → [0, 1] be a continuous functions such that hε(0) = 0 and
hε(t) = 1 when t ≥ ε.

Lemma 8.2. Let A be a unital C∗-algebra. Let b1, b2, . . . , bn be positive elements in A such
that

∑n
j=1〈bj〉 ≥ 〈1A〉. Then, for some ε > 0, there are contractions yj in A such that

n∑
j=1

y∗jhε(bj)yj = 1A.

Proof. By assumption, and by compactness of 〈1A〉, there are elements vj ∈ A such that∑n
j=1 v

∗
j bjvj = 1A. Thus

∑n
j=1 v

∗
j (bj − ε)+vj is invertible for some ε > 0, and so there are

elements wj ∈ A such that
∑n

j=1w
∗
j (bj − ε)+wj = 1A. Put yj = (bj − ε)1/2+ wj and notice

that hε(bj)(bj − ε)+ = (bj − ε)+ for all j. Thus

n∑
j=1

y∗jhε(bj)yj =
n∑
j=1

y∗j yj = 1A,

which shows that the yj’s are contractions with the desired properties.

Lemma 8.3. Let A be a unital C∗-algebra, and let m,n be positive integers.

(i) A is weakly (m,n)-divisible if and only if there exist positive contractions aij and con-
tractions yj in A, j = 1, 2, . . . , n and i = 1, 2, . . . ,m, such that a1j, a2j, . . . , amj are
pairwise equivalent and pairwise orthogonal for all j, and such that 1A =

∑n
j=1 y

∗
ja1jyj.

33



(ii) A is (m,n)-decomposable if and only if there exist pairwise orthogonal positive con-
tractions ai and contractions yij in A, j = 1, 2, . . . , n and i = 1, 2, . . . ,m, such that∑n

j=1 y
∗
ijaiyij = 1A for all i.

(iii) A is (m,n)-divisible if and only if there exist pairwise equivalent and pairwise or-
thogonal positive contractions ai and contractions yj in A, j = 1, 2, . . . , n and i =
1, 2, . . . ,m, such that

∑n
j=1 y

∗
ja1yj = 1A.

Proof. We identify A with the sub-C∗-algebra 1A(A⊗K)1A of A⊗K.
(i). “If”. Put xj = 〈a1j〉 = 〈aij〉 ∈ Cu(A). Then

mxj =
m∑
i=1

〈aij〉 = 〈
m∑
i=1

aij〉 ≤ 〈1A〉 =
〈 n∑
j=1

y∗ja1jyj
〉
≤

n∑
j=1

〈y∗ja1jyj〉 ≤
n∑
j=1

〈a1j〉 =
n∑
j=1

xj.

“Only if”. Let x1, x2, . . . , xn ∈ Cu(A) be such that mxj ≤ 〈1A〉 ≤ x1 + x2 + · · · + xn.
Choose x′j � xj such that 〈1A〉 ≤ x′1 + x′2 + · · ·+ x′n. For each fixed j = 1, 2, . . . , n, apply
Lemma 2.4 (ii) to the relation mxj ≤ 〈1A〉 to obtain pairwise orthogonal and pairwise
equivalent positive elements b1j, b2j, . . . , bmj in A such that x′j ≤ 〈bij〉 ≤ xj for all i =
1, . . . ,m. Then

∑n
j=1〈b1j〉 ≥ 〈1A〉, and so it follows from Lemma 8.2 that there are ε > 0

and contractions y1, y2, . . . , yn in A such that
∑n

j=1 y
∗
jhε(b1j)yj = 1A. The contractions yj

together with the positive contractions aij = hε(bij) are then as desired.
(ii). “If”. Put xi = 〈ai〉 ∈ Cu(A). Then

m∑
i=1

xi =
m∑
i=1

〈ai〉 =
〈 m∑
i=1

ai
〉
≤ 〈1A〉 =

〈 n∑
j=1

y∗ijaiyij
〉
≤

n∑
j=1

〈y∗ijaiyij〉 ≤
n∑
j=1

〈ai〉 = nxi

for all i.
“Only if”. Let x1, x2, . . . , xm ∈ Cu(A) be such that x1 + x2 + · · · + xm ≤ 〈1A〉 ≤ nxj.

Choose x′i � xi such that 〈1A〉 ≤ nx′i. Apply Lemma 2.4 (ii) to the relation x1 + x2 +
· · ·+ xm ≤ 〈1A〉 to find pairwise orthogonal positive elements b1, b2, . . . , bm in A such that
x′i ≤ 〈bi〉 ≤ xi for all i. For each i = 1, 2, . . . ,m, we then have n〈bi〉 ≥ 〈1A〉, so by Lemma
8.2 there are ε > 0 and contractions yi1, yi2, . . . , yin in A such that

∑n
j=1 y

∗
ijhε(bi)yij = 1A.

The contractions yij together with the positive contractions ai = hε(bi) are then as desired.
(iii). “If”. Put x = 〈a1〉 = 〈ai〉 ∈ Cu(A). Then

mx =
m∑
i=1

〈ai〉 =
〈 m∑
i=1

ai
〉
≤ 〈1A〉 ≤

〈 n∑
j=1

y∗ja1yj
〉
≤

n∑
j=1

〈y∗ja1yj〉 ≤
n∑
j=1

〈a1〉 = nx.

“Only if”. Let x ∈ Cu(A) be such that mx ≤ 〈1A〉 ≤ nx. Choose x′ � x such that
〈1A〉 ≤ nx′. Apply Lemma 2.4 (ii) to the relation mx ≤ 〈1A〉 to obtain pairwise orthogonal
and pairwise equivalent positive elements b1, b2, . . . , bm in A such that x′ ≤ 〈bj〉 ≤ x. Then
n〈b1〉 ≥ 〈1A〉, and so by Lemma 8.2 there are ε > 0 and contractions y1, y2, . . . , yn in A such
that

∑n
j=1 y

∗
jhε(b1)yj = 1A. The contractions yj together with the positive contractions

ai = hε(bi) are then as desired.
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If (Ak) is a sequence of C∗-algebras, then we denote by
∏∞

k=1Ak the C∗-algebra of all
bounded sequences (ak), with ak ∈ Ak. If ω is a (free) filter on N, then denote by
cω({Ak}) the closed two-sided ideal in

∏∞
k=1Ak consisting of those sequences (ak) for which

limω ‖ak‖ = 0. Finally, denote the quotient
∏∞

k=1Ak/cω({Ak}) by
∏

ω Ak.

Proposition 8.4. Let (Ak) be a sequence of unital C∗-algebras. Then, for all integers
m ≥ 2 and for any free filer ω on N we have:

(i) Divm

(∏∞
k=1Ak

)
= supk Divm(Ak), Divm

(∏
ω Ak

)
= lim sup

ω
Divm(Ak).

(ii) Decm

(∏∞
k=1Ak

)
= supk Decm(Ak), Decm

(∏
ω Ak

)
= lim sup

ω
Decm(Ak).

(iii) w-Divm

(∏∞
k=1Ak

)
= supk w-Divm(Ak), w-Divm

(∏
ω Ak

)
= lim sup

ω
w-Divm(Ak).

Proof. We only prove (i). The proofs of (ii) and (iii) are very similar.
We have unital ∗-homomorphisms

∏∞
k=1Ak → An for all n. Therefore the inequality

“≥” holds in the first identity in (i) (and also in (ii) and (iii)), cf. Remark 3.5.

We show next that Divm

(∏∞
k=1Ak

)
≤ supk Divm(Ak). Let n be a positive integer such

that Divm(Ak) ≤ n for all k. Then, by Lemma 8.3 (i), for each k we can find positive

contractions a
(k)
ij and contractions y

(k)
j in Ak, for j = 1, 2, . . . , n and i = 1, 2, . . . ,m, such

that a
(k)
1j , a

(k)
2j , . . . , a

(k)
mj are pairwise orthogonal and equivalent for all j, and such that

1Ak
=

n∑
j=1

(y
(k)
j )∗a

(k)
1j y

(k)
j .

Put

aij = (a
(k)
ij ) ∈

∞∏
k=1

Ak, yj = (y
(k)
j ) ∈

∞∏
k=1

Ak.

Then a1j, a2j, . . . , amj are pairwise orthogonal and equivalent, and
∑n

j=1 y
∗
ja1jyj is equal

to the unit of
∏∞

k=1Ak. By Lemma 8.3 (i), this shows that
∏∞

k=1Ak is (m,n)-divisible,

whence Divm

(∏∞
k=1Ak

)
≤ n.

To prove the second part of (i) note first that we have a natural unital (surjective)
∗-homomorphism

∏
k∈I Ak →

∏
ω Ak for each I ∈ ω. We can therefore use Remark 3.5 and

the first identity in (i) to conclude that

Divm
(∏

ω

Ak
)
≤ Divm

(∏
k∈I

Ak
)

= sup
k∈I

Divm(Ak),

which shows that Divm
(∏

ω Ak
)
≤ lim supω Divm(Ak).
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We proceed to prove the reverse inequality. For each I ∈ ω consider the ideal J(I) in∏∞
k=1Ak consisting of those sequences (ak) for which ak = 0 for all k ∈ I. Then

cω({Ak}) =
⋃
I∈ω

J(I),

(where ω is ordered by reverse inclusion). We can now use Lemma 8.1 and the first identity
in (i) to conclude that

Divm
(∏

ω

Ak
)

= inf
I∈ω

Divm

(( ∞∏
k=1

Ak
)
/J(I)

)
= inf

I∈ω
Divm

(∏
k∈I

Ak
)

= inf
I∈ω

sup
k∈I

Divm(Ak) = lim sup
ω

Divm(Ak).

If we combine the proposition above with Corollary 5.6 (i) we obtain:

Corollary 8.5. Let (Ak) be a sequence of unital C∗-algebras such that limk→∞w-Div2(Ak) =
∞. Then

∏∞
k=1Ak has a character, and so does

∏
ω Ak for each free filter ω on N.

If we combine the corollary above with Theorem 7.9, then we obtain the following surprising
fact:

Corollary 8.6. There is a sequence (Ak) of unital simple infinite dimensional C∗-algebras
such that

∏∞
k=1Ak and

∏
ω Ak have characters for each free filter ω on N.

Clearly, none of the C∗-algebras Ak in the corollary above can have a character. However,
they have “almost characters” in the sense defined below. This is one way of understanding
how the product C∗-algebra can have a character when none of the individual C∗-algebras
has one.

Definition 8.7. Let N ≥ 2 be an integer and let ε > 0. A unital C∗-algebra A is said to
have (N, ε)-characters if for every N -tuple u1, u2, . . . , uN of unitaries in A there exists a
state ρ on A such that |ρ(uj)| ≥ 1− ε for j = 1, 2, . . . , N .

A state ρ on a unital C∗-algebra is a character if and only if |ρ(u)| = 1 for all unitary
elements u ∈ A. Most simple C∗-algebras that we know of do not have (2, ε)-characters
for small ε > 0. For example, if A is a C∗-algebra which contains unitaries u, v such that
‖uvu∗v∗ − λ1A‖ < η for some λ ∈ T and for some η < |1− λ|, then A does not admit any
(2, ε)-character for some small enough ε > 0. Indeed, if ρ is a state on A such that |ρ(u)|
and |ρ(v)| are close to 1, then ρ(uvu∗v∗) is close to 1.

Proposition 8.8. A unital C∗-algebra has a character if and only if it has (N, ε)-characters
for all pairs (N, ε), where N ≥ 2 is an integer and ε > 0.
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Proof. The “only if” part is trivial. Assume that A is a unital C∗-algebra that has (N, ε)-
characters for all pairs (N, ε). For each finite subset F of the unitary group of A and for
each ε > 0, let S(F, ε) denote the set of states ρ on A such that |ρ(u)| ≥ 1−ε for all u ∈ F .
Then, by assumption, S(F, ε) is non-empty. It follows that

⋂
(F,ε) S(F, ε) is non-empty,

and any state in this intersection is a character.

Proposition 8.9. Let (Ak) be a sequence of unital C∗-algebras, and let ω be a free ultrafilter
on N. Then

∏
ω Ak has a character if and only if for each integer N ≥ 2 and for each

ε > 0 there exists I ∈ ω such that Ak has (N, ε)-characters for each k ∈ I.

Proof. We prove first the “if” part. By Proposition 8.8 it suffices to show that
∏

ω Ak has
(N, ε)-characters for all (N, ε). Fix (N, ε) and find I ∈ ω such that Ak has (N, ε)-characters

for each k ∈ I. Let u1, . . . , uN be unitaries in
∏

ω Ak, and let (u
(k)
j ) ∈

∏∞
k=1Ak be a unitary

lift of uj. Then for each k ∈ I there is a state ρk on Ak such that |ρk(u(k)j )| ≥ 1 − ε for
j = 1, 2, . . . , N . Choose arbitrary states ρk on Ak for k /∈ I and define a state ρ on

∏
ω Ak

by ρ(x) = limω ρk(xk), where (xk) ∈
∏∞

k=1Ak is a lift of x. (A priori, ρ defines a state on∏∞
k=1Ak, and one checks that it vanishes on the ideal cω({Ak}).) Then

|ρ(uj)| = lim
k→ω
|ρk(u(k)j )| ≥ inf

k∈I
|ρk(u(k)j )| ≥ 1− ε,

for j = 1, 2, . . . , N , which shows that
∏

ω Ak has (N, ε)-characters.
Suppose next that

∏
ω Ak has a character ρ. Fix (N, ε), and let J be the set of those

k ∈ N for which Ak does not have (N, ε)-characters. For each k ∈ J choose unitaries u
(k)
j

in Ak, j = 1, 2, . . . , N , such that there is no state ρ′ on Ak for which |ρ′(u(k)j )| ≥ 1−ε for all

j = 1, 2, . . . , N . Choose arbitrary unitaries u
(k)
j ∈ Ak for k /∈ J , and let uj be the unitary

element (u
(k)
j ) in

∏∞
k=1Ak. Let B be the (separable) sub-C∗-algebra of

∏
ω Ak generated

by the unitaries πω(uj), where πω is the quotient mapping
∏∞

k=1Ak →
∏

ω Ak. By [Kir06,
Lemma 2.5] there is a sequence ρk of pure states on Ak such that ρ(πω(x)) = limω ρk(xk)
for all x = (xk) ∈

∏∞
k=1Ak with πω(x) ∈ B. Now,

1 = |ρ(πω(uj))| = lim
ω
|ρk(u(k)j )| = lim inf

k→ω
|ρk(u(k)j )| = sup

I∈ω
inf
k∈I
|ρk(u(k)j )|.

It follows that there exists I ∈ ω such that |ρk(u(k)j )| ≥ 1 − ε for all k ∈ I and for all
j = 1, 2, . . . , N . This entails that I ∩ J = ∅. Hence Ak has (N, ε)-characters for all
k ∈ I.

We can relate the existence of (N, ε)-characters on a C∗-algebra A to the divisibility quan-
tity w-Div2(A).

Theorem 8.10. For each pair (N, ε), where N ≥ 2 is an integer and ε > 0, there exists
an integer n ≥ 2 such that every unital C∗-algebra A which satisfies w-Div2(A) ≥ n has
(N, ε)-characters. Conversely, for every integer n ≥ 2 there exists a pair (N, ε), where
N ≥ 2 is an integer and where ε > 0, such that every unital C∗-algebra A which has
(N, ε)-characters satisfies w-Div2(A) ≥ n.
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Proof. Suppose that the first claim were false. Then there would exist a pair (N, ε) and
a sequence (An) of unital C∗-algebras such that w-Div2(An) ≥ n and none of the An’s
have (N, ε)-characters. However, if ω is any free ultrafilter N, then

∏
ω An has a character

by Corollary 8.5, whence An has (N, ε)-characters for each n in some subset I ∈ ω, a
contradiction.

Suppose next that the second statement were false. Then there would exist an integer
n ≥ 2 and a sequence (Ak) of unital C∗-algebras such that Ak has (k, 1/k)-characters but
w-Div2(Ak) < n. Let ω be a free ultrafilter on N. It then follows from Proposition 8.9
that

∏
ω Ak has a character. Hence w-Div2(

∏
ω Ak) = ∞, whence limω w-Div2(Ak) = ∞

by Proposition 8.4, a contradiction.

Corollary 8.11. For each pair (N, ε), where N ≥ 2 is an integer and ε > 0, there exists
a unital simple infinite dimensional C∗-algebra which has (N, ε)-characters.

We end this section by giving several equivalent formulation of some well-known open
problems for C∗-algebras. Recall that a C∗-algebra A has the Global Glimm Halving
property if there is a ∗-homomorphism CM2(C)→ A whose image is full in A.

Proposition 8.12. The following statements are equivalent:

(i) Every unital C∗-algebra that has no finite dimensional representation has the Global
Glimm Halving property.

(ii) For all unital C∗-algebras A, if w-Divm(A) <∞ for all m ≥ 2, then Div2(A) <∞.

(iii) For every sequence (Ak) of unital C∗-algebras, if supk w-Divm(Ak) < ∞ for all m,
then supk Div2(Ak) <∞.

Proof. (i) ⇔ (ii). A has no finite dimensional representations if and only if rank(A) ≥ m
for all m, which by Corollary 5.4 (iii) is equivalent to w-Divm(A) < ∞ for all m. It was
shown in Corollary 5.4 (i) that the Global Glimm Halving property holds for A if and only
if Div2(A) <∞.

(ii) ⇒ (iii). Given a sequence (Ak) of unital C∗-algebras such that supk w-Divm(Ak) <
∞ for allm. Consider the C∗-algebraA =

∏∞
k=1Ak. Then w-Divm(A) = supk w-Divm(Ak) <

∞ by Proposition 8.4. Thus Div2(A) <∞, which implies that supk Div2(Ak) = Div2(A) <
∞, again by Proposition 8.4.

(iii) ⇒ (ii) is trivial: Take Ak = A for all k.

Proposition 8.13. The following statements are equivalent:

(i) All unital C∗-algebras A that have no finite dimensional representation contain two
positive full elements that are orthogonal to each other.

(ii) For all unital C∗-algebras A, if w-Divm(A) <∞ for all m ≥ 2, then Dec2(A) <∞.
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Proof. (i) ⇔ (ii). As in the proof of Proposition 8.12, A has no finite dimensional rep-
resentations if and only if w-Divm(A) < ∞ for all m. It was shown in Corollary 5.4 (ii)
that A contains two positive full elements that are orthogonal to each other if and only if
Dec2(A) <∞.

(ii) ⇒ (iii) is similar to the proof of (ii) ⇒ (iii) in Proposition 8.12. (iii) ⇒ (ii) is
trivial.

9 Infinite elements

Following [KR00], a Cuntz class u in the Cuntz semigroup of a C∗-algebra A is said to
be properly infinite if it satisfies u = 2u (whence u = ∞·u). Similarly, a countably
generated Hilbert module over A is properly infinite if its Cuntz class is properly infinite.
We saw in Proposition 3.4 how infiniteness of a Cuntz class can arise from a certain type
of divisibility property. In this section we shall investigate this and related phenomena
further with emphasis on the following property:

Definition 9.1. Let A be a C∗-algebra, let n ≥ 1 be an integer, and let u be an element in
Cu(A). We say that u is (ω, n)-decomposable if there exist x1, x2, . . . such that

∑∞
i=1 xi ≤ u

and u ≤ nxi for all i.

If u is (ω, n)-decomposable, then u is (m,n)-decomposable for all m. In particular, by
Proposition 3.4 (ii), it follows that nu is properly infinite.

The condition in the definition above can be reformulated in several different ways:

Lemma 9.2. Let A be a C∗-algebra, let n ≥ 1 be an integer, and let u be an element of
Cu(A). Then the following conditions are equivalent:

(i) u is (ω, n)-decomposable,

(ii) there exist x1, x2, . . . such that
∑∞

i=1 xi ≤ u and nxi =∞·u for all i,

(iii) there exist x1, x2, . . . and y1, y2, . . . such that
∑∞

i=1 xi ≤ u, yi−1 ≤ yi ≤ nxi for all i,
and ∞·u ≤ ∞·sup yi,

(iv) there exist x1, x2, . . . such that
∑∞

i=1 xi ≤ u and n
∑∞

j=k xj =∞·u for all k.

Proof. (i) ⇒ (ii). Suppose that x1, x2, . . . satisfy
∑∞

i=1 xi ≤ u ≤ nxj. Let {Ii}∞i=1 be a
partition of the natural numbers into infinite sets. Then the elements x′i =

∑
j∈Ii xj witness

that condition (ii) holds.
To get (ii) ⇒ (iii), set yi =∞·u for all i and choose (xi)

∞
i=1 that satisfies (ii).

(iii) ⇒ (iv). Let (xi)
∞
i=1 and (yi)

∞
i=1 be as in (iii). Then n

∑∞
i=k xi ≥ ∞·yk. Observe

that the left side of this inequality decreases as k increases. Thus, n
∑∞

i=k xi ≥ ∞·yk′ for
all k′ ≥ k. Taking the supremum over all k′ ≥ k we get n

∑∞
i=k xi ≥ ∞·sup yi ≥ ∞·u.

(iv) ⇒ (i). Suppose that x1, x2, . . . satisfy the condition in (iv). Let (ui)
∞
i=1 be such

that ui � ui+1 for all i and supi ui = u. Then there exists a sequence 1 = k0 < k1 < · · ·
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such that the elements x′i =
∑ki−1

j=ki−1
xj satisfy x′i ≥ ui for all i. Let {Ii}∞i=1 be a partition

of the natural numbers into infinite sets. Then the elements x′′i =
∑

j∈Ii x
′
j satisfy the

condition in Definition 9.1.

It was shown in [OPR] that the Corona Factorization Property for a C∗-algebra is equivalent
to a condition for its Cuntz semigroup, that we here shall refer to as (CFP4S). A complete
ordered abelian semigroup is said to have (CFP4S) if whenever (xi)

∞
i=1 is a full sequence,

x′ � x1, and (yi)
∞
i=1 is such that myi ≥ xi for all i and some m, then there exists n such

that
∑n

i=1 yi ≥ x′. Recall that a full sequence is one that is increasing and such that supxi
is a full element, i.e., ∞·supxi is the largest element of the semigroup (which we shall
denote by ∞).

In Section 6 we discussed a related notion, called the strong Corona Factorization
Property, and its analog for the Cuntz semigroup.

The proposition below relates the (CFP4S) with the notion of (ω,m)-divisibility. In
fact, it is a consequence of this proposition that a semigroup in the category Cu has a full
elements which is (ω,m)-divisible and not properly infinite if and only if the semigroup
does not satisfy (CFP4S).

Proposition 9.3. The following four conditions are equivalent for any object S in the
category Cu.

(i) S has property (CFP4S).

(ii) For every sequence (yi)
∞
i=1 in S, if there is a full sequence (xi)

∞
i=1 in S such that

myi ≥ xi for some m and for all i, then
∑∞

i=1 yi =∞.

(iii) For every sequence (yi)
∞
i=1 in S, if myi =∞ for some m and for all i, then

∑∞
i=1 yi =

∞.

(iv) For every sequence (yi)
∞
i=1 in S, if

∑∞
i=nmyi = ∞ for some m and for all n, then∑∞

i=1 yi =∞.

(v) For every full element y in S, if y is (ω,m)-decomposable for some m, then y is
properly infinite (whence y =∞).

Proof. (i) ⇒ (ii). Apply the (CFP4S) to the tail sequences (xi)
∞
i=n and (yi)

∞
i=n. Then we

get x′ ≤
∑N

i=n yi ≤
∑∞

i=n yi for all x′ � xn, whence ∞ = supn xn ≤
∑∞

i=1 yi.
(ii) ⇒ (i). If (xi) is a full sequence and if (yi) is another sequence such that xi ≤ myi,

then
∑∞

i=1 yi = ∞ by (ii). In particular, if x′ � x1, then x′ ≤
∑n

i=1 yi for some n by the
definition of compact containment.

(ii)⇒ (iii). Suppose that (ii) holds and that (yi) is a sequence in S such that myi =∞
for all i. Then ∞ =

∑∞
i=1 yi by (ii) with xi =∞ for all i.

(iii) ⇒ (v). Suppose that (iii) holds, and that y ∈ S is full and (ω,m)-decomposable.
Then y satisfies condition (ii) of Lemma 9.2, so there exists a sequence (yi) such that∑∞

i=1 yi ≤ y and myi = ∞·y = ∞ for all i. But then
∑∞

i=1 yi = ∞ because (iii) holds,
whence y =∞.
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(v) ⇒ (iv). Suppose that (v) holds and let (yi)
∞
i=1 be a sequence in S such that∑∞

i=nmyi = ∞ for some m and for all n. Put y =
∑∞

i=1 yi. We must show that y = ∞.
We know that my = ∞, so y is full. It is easy to see that y satisfies condition (iv) of
Lemma 9.2, so y is (ω,m)-decomposable. Hence y =∞ by the assumption that (v) holds.

(iv) ⇒ (ii). Let (xi)
∞
i=1 be a full sequence in S, let m ≥ 1 be a positive integer, and let

(yi) be such that myi ≥ xi for all i. Then

∞∑
i=n

myi ≥
∞∑
i=n

xi ≥
∞∑
i=k

xi ≥ ∞·xk

for all k ≥ n. As ∞ = supk∞·xk, we conclude that
∑∞

i=nmyi =∞ for all n. By (iv) this
entails that

∑∞
i=1 yi =∞, and in particular that x1 ≤

∑∞
i=1 yi.

In the following example we describe a Cuntz semigroup with an element u that is (ω, 2)-
decomposable but not properly infinite. In particular, 2u is properly infinite while u is
not. This example is well known in other contexts, and it was discussed in the paragraph
preceding Corollary 7.3.

Example 9.4. Let X = (S2)∞ be a countable cartesian product of 2-dimensional spheres,
and let pi ∈ C(X,K) be the one-dimensional projection arising as the pull back of a non-
trivial rank one projection p in C(S2) ⊗ K along the ith coordinate projection X → S2,
cf. the comments above Corollary 7.3. Let e be a trivial one-dimensional projection. Then
e -|

⊕N
i=1 pj for all N , because the Euler class of the projection on the right-hand side is

non-trivial.
Put xi = 〈pi〉, v = 〈e〉, and put u =

∑∞
i=1 xi. Then v � u, v ≤ 2xi, and u+ u =∞·v =

∞·u. Hence 2
∑∞

j=i xi =∞·v =∞·u, and so u is (ω, 2)-decomposable; but u is not properly
infinite.

We now look more closely at the properties of (ω, n)-decomposable elements.

Proposition 9.5. Let (ai)
∞
i=0 be a sequence of mutually orthogonal positive elements in a

C∗-algebra A such that
∑∞

i=0 ai converges to a strictly positive element in A. Assume that
n ≥ 1 is an integer such that

∑
j≥i n〈ai〉 = ∞ for all i. Then A ⊗ B is stable for every

σ-unital C∗-algebra B with rank(B) ≥ n.

Proof. Set
∑∞

i=0 ai = a ∈ A and let b be a strictly positive element in B. Notice that a⊗ b
is a strictly positive element of A ⊗ B. In order to prove stability of A ⊗ B we will use
the stability criterion obtained in [HR98]: A⊗B is stable if for every ε > 0 there exists a
positive element c in A which is orthogonal to (a⊗b−ε)+ and satisfies 〈(a⊗b−ε)+〉 ≤ 〈c〉.

Arguing as in the proof of (iv) ⇒ (i) in Lemma 9.2, we may replace
∑

j≥i n〈ai〉 = ∞
by the stronger assumption that n〈ai〉 =∞ for all i. By Theorem 5.3 (iii), rank(B) ≥ n is
equivalent to weak (n, ω)-divisibility for 〈b〉. Thus there exist a sequence (xi)

∞
i=1 in Cu(B)

such that nxi ≤ 〈b〉 for all i and
∑∞

i=1 xi = ∞. We can form a new sequence (x′i)
∞
i=1 in

which each xi appears repeated infinitely often. In this way we may assume without loss
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of generality that
∑∞

i≥j xi =∞ for all j. Find positive elements bi in B such that xi = 〈bi〉
and ‖bi‖ ≤ 2−i. Then

(a⊗ b− ε)+ =
∞∑
i=1

(ai ⊗ b− ε)+ =
N∑
i=1

(ai ⊗ b− ε)+,

for some integer N ≥ 1. Set c =
∑

i>N ai ⊗ b. Then c is orthogonal to (a⊗ b− ε)+. Also,

〈ai ⊗ b〉 = 〈ai〉 ⊗ 〈b〉 ≥ n 〈ai〉 ⊗ 〈bi〉 =∞·〈a〉 ⊗ 〈bi〉

for each i. (Here we have used that n〈ai〉 =∞ for all i). Hence

〈c〉 =
∑
i>N

〈ai ⊗ b〉 =
∑
i>N

∞·〈a〉 ⊗ 〈bi〉 =∞.

Thus, 〈(a⊗ b− ε)+〉 ≤ ∞ = 〈c〉. This shows that A⊗B is stable.

The proposition above can be applied to the C∗-algebra A = P (C(X)⊗K)P arising from
Example 9.4 with P =

⊕∞
i=1 pi ∈M(C(X)⊗K). The C∗-algebra A is not stable (because

e /∈ A while e ∈M2(A)), but A⊗B is stable for every C∗-algebra B that does not have a
character by Proposition 9.5 and Example 9.4.

The example obtained in [Rør97] of a simple C∗-algebra A of stable rank 1 such that
Mn(A) is stable, while Mn−1(A) is not stable, likewise satisfies the hypotheses of Proposi-
tion 9.5. In fact, to the authors knowledge, every example of a C∗-algebra that tensored
with Mn(C) becomes stable also has the stronger property of becoming stable after being
tensored with any C∗-algebra that has no representations of dimension less than n. This
raises the following question:

Question 9.6. Is there a C∗-algebra A such that M2(A) is stable but A⊗B is not stable
for some C∗-algebra B without characters?

Proposition 9.7. The following statements are equivalent for every C∗-algebra A with a
strictly positive element a.

(i) 〈a〉 is (ω, n)-decomposable.

(ii) A contains a full hereditary subalgebra B such that B⊗C is stable for any C∗-algebra
C such that rank(C) ≥ n.

(iii) A contains a full hereditary subalgebra B such that Mn(B) is stable.

Proof. (i) ⇒ (ii). Let (xi)
∞
i=1 be such that

∑∞
i=1 xi ≤ 〈a〉 and nxi =∞. Let b ∈ A⊗K be

strictly positive and let bi ∈ A ⊗ K be mutually orthogonal elements such that 〈bi〉 = xi.
We can find mutually orthogonal positive elements ai in A such that 〈ai〉 ≤ 〈bi〉, n〈ai〉 ≥
〈(b−1/i)+〉, and such that

∑∞
i=1 ai is convergent. It then follows from Proposition 9.5 that

(ii) holds when B is the hereditary sub-C∗-algebra generated by
∑∞

i=1 ai.
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(ii) ⇒ (iii) is clear.
(iii)⇒ (i). Since A is σ-unital, and B is stably isomorphic to A, B is σ-unital too. Let

b be a strictly positive element in B.
Use [OPR, Lemma 5.3] to find a sequence (bk) of pairwise orthogonal positive elements

in B such that 〈(b − 1/k)+〉 ≤ n〈(b − 1/k)+〉 ≤ n〈bk〉 for all k. Then condition (iii) of
Lemma 9.2 is satisfied with u = 〈b〉, xk = 〈bk〉, and yk = 〈(b − 1/k)+〉, whence 〈b〉 is
(ω, n)-decomposable.

Finally, by the fact that 〈b〉 ≤ 〈a〉 ≤ ∞·〈b〉, it follows by the equivalence of (i) and (ii)
in Lemma 9.2 that 〈a〉 is (ω, n)-decomposable.

Definition 9.8. Let n ∈ N and u ∈ Cu(A). We call u weakly (ω, n)-divisible if for every
u′ � u there exist xi ∈ Cu(A), i = 1, 2, . . . , n, such that ∞·xi ≤ u and u′ ≤

∑n
i=1 xi.

Observe that if u is weakly (ω, n)-divisible, then u is weakly (m,n)-divisible for all m ∈ N,
whence nu is properly infinite by Proposition 3.4.

We will next give an example of a Cuntz semigroup element that is weakly (ω, 2)-
divisible but not properly infinite. This example needs some preparatory results. Let us
first recall an example given by Dixmier and Doaudy in [DD63].

Example 9.9 (Dixmier–Douady, [DD63, §17]). Let B∞ denote the closed unit ball of
l2(N) endowed with the weak topology. Let l2(B∞) denote the C(B∞)-Hilbert module
of continuous maps from B∞ to l2(N). We will construct a countably generated C(B∞)-
Hilbert module D such that l2(B∞) ↪→ D ↪→ l2(B∞) but D � l2(B∞).

Let x : B∞ → l2(N)⊕ C be the function given by

x(z) = z +
√

1− ‖z‖2 · e, for z ∈ B∞.

Here e is a generator of the summand C in the direct sum l2(N)⊕C. Consider the C(B∞)-
module D0 of functions from B∞ to l2(N)⊕C that have the form y+ xλ, with y ∈ l2(B∞)
and λ ∈ C(B∞) (the action of C(B∞) is defined by pointwise scalar multiplication). The
module D0 is a pre-Hilbert C∗-module over C(B∞) when endowed with the pointwise inner
product. Indeed, if y1 + xλ1 and y2 + xλ2 are vectors in D0 then

〈y1 + xλ1, y2 + xλ2〉 = 〈y1, y2〉+ 〈y1, z〉λ2 + λ1〈z, y〉+ λ1λ2 ∈ C(B∞).

Let D denote the completion of D0 with respect to the norm induced by its C(B∞)-valued
inner product. Observe that l2(B∞) ↪→ D0 ⊆ D. Since D is countably generated, we also
have that D ↪→ l2(B∞) by Kasparov’s stabilization theorem. Let us see that D � l2(B∞).
Consider E ⊆ D, the orthogonal complement of {x}. Then E = E0, where

E0 = {y + xλ ∈ D | 〈y(z), z〉+ λ(z) = 0 for all z ∈ B∞}. (9.1)

It was implicitly shown by Dixmier and Douady, and explicitly pointed out by Blanchard
and Kirchberg ([BK04a, Proposition 3.6]), that for any v ∈ E there exists z ∈ B∞ such
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that 〈v, v〉(z) = 0. That is, every section of E vanishes at some point (we will reprove this
fact in Proposition 9.10 below). Notice that

D = E + x · C(B∞) ∼= E ⊕ C(B∞).

It can be deduced from this that D � l2(B∞) (see [DD63, Proposition 19]).

Let B3 denote the unit ball in R3. Let f ∈M2(C(B3))
+ be defined as

f(x, y, z) =
1

2

(
1 + z x− iy
x+ iy 1− z

)
.

(The function f is a homeomorphism from B3 to the set of positive elements of M2(C) with
trace 1. On the boundary 2-sphere of B3 it agrees with the tautological rank 1 projection.)
Consider the C(B3)-module associated to f :

F := f

(
C(B3)
C(B3)

)
. (9.2)

Proposition 9.10. Let B∞ and B3 be as before. Let X =
∏

i∈I Xi, where each Xi is either
B∞ or B3 and the index set I is non-empty. For each i, let Hi be the pull-back along the
projection map πi : X → Xi of either the module E defined in Example 9.9 or the module
F defined in (9.2). Finally, let H be the C(X)-module defined by H =

⊕
i∈I Hi. Then

C(X) does not embed in H as a C(X)-module (i.e., for every v ∈ H there exists z ∈ X
such that 〈v, v〉(z) = 0).

Notice that if every Xi agrees with B3, the above proposition can be proven using standard
methods in algebraic topology (e.g., characteristic classes). Indeed, it suffices to restrict
to the boundary 2-sphere of each Xi and use that on that set F is the tautological rank 1
projective module. It is the inclusion of the spaces B∞ in the definition of X that forces
us to use a different route in the proof.

Proof. Let v ∈ H, and write v =
∑

i∈I vi, with vi ∈ Hi. In order to show 〈v, v〉(z) = 0
for some z ∈ X, it suffices to prove this for v belonging to a dense submodule of H. For
suppose that (v(n)) is a sequence in H such that v(n) → v and 〈v(n), v(n)〉(zn) = 0 for
some zn ∈ X. Then by the compactness of X there exists a subsequence (znk

) such that
znk
→ z ∈ X, and so 〈v, v〉(z) = 0. Thus, we may assume that the index set I is finite.

Furthermore, for the indices i such that Hi = π∗i (E), we may assume that vi ∈ H ′i, where
H ′i ⊆ Hi is the pull back along πi of the dense submodule E0 defined in (9.1).

In the sequel, we assume that I = {1, 2, . . . , n}, Xi = B∞ for i = 1, 2, . . . , n1, and
Xi = B3 for i = n1 + 1, . . . , n, where n1 ≤ n.

We will argue by contradiction that 〈v, v〉(z) = 0 for some z ∈ X. Suppose that 〈v, v〉
is invertible, and assume without loss of generality that 〈v, v〉 = 1. Observe that, for each
i ≤ n1, vi is a function from X into the unit ball of l2(N) ⊕ C, while for n1 < i ≤ n
the entry vi is a function from X into the unit ball of C ⊕ C (let us denote it by B4).
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Let h0 : l2(N) ⊕ C → l2(N) denote the projection onto the first direct summand and let
h1 : B4 → B3 denote the Hopf fibration (extended to the unit ball):

h1(z0, z1) := (2z0z1, |z0|2 − |z1|2).

Let λ : [0, 1]→ [0, 1] be such that λ(0) = 0, λ(t) = 1 for t ∈ [ 1
n
, 1], and λ is linear in [0, 1

n
].

Define h̃0, h̃1 : B4 → B3 by

h̃0(w) = h0

(λ(|w|)
|w|

w
)
, h̃1(w) = −h1

(λ(|w|)
|w|

w
)
.

Consider the continuous map Φ: X → X given by the vector of functions

Φ := (h̃0 ◦ v1, h̃0 ◦ v2, . . . , h̃0 ◦ vn1 , h̃1 ◦ vn1+1, . . . , h̃1 ◦ vn).

Since X is a compact convex subset of the vector space (l2(N))n1 × (R3)n−n1 , the map Φ
has a fixed point by the Schauder fixed point theorem. Let z̃ := (z̃i)

n
i=1 ∈ X be a fixed

point of Φ. Since ‖v(z̃)‖ = 1, we must have ‖vi(z̃)‖ ≥ 1
n

for at least one index i. Notice

that both h̃0 and h̃1 map all vectors of norm at least 1/n into the unit sphere of either B∞
or B3. It follows that the fixed point z̃ satisfies ‖z̃i‖ = 1 and z̃j = 0 for all j 6= i.

There are two cases to consider: i ≤ n1 and i > n1. Suppose that i ≤ n1. The general
form of vi ∈ H ′i is f + (zi +

√
1− ‖zi‖2e)α, for some f : X → l2(N) and α ∈ C(X). Since

‖z̃i‖ = 1, we have
vi(z̃) = f(z̃) + α(z̃)z̃i = z̃i.

But 〈f(z̃), z̃i〉+ α(z̃) = 0. This contradicts that ‖z̃i‖ = 1.
Suppose that i > n1. Since zi 7→ vi(· · · , zi, · · · ), with zi ∈ S2, is a section of the

tautological bundle on S2, we have h1 ◦ vi(z) = zi whenever zi ∈ S2. It follows that
h̃1 ◦ vi(z̃) = −z̃i. But h̃1 ◦ vi(z̃) = z̃i, by the fixed point property of z̃. This again
contradicts that ‖z̃i‖ = 1.

We are now prepared to give examples of weakly (ω, 2)-divisible elements which are not
properly infinite.

Example 9.11. Let X = B∞ ×B3 and consider the Hilbert module H = π∗1(E)⊕ π∗2(F ),
described in the statement of the previous proposition. We have shown that [C(X)] � [H].
In particular, [H] is not properly infinite (since it is full). Let us show that [H] is weakly
(ω, 2)-divisible. Consider the open sets U := B∞ × B+

3 and V := B∞ × B−3 , where B+
3

and B−3 = are (open) upper and lower hemispheres of B3 that together cover B3 (e.g.,
B+

3 = B3 \ {(0, 0, 1)} and B−3 = B3 \ {(0, 0,−1)}). We claim that l2(U) ↪→ HC0(U) and
l2(V ) ↪→ HC0(V ). Indeed, we have

HC0(U) = π∗1(E)C0(U)⊕ π∗2(F )C0(U)

= π∗1(E)C0(U)⊕ π∗2(FC0(B
+
3 )).
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On the other hand, FC0(B
+
3 ) ∼= C0(B

+
3 )⊕C0(B

+
3 \S2). This follows from [RT11, Theorem

4.3], where it is shown that the isomorphism class of a Hilbert module over a space of
dimension at most 3 is determined by the restrictions of the Hilbert module to the subsets
where it has constant fibrewise rank. Observe that FC0(B

+
3 ) has rank 1 on B3∩S2, rank 2

on B+
3 \S2, and furthermore it induces trivial vector bundles when restricted to those sets.

Thus, FC0(B
+
3 ) ∼= C0(B

+
3 )⊕ C0(B

+
3 \S2). Since π∗2(C0(B

+
3 )) = C0(U), we get that

HC0(U) ∼= π∗1(E)C0(U)⊕ C0(U)⊕ π∗2(FC0(B
+
3 \ S2))

∼= π∗1(E ⊕ C(B∞))C0(U)⊕ π∗2(FC0(B
+
3 \ S2)).

But l2(B∞) ↪→ D = E ⊕ C(B∞). Thus, l2(U) ↪→ HC0(U). Symmetrically, we have
that l2(V ) ↪→ HC0(V ). It follows that [HC0(U)] and [HC0(V )] are properly infinite, and
[H] ≤ [HC0(U)] + [HC0(V )]. Thus, [H] is weakly (ω, 2)-divisible.

Remark 9.12. The previous example answers a question posed in [KR00, Question 3.10]:
If a and b are properly infinite positive elements, is a+ b properly infinite? In the language
of Hilbert modules, this question asks whether H is properly infinite if H = H1 +H2, and
H1, H2 ⊆ H are properly infinite submodules of H. We obtain a counterexample taking H
as in the previous example, H1 = HC0(U) and H2 = HC0(V ).

Example 9.13. In this example we answer (in the negative) the following question, posed
in [KR00, Question 3.4]: if [H] is properly infinite, is the unit of B(H) a properly infinite
projection? Let X = B∞ × (B3)

∞ and consider the Hilbert C(X)-module

H = C(X)⊕ π∗1(E)⊕
∞⊕
i=2

π∗i (F ).

The module C(X) ⊕ π∗1(E) is the pull back along π1 of the Dixmier-Douady module D.
Since l2(C(B∞)) embeds in D, l2(C(X)) embeds in C(X)⊕ π∗1(E). Thus, [H] is properly
infinite. Also, the direct sum of the module

⊕∞
i=2 π

∗
i (F ) with itself gives l2(C(X)) (because

F ⊕F contains C(B3) as a direct summand). Therefore, H ⊕H ∼= l2(C(X)). However, H
is not isomorphic to l2(C(X)), because every section of π∗1(E)⊕

⊕∞
i=2 π

∗
i (F ) vanishes, and

so adding the trivial rank 1 module to it cannot yield the trivial Hilbert module l2(C(X))
(see the proof of D � l2(C(B∞)) in [DD63, Proposition 19]). It follows that H ⊕H is not
a direct summand of H, i.e., the unit of B(H) is not properly infinite.
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