Divisibility properties for C^{*}-algebras

Leonel Robert* and Mikael Rørdam*

Abstract

We consider three notions of divisibility in the Cuntz semigroup of a C^{*}-algebra, and show how they reflect properties of the C^{*}-algebra. We develop methods to construct (simple and non-simple) C^{*}-algebras with specific divisibility behaviour. As a byproduct of our investigations, we show that there exists a sequence $\left(A_{n}\right)$ of simple unital infinite dimensional C^{*}-algebras such that the product $\prod_{n=1}^{\infty} A_{n}$ has a character.

1 Introduction

A unital embedding of a matrix algebra $M_{m}(\mathbb{C})$ into a unital C^{*}-algebra A can exist only if the equation $m x=\left[1_{A}\right]$ has a solution $x \in K_{0}(A)$. Thus, only C^{*}-algebras in which the class of the unit in K_{0} is m-divisible admit a unital embedding of $M_{m}(\mathbb{C})$. Whereas all von Neumann algebras (with no central summand of type I_{n} for n finite) have this divisibility property for all m, the same is not true for C^{*}-algebras, even for the simple ones. C^{*} algebras can fail to have non-trivial projections. Even if they have many projections, as in the real rank zero case, one cannot expect to solve the equation $m x=\left[1_{A}\right]$ exactly in $K_{0}(A)$. This paper is concerned with different weaker notions of divisibility, phrased in terms of the Cuntz semigroup of the C^{*}-algebra, and with how they relate to embeddability properties of the C^{*}-algebra. Instead of solving the equation $m x=\left[1_{A}\right]$ for $x \in K_{0}(A)$, one should look for less restrictive notions of divisibility. One can try, for example, to solve the inequalities $m x \leq\left\langle 1_{A}\right\rangle \leq n x$ in the Cuntz semigroup of A for fixed positive integers m and n (typically with $m<n$). We say that A is (m, n)-divisible if one can solve this inequality. This is one of three divisibility properties we shall consider in this paper. We show that there is a full *-homomorphism from $C M_{m}(\mathbb{C})$, the cone over $M_{m}(\mathbb{C})$, into A if and only if A is (m, n)-divisible for some n.

Let us mention three embedding problems that served as motivation for this paper. Let A be a unital C^{*}-algebra with no non-zero finite dimensional representations. Can one always find an embedding of some unital simple infinite dimensional C^{*}-algebra into A ? Can one always find an embedding of $C M_{2}(\mathbb{C})$ into A whose image is full in A ? Can one

[^0]always find two positive mutually orthogonal full elements in A ? An affirmative answer to the former problem will imply an affirmative answer to the second problem, which is known as the "Global Glimm Halving problem". An affirmative answer to the Global Glimm Halving problem will imply an affirmative answer to the last mentioned problem. We suspect that all three problems may have negative answers.

The second and the third problem led us to consider two new notions of divisibility properties. In more detail, we say that A is weakly (m, n)-divisible if there are elements x_{1}, \ldots, x_{n} in $\mathrm{Cu}(A)$ such that $m x_{j} \leq\left\langle 1_{A}\right\rangle \leq x_{1}+\cdots+x_{n}$. Weak divisibility measures the rank of A in the sense that A is weakly (m, n)-divisible for some n if and only if A has no non-zero representations of dimension $<m$. In particular, A has no non-zero finite dimensional representations if and only if for every m there is n such that A is weakly (m, n)-divisible. We say that A is (m, n)-decomposable if there are elements y_{1}, \ldots, y_{m} in $\mathrm{Cu}(A)$ such that $y_{1}+\cdots+y_{m} \leq\left\langle 1_{A}\right\rangle \leq n y_{j}$. For a given m, A is (m, n)-decomposable for some n if and only if A contains m pairwise orthogonal, pairwise equivalent full positive elements.

It was shown in DHTW09 that there exists a simple unital infinite dimensional C^{*}-algebra which does not admit a unital embedding of the Jiang-Su algebra \mathcal{Z}. This answered in the negative a question posed by the second named author. It is implicit in [DHTW09] that this simple C^{*}-algebra has bad divisibility properties, cf. Remark 3.14. This leads us to a useful observation, which loosely can be formulated as follows: if A and B are unital C^{*}-algebras, and if there is a unital *-homomorphism from A to B, then the divisibility properties of B are no worse than those of A. In other words, if A has better divisibility properties than B, then you can not unitally embed A into B.

Comparability in the Cuntz semigroup is concerned with the extent to which one can conclude that $x \leq y$ if the "size" of x (e.g., measured in terms of states) is (much) smaller than the "size" of y. Comparability and divisibility are probably the two most fundamental properties of the Cuntz semigroup. Good comparability and divisibility properties are necessary and sufficient conditions in Winter's theorem, Win, to conclude that a simple, separable, unital C^{*}-algebra with locally finite nuclear dimension tensorially absorbs the Jiang-Su algebra. Also, good comparability and divisibility properties are both necessary and sufficient conditions to ensure that the Cuntz semigroup of a simple, separable, unital, exact C^{*}-algebra A is (naturally) isomorphic to $\operatorname{Aff}(T(A)) \sqcup V(A)$, cf. [PT07], [BPT08, and [ERS.

The existence of simple C^{*}-algebras with bad comparability properties was discovered by Villadsen, Vil98, in the mid 1990's. This discovery was the first indication that the Elliott conjecture could be false (in general), and it was also the first example of a simple C^{*}-algebra exhibiting "infinite dimensional" behaviour. Villadsen's example in Vil98 has been generalized extensively by several authors (including Villadsen himself) to exhibit simple C^{*}-algebras with various kinds of unexpected behaviour, including many ways of failing to have good comparability properties. However, little work has been done to construct simple C^{*}-algebras with bad divisibility behaviour, and the literature does not contain systematic ways of producing such examples. In this paper we show that there is a duality between comparability and divisibility (Lemma 6.1), and we use this duality to
construct examples of simple and non-simple C^{*}-algebras with bad divisibility behaviour.
We use Lemma 6.1 to obtain a result that concerns the structure of C^{*}-algebras that arise as the tensor product of a sequence of unital (simple non-elementary) C^{*}-algebras. Each such C^{*}-algebra will of course have non-trivial central sequences. Dadarlat and Toms proved in DT09 that if the infinite tensor power $\bigotimes_{n=1}^{\infty} A$ of a fixed unital C^{*}-algebra A contains a unital copy of an AHS-algebra without characters, then it automatically absorbs the Jiang-Su algebra. It is not known if this condition always is satisfied, even when A is simple and non-elementary. We show in Section 6 that $\bigotimes_{n=1}^{\infty} A$ has the Corona Factorization Property for every unital A without characters (and in particular for every unital simple C^{*}-algebra $A \neq \mathbb{C}$). In the other direction we give, in Section 7 , an example of a sequence of simple unital infinite dimensional C^{*}-algebras whose tensor power, $\bigotimes_{n=1}^{\infty} A_{n}$, does not absorb (or admit an embedding of) the Jiang-Su algebra.

Non-divisibility of a C^{*}-algebra can be interpreted as a degree of inhomogeneity (or "lumpiness") of the C^{*}-algebra. Simple C^{*}-algebras are sometimes thought of as being very homogeneous, as for example in KOS03. From this point of view it may at first be surprising that a simple infinite dimensional C^{*}-algebra can fail to have good divisibility properties. We show that there exists a sequence $\left(A_{n}\right)$ of simple, unital, infinite dimensional C^{*}-algebras such that $\prod_{n=1}^{\infty} A_{n}$ (and also the associated ultrapowers of $\left(A_{n}\right)$) has a character. None of the C^{*}-algebras A_{n} can have a character (being simple and not equal to \mathbb{C}), however we can show that they posses "almost characters" as defined in Section 8 ,

In Section 9 we consider what one might call "super-divisibility", which leads to a (new) notion of infiniteness of positive elements (and which implies that a multiple of the given element is properly infinite). We use this to reformulate the Corona Factorization Property of semigroups considered in [OPR. We study variations of examples, originally due to Dixmier and Douady, and answer in this way two questions from [KR00] in the negative: The sum of two properly infinite positive elements need not be properly infinite, and the multiplier algebra of a C^{*}-algebra which has a properly infinite strictly positive element need not be properly infinite.

We thank the referee for several useful suggestions that improved the exposition of our paper.

2 Preliminaries

Let A be a C^{*}-algebra, and let $\mathrm{Cu}(A)$ denote the Cuntz semigroup of A. We remind the reader of the basic ingredients of the Cuntz semigroup: If a and b are positive elements in $A \otimes \mathcal{K}$, then a is Cuntz smaller than b, denoted $a \precsim b$, if $d_{n}^{*} b d_{n} \rightarrow a$ for some sequence $\left(d_{n}\right)$ in A. If $a \precsim b$ and $b \precsim a$, then a and b are Cuntz equivalent. The Cuntz equivalence class containing $a \in A \otimes \mathcal{K}$ is denoted by $\langle a\rangle$. The Cuntz semigroup is the set of Cuntz equivalence classes endowed with the sum arising from orthogonal addition of positive elements and the order arising from the Cuntz relation \precsim. In CEI08, Coward, Elliott and Ivanescu give an alternative picture of the Cuntz semigroup where $\mathrm{Cu}(A)$ consists of suitable equivalence classes of countably generated Hilbert C^{*}-modules over A. When
using the Hilbert modules picture of $\mathrm{Cu}(A)$, we shall denote the equivalence class of a countably generated Hilbert module H by $[H]$.

We present here some well-known definitions and facts about the Cuntz semigroup. The reader is referred to $\left[\mathrm{ABG}^{+}\right]$for a general account of the theory of the Cuntz semigroup. First of all, we shall frequently use the axioms of the category $\mathbf{C u}$, of which $\mathrm{Cu}(A)$ is always an object (see [CEI08]). An ordered abelian semigroup S is an object in the category $\mathbf{C u}$ if
(A1) every increasing sequence in S has a supremum,
(A2) for every $u \in S$ there exists a sequence (u_{i}) in S such that $u_{i} \ll u_{i+1}$ and $\sup _{i} u_{i}=u$,
(A3) if $u^{\prime} \ll u$ and $v^{\prime} \ll v$, then $u^{\prime}+v^{\prime} \ll u+v$,
(A4) if $\left(u_{i}\right)$ and $\left(v_{i}\right)$ are increasing sequences then $\sup _{i} u_{i}+\sup _{i} v_{i}=\sup _{i}\left(u_{i}+v_{i}\right)$.
Recall that $u \ll v$ in S if whenever $v=\sup _{i} v_{i}$ for some increasing sequence $\left(v_{i}\right)$ in S, then $u \leq v_{i}$ for some i. An element $u \in S$ is called compact if $u \ll u$.

We also note the following two additional properties of the Cuntz semigroup of a C^{*} algebra which are not listed among the axioms of $\mathbf{C u}$. The first of them asserts that the Cuntz semigroup of a C^{*}-algebra almost has the Riesz Decomposition Property, and the second states that its order relation is almost the algebraic order.
(P1) if $u^{\prime} \ll u \leq v+w$, then there exist v^{\prime} and w^{\prime}, with $v^{\prime} \leq u, v$ and $w^{\prime} \leq u, w$, and such that $u^{\prime} \ll v^{\prime}+w^{\prime}$.
(P2) if $u^{\prime} \ll u \leq v$, then there exists w such that $u^{\prime}+w \leq v \leq u+w$.
For the proofs of these facts, see Rob11, Proposition 5.1.1] for the first and RW10, Lemma 7.1 (i)] for the second.

We will also make use of the sequential continuity with respect to inductive limits of the functor $\mathrm{Cu}(\cdot)$ proved in [CEI08] (see also the proof of [ERS, Theorem 4.8]). It can be stated as follows:

Proposition 2.1 ([CEI08]). Let $A=\underset{\longrightarrow}{\lim }\left(A_{i}, \varphi_{i, j}\right)$ be a sequential inductive limit of C^{*}-algebras.
(i) For every $u \in \operatorname{Cu}(A)$ there exists an increasing sequence $\left(u_{i}\right)_{i=1}^{\infty}$ with supremum u and such that each u_{i} belongs to $\bigcup_{j} \operatorname{Im}\left(\operatorname{Cu}\left(\varphi_{j, \infty}\right)\right)$.
(ii) If $u, v \in \mathrm{Cu}\left(A_{i}\right)$ are such that $\mathrm{Cu}\left(\varphi_{i, \infty}\right)(u) \leq \mathrm{Cu}\left(\varphi_{i, \infty}\right)(v)$, then for every $u^{\prime} \ll u$ there exists j such that $\mathrm{Cu}\left(\varphi_{i, j}\right)\left(u^{\prime}\right) \leq \operatorname{Cu}\left(\varphi_{i, j}\right)(v)$.

Remark 2.2 (Equivalence of positive elements). Two positive elements a and b in a C^{*}-algebra A are said to be equivalent, denoted $a \sim b$, if $a=x x^{*}$ and $b=x^{*} x$ for some element $x \in A$.

Remark 2.3 (The cone over a matrix algebra). Let m be a positive integer, and let $C M_{m}(\mathbb{C})$ denote the cone over $M_{m}(\mathbb{C})$, i.e., the C^{*}-algebra of all continuous functions $f:[0,1] \rightarrow M_{m}(\mathbb{C})$ that vanish at 0.

For each $i, j=1,2, \ldots, m$, let $e_{i j}$ denote the (i, j) th matrix unit in $M_{m}(\mathbb{C})$, and denote by $e_{i j} \otimes \iota$ the function $t \mapsto t e_{i j}$ in $C M_{m}(\mathbb{C})$. Then $\left(e_{i i} \otimes \iota\right)_{i=1}^{m}$ are positive contractions in $C M_{m}(\mathbb{C})$ which are pairwise equivalent (in the sense defined in Remark 2.2 above) and orthogonal.

We recall the following well-known universal property of $C M_{m}(\mathbb{C})$ (see for example [RW10, Propositions 2.3 and 2.4]): Let A be any C^{*}-algebra and let $a_{1}, a_{2}, \ldots, a_{m}$ be positive contractions in A. Then there exists a *-homomorphism $\varphi: C M_{m}(\mathbb{C}) \rightarrow A$ satisfying $\varphi\left(e_{j j} \otimes \iota\right)=a_{j}$ if and only if $a_{1}, a_{2}, \ldots, a_{m}$ are pairwise orthogonal and pairwise equivalent in A.

The following lemma is well-known:
Lemma 2.4. Let A be a C^{*}-algebra and let $a, b_{1}, b_{2}, \ldots, b_{n}$ be positive elements in A. Then:
(i) $\langle a\rangle \leq \sum_{i=1}^{n}\left\langle b_{i}\right\rangle$ if and only if for each $\varepsilon>0$ there exist $d_{1}, d_{2}, \ldots, d_{n} \in A$ such that $(a-\varepsilon)_{+}=\sum_{i=1}^{n} d_{i} b_{i} d_{i}^{*}$.
(ii) $\sum_{i=1}^{n}\left\langle b_{i}\right\rangle \leq\langle a\rangle$ if and only if for each $\varepsilon>0$ there exist mutually orthogonal positive elements $a_{1}, a_{2}, \ldots, a_{n}$ in $\overline{a A a}$ such that $a_{i} \sim\left(b_{i}-\varepsilon\right)_{+}$for all i.

Proof. (i). If $\langle a\rangle \leq \sum_{i=1}^{n}\left\langle b_{i}\right\rangle$, then $a \precsim b_{1} \oplus b_{2} \oplus \cdots \oplus b_{n}$, whence

$$
(a-\varepsilon)_{+}=d^{*}\left(b_{1} \oplus b_{2} \oplus \cdots \oplus b_{n}\right) d=\sum_{i=1}^{n} d_{i}^{*} b_{i} d_{i}
$$

for some $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)^{t} \in M_{n, 1}(A)$. The converse statement is trivial.
(ii). Suppose that $\sum_{i=1}^{n}\left\langle b_{i}\right\rangle \leq\langle a\rangle$. Then $\left(b_{1}-\varepsilon\right)_{+} \oplus\left(b_{2}-\varepsilon\right)_{+} \oplus \cdots \oplus\left(b_{n}-\varepsilon\right)_{+}=d^{*} a d$ for some $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ in $M_{1, n}(A)$. Thus $d_{j}^{*} a d_{i}=0$ if $j \neq i$ and $d_{i}^{*} a d_{i}=\left(b_{i}-\varepsilon\right)_{+}$for all i. Put $a_{i}=a^{1 / 2} d_{i} d_{i}^{*} a^{1 / 2}$. It is now straightforward to verify that the a_{i} 's are as desired. The converse statement is trivial.

Here is another lemma that we will use frequently:
Lemma 2.5. Let a and b be positive elements in $A \otimes \mathcal{K}$ with $\|a\| \leq 1$, and let $m \in \mathbb{N}$. The following are equivalent:
(i) $m\langle a\rangle \leq\langle b\rangle$,
(ii) for each $\varepsilon>0$ there exist mutually orthogonal positive elements $b_{1}, b_{2}, \ldots, b_{m}$ in $\overline{b(A \otimes \mathcal{K}) b}$ such that $\left\langle b_{i}\right\rangle=\left\langle(a-\varepsilon)_{+}\right\rangle$for all i.
(iii) for each $\varepsilon>0$ there exists a^{*}-homomorphism $\varphi: C M_{m}(\mathbb{C}) \rightarrow \overline{b(A \otimes \mathcal{K}) b}$ such that $\left\langle\varphi\left(e_{11} \otimes \iota\right)\right\rangle=\left\langle(a-\varepsilon)_{+}\right\rangle$.

Proof. The implications (iii) \Rightarrow (ii) \Rightarrow (i) are clear, cf. Remark 2.3 and Lemma 2.4. Let us show that (i) implies (iii). Let $\varepsilon>0$ be given. By Lemma 2.4 (ii) there are mutually orthogonal positive elements $b_{1}, b_{2}, \ldots, b_{m}$ in $\overline{b(A \otimes \mathcal{K}) b}$ such that each b_{j} is equivalent to $(a-\varepsilon)_{+}$. By the universal property of the cone $C M_{m}(\mathbb{C})$, see Remark 2.3, there is a *-homomorphism $\varphi: C M_{m}(\mathbb{C}) \rightarrow \overline{b(A \otimes \mathcal{K}) b}$ satisfying $\varphi\left(e_{j j} \otimes \iota\right)=b_{j}$. Hence (iii) holds.

3 Three divisibility properties

Definitions and basic properties

Definition 3.1. Let A be a C^{*}-algebra and fix $u \in \mathrm{Cu}(A)$. Let $m, n \geq 1$ be integers. Then:
(i) u is (m, n)-divisible if for every $u^{\prime} \in \mathrm{Cu}(A)$ with $u^{\prime} \ll u$ there exists $x \in \mathrm{Cu}(A)$ such that $m x \leq u$ and $u^{\prime} \leq n x$.

The least n such that u is (m, n)-divisible is denoted by $\operatorname{Div}_{m}(u, A)$, with $\operatorname{Div}_{m}(u, A)=$ ∞ if no such n exists.
(ii) u is (m, n)-decomposable if for every $u^{\prime} \in \mathrm{Cu}(A)$ with $u^{\prime} \ll u$ there exist elements $x_{1}, x_{2}, \ldots, x_{m} \in \mathrm{Cu}(A)$ such that $x_{1}+x_{2}+\cdots+x_{m} \leq u$ and $u^{\prime} \leq n x_{j}$ for all $j=1,2, \ldots, m$.
The least n such that u is (m, n)-decomposable is denoted by $\operatorname{Dec}_{m}(u, A)$, with $\operatorname{Dec}_{m}(u, A)=\infty$ if no such n exists.
(iii) u is weakly (m, n)-divisible if for every $u^{\prime} \in \mathrm{Cu}(A)$ with $u^{\prime} \ll u$ there exist elements $x_{1}, x_{2}, \ldots, x_{n} \in \operatorname{Cu}(A)$ such that $m x_{j} \leq u$ for all $j=1,2, \ldots, m$ and $u^{\prime} \leq x_{1}+x_{2}+$ $\cdots+x_{n}$.

The least n such that u is weakly (m, n)-divisible is denoted by w - $\operatorname{Div}_{m}(u, A)$, with $\mathrm{w}-\operatorname{Div}_{m}(u, A)=\infty$ if no such n exists.

Remark 3.2. In the case that u in Definition 3.1 is compact (e.g., when A is unital and $u=\left\langle 1_{A}\right\rangle$), the conditions above read a little easier:
(i) u is (m, n)-divisible if there exists $x \in \mathrm{Cu}(A)$ such that $m x \leq u \leq n x$.
(ii) u is (m, n)-decomposable if there exist elements $x_{1}, x_{2}, \ldots, x_{m} \in \mathrm{Cu}(A)$ such that $x_{1}+x_{2}+\cdots+x_{m} \leq u \leq n x_{j}$ for all $j=1,2, \ldots, m$.
(iii) u is weakly (m, n)-divisible if there exist elements $x_{1}, x_{2}, \ldots, x_{n} \in \mathrm{Cu}(A)$ such that $m x_{j} \leq u \leq x_{1}+x_{2}+\cdots+x_{n}$.

The three divisibility properties above are related as follows:
Proposition 3.3. Let $m, n \in \mathbb{N}$ and $u \in \operatorname{Cu}(A)$. Then
$\mathrm{w}-\operatorname{Div}_{m}(u, A) \leq \operatorname{Div}_{m}(u, A), \quad \operatorname{Dec}_{m}(u, A) \leq \operatorname{Div}_{m}(u, A), \quad \mathrm{w}^{-}-\operatorname{Div}_{m}(u, A) \leq \operatorname{Dec}_{m}(u, A)^{m}$.

Proof. The two first inequalities are clear (take $x_{i}=x$ in both cases).
To prove the last inequality, suppose that u is (m, n)-decomposable. We show that u is weakly (m, n^{m})-divisible. Let $u^{\prime} \ll u$ and find $u^{\prime \prime}$ such that $u^{\prime} \ll u^{\prime \prime} \ll u$. There exist elements x_{1}, \ldots, x_{m} in $\mathrm{Cu}(A)$ such that $\sum_{i=1}^{m} x_{i} \leq u$ and $u^{\prime \prime} \leq n x_{i}$ for all i. We proceed to find elements

$$
\tilde{y}\left(i_{1}, \ldots, i_{k}\right), y\left(i_{1}, \ldots, i_{k}\right) \in \mathrm{Cu}(A), \quad k=1, \ldots, m, i_{j}=1, \ldots, n,
$$

satisfying
(a) $\tilde{y}\left(i_{1}, \ldots, i_{k}\right) \ll y\left(i_{1}, \ldots, i_{k}\right)$,
(b) $\tilde{y}\left(i_{1}, \ldots, i_{k-1}\right) \ll \sum_{i=1}^{n} y\left(i_{1}, \ldots, i_{k-1}, i\right)$ if $k \geq 2$, and $u^{\prime} \ll \sum_{i=1}^{n} y(i)$,
(c) $\tilde{y}\left(i_{1}, \ldots, i_{k-1}\right) \leq \sum_{i=1}^{n} \tilde{y}\left(i_{1}, \ldots, i_{k-1}, i\right)$ if $k \geq 2$, and $u^{\prime} \leq \sum_{i=1}^{n} \tilde{y}(i)$,
(d) $y\left(i_{1}, \ldots, i_{k}\right) \leq x_{k}$,
(e) $y\left(i_{1}, \ldots, i_{k-1}, i_{k}\right) \leq y\left(i_{1}, \ldots, i_{k-1}\right)$ if $k \geq 2$, and $y(i) \leq u^{\prime \prime}$.

The elements above are constructed inductively after k using the following fact:
$(*)$ if $x^{\prime} \ll x \leq n z$ in $\mathrm{Cu}(A)$, then there exist $y_{1}, \ldots, y_{n} \in \mathrm{Cu}(A)$ such that $x^{\prime} \ll \sum_{i=1}^{n} y_{i}$, $y_{i} \leq x$, and $y_{i} \leq z$,
which follows from Property (P1) of the Cuntz semigroup stated in the previous section.
Take first $k=1$. The existence of $y(i)$, with $i=1, \ldots, n$, satisfying (b), (d) and (e) follows from $(*)$ applied to $u^{\prime} \ll u^{\prime \prime} \leq n x_{1}$. The existence of $\tilde{y}(i) \ll y(i)$ satisfying (a) and (c) then follows from Axiom (A2) of the Cuntz semigroup from the previous section. Assume that $2 \leq k \leq m$ and that $\tilde{y}\left(i_{1}, i_{2}, \ldots, i_{k-1}\right)$ and $y\left(i_{1}, i_{2}, \ldots, i_{k-1}\right)$ have been found. The existence of $y\left(i_{1}, \ldots, i_{k-1}, i\right)$, with $i=1, \ldots, n$, satisfying (b), (d) and (e) follows from (*) applied to

$$
\tilde{y}\left(i_{1}, \ldots, i_{k-1}\right) \ll y\left(i_{1}, \ldots, i_{k-1}\right) \leq n x_{k} .
$$

(To see that the latter inequality holds, note that $y\left(i_{1}, \ldots, i_{k-1}\right) \ll u^{\prime \prime}$, which follows by repeated use of (e).) The existence of $\tilde{y}\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ satisfying (a) and (c) follows from Axiom (A2).

We claim that the n^{m} elements $\left(y\left(i_{1}, \ldots, i_{m}\right)\right)$ witness the weak $\left(m, n^{m}\right)$-divisibility of u. Indeed, it follows from (d) and (e) that $y\left(i_{1}, \ldots, i_{m}\right) \leq x_{j}$ for all $j=1, \ldots, m$, whence

$$
m \cdot y\left(i_{1}, \ldots, i_{m}\right) \leq x_{1}+x_{2}+\cdots+x_{m} \leq u .
$$

It follows from (b) and (c) that the sum of the elements $y\left(i_{1}, \ldots, i_{m}\right)$ is greater than or equal to u^{\prime}.

If any of the divisibility numbers $\operatorname{Div}_{m}(u, A), \operatorname{Dec}_{m}(u, A)$, and w- $\operatorname{Div}_{m}(A)$ is less than m, then u (or a multiple of u) must be properly infinite, as shown below. We shall pursue this and related questions in more detail in Section 9 .

Proposition 3.4. Let A be a C^{*}-algebra and let $u \in \mathrm{Cu}(A)$.
(i) If u is properly infinite, then $\operatorname{Div}_{m}(u, A)=1$ for all integers $m \geq 1$.
(ii) If $1 \leq n<m$ are integers and if u is either (m, n)-divisible, (m, n)-decomposable or weakly (m, n)-divisible, then $n u$ is properly infinite, i.e., $n u=2 n u$.
(iii) If $1 \leq n<m$ are integers and if u is compact and (m, n)-divisible, then u is properly infinite.

Proof. (i). If u is properly infinite, then $m u \leq u$ for all m, whence $\operatorname{Div}_{m}(u, A)=1$.
(ii). Assume that u is weakly (m, n)-divisible and take $u^{\prime} \ll u$. Then there exist x_{1}, \ldots, x_{n} such that $m x_{i} \leq u$ for all i, and $u^{\prime} \leq \sum_{i=1}^{n} x_{i}$. Thus,

$$
m u^{\prime} \leq \sum_{i=1}^{n} m x_{i} \leq n u
$$

As this holds for all $u^{\prime} \ll u$, we get $((m-n)+n) u=m u \leq n u$. This entails that $(k(m-n)+n) u \leq n u$ for all positive integers k, whence $\ell u \leq n u$ for all positive integers ℓ. In particular, $2 n u \leq n u$, which implies that $n u$ is properly infinite.

Next, suppose that u is (m, n)-decomposable and let $u^{\prime} \ll u$. Then there exist x_{1}, \ldots, x_{m} such that $\sum_{i=1}^{m} x_{i} \leq u$ and $u^{\prime} \leq n x_{i}$ for all i. Thus,

$$
m u^{\prime} \leq n \sum_{i=1}^{m} x_{i} \leq n u
$$

Arguing as before, we conclude that $n u$ is properly infinite.
Finally note that if u is (m, n)-divisible, then it is both (m, n)-decomposable and weakly (m, n)-divisible, whence $n u$ is properly infinite.
(iii). Since $\operatorname{Div}_{m}(u, A)=n<m$ and $u \ll u$, there exists x such that $m x \leq u \leq n x$. Arguing as in the proof of part (ii) this implies that $\ell x \leq n x$ for all positive integers ℓ. This shows that $2 u \leq 2 n x \leq n x \leq m x \leq u$, whence u is properly infinite.

Remark 3.5. By functoriality, each ${ }^{*}$-homomorphism $\varphi: A \rightarrow B$ between C^{*}-algebras A and B induces a morphism $\mathrm{Cu}(\varphi): \mathrm{Cu}(A) \rightarrow \mathrm{Cu}(B)$ which preserves order, addition, and the relation of compact containment. Thus, for each $u \in \mathrm{Cu}(A)$, and with $v=\mathrm{Cu}(\varphi)(u)$, we have:

$$
\operatorname{Div}_{m}(v, B) \leq \operatorname{Div}_{m}(u, A), \quad \operatorname{Dec}_{m}(v, B) \leq \operatorname{Dec}_{m}(u, A), \quad \mathrm{w}-\operatorname{Div}_{m}(v, B) \leq \mathrm{w}-\operatorname{Div}_{m}(u, A)
$$

In particular, if A and B are unital C^{*}-algebras, and if $\operatorname{Div}_{m}\left(\left\langle 1_{B}\right\rangle, B\right)>\operatorname{Div}_{m}\left(\left\langle 1_{A}\right\rangle, A\right)$ for some m (or if the corresponding inequality holds for one of the other two divisibility numbers), then one can not find a unital embedding of A into B. Divisibility numbers thus serve as an obstruction for embedding a unital C^{*}-algebra with nice divisibility properties into a unital C^{*}-algebra with less nice divisibility properties.

The three divisibility properties behave well with respect to inductive limits thanks to the sequential continuity of the functor $\mathrm{Cu}(\cdot)$:

Proposition 3.6. Let $A=\underline{\lim }\left(A_{i}, \varphi_{i, j}\right)$ be a sequential inductive limit of C^{*}-algebra. Let $u \in \mathrm{Cu}\left(A_{1}\right)$ and, for each i, denote by $u_{i} \in \mathrm{Cu}\left(A_{i}\right)$ and $u_{\infty} \in \mathrm{Cu}(A)$ the images of u in $\mathrm{Cu}\left(A_{i}\right)$ and $\mathrm{Cu}(A)$, respectively. Then:

$$
\begin{gathered}
\operatorname{Div}_{m}\left(u_{\infty}, A\right) \leq \inf _{i} \operatorname{Div}_{m}\left(u_{i}, A_{i}\right), \quad \operatorname{Dec}_{m}\left(u_{\infty}, A\right) \leq \inf _{i} \operatorname{Dec}_{m}\left(u_{i}, A_{i}\right), \\
\operatorname{ww-Div}_{m}\left(u_{\infty}, A\right) \leq \operatorname{inf~w}_{i}-\operatorname{Div}_{m}\left(u_{i}, A_{i}\right) .
\end{gathered}
$$

If u is compact (i.e., if $u \ll u$), then the above inequalities are equalities.
Proof. We will only prove the statements above in the former case; the proofs for the two other cases are similar.

The inequalities $\operatorname{Div}_{m}\left(u_{\infty}, A\right) \leq \operatorname{Div}_{m}\left(u_{i}, A_{i}\right)$, with $i=1,2, \ldots$, follow from Remark 3.5. Suppose now that u is compact. $\operatorname{Set} \operatorname{Div}_{m}\left(u_{\infty}, A\right)=n$. Then there exists $x \in \mathrm{Cu}(A)$ such that $m x \leq u_{\infty} \leq n x$. By Proposition 2.1 (i) and compactness of u_{∞}, it follows that x is the image of some $y \in \mathrm{Cu}\left(A_{i}\right)$ for some i. By Axiom (A2) of the Cuntz semigroup and by compactness of u_{∞} there exists $y^{\prime} \ll y$ in $\mathrm{Cu}\left(A_{i}\right)$ such that $u_{\infty} \leq n \mathrm{Cu}\left(\varphi_{i, \infty}\right)\left(y^{\prime}\right)$. Since the u_{i} 's are compact, Proposition 2.1 (ii) implies that there exists $j>i$ such that

$$
m \mathrm{Cu}\left(\varphi_{i, j}\right)\left(y^{\prime}\right) \leq u_{j} \leq n \mathrm{Cu}\left(\varphi_{i, j}\right)\left(y^{\prime}\right)
$$

Thus u_{j} is (m, n)-divisible in $\mathrm{Cu}\left(A_{j}\right)$.
Definition 3.7. Let A be a σ-unital C^{*}-algebra. Then A contains a strictly positive element. This element represents a class in $\mathrm{Cu}(A)$, which is independent of the choice of the strictly positive element, and which we shall denote by $\langle A\rangle$. If A is unital, then $\langle A\rangle=\left\langle 1_{A}\right\rangle$. We shall write $\mathrm{w}-\operatorname{Div}_{m}(A), \operatorname{Dec}_{m}(A)$, and $\operatorname{Div}_{m}(A)$ for $\mathrm{w}-\operatorname{Div}_{m}(\langle A\rangle, A)$, $\operatorname{Dec}_{m}(\langle A\rangle, A)$, and $\operatorname{Div}_{m}(\langle A\rangle, A)$, respectively.

If A and B are unital C^{*}-algebras such that there exist unital ${ }^{*}$-homomorphisms $A \rightarrow B$ and $B \rightarrow A$, then, by Remark 3.5, we must have

$$
\operatorname{Div}_{m}(A)=\operatorname{Div}_{m}(B), \quad \operatorname{Dec}_{m}(A)=\operatorname{Dec}_{m}(B), \quad \mathrm{w}-\operatorname{Div}_{m}(A)=\mathrm{w}-\operatorname{Div}_{m}(B)
$$

for all m. This applies in particular to the situation where A is any unital C^{*}-algebra and $B=A \otimes D$ for some unital C^{*}-algebra D which has a character. In general, if D is any unital C^{*}-algebra, possibly without characters, the divisibility numbers associated with $A \otimes D$ are smaller than or equal to those of A.

Examples and remarks

Let us first examine the divisibility numbers for matrix algebras:

Example 3.8. Let $m \geq 2$ and $k \geq 2$ be integers. Using that

$$
\left(\mathrm{Cu}\left(M_{k}(\mathbb{C})\right),\langle 1\rangle\right) \cong(\{0,1,2,3, \ldots, \infty\}, k),
$$

an elementary algebraic argument yields that

$$
\mathrm{w}-\operatorname{Div}_{m}\left(M_{k}(\mathbb{C})\right)=\operatorname{Dec}_{m}\left(M_{k}(\mathbb{C})\right)=\operatorname{Div}_{m}\left(M_{k}(\mathbb{C})\right),
$$

and

$$
\operatorname{Div}_{m}\left(M_{k}(\mathbb{C})\right)= \begin{cases}{\left[\frac{k}{\left[\frac{k}{m}\right\rfloor}\right],} & \text { if } m \leq k \tag{3.1}\\ \infty, & \text { if } m>k\end{cases}
$$

Here $\lceil\cdot\rceil$ and $\lfloor\cdot\rfloor$ are the "ceiling" and "floor" functions. In particular, $\operatorname{Div}_{m}\left(M_{k}(\mathbb{C})\right)=m$ if and only if $m \mid k$, and $\operatorname{Div}_{m}\left(M_{k}(\mathbb{C})\right)=m+1$ if $m \nmid k$ and $m(m-1) \leq k$.

Definition 3.9 (The rank of a C^{*}-algebra). Let A be a C^{*}-algebra. Let rank (A) denote the smallest positive integer n for which A has an irreducible representation on a Hilbert space of dimension n, and set $\operatorname{rank}(A)=\infty$ if A has no finite dimensional (irreducible) representation.

Note that $\operatorname{rank}(A)=1$ if and only if A has a character. We remind the reader about the following classical result due to Glimm. (We include a short proof, as this is an important result for our paper, and because we didn't find an exact reference for this statement.)

Proposition 3.10 (Glimm). Let A be a (not necessarily unital) C^{*}-algebra and let $n \geq 1$ be an integer. Then there is a non-zero *-homomorphism $C M_{n}(\mathbb{C}) \rightarrow A$ if and only if A admits at least one irreducible representation on a Hilbert of dimension $\geq n$.

Proof. "Only if" is clear. To prove the "if"-part of the proposition, let π be an irreducible representation of A on a Hilbert space H of dimension $\geq n$. Let P be an n-dimensional projection on H. By Kadison's transitivity theorem for each unitary operator $U: P(H) \rightarrow$ $P(H)$ there is a contraction $a \in A$ such that $\pi(a) P=U$. As a is a contraction, this entails $\pi(a) P=P \pi(a)$. Let B be the sub- C^{*}-algebra of A consisting of all elements a such that $\pi(a) P=P \pi(a)$, and define a ${ }^{*}$-homomorphism $\varphi: B \rightarrow M_{n}(\mathbb{C})$ by $\varphi(a)=P \pi(a) P$, $a \in B$. The argument above shows that φ is surjective. Hence, there is an isomorphism $M_{n}(\mathbb{C}) \rightarrow B / \operatorname{ker}(\varphi)$. By projectivity of $C M_{n}(\mathbb{C})$ this isomorphism lifts to a (non-zero) ${ }^{*}$-homomorphism $C M_{n}(\mathbb{C}) \rightarrow B \subseteq A$.

It follows from Remark 3.5 that $\mathrm{w}-\operatorname{Div}_{m}(A), \operatorname{Dec}_{m}(A)$, and $\operatorname{Div}_{m}(A)$ are greater than or equal to $\operatorname{Div}_{m}\left(M_{n}(\mathbb{C})\right)$ if $\operatorname{rank}(A)=n$. In particular, these three quantities are infinite when $m>\operatorname{rank}(A)$.

Example 3.11 (Simple C^{*}-algebras). If A is a simple, unital, infinite dimensional C^{*} algebra, then $\operatorname{Div}_{m}(A), \operatorname{Dec}_{m}(A)$, and $\mathrm{w}-\operatorname{Div}_{m}(A)$ are finite for all positive integers m. Indeed, by the assumption that A is infinite dimensional, it follows that there is a non-zero $x \in \mathrm{Cu}(A)$ such that $m x \leq\left\langle 1_{A}\right\rangle$. As every simple unital C^{*}-algebra is algebraically simple, it follows that $\left\langle 1_{A}\right\rangle \leq n x$ for some positive integer n, i.e., $\left\langle 1_{A}\right\rangle$ is (m, n)-divisible. Hence $\operatorname{Div}_{m}(A) \leq n$, which entails that also $\operatorname{Dec}_{m}(A) \leq n$ and w- $\operatorname{Div}_{m}(A) \leq n$.

Example 3.12. The dimension drop C^{*}-algebra $Z_{p, q}$, associated with the positive integers p and q, is defined to be

$$
Z_{p, q}=\left\{f \in C\left([0,1], M_{p} \otimes M_{q} \mid f(0) \in M_{p} \otimes \mathbb{C} 1_{q}, \quad f(1) \in \mathbb{C} 1_{p} \otimes M_{q}\right\}\right.
$$

Note that $\operatorname{rank}\left(Z_{p, q}\right)=\min \{p, q\}$. It was shown in Rør04, Lemma 4.2] (and its proof) that $\operatorname{Div}_{m}\left(Z_{m, m+1}\right)=m+1$. By Remark 3.5, it follows that if $Z_{m, m+1}$ maps unitally into A, then $\operatorname{Div}_{m}(A) \leq m+1$. Moreover, as shown in [RW10, Proposition 5.1], if A is a unital C^{*}-algebra of stable rank one, then $\operatorname{Div}_{m}(A) \leq m+1$ if and only if $Z_{m, m+1}$ maps unitally into A.

Remark 3.13 (Almost divisibility). The property "almost divisibility" of a C^{*}-algebra is expressed by saying that $\operatorname{Div}_{m}(A) \leq m+1$ for all integers $m \geq 1$. If every dimension drop algebra $Z_{m, m+1}$ maps unitally into A, or if the Jiang-Su algebra maps unitally into A, then A is almost divisible.

Remark 3.14 (Non-embeddability of the Jiang-Su algebra). It was shown in DHTW09] that there is a simple unital infinite dimensional nuclear C^{*}-algebra A such that the dimension drop C^{*}-algebra $Z_{3,4}$, and hence the Jiang-Su algebra \mathcal{Z}, do not embed unitally into A. The divisibility properties of A were not explicitly mentioned in [DHTW09], but it is easily seen (using Lemma 6.1, that is paraphrased from Rør04, Lemma 4.3]) that $\operatorname{Div}_{3}(A)>4$. We shall in Section 7 give further examples of simple unital infinite dimensional C^{*}-algebras where the divisibility numbers attain non-trivial values.

Remark 3.15 (Real rank zero C^{*}-algebras). It was shown in [PR04, Proposition 5.7] that if A is a unital C^{*}-algebra of real rank zero, then $\operatorname{rank}(A) \geq n$ if and only if there exists a unital embedding of a finite dimensional C^{*}-algebra of rank $\geq n$ into A. Combining this with Remark 3.8 we see that $\operatorname{Div}_{m}(A) \leq m+1$ whenever A is a unital C^{*}-algebra of real rank zero and with $\operatorname{rank}(A) \geq m(m-1)$. In particular, every unital C^{*}-algebra A of real rank zero and with $\operatorname{rank}(A)=\infty$ is almost divisible.
Kirchberg considered in [Kir06] a covering number of a unital C^{*}-algebra B. Let us recall the definition:

Definition 3.16 (Kirchberg). Let $m \in \mathbb{N}$. The covering number of a unital C^{*}-algebra B, denoted by $\operatorname{cov}(B, m)$, is the least positive integer n such that there exist finite dimensional C^{*}-algebras $F_{1}, F_{2}, \ldots, F_{n}$ with $\operatorname{rank}\left(F_{i}\right) \geq m,{ }^{*}$-homomorphisms $\varphi_{i}: C F_{i} \rightarrow$ B, and $d_{1}, d_{2}, \ldots, d_{n} \in B$ such that $1_{B}=\sum_{i=1}^{n} d_{i}^{*} \varphi_{i}\left(1_{F_{i}} \otimes \iota\right) d_{i}$, where $C F_{i}=F_{i} \otimes C_{0}((0,1])$ and $\iota(t)=t$.
Kirchberg's covering number $\operatorname{cov}(B, m)$ relates to our w- $\operatorname{Div}_{m}(B)$ as follows.
Proposition 3.17. Let B be a unital C^{*}-algebra and let m be a positive integer.
(i) $\operatorname{cov}(B, m)$ is the least n for which there exist $x_{1}, x_{2}, \ldots, x_{n} \in \mathrm{Cu}(B)$ such that

$$
\begin{equation*}
x_{i} \leq\left\langle 1_{B}\right\rangle \leq x_{1}+x_{2}+\cdots+x_{n}, \quad x_{i}=\sum_{j=i}^{k_{i}} m_{i j} y_{i j} \tag{3.2}
\end{equation*}
$$

for some integers $m_{i j} \geq m$, some positive integers k_{i}, and some $y_{i j} \in \operatorname{Cu}(A)$.
(ii) $\operatorname{cov}(B, m) \leq \mathrm{w}-\operatorname{Div}_{m}(B) \leq(2 m-1) \operatorname{cov}(B, m)$.

Proof. (i). Assume that $n \geq \operatorname{cov}(B, m)$ and let $F_{i}, \varphi_{i}: C F_{i} \rightarrow B$, and $d_{i} \in B$ be as in Definition 3.16. Write $F_{i}=\bigoplus_{j=1}^{k_{i}} M_{m_{i j}}(\mathbb{C})$ with $m_{i j} \geq m$. Let $e^{(i j)}$ be a one-dimensional projection in $M_{m_{i j}}(\mathbb{C})$. It then follows from Lemma 2.4 that the elements

$$
x_{i}=\left\langle\varphi_{i}\left(1_{F_{i}} \otimes \iota\right)\right\rangle, \quad y_{i j}=\left\langle\varphi_{i}\left(e^{(i j)} \otimes \iota\right)\right\rangle
$$

satisfy the relations in (3.2).
Suppose, conversely, that $n \geq 1$ is chosen such that there are elements x_{i} and $y_{i j}$ in $\mathrm{Cu}(B)$ satisfying (3.2). Put $F_{i}=\bigoplus_{j=1}^{k_{i}} M_{m_{i j}}(\mathbb{C})$. By the assumption that $\sum_{j=i}^{k_{i}} m_{i j} y_{i j} \leq$ $\left\langle 1_{B}\right\rangle$ it follows from Lemma 2.4 (ii) that there are mutually orthogonal positive elements $a_{i j r}$ in B, where $1 \leq i \leq n, 1 \leq j \leq k_{i}, 1 \leq r \leq m_{i j}$, such that $\left\langle a_{i j r}\right\rangle=y_{i j}$. We can further assume that the r positive elements $a_{i j 1}, \ldots, a_{i j r}$ are pairwise equivalent. It then follows from the universal property of the cone over a matrix algebra (see Remark 2.3) that there are ${ }^{*}$-homomorphisms $\varphi_{i}: C F_{i} \rightarrow B$ such that $\left\langle\varphi_{i}\left(e^{(i j)} \otimes \iota\right)\right\rangle=y_{i j}$, where $e^{(i j)}$ is a one-dimensional projection in the summand $M_{m_{i j}}(\mathbb{C})$ of F_{i}. The existence of $d_{i} \in B$ with $1_{B}=\sum_{i=1}^{n} d_{i}^{*} \varphi_{i}\left(1_{F_{i}} \otimes \iota\right) d_{i}$ follows from Lemma 2.4 (i). Thus $\operatorname{cov}(B, m) \leq n$.
(ii). To prove the first inequality, assume that w- $\operatorname{Div}_{m}(B)=n<\infty$ and take y_{1}, \ldots, y_{n} such that $m y_{j} \leq\left\langle 1_{B}\right\rangle \leq y_{1}+\cdots+y_{n}$. Then (3.2) holds with $k_{i}=1$ and $x_{i}=m y_{i}$.

Assume next that $\operatorname{cov}(B, m)=n<\infty$, and find elements x_{i} and $y_{i j}$ satisfying the relations in (3.2). Upon replacing $y_{i j}$ with an integral multiple of $y_{i j}$ we can assume that $m \leq m_{i j}<2 m$ for all i and j. Let $z_{i k}, 1 \leq k \leq 2 m-1$, be the sum of a suitable subset of the $y_{i j}$'s such that $\sum_{k=1}^{2 m-1} z_{i k}=\sum_{j=i}^{k_{i}} m_{i j} y_{i j}=x_{i}$. The $(2 m-1) n$ elements $\left(z_{i k}\right)$ will then witness that $\mathrm{w}-\operatorname{Div}_{m}(B) \leq(2 m-1) n$.

4 The asymptotic divisibility numbers

One can collect the sequence of divisibility numbers $\left(\operatorname{Div}_{m}(A)\right)_{m=2}^{\infty}$ of a unital C^{*}-algebra A into a single divisibility number as follows:

$$
\operatorname{Div}_{*}(A)=\liminf _{m \rightarrow \infty} \frac{\operatorname{Div}_{m}(A)}{m}
$$

In a similar way one can define $\operatorname{Dec}_{*}(A)$ and w - $\operatorname{Div}_{*}(A)$. Propositions 4.1 and 4.2 below hold verbatim for those quantities as well. However, to keep the exposition bounded, we only treat the case of "Div".

It follows from Proposition 3.4 that $\operatorname{Div}_{*}(A)=0$ if and only if A is properly infinite and that $\operatorname{Div}_{*}(A) \geq 1$ if A is not properly infinite.

Proposition 4.1. Let A be a unital C^{*}-algebra.
(i) $\operatorname{Div}_{m}(A) \leq m \operatorname{Div}_{*}(A)+1$ for all integers $m \geq 2$.
(ii) $\operatorname{Div}_{*}(A)=\lim _{m \rightarrow \infty} \operatorname{Div}_{m}(A) / m$ (the limit always exists, but is possibly equal to ∞).
(iii) If A is not properly infinite, then $\operatorname{Div}_{*}(A)=1$ if and only if $\operatorname{Div}_{m}(A) \leq m+1$ for all integers $m \geq 2$.

It follows from Proposition 3.4 and from (iii) above, that A is almost divisible if and only if $\operatorname{Div}_{*}(A) \leq 1$ (i.e., if and only if $\operatorname{Div}_{*}(A)=0$ or $\operatorname{Div}_{*}(A)=1$).

Proof. (i). If $\operatorname{Div}_{*}(A)=\infty$ there is nothing to prove. If $\operatorname{Div}_{*}(A)=0$, then A is properly infinite and so the inequality holds trivially. Assume that $1 \leq \operatorname{Div}_{*}(A)<\infty$. Let $m \geq 2$ be given. Let L be the smallest integer strictly greater than $m \operatorname{Div}_{*}(A)$. We show that $\operatorname{Div}_{m}(A) \leq L$. Choose $\alpha>1$ and a positive integer r_{0} such that

$$
\alpha \frac{r_{0}+1}{r_{0}} m \operatorname{Div}_{*}(A) \leq L
$$

By the definition of $\operatorname{Div}_{*}(A)$ there is $k \geq r_{0} m$ such that $\ell:=\operatorname{Div}_{k}(A) \leq \alpha k \operatorname{Div}_{*}(A)$. Take $x \in \mathrm{Cu}(A)$ such that $k x \leq\left\langle 1_{A}\right\rangle \leq \ell x$. Write $k=r m+d$, with $0 \leq d<m$ and $r \geq r_{0}$. Also, write $\ell=t r-d^{\prime}$, with $0 \leq d^{\prime}<r$ and $t \geq 1$. Put $y=r x \in \operatorname{Cu}(A)$. Then $m y \leq\left\langle 1_{A}\right\rangle \leq t y$. With $\lceil\cdot\rceil$ denoting the ceiling function, we have

$$
\begin{aligned}
\operatorname{Div}_{m}(A) \leq t & =\left\lceil\frac{\ell}{r}\right\rceil \\
& =\left\lceil\frac{\ell}{k-d} m\right\rceil \\
& \leq\left\lceil\alpha \frac{k}{k-d} m \operatorname{Div}_{*}(A)\right\rceil \\
& \leq\left\lceil\alpha \frac{r+1}{r} m \operatorname{Div}_{*}(A)\right\rceil \\
& \leq\left\lceil\alpha \frac{r_{0}+1}{r_{0}} m \operatorname{Div}_{*}(A)\right\rceil \leq L
\end{aligned}
$$

(ii). It follows from (i) that

$$
\limsup _{m \rightarrow \infty} \frac{\operatorname{Div}_{m}(A)}{m} \leq \operatorname{Div}_{*}(A)=\liminf _{m \rightarrow \infty} \frac{\operatorname{Div}_{m}(A)}{m}
$$

and so the claims follows.
(iii). The "if" part is trivial, and the "only if" part follows from (i).

We proceed to discuss how $\operatorname{Div}_{*}(\cdot)$ behaves under forming matrix algebras:
Proposition 4.2. Let A be a unital C^{*}-algebra.
(i) $\operatorname{Div}_{*}\left(M_{n}(A)\right) \leq \operatorname{Div}_{*}(A)$ for all integers $n \geq 2$.
(ii) If $\mathrm{Cu}(A)$ is almost unperforated, then $\operatorname{Div}_{*}\left(M_{n}(A)\right)=\operatorname{Div}_{*}(A)$ for all integers $n \geq 2$.

Proof. (i) follows from Remark 3.5 (as A embeds unitally into $M_{n}(A)$).
(ii). Assume that $\mathrm{Cu}(A)$ is almost unperforated. We show first that

$$
\begin{equation*}
\operatorname{Div}_{*}(A) \leq \frac{n+1}{n-1} \operatorname{Div}_{*}\left(M_{n}(A)\right) \tag{4.1}
\end{equation*}
$$

for all $n \geq 2$. To see this take any integer $m \geq 2$, and use Proposition 4.1 (i) to see that $\ell:=\operatorname{Div}_{m}\left(M_{n}(A)\right) \leq m \operatorname{Div}_{*}\left(M_{n}(A)\right)+1$. Write $m=r(n+1)+d$ and $\ell=t(n-1)-d^{\prime}$, where r and t are positive integers, $0 \leq d<n+1$, and $0 \leq d^{\prime}<n-1$.

Identify $\mathrm{Cu}\left(M_{n}(A)\right)$ with $\mathrm{Cu}(A)$ in the canonical way, where $\left\langle 1_{M_{n}(A)}\right\rangle \in \mathrm{Cu}\left(M_{n}(A)\right)$ is identified with $n\left\langle 1_{A}\right\rangle$. Under this identification we can find $x \in \mathrm{Cu}(A)$ such that $m x \leq$ $n\left\langle 1_{A}\right\rangle \leq \ell x$. In particular,

$$
(n+1) r x \leq n\left\langle 1_{A}\right\rangle \leq(n-1) t x,
$$

which by the assumption that $\mathrm{Cu}(A)$ is almost unperforated implies that $r x \leq\left\langle 1_{A}\right\rangle \leq t x$. This shows that

$$
\begin{aligned}
\frac{\operatorname{Div}_{r}(A)}{r} \leq \frac{t}{r} & =r^{-1}\left\lceil\frac{\ell}{n-1}\right\rceil \leq r^{-1}\left(\frac{\ell}{n-1}+1\right) \\
& \leq r^{-1}\left(\frac{m \operatorname{Div}_{*}\left(M_{n}(A)\right)+1}{n-1}+1\right) \\
& \leq \frac{n+1}{n-1} \operatorname{Div}_{*}\left(M_{n}(A)\right)+r^{-1} \frac{n}{n-1} \operatorname{Div}_{*}\left(M_{n}(A)\right)+r^{-1} \frac{n}{n-1} .
\end{aligned}
$$

Now, $r \rightarrow \infty$ as $m \rightarrow \infty$, and so (4.1) follows by letting m tend to infinity.
To complete the proof of (ii), take $n \geq 2$. By (i) and (4.1) we have:

$$
\operatorname{Div}_{*}(A) \leq \frac{k n+1}{k n-1} \operatorname{Div}_{*}\left(M_{n k}(A)\right) \leq \frac{k n+1}{k n-1} \operatorname{Div}_{*}\left(M_{n}(A)\right)
$$

for all $k \geq 1$, which shows that $\operatorname{Div}_{*}(A) \leq \operatorname{Div}_{*}\left(M_{n}(A)\right)$.
We have previously remarked that $\operatorname{Div}_{m}(A)=\infty$ whenever $m>\operatorname{rank}(A)$. It follows that $\operatorname{Div}_{*}(A)=\infty$ whenever $\operatorname{rank}(A)<\infty$, i.e., whenever A admits a non-zero finite dimensional representation.

Remark 4.3. It can happen that $\operatorname{Div}_{*}\left(M_{n}(A)\right)<\operatorname{Div}_{*}(A)$. Take for example A such that $M_{n}(A)$ is properly infinite, but A itself is not properly infinite, cf. Rør03]. Then $\operatorname{Div}_{*}\left(M_{n}(A)\right)=0$ and $\operatorname{Div}_{*}(A) \geq 1$.

It is an important open problem if $\operatorname{Div}_{*}(A) \leq 1$ (i.e., if A is almost divisible) for every (simple) unital infinite dimensional C^{*}-algebra A for which $\mathrm{Cu}(A)$ is almost unperforated.

5 Finite-, infinite-, and ω-divisibility

The property that any of the divisibility numbers $\operatorname{Div}_{m}(A), \operatorname{Dec}_{m}(A)$, and w- $\operatorname{Div}_{m}(A)$ is finite, when A is a unital C^{*}-algebra, has interpretations in terms of structural properties of the C^{*}-algebra A. We have already noted that the divisibility numbers always are finite when A is a simple C^{*}-algebra, and the corresponding structural properties of the C^{*}-algebra are, as we shall see, trivially satisfied for simple C^{*}-algebras. The correct definition of "finite divisibility" in the non-unital case is what we call (m, ω)-divisibility as defined below.

Definition 5.1. Let A be a C^{*}-algebra, let $u \in \mathrm{Cu}(A)$, and let m be a positive integer. Then:
(i) u is (m, ω)-divisible if for all $u^{\prime} \in \mathrm{Cu}(A)$ with $u^{\prime} \ll u$ there exists $x \in \mathrm{Cu}(A)$ such that $m x \leq u$ and $u^{\prime} \leq n x$ for some positive integer n.
(ii) u is (m, ω)-decomposable if for all $u^{\prime} \in \mathrm{Cu}(A)$ with $u^{\prime} \ll u$ there exist elements $x_{1}, x_{2}, \ldots, x_{m} \in \mathrm{Cu}(A)$ such that $x_{1}+x_{2}+\cdots+x_{m} \leq u$ and $u^{\prime} \leq n x_{j}$ for some positive integer n and for all j.
(iii) u is weakly (m, ω)-divisible if for all $u^{\prime} \in \mathrm{Cu}(A)$ with $u^{\prime} \ll u$ there exist elements $x_{1}, x_{2}, \ldots, x_{n}$ in $\mathrm{Cu}(A)$ such that $m x_{j} \leq u$ for all j and $u^{\prime} \leq x_{1}+x_{2}+\cdots+x_{n}$.

Remark 5.2. If u in Definition 5.1 is compact, then u is (m, ω)-divisible, (m, ω)-decomposable, respectively, weakly (m, ω)-divisible if and only if $\operatorname{Div}_{m}(u, A)<\infty, \operatorname{Dec}_{m}(u, A)<\infty$, respectively, w- $\operatorname{Div}_{m}(u, A)<\infty$, cf. Remark 3.2.

In the next result we express (m, ω)-divisibility in terms of structural properties of the C^{*}-algebra. Part (iii) is almost contained in Kir06] (see Kir06, Definition 3.1] and Kir06, Remark 3.3 (7)] and compare with Definition 3.16 and Proposition 3.17). Recall the definition of the rank of a C^{*}-algebra from Definition 3.9 , and that $C M_{m}(\mathbb{C})=M_{m}(\mathbb{C}) \otimes C_{0}((0,1])$ is the cone over $M_{m}(\mathbb{C})$.

Theorem 5.3. Let A be a σ-unital C^{*}-algebra and let e be a strictly positive element of A. (If A is unital, we can take e to be the unit of A.) Put $u=\langle e\rangle=\langle A\rangle$.
(i) u is (m, ω)-divisible if and only if for every $\varepsilon>0$ there exists a^{*}-homomorphism $\varphi: C M_{m}(\mathbb{C}) \rightarrow A$ such that $(e-\varepsilon)_{+}$belongs to the closed two-sided ideal generated by the image of φ.
(ii) u is (m, ω)-decomposable if and only if for every $\varepsilon>0$ there exist mutually orthogonal positive elements $b_{1}, b_{2}, \ldots, b_{m}$ in A such that $(e-\varepsilon)_{+}$belongs to the closed two-sided ideal generated by b_{i} for each i.
(iii) The following are equivalent:
(a) u is weakly (m, ω)-divisible,
(b) $\operatorname{rank}(A) \geq m$,
(c) there exist ${ }^{*}$-homomorphisms $\varphi_{i}: C M_{m}(\mathbb{C}) \rightarrow A, i=1,2, \ldots, n$, for some n, such that $(e-\varepsilon)_{+}$belongs to the closed two-sided ideal generated by the union of the images of the φ_{i} 's.

Proof. (i). Let us assume that u is (m, ω)-divisible. Let $\varepsilon>0$. Find $x \in \mathrm{Cu}(A)$ and a positive integer n such that $m x \leq u$ and $\left\langle(e-\varepsilon / 2)_{+}\right\rangle \leq n x$. Choose a positive element a in $A \otimes \mathcal{K}$ such that $x=\langle a\rangle$, and choose $\eta>0$ such that $\left\langle(e-\varepsilon)_{+}\right\rangle \leq n\left\langle(a-\eta)_{+}\right\rangle$. By Lemma 2.5 there exists $\varphi: C M_{m}(\mathbb{C}) \rightarrow A$ such that $\left\langle\varphi\left(e_{11} \otimes \iota\right)\right\rangle=\left\langle(a-\eta)_{+}\right\rangle$. Then $\left\langle(e-\varepsilon)_{+}\right\rangle \leq n\left\langle\varphi\left(e_{11} \otimes \iota\right)\right\rangle$ which implies that $(e-\varepsilon)_{+}$belongs to the closed two-sided ideal generated by the image of φ.

Suppose conversely that for every $\varepsilon>0$ there exists $\varphi: C M_{m} \rightarrow A$ such that $(e-\varepsilon)_{+}$ is in the closed two-sided ideal generated by $\varphi\left(e_{11} \otimes \iota\right)$. Set $\left\langle\varphi\left(e_{11} \otimes \iota\right)\right\rangle=x$. Then $m x \leq u$ by Lemma 2.5, while $\left\langle(e-2 \varepsilon)_{+}\right\rangle \leq n x$ for some positive integer n. This shows that u is (m, ω)-divisible.
(ii). "Only if". Let $\varepsilon>0$ and suppose that $b_{1}, b_{2}, \ldots, b_{m}$ in A exist with the stipulated properties. Set $\left\langle b_{j}\right\rangle=x_{j} \in \mathrm{Cu}(A)$. Then

$$
x_{1}+x_{2}+\cdots+x_{m}=\left\langle b_{1}+b_{2}+\cdots+b_{m}\right\rangle \leq u
$$

Since $(e-\varepsilon)_{+}$belongs to the closed two-sided ideal generated by $b_{j},\left\langle(e-2 \varepsilon)_{+}\right\rangle \leq n x_{j}$ for some integer $n \geq 1$. It follows that u is (m, ω)-decomposable.
"If". If $u=\langle e\rangle$ is (m, ω)-decomposable and if $\varepsilon>0$, then there are positive elements $a_{1}, a_{2}, \ldots, a_{m}$ in $A \otimes \mathcal{K}$ such that $\left\langle a_{1}\right\rangle+\left\langle a_{2}\right\rangle+\cdots+\left\langle a_{m}\right\rangle \leq u$ and $\left\langle(e-\varepsilon / 2)_{+}\right\rangle \leq n\left\langle a_{j}\right\rangle$ for some positive integer n. Choose $\eta>0$ such that $\left\langle(e-\varepsilon)_{+}\right\rangle \leq n\left\langle\left(a_{j}-\eta\right)_{+}\right\rangle$for all j. By Lemma 2.4 (ii) there are pairwise orthogonal positive elements $b_{1}, b_{2}, \ldots, b_{m}$ in A such that $b_{j} \sim\left(a_{j}-\eta\right)_{+}$. Then the closed two-sided ideal generated by b_{j} contains $(e-\varepsilon)_{+}$for each j.
(iii). (a) \Rightarrow (b). Assume that u is weakly (m, ω)-divisible. Suppose that A has an irreducible representation $\pi: A \rightarrow B\left(\mathbb{C}^{k}\right)=M_{k}(\mathbb{C})$ of finite positive dimension k. Then π is necessarily surjective. Since (m, ω)-divisibility is preserved by ${ }^{*}$-homomorphisms (cf. Remark 3.5), we conclude that $M_{k}(\mathbb{C})$ is weakly (m, ω)-divisible. But then $k \geq m$, cf. Example 3.8. Hence (b) holds.
(b) \Rightarrow (c). Assume that (b) holds. Let $\left(\varphi_{i}\right)_{i \in \mathbb{I}}$ be the family of all non-zero *-homomorphisms $\varphi_{i}: C M_{m}(\mathbb{C}) \rightarrow A$ and let I be the closed two-sided ideal in A generated by the images of all φ_{i} 's. Thus each φ_{i} maps $C M_{m}(\mathbb{C})$ into I. We claim that $I=A$. Assume, to reach a contradiction, that $I \neq A$. By the assumption that $\operatorname{rank}(A) \geq m$, all irreducible representations of A / I have dimension at least m. It follows from Glimm's lemma (Proposition 3.10) that there is a non-zero ${ }^{*}$-homomorphism $C M_{m}(\mathbb{C}) \rightarrow A / I$, which by projectivity lifts to a ${ }^{*}$-homomorphism $\varphi: C M_{m}(\mathbb{C}) \rightarrow A$. But the image of φ is not contained in I, which is a contradiction.

For each finite subset F of \mathbb{I} consider the closed two-sided ideal I_{F} of A generated by $\bigcup_{i \in F} \varphi_{i}\left(C M_{m}(\mathbb{C})\right)$. Then A is the closure of the union of the upwards directed family of
ideals $\left(I_{F}\right)$. Hence, for each $\varepsilon>0$, there is a finite subset F of \mathbb{I} such that $(e-\varepsilon)_{+}$belongs to I_{F}. Thus (c) holds.
(c) \Rightarrow (a). Assume that (c) holds. Set $z_{i}=\left\langle\varphi_{i}\left(e_{11} \otimes \iota\right)\right\rangle$ for $i=1,2, \ldots, n$. Then $m z_{i} \leq u$ for all i. Moreover, $(a-\varepsilon)_{+}$belongs to the algebraic ideal generated by the n elements $\varphi_{i}\left(e_{11} \otimes \iota\right)$, whence $\left\langle(a-\varepsilon)_{+}\right\rangle \leq \sum_{j=1}^{n} n_{j} z_{j}$ for suitable positive integers n_{j}. Put $N=\sum n_{j}$ and let $x_{1}, x_{2}, \ldots, x_{N}$ be a listing of the elements z_{1}, \ldots, z_{n}, with z_{j} repeated n_{j} times. Then $m x_{j} \leq u$ and $(a-\varepsilon)_{+} \leq x_{1}+x_{2}+\cdots+x_{N}$. This shows that u is weakly (m, ω)-divisible.

The theorem above can be simplified in the case where u is compact, and in particular in the case where A is unital:

Corollary 5.4. Let A be a unital C^{*}-algebra, and let m be a positive integer. Then:
(i) $\operatorname{Div}_{m}(A)<\infty$ if and only if there exists a^{*}-homomorphism $\varphi: C M_{m}(\mathbb{C}) \rightarrow A$ whose image is full in A.
(ii) $\operatorname{Dec}_{m}(A)<\infty$ if and only if there exist full, pairwise orthogonal positive elements $b_{1}, b_{2}, \ldots, b_{m}$ in A.
(iii) The following are equivalent:
(a) $\mathrm{w}-\operatorname{Div}_{m}(A)<\infty$,
(b) $\operatorname{rank}(A) \geq m$,
(c) there exist ${ }^{*}$-homomorphisms $\varphi_{i}: C M_{m}(\mathbb{C}) \rightarrow A, i=1,2, \ldots, n$, for some n, such that the union of their images is full in A.

Propositions 3.10 (Glimm), Proposition 3.3, and Corollary 5.4 (i) immediately imply:
Corollary 5.5. If A is a unital, infinite dimensional, simple C^{*}-algebra, then the three divisibility numbers $\operatorname{Div}_{m}(A), \operatorname{Dec}_{m}(A)$, and $\mathrm{w}-\operatorname{Div}_{m}(A)$ are finite for every integer $m \geq 1$.

Let us also note what it means to have infinite $\mathrm{w}-\operatorname{Div}_{m}(\cdot)$ numbers:
Corollary 5.6. Let A be a unital C^{*}-algebra.
(i) A admits a character if and only if $\mathrm{w}-\operatorname{Div}_{2}(A)=\infty$.
(ii) A admits a finite dimensional representations if and only if $\mathrm{w}-\operatorname{Div}_{m}(A)=\infty$ for some integer $m \geq 2$.

Remark 5.7 (The Global Glimm Halving Problem). Glimm's lemma (Proposition 3.10) says that there exists a non-zero *-homomorphism from $C M_{n}(\mathbb{C})$ into a C^{*}-algebra A if and only if A admits an irreducible representation of dimension at least n. It is not known how "large" one can make the image of such a *-homomorphism. In particular, it is not known for which C^{*}-algebras A one can find a ${ }^{*}$-homomorphism $C M_{n}(\mathbb{C}) \rightarrow A$ whose image is full in A (i.e., the image is not contained in any proper closed two-sided ideal in A). For $n=2$
this problem is known as the "Global Glimm Halving Problem" (see BK04a, BK04b and [KR02]). A unital C^{*}-algebra A is said to have the Global Glimm Halving Property if there is a ${ }^{*}$-homomorphism $C M_{2}(\mathbb{C}) \rightarrow A$ with full image.

More specifically, one can ask if any (unital) C^{*}-algebra, which admits no finite dimensional representation, satisfies the Global Glimm Halving Property. In view of Corollary 5.4, this problem for unital C^{*}-algebras A may be restated as follows: Does $\operatorname{Div}_{2}(A)=$ ∞ imply that $\mathrm{w}-\operatorname{Div}_{m}(A)=\infty$ for some positive integer m ? For a non-unital C^{*}-algebra A, the one can restate the problem in the following way: $\operatorname{Does~}^{\operatorname{Div}} \operatorname{Div}_{2}(A)=\infty$ imply that $\langle A\rangle$ fails to be (m, ω)-divisible for some positive integer m.

It is shown in KR02] that if A is a weakly purely infinite C^{*}-algebra, then A is purely infinite if and only if all hereditary sub- C^{*}-algebras of A have the Global Glimm Halving Property. (It is easy to see that the rank of any weakly purely infinite C^{*}-algebra is infinite.) It is an open problem if all weakly purely infinite C^{*}-algebras are purely infinite.

Remark 5.8. Let A be a unital C^{*}-algebra. It follows from Proposition 3.3 (and also from Corollary 5.4) that

$$
\operatorname{Div}_{m}(A)<\infty \Longrightarrow \operatorname{Dec}_{m}(A)<\infty \Longrightarrow \mathrm{w}-\operatorname{Div}_{m}(A)<\infty
$$

for all positive integers m. None of the two reverse implications hold in general.
For each integer $m \geq 2$ let p in $C\left(S^{2 m}\right) \otimes \mathcal{K}$ be a projection of (complex) dimension m and with non-zero Euler class (the existence of such p is guaranteed by Hus94, p. 278, Corollary 9.8]). As all projections in $C\left(S^{2 m}\right) \otimes \mathcal{K}$ of dimension $<m$ have trivial Euler class, it follows that p has no non-trivial subprojection. The unital C^{*}-algebra $A=$ $p\left(C\left(S^{2 m}\right) \otimes \mathcal{K}\right) p$ is a homogeneous C^{*}-algebra of rank m. Hence w- $\operatorname{Div}_{m}(A)<\infty$. Suppose that $\operatorname{Dec}_{m}(A)<\infty$. Then, by Corollary 5.4 (ii), there would exist full, pairwise orthogonal, positive elements b_{1}, \ldots, b_{m} in A. This would entail that each b_{j} is one-dimensional in each fiber of A, and hence that $f_{j} . b_{j}$ is a one-dimensional projection for some $f_{j} \in C\left(S^{2 m}\right)$. But this contradicts the fact that p has no proper subprojections.

To see that $\operatorname{Dec}_{m}(A)<\infty$ does not imply $\operatorname{Div}_{m}(A)<\infty$, consider the C^{*}-algebra $B=C\left(S^{2}\right) \otimes \mathcal{K}$, let $p \in B$ be the "Bott projection" (i.e., the rank one projection associated to the Hopf line bundle over S^{2}) and let $q \in B$ be a trivial $(m-1)$-dimensional projection orthogonal to p. Put $A=(p+q) B(p+q)$. It follows from a K-theoretical argument that $p+q$ cannot be written as the sum of m pairwise orthogonal and equivalent projections (because $[p+q]$ is not divisible by m in $K_{0}(A)$). The unit of A can be written as the sum of m (necessarily full) projections, so $\operatorname{Dec}_{m}(A)<\infty$. Assume that $\operatorname{Div}_{m}(A)<\infty$. Then, by Corollary 5.4 (i), there is a ${ }^{*}$-homomorphism $\varphi: C M_{m}(\mathbb{C}) \rightarrow A$ whose image is full in A. As explained in Remark 2.3, this entails that there exist full, pairwise orthogonal, pairwise equivalent, positive elements $b_{1}, b_{2}, \ldots, b_{m}$ in A. Arguing as in the paragraph above, we can assume that each b_{j} is in fact a projection. But that contradicts the fact that $1_{A}=p+q$ is not the sum of m pairwise equivalent projections.

6 Divisibility and comparability

Let A and B be C^{*}-algebras. Then there is a natural bi-additive map

$$
\mathrm{Cu}(A) \times \mathrm{Cu}(B) \rightarrow \mathrm{Cu}(A \otimes B), \quad(x, y) \mapsto x \otimes y,
$$

defined as follows: If $x=\langle a\rangle$ and $y=\langle b\rangle$ with a a positive element in $A \otimes \mathcal{K}$ and b a positive element in $B \otimes \mathcal{K}$, then $x \otimes y=\langle a \otimes b\rangle$, where we identify $(A \otimes \mathcal{K}) \otimes(B \otimes \mathcal{K})$ with $A \otimes B \otimes \mathcal{K}$. Note that $x_{1} \otimes y_{1} \leq x_{2} \otimes y_{2}$ if $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$.

Part (i) of the following result was (implicitly) proved in [Rør04, Lemma 4.3], and was used to prove that $\mathrm{Cu}(A \otimes \mathcal{Z})$ is almost unperforated for all unital C^{*}-algebras A.

Lemma 6.1. Let A and B be unital C^{*}-algebras and let $1 \leq m<n$ be integers.
(i) Let $x, y \in \mathrm{Cu}(A)$ be such that $n x \leq m y$. If B is (m, n)-divisible, then $x \otimes\left\langle 1_{B}\right\rangle \leq$ $y \otimes\left\langle 1_{B}\right\rangle$.
(ii) Let $x_{1}, x_{2}, \ldots, x_{m}, y \in \mathrm{Cu}(A)$ be such that $n x_{j} \leq y$ for all j. If B is (m, n)-decomposable, then

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right) \otimes\left\langle 1_{B}\right\rangle \leq y \otimes\left\langle 1_{B}\right\rangle .
$$

(iii) Let $x, y_{1}, y_{2}, \ldots, y_{n} \in \mathrm{Cu}(A)$ be such that $x \leq m y_{j}$ for all j. If B is weakly $(m, n)-$ divisible, then

$$
x \otimes\left\langle 1_{B}\right\rangle \leq\left(y_{1}+y_{2}+\cdots+y_{n}\right) \otimes\left\langle 1_{B}\right\rangle .
$$

Proof. (i). Take $z \in \mathrm{Cu}(B)$ such that $m z \leq\left\langle 1_{B}\right\rangle \leq n z$. Then

$$
x \otimes\left\langle 1_{B}\right\rangle \leq x \otimes n z=n x \otimes z \leq m y \otimes z=y \otimes m z \leq y \otimes\left\langle 1_{B}\right\rangle .
$$

(ii). Take $z_{1}, z_{2}, \ldots, z_{m} \in \operatorname{Cu}(B)$ such that $z_{1}+z_{2}+\cdots+z_{m} \leq\left\langle 1_{B}\right\rangle \leq n z_{j}$. Then

$$
\begin{aligned}
\left(x_{1}+x_{2}+\cdots+x_{m}\right) \otimes\left\langle 1_{B}\right\rangle & \leq x_{1} \otimes n z_{1}+x_{2} \otimes n z_{2}+\cdots+x_{m} \otimes n z_{m} \\
& =n x_{1} \otimes z_{1}+n x_{2} \otimes z_{2}+\cdots+n x_{m} \otimes z_{m} \\
& \leq y \otimes\left(z_{1}+z_{2}+\cdots+z_{m}\right) \\
& \leq y \otimes\left\langle 1_{B}\right\rangle .
\end{aligned}
$$

(iii). Take $z_{1}, z_{2}, \ldots, z_{n} \in \operatorname{Cu}(B)$ such that $m z_{j} \leq\left\langle 1_{B}\right\rangle \leq z_{1}+z_{2}+\cdots+z_{n}$. Then

$$
\begin{aligned}
\left(y_{1}+y_{2}+\cdots+y_{n}\right) \otimes\left\langle 1_{B}\right\rangle & \geq y_{1} \otimes m z_{1}+y_{2} \otimes m z_{2}+\cdots+y_{n} \otimes m z_{n} \\
& =m y_{1} \otimes z_{1}+m y_{2} \otimes z_{2}+\cdots+m y_{n} \otimes z_{n} \\
& \geq x \otimes\left(z_{1}+z_{2}+\cdots+z_{n}\right) \\
& \geq x \otimes\left\langle 1_{B}\right\rangle .
\end{aligned}
$$

The lemma above can loosely be paraphrased as follows: Good divisibility properties of B ensure good comparability properties of $A \otimes B$, and bad comparability properties of $A \otimes B$ entail bad divisibility properties of B.

We proceed to show that infinite tensor products of (suitable) unital C^{*}-algebras cannot have very bad comparability properties.

Lemma 6.2. Let $n \geq 1$ be an integer and let $A_{1}, A_{2}, \ldots, A_{n}$ be unital C^{*}-algebras such that $N:=\max _{1 \leq k \leq n} \mathrm{w}-\operatorname{Div}_{2}\left(A_{k}\right)<\infty$. Then

$$
\mathrm{w}-\operatorname{Div}_{m}\left(\bigotimes_{k=1}^{n} A_{k}\right) \leq N^{\left\lceil\log _{2} m\right\rceil},
$$

whenever $2 \leq m \leq 2^{n}$.
Proof. Put $r=\left\lceil\log _{2} m\right\rceil$. We show that $\mathrm{w}-\operatorname{Div}\left(\bigotimes_{k=1}^{r} A_{k}\right) \leq N^{r}$. This will show that w- $\operatorname{Div}\left(\bigotimes_{k=1}^{n} A_{k}\right) \leq N^{r}$ by Remark 3.5 because $r \leq n$.

For each $k=1,2, \ldots, r$ and $i=1,2, \ldots, N$, find $z_{i}^{(k)} \in \mathrm{Cu}\left(A_{k}\right)$ such that $2 z_{i}^{(k)} \leq$ $\left\langle 1_{A_{k}}\right\rangle \leq \sum_{i=1}^{N} z_{i}^{(k)}$. Given a multi-index $\left(i_{1}, i_{2}, \ldots, i_{r}\right) \in\{1, \ldots, N\}^{r}$, put

$$
z_{i_{1}, i_{2}, \ldots, i_{r}}=z_{i_{1}}^{(1)} \otimes z_{i_{2}}^{(2)} \otimes \cdots \otimes z_{i_{r}}^{(r)} \in \mathrm{Cu}\left(\bigotimes_{k=1}^{r} A_{k}\right)
$$

Then

$$
\begin{aligned}
m \cdot z_{i_{1}, i_{2}, \ldots, i_{r}} \leq 2^{n} \cdot z_{i_{1}, i_{2}, \ldots, i_{r}} & =\left(2 z_{i_{i}}^{(1)}\right) \otimes\left(2 z_{i_{2}}^{(2)}\right) \otimes \cdots \otimes\left(2 z_{i_{r}}^{(r)}\right) \\
& \leq\left\langle 1_{A_{1}} \otimes 1_{A_{2}} \otimes \cdots \otimes 1_{A_{r}}\right\rangle \\
& \leq\left(\sum_{i=1}^{N} z_{i}^{(1)}\right) \otimes\left(\sum_{i=1}^{N} z_{i}^{(2)}\right) \otimes \cdots \otimes\left(\sum_{i=1}^{N} z_{i}^{(r)}\right) \\
& =\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{N} z_{i_{1}, i_{2}, \ldots, i_{r}} .
\end{aligned}
$$

The N^{r} elements $\left(z_{i_{1}, i_{2}, \ldots, i_{r}}\right)$ thus witness that $\bigotimes_{k=1}^{r} A_{k}$ is weakly (m, N^{r})-divisible.
Recall that a C^{*}-algebra A has the Corona Factorization Property if and only if all full projections in $\mathcal{M}(A \otimes \mathcal{K})$ are properly infinite. It was shown in OPR that if A is a separable C^{*}-algebra, then A and all its closed two-sided ideals have the Corona Factorization Property if and only if for every integer $m \geq 2$, and for all $x^{\prime}, x, y_{1}, y_{2}, \ldots$ in $\mathrm{Cu}(A)$ such that $x^{\prime} \ll x$ and $x \leq m y_{j}$ for all j, one has $x^{\prime} \leq y_{1}+y_{2}+\cdots+y_{N}$ for some integer $N \geq 1$.
Proposition 6.3. Let $\left(A_{k}\right)_{k=1}^{\infty}$ be a sequence of unital C^{*}-algebras such that

$$
\sup _{k} \mathrm{w}-\operatorname{Div}_{2}\left(A_{k}\right)<\infty
$$

It follows that the C^{*}-algebra $\bigotimes_{k=1}^{\infty} A_{k}$ and all its closed two-sided ideals have the Corona Factorization Property. In particular, if A is a unital C^{*}-algebra without characters then $\bigotimes_{k=1}^{\infty} A$ and all its closed two-sided ideals have the Corona Factorization Property.

Proof. Put $B=\bigotimes_{k=1}^{\infty} A_{k}$, and for each $n \geq 1$ put $B_{n}=\bigotimes_{k=1}^{n} A_{k}$ and $D_{n}=\bigotimes_{k=n+1}^{\infty} A_{k}$. We shall view $\left(B_{n}\right)_{n=1}^{\infty}$ as an increasing sequence of sub- C^{*}-algebras of B such that $\bigcup_{n=1}^{\infty} B_{n}$ is dense in B, and we shall identify B with $B_{n} \otimes D_{n}$ for all n.

Let $m \geq 1$ be an integer and let $x^{\prime}, x, y_{1}, y_{2}, y_{3}, \ldots$ in $\mathrm{Cu}(B)$ be such that $x^{\prime} \ll x$ and $x \leq m y_{j}$ for all j. By Lemma 6.2 there is a positive integer N such that $\mathrm{w}-\operatorname{Div}_{m}\left(D_{n}\right) \leq N$ for all n. We show that $x^{\prime} \leq y_{1}+y_{2}+\cdots+y_{N}$. This will prove that B has the Corona Factorization Property.

Repeated use of Proposition 2.1 (i) and (ii) shows that there exists a positive integer n, and elements $x^{\prime \prime}, y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{N}^{\prime}$ in $\mathrm{Cu}\left(B_{n}\right)$ such that

$$
x^{\prime} \leq x^{\prime \prime} \otimes\left\langle 1_{D_{n}}\right\rangle \leq x, \quad y_{j}^{\prime} \otimes\left\langle 1_{D_{n}}\right\rangle \ll y_{j} \text { in } \mathrm{Cu}(B) ; \quad x^{\prime \prime} \ll m y_{j}^{\prime} \text { in } \mathrm{Cu}\left(B_{n}\right)
$$

where $x \mapsto x \otimes\left\langle 1_{D_{n}}\right\rangle$ denotes the canonical embedding $\mathrm{Cu}\left(B_{n}\right) \rightarrow \mathrm{Cu}(B)$. We can now apply Lemma 6.1 (iii) to deduce that

$$
x^{\prime} \leq x^{\prime \prime} \otimes\left\langle 1_{D_{n}}\right\rangle \leq\left(y_{1}^{\prime}+y_{2}^{\prime}+\cdots+y_{N}^{\prime}\right) \otimes\left\langle 1_{D_{n}}\right\rangle \leq y_{1}+y_{2}+\cdots+y_{N}
$$

as desired.

7 Obstructions to Divisibility

A trivial obstruction to (weak) divisibility of a C^{*}-algebra is its rank: w- $\operatorname{Div}_{m}(A)<\infty$ if and only if $m \leq \operatorname{rank}(A)$ (by Corollary 5.4 (iii)). In this section we shall discuss ways of obtaining homogeneous C^{*}-algebras with large rank and large weak divisibility constant. We use these techniques to construct unital simple C^{*}-algebras with large weak divisibility constants.

We remark first that Lemma 6.1 provides non-trivial obstructions to divisibility in B. Indeed, it follows by that lemma that if there exists a unital C^{*}-algebra A and $x, y \in \mathrm{Cu}(A)$ such that $n x \leq m y$ but $x \otimes\left\langle 1_{B}\right\rangle \not \leq y \otimes\left\langle 1_{B}\right\rangle$, then $\operatorname{Div}_{m}(B)>n$. Similarly, if there exist x_{1}, \ldots, x_{m}, y in $\mathrm{Cu}(A)$ such that $n x_{j} \leq y$ for all j while

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right) \otimes\left\langle 1_{B}\right\rangle \not \leq y \otimes\left\langle 1_{B}\right\rangle,
$$

then $\operatorname{Dec}_{m}(B)>n$. Finally, if there exist $x, y_{1}, \ldots, y_{n} \in \operatorname{Cu}(A)$ such that $x \leq m y_{j}$ for all j while

$$
x \otimes\left\langle 1_{B}\right\rangle \not \leq\left(y_{1}+y_{2}+\cdots+y_{n}\right) \otimes\left\langle 1_{B}\right\rangle,
$$

then w- $\operatorname{Div}_{m}(B)>n$.
We introduce below another way to obtain bad divisibility behaviour:
Lemma 7.1. Let $u, v \in \operatorname{Cu}(A)$ be compact elements. If $\operatorname{Div}_{2}(u+v, A) \leq N$ then there exist $x_{1}, x_{2}, \ldots, x_{N}$ in $\mathrm{Cu}(A)$ such that $2 x_{i} \leq v$ for all i and

$$
2 v \leq v+(2 N+1) u+\sum_{i=1}^{N} 2 x_{i}
$$

Proof. By assumption there exists x such that $2 x \leq u+v \leq N x$. By compactness of $u+v$ we can find $x^{\prime \prime} \ll x^{\prime} \ll x$ such that $u+v \leq N x^{\prime \prime}$. Since $x^{\prime} \ll x \leq u+v$, it follows from Property (P1) of the Cuntz semigroup (see Section 2) (leaving u unchanged) that there exists v_{1} such that

$$
x^{\prime} \leq u+v_{1}, \quad v_{1} \leq x, \quad v_{1} \leq v .
$$

As $x^{\prime \prime} \ll u+v_{1}$ there is $v_{1}^{\prime} \ll v_{1}$ such that $x^{\prime \prime} \leq u+v_{1}^{\prime}$. Apply (P2) to the relation $v_{1}^{\prime} \ll v_{1} \leq v$ to obtain v_{2} satisfying

$$
v_{1}^{\prime}+v_{2} \leq v \leq v_{1}+v_{2}
$$

By compactness of v we can find $v_{2}^{\prime} \ll v_{2}$ such that $v \leq v_{1}+v_{2}^{\prime}$. Now,

$$
v_{2}^{\prime} \ll v_{2} \leq u+v \leq N x^{\prime \prime} \leq N u+N v_{1}^{\prime},
$$

and so we can use (P1) (leaving $N u$ unchanged) to find x_{1}, \ldots, x_{N} such that

$$
v_{2}^{\prime} \leq N u+\sum_{j=1}^{N} x_{j}, \quad x_{j} \leq v_{1}^{\prime}, \quad x_{j} \leq v_{2}
$$

It follows that $2 x_{j} \leq v_{1}^{\prime}+v_{2} \leq v$ and that

$$
2 v \leq 2 v_{1}+2 v_{2}^{\prime} \leq 2 x+2 N u+2 \sum_{j=1}^{N} x_{j} \leq v+(2 N+1) u+2 \sum_{j=1}^{N} x_{j}
$$

as desired.
The corollary below illustrates how the preceding lemma can be used to find elements with bad divisibility properties:

Corollary 7.2. Let X be a compact Hausdorff space and suppose that $p \in C(X) \otimes \mathcal{K}$ is a projection such that $[1] \not \leq(2 N+1)[p]$ in $K_{0}(C(X))$, where 1 denotes the unit of $C(X)$. Then $\operatorname{Div}_{2}(\langle 1\rangle+\langle p\rangle, C(X))>N$.

Proof. Consider the compact elements $u=\langle p\rangle$ and $v=\langle 1\rangle$ of $\mathrm{Cu}(C(X))$. Note that $2 x \leq\langle 1\rangle$ implies $x=0$ and that $2\langle 1\rangle \not \leq\langle 1\rangle+(2 N+1)\langle p\rangle$. The desired conclusion now follows from Lemma 7.1.

The relation $[1] \not \leq(2 N+1)[p]$ in $K_{0}(C(X))$ is satisfied whenever the $(2 N+1)$-fold direct sum of p with itself is a projection with non-trivial Euler class (as explained in more detail below). It is known that for each integer $d \geq 1$ and for each positive integer N there exist X and $p \in C(X) \otimes \mathcal{K}$ such that $(2 N+1)[p]$ has non-trivial Euler class and p has rank d. The unital C^{*}-algebra $A=(p \oplus 1)(C(X) \otimes \mathcal{K})(p \oplus 1)$ with this choice of X and p will then satisfy $\operatorname{rank}(A)=d+1$ and $\operatorname{Div}_{2}(A)>N$.

We will now give a different method for constructing elements with large divisibility constants and large rank, where we get upper bounds and where we also can give sharper
lower bounds for the weak divisibility constant. Let S^{2} denote the 2-dimensional sphere. Let p denote the "Bott-projection" in $C\left(S^{2}\right) \otimes M_{2} \subseteq C\left(S^{2}\right) \otimes \mathcal{K}$, i.e., the projection associated to the Hopf line bundle over S^{2}. For each $1 \leq j \leq N$, let $p_{j} \in C\left(\left(S^{2}\right)^{N}\right) \otimes \mathcal{K}$ be given by

$$
p_{j}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=p\left(x_{j}\right), \quad\left(x_{1}, \ldots, x_{N}\right) \in\left(S^{2}\right)^{N}
$$

Since $\langle 1\rangle \leq 2\langle p\rangle$ in $\mathrm{Cu}\left(C\left(S^{2}\right)\right)$, we have

$$
N\langle 1\rangle \leq 2\left\langle\bigoplus_{i=1}^{N} p_{i}\right\rangle .
$$

As another obstruction to weak divisibility, we shall use the following corollary of Lemma 6.1 (iii), cf. the remarks at the beginning of this section, applied to the relations $\langle 1\rangle \leq 2\left\langle p_{i}\right\rangle$, $i=1,2 \ldots, N$.

Corollary 7.3. Let X be a locally compact Hausdorff space, and let $q \in C_{0}(X) \otimes \mathcal{K}$ be a projection. Let $\left(p_{i}\right)_{i=1}^{N}$ be the projections in $C\left(\left(S^{2}\right)^{N}\right) \otimes \mathcal{K}$ defined in the preceding paragraph. Suppose that

$$
q \otimes 1 \not \approx q \otimes \bigoplus_{i=1}^{N} p_{i} .
$$

Then $\mathrm{w}-\operatorname{Div}_{2}\left(\langle q\rangle, C_{0}(X)\right)>N$.
Let us now give examples of projections to which the corollary above can be applied. We will make use of characteristic classes of vector bundles. Recall that projections in $C(X) \otimes \mathcal{K}$, with X compact and Hausdorff, give rise to vector bundles over X : if p is a projection, then $\eta_{p}=\left(E_{p}, X, \pi\right)$, with $E_{p}=\left\{(x, v) \in X \times l_{2}(\mathbb{N}) \mid p(x) v=v\right\}$ is the vector bundle associated to p. Up to Murray-von Neumann equivalence of projections and isomorphism of vector bundles, this correspondence is a bijection. We denote by $e\left(\eta_{p}\right) \in H^{*}(X)$, or simply $e(p)$, the Euler class of η_{p}. For the cartesian product of spheres $\left(S^{2}\right)^{N}$ we have (e.g., by the Künneth formula) that

$$
H^{*}\left(\left(S^{2}\right)^{N}\right) \cong \mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{N}\right] /\left(z_{1}^{2}, z_{2}^{2}, \ldots, z_{N}^{2}\right)
$$

With this identification, the Euler classes of the projections $p_{i} \in C\left(\left(S^{2}\right)^{N}\right) \otimes \mathcal{K}$ defined earlier can be shown to be $e\left(p_{i}\right)=z_{i}$.

Proposition 7.4. Let X be a compact Hausdorff space and let $q \in C(X) \otimes \mathcal{K}$ be a projection such that $e(q)^{N} \neq 0$. Then

$$
\mathrm{w}^{-\operatorname{Div}_{2}}(\langle 1 \oplus q\rangle, C(X))>N .
$$

Proof. By Corollary 7.3 it suffices to show that

$$
\begin{equation*}
\left(1_{X} \oplus q\right) \otimes 1_{\left(S^{2}\right)^{N}} \npreceq\left(1_{X} \oplus q\right) \otimes \bigoplus_{i=1}^{N} p_{i} \tag{7.1}
\end{equation*}
$$

in $\mathrm{Cu}\left(C(X) \otimes C\left(\left(S^{2}\right)^{N}\right)\right.$), where 1_{X} denotes the unit in $C(X)$. (In the formulation of the proposition above, we denoted 1_{X} simply by 1.) Observe that the trivial rank one projection is a subprojection of the projection on the left-hand side of (7.1). Thus, it suffices to show that the right side of (7.1) has non-zero Euler class.

Set $\operatorname{rank}(q)=k$. For each positive integer i, let $c_{i}(q) \in H^{2 i}(X)$ denote the i th characteristic class of q (so that $c_{k}(q)=e(q)$). By the Künneth Theorem (MS74, Theorem A.6]), we can identify $H^{*}\left(X \times\left(S^{2}\right)^{N}\right)$ with $H^{*}(X) \otimes H^{*}\left(\left(S^{2}\right)^{N}\right)$. Then

$$
\begin{aligned}
e\left(\left(1_{X} \oplus q\right) \otimes \bigoplus_{i=1}^{N} p_{i}\right) & =e\left(1_{X} \otimes \bigoplus_{i=1}^{N} p_{i}\right) e\left(q \otimes \bigoplus_{i=1}^{N} p_{i}\right) \\
& =\prod_{i=1}^{N} e\left(1_{X} \otimes p_{i}\right) \prod_{i=1}^{N} e\left(q \otimes p_{i}\right) \\
& =\prod_{i=1}^{N} e\left(p_{i}\right) \prod_{i=1}^{N} \sum_{j=0}^{k} c_{k-j}(q) e\left(p_{i}\right)^{j} \\
& =\prod_{i=1}^{N} e\left(p_{i}\right) e(q)^{N} \neq 0 .
\end{aligned}
$$

In the above computation we have used that $e\left(1_{X} \otimes p_{i}\right)=e\left(1_{X}\right)+e\left(p_{i}\right)=e\left(p_{i}\right)$ and that $e(q \otimes p)=\sum_{j=0}^{k} c_{k-j}(q) e(p)^{j}$, for q a projection of rank k and p a projection of rank 1 . To obtain the last equality we have used that $e\left(p_{i}\right)^{2}=0$ for all i.

Let us now give examples of families of projections to which the above proposition can be applied. We shall here and in the following, whenever p is a projection (in a C^{*}-algebra) and n is a positive integer, let $n \cdot p$ denote the n-fold direct sum, $p \oplus p \oplus \cdots \oplus p$, (in a matrix algebra over the given C^{*}-algebra) of the projection p.

Example 7.5. Let N be a positive integer, and let $\mathbb{C P}^{N}$ denote the $2 N$-dimensional complex projective space. Let η denote the tautological line bundle over $\mathbb{C P}^{N}$ and p_{η} the rank 1 projection associated to it. It is known that $e\left(p_{\eta}\right)=z^{2} \in C\left[z^{2}\right] /\left(z^{2 N}\right)$, where we have identified $H^{*}\left(\mathbb{C P}^{N}\right)$ with $C\left[z^{2}\right] /\left(z^{2 N}\right)$. Let d, d^{\prime} be positive integers such that $d d^{\prime}<N$. Then $e\left(d \cdot p_{\eta}\right)^{d^{\prime}}=z^{2 d d^{\prime}} \neq 0$. It follows that

$$
\left\lfloor\frac{N-1}{d}\right\rfloor<\mathrm{w}^{-\operatorname{Div}_{2}}\left(\left\langle 1 \oplus d \cdot p_{\eta}\right\rangle, C\left(\mathbb{C P}^{N}\right)\right) \leq \operatorname{Div}_{2}\left(\left\langle 1 \oplus d \cdot p_{\eta}\right\rangle, C\left(\mathbb{C P}^{N}\right)\right) \leq\left\lceil\frac{N+d+1 / 2}{\lfloor d / 2\rfloor}\right\rceil
$$

Indeed, the first inequality follows from Proposition 7.4 and the calculations made above. The second inequality follows from Proposition 3.3. The last inequality can be proved as follows: Put $x=\lfloor d / 2\rfloor\left\langle p_{\eta}\right\rangle$. Then $2 x \leq\left\langle 1 \oplus d \cdot p_{\eta}\right\rangle$. By a classical result about vector bundles (see [Hus94, Chapter 9, Proposition 1.1]) we have that $1 \precsim k \cdot p_{\eta}$ if $2 N \leq 2 k-1$. It follows that

$$
1 \oplus d \cdot p_{\eta} \precsim n\lfloor d / 2\rfloor p_{\eta},
$$

or, equivalently, that $\left\langle 1 \oplus d \cdot p_{\eta}\right\rangle \leq n x$, if $n\lfloor d / 2\rfloor \geq N+d+1 / 2$.

Simple C^{*}-algebras with bad divisibility

In this and the following two subsections we give examples of unital simple C^{*}-algebras with bad divisibility behaviour. We use the Euler class obstruction described in the following example.

Example 7.6. Let d be a positive integer. Following the notation in Rør03, for each set $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq\{1,2, \ldots, d\}$, let p_{I} be the one-dimensional projection in $C\left(\left(S^{2}\right)^{d}\right) \otimes \mathcal{K}$ given by

$$
p_{I}(x)=p_{i_{1}}(x) \otimes p_{i_{2}}(x) \otimes \cdots \otimes p_{i_{k}}(x), \quad x \in\left(S^{2}\right)^{d}
$$

where p_{i} is as defined above Corollary 7.3. It is shown in Rør03, Proposition 4.5] that if $I_{1}, I_{2} \ldots, I_{r}$ are subsets of $\{1,2, \ldots, d\}$ that admit a matching (i.e., $\left|\bigcup_{i \in F} I_{i}\right| \geq|F|$ for all subset F of $\{1,2, \ldots, r\})$ then the Euler class of $p_{I_{1}} \oplus p_{I_{2}} \oplus \cdots \oplus p_{I_{r}}$ is non-zero.

The examples constructed in this and the following two subsections are built on the same template described in the following lemma (which is a variation of one of Villadsen's constructions). We retain the terminology from the example above throughout the rest of this section.

Lemma 7.7. Let $\left(J_{j}\right)_{j=1}^{\infty}$ be a sequence of pairwise disjoint finite subsets of \mathbb{N}. Choose $d_{n} \in \mathbb{N}$ large enough so that all $J_{j}, j=1,2, \ldots, n$, are contained in the set $\left\{1,2, \ldots, d_{n}\right\}$. Consider the projection q_{n} of rank 2^{n} in $C\left(\left(S^{2}\right)^{d_{n}}\right) \otimes \mathcal{K}$ given by

$$
q_{n}=1 \oplus p_{J_{1}} \oplus 2 \cdot p_{J_{2}} \oplus \cdots \oplus 2^{n-1} \cdot p_{J_{n}}
$$

It follows that there is a simple unital AH-algebra A which is the inductive limit of the sequence

$$
q_{1}\left(C\left(\left(S^{2}\right)^{d_{1}}\right) \otimes \mathcal{K}\right) q_{1} \xrightarrow{\varphi_{1}} q_{2}\left(C\left(\left(S^{2}\right)^{d_{2}}\right) \otimes \mathcal{K}\right) q_{2} \xrightarrow{\varphi_{2}} \cdots \longrightarrow A
$$

where the connecting mappings φ_{n} are unital.
Proof. Set $X_{n}=\left(S^{2}\right)^{d_{n}}$ and $A_{n}=q_{n}\left(C\left(X_{n}\right) \otimes \mathcal{K}\right) q_{n}$. Write

$$
X_{n+1}=X_{n} \times\left(S^{2}\right)^{d_{n+1}-d_{n}}
$$

let $\pi_{n}: X_{n+1} \rightarrow X_{n}$ be the projection mapping, and let $\pi_{m, n}: X_{n} \rightarrow X_{m}$ denote the composition map $\pi_{m} \circ \pi_{m+1} \circ \cdots \circ \pi_{n-1}$. Choose $x_{n} \in X_{n}$ for each n such that the set $\left\{\pi_{m, n}\left(x_{n}\right) \mid n \geq m\right\}$ is dense in X_{m} for all $m \geq 1$.

Define a ${ }^{*}$-homomorphism $\varphi_{n}^{0}: C\left(X_{n}, \mathcal{K}\right) \rightarrow C\left(X_{n+1}, \mathcal{K}\right)$ by

$$
\varphi_{n}^{0}(f)(x)=f\left(\pi_{n}(x)\right) \oplus\left(f\left(x_{n}\right) \otimes p_{J_{n+1}}(x)\right), \quad f \in C\left(X_{n}, \mathcal{K}\right), \quad x \in X_{n+1}
$$

where we in a suitable way have identified $\mathcal{K} \oplus(\mathcal{K} \otimes \mathcal{K})$ with a subalgebra of \mathcal{K}. We also identify $C(X) \otimes \mathcal{K}$ with $C(X, \mathcal{K})$. We make another identification: if

$$
J \subseteq\left\{1,2, \ldots, d_{n}\right\} \subseteq\left\{1,2, \ldots, d_{n+1}\right\}
$$

then the projection p_{J} is defined both in $C\left(X_{n}\right) \otimes \mathcal{K}$ and in $C\left(X_{n+1}\right) \otimes \mathcal{K}$ and $p_{J_{n}}=p_{J_{n}} \circ \pi_{n}$ (where the former occurrence of $p_{J_{n}}$ is viewed as an element in the former algebra, and the latter in the latter). We shall use the same notation for the two projections. Taking these identification a step further, we have $q_{n}=q_{n} \circ \pi_{n}$ and that $q_{n+1}=q_{n} \oplus 2^{n} \cdot p_{J_{n+1}}$. (These identification hold, strictly speaking, only up to conjugation with an inner automorphism on \mathcal{K}.) In this notation we get

$$
\begin{aligned}
\varphi_{n}^{0}\left(q_{n}\right)(x) & =q_{n}\left(\pi_{n}(x)\right) \oplus\left(q_{n}\left(x_{n}\right) \otimes p_{J_{n+1}}(x)\right) \\
& =q_{n}\left(\pi_{n}(x)\right) \oplus \operatorname{rank}\left(q_{n}\right) \cdot p_{J_{n+1}}(x)=q_{n+1}(x)
\end{aligned}
$$

for all $x \in X_{n+1}$, i.e., $\varphi_{n}^{0}\left(q_{n}\right)=q_{n+1}$ (possibly after composing φ_{n}^{0} with an inner automorphism on \mathcal{K}). This shows that φ_{n}^{0} maps A_{n} unitally into A_{n+1}. Let φ_{n} denote the unital *-homomorphism that arises in this way, i.e., φ_{n} is the restriction of φ_{n}^{0} to A_{n} (and the co-restriction to A_{n+1}), and let A be the inductive limit of the sequence

$$
A_{1} \xrightarrow{\varphi_{1}} A_{2} \xrightarrow{\varphi_{2}} A_{3} \xrightarrow{\varphi_{3}} \cdots \longrightarrow A .
$$

Let $\varphi_{m, n}: A_{m} \rightarrow A_{n}$ denote the composition map $\varphi_{n-1} \circ \varphi_{n-2} \circ \cdots \circ \varphi_{m}$ when $m \leq n$. One can check that $\varphi_{m, n}(f)(x)$ is non-zero for all $x \in X_{n}$ if f is a function in $A_{m}=q_{m} C\left(X_{m}, \mathcal{K}\right) q_{m}$ which is non-zero on at least one point in the set $\left\{\pi_{m, k}\left(x_{k}\right) \mid m \leq k \leq n\right\}$. By the choice of the points x_{n}, it follows that for each m and for each non-zero f in A_{m} there is $n \geq m$ such that $\varphi_{m, n}(f)$ is full in A_{n} (i.e., that $\varphi_{m, n}(f)(x) \neq 0$ for all $x \in X_{n}$). This entails that A is simple.

Lemma 7.8. Let N be a positive integer. In the notation of Lemma 7.7 choose the sequence $\left(J_{j}\right)_{j=1}^{\infty}$ such that $\left|J_{j}\right|=N \cdot 2^{n-1}$. It then follows that

$$
\mathrm{w}-\operatorname{Div}_{2}\left(\left\langle q_{n}\right\rangle, C\left(\left(S^{2}\right)^{d_{n}}\right)\right)>N, \quad \operatorname{Div}_{2}\left(\left\langle q_{2}\right\rangle, C\left(\left(S^{2}\right)^{d_{2}}\right) \leq 3 N+4\right.
$$

for all n.
Proof. We use Proposition 7.4 to prove the first claim. It suffices to show that the Euler class of the projection $N \cdot p_{J_{1}} \oplus 2 N \cdot p_{J_{2}} \oplus \cdots \oplus 2^{n-1} N \cdot p_{J_{n}}$ is non-zero. But this follows from [Rør03, Proposition 4.5], cf. Example 7.6 above, and from the choice of the sets J_{n}.

To prove the second claim, put $x=\left\langle p_{J_{2}}\right\rangle$ and note that $2 x \leq\left\langle q_{2}\right\rangle$. It follows from Dup76, Proposition 1] that $q_{2} \precsim M \cdot p_{J_{2}}$ if $M-4 \geq\left(2 d_{2}-1\right) / 2=3 N-1 / 2$. This shows that $\left\langle q_{2}\right\rangle \leq(3 N+4) x$.

Theorem 7.9. For each positive integer N there exists a simple unital infinite dimensional AH-algebra A such that $N<\mathrm{w}-\operatorname{Div}_{2}(A) \leq \operatorname{Div}_{2}(A) \leq 3 N+4$.

Proof. Let A be the simple C^{*}-algebra constructed in Lemma 7.7 based on the choice of $\left(J_{j}\right)_{j=1}^{\infty}$ made in Lemma 7.8. Then A is the inductive limit of the sequence of C^{*}-algebras $A_{n}=q_{n}\left(C\left(\left(S^{2}\right)^{d_{n}}\right) \otimes \mathcal{K}\right) q_{n}$ with unital connecting mappings. It follows from Lemma 7.8 that $\mathrm{w}-\operatorname{Div}_{2}\left(A_{n}\right)>N$ for all n, and that $\operatorname{Div}_{2}\left(A_{2}\right) \leq 3 N+4$.

By Proposition 3.6 and Remark 3.5,

$$
\mathrm{w}-\operatorname{Div}_{2}(A)=\inf _{n \in \mathbb{N}} \mathrm{w}-\operatorname{Div}_{2}\left(A_{n}\right)>N
$$

and $\operatorname{Div}_{2}(A) \leq \operatorname{Div}_{2}\left(A_{2}\right) \leq 3 N+4$.
Remark 7.10 (Initial objects). Suppose that \mathcal{C} is a class of unital C^{*}-algebra. An element A in \mathcal{C} is an inital object in \mathcal{C} if there exists a unital *-homomorphism $A \rightarrow B$ for every B in \mathcal{C}.

It is well-known that the Cuntz algebra \mathcal{O}_{∞} is an initial object in the class of unital properly infinite C^{*}-algebras. In fact, a unital C^{*}-algebra is properly infinite if and only if it contains \mathcal{O}_{∞} as a unital sub- C^{*}-algebra. Every properly infinite unital sub- C^{*}-algebra of \mathcal{O}_{∞} is then also an initial object in the class of unital properly infinite C^{*}-algebras. Hence the Cuntz-Toeplitz algebras, $\mathcal{T}_{n}, n \geq 2$, are initial objects and so are all unital Kirchberg algebras A for which the assignment $\left[1_{A}\right] \mapsto 1$ extends to a homomorphism $K_{0}(A) \rightarrow \mathbb{Z}$.

It was shown in [ER06] that also the class of unital C^{*}-algebras of real rank zero and of infinite rank has initial objects. One can even find initial objects to this class which are simple AF-algebras (necessarily with infinite dimensional trace simplex). It follows in particular that the class of unital simple infinite dimensional C^{*}-algebras of real rank zero has initial objects.

Clearly, \mathbb{C} is an initial object in the category of all unital C^{*}-algebras, and so is any unital C^{*}-algebra that admits a character. (Note that we do not require the unital *-homomorphism $A \rightarrow B$ to be injective.)

The corollary below shows that initial objects do not exist in the general non-real rank zero case.

Corollary 7.11. The class of unital simple infinite dimensional C^{*}-algebras and the class of unital C^{*}-algebras of infinite rank do not have initial objects. In fact, there is no unital C^{*}-algebra without characters that maps unitally into every unital simple infinite dimensional C^{*}-algebra.

Proof. If A is a unital C^{*}-algebra that maps unitally into every unital simple infinite dimensional C^{*}-algebra, then $\mathrm{w}-\operatorname{Div}_{2}(A) \geq \mathrm{w}-\operatorname{Div}_{2}(B)$ for all unital simple infinite dimensional C^{*}-algebras B, cf. Remark 3.5, whence w- $\operatorname{Div}_{2}(A)=\infty$ by Theorem 7.9. On the other hand, if A has no character, then w- $\operatorname{Div}_{2}(A)<\infty$ by Corollary 5.6.

The asymptotic divisibility numbers

We can give a lower and an upper bound on the asymptotic divisibility constant (discussed in Section (4) for the C^{*}-algebra considered above:

Corollary 7.12. Let N be a positive integer, and let A be the simple AH-algebra constructed in Theorem 7.9 associated with N. It follows that

$$
(N-1) / 2<\operatorname{Div}_{*}(A) \leq 2 N+2
$$

Proof. By Proposition 4.1 we get that $\operatorname{Div}_{*}(A) \geq\left(\operatorname{Div}_{2}(A)-1\right) / 2>(N-1) / 2$. To prove the reserve inequality, take any positive integer n and put $m=2^{n-1}$. We show that $\operatorname{Div}_{m}\left(A_{n}\right) \leq(2 N+2) m$, where A_{n} is as in the proof of Theorem 7.9. In the notation of Lemma 7.8, let $x=\left\langle p_{J_{n}}\right\rangle$, put $u=\left\langle q_{n}\right\rangle$, and recall that q_{n} is the unit of the C^{*}-algebra A_{n}. By the definition of q_{n} (in Lemma 7.8) it follows that $m x \leq u$. As

$$
\operatorname{dim}\left((2+2 N) m \cdot p_{J_{n}}\right)-\operatorname{dim}\left(q_{n}\right)=(2 N+2) m-2^{n}=2^{n} N \geq \frac{\operatorname{dim}\left(X_{n}\right)-1}{2}
$$

if follows from Dup76, Proposition 1] that $(2+2 N) m \cdot p_{J_{n}} \precsim q_{n}$, whence $u \leq(2 N+2) m x$. This proves that $\operatorname{Div}_{m}\left(A_{n}\right) \leq(2 N+2) m$.

It follows from Remark 3.5 that $\operatorname{Div}_{m}(A) \leq(2 N+2) m$ whenever m is a power of 2 , and this entails that

$$
\operatorname{Div}_{*}(A)=\liminf _{m \rightarrow \infty} \operatorname{Div}_{m}(A) / m \leq \liminf _{n \rightarrow \infty} \operatorname{Div}_{2^{n-1}}(A) / 2^{n-1} \leq 2 N+2,
$$

as desired.
We can use Lemma 7.7 to construct a unital, simple AH-algebra A such that $\operatorname{Div}_{*}(A)=\infty$. The proof requires the following sharpening of Corollary 7.3 that may have independent interest.

Corollary 7.13. Let X be a locally compact Hausdorff space, and let $q \in C_{0}(X) \otimes \mathcal{K}$ be a projection. Let m and N be positive integers, let $I_{1}, I_{2}, \ldots, I_{N}$ be pairwise disjoint subsets of \mathbb{N} with $\left|I_{i}\right|=m-1$ for all i, and let $\left(p_{I_{i}}\right)_{i=1}^{N}$ be the associated projections in $C\left(\left(S^{2}\right)^{(m-1) N}\right) \otimes \mathcal{K}$ defined in Example 7.6. Suppose that

$$
q \otimes 1 \npreceq q \otimes \bigoplus_{i=1}^{N} p_{I_{i}} .
$$

Then $\mathrm{w}-\operatorname{Div}_{m}\left(\langle q\rangle, C_{0}(X)\right)>N$.
Proof. Apply Lemma 6.1 (iii) to $x=\langle 1\rangle$ and $y_{i}=\left\langle p_{I_{i}}\right\rangle$, and note that $x \leq m y_{i}$, cf. Example 7.6.

Lemma 7.14. Let $\left(J_{j}\right)_{j=1}^{\infty}$ be a sequence of pairwise disjoint subsets of \mathbb{N} with $\left|J_{j}\right|=2^{2 j-1} j$. Then, in the notation of Lemma 7.7, we have

$$
2^{k} k<\mathrm{w}^{-}-\operatorname{Div}_{2^{k}}\left(\left\langle q_{n}\right\rangle, C\left(\left(S^{2}\right)^{d_{n}}\right)\right)<\infty
$$

if $n \geq k$, and that $\mathrm{w}-\operatorname{Div}_{2^{k}}\left(\left\langle q_{n}\right\rangle, C\left(\left(S^{2}\right)^{d_{n}}\right)\right)=\infty$ if $n<k$.
Proof. We use Corollary 7.13 with $N=2^{k} k$ and $m=2^{k}$ to prove the first claim. As $1 \precsim q_{n}$ it suffices to show that $q_{n} \otimes \bigoplus_{i=1}^{N} p_{I_{i}}$ has non-trivial Euler class, when I_{1}, \ldots, I_{N} are as in Corollary 7.13. Write

$$
q_{n} \otimes \bigoplus_{i=1}^{N} p_{I_{i}}=\bigoplus_{j=0}^{n} \bigoplus_{i=1}^{N} 2^{\max \{0, j-1\}} \cdot p_{J_{j}} \otimes p_{I_{i}}=\bigoplus_{j=0}^{n} \bigoplus_{i=1}^{N} 2^{\max \{0, j-1\}} \cdot p_{J_{j} \cup I_{i}}
$$

As explained in Example 7.6 , to prove non-triviality of the Euler class of the projection $q_{n} \otimes \bigoplus_{i=1}^{N} p_{I_{i}}$ one needs to verify the combinatorial fact that the family of sets $\left(J_{j} \cup I_{i}\right)$, $j=0, \ldots, n, i=1, \ldots, N$, and with the set $J_{j} \cup I_{i}$ repeated $2^{\max \{0, j-1\}}$ times, satisfies the Marriage Lemma condition.

By first exhausting the elements in the sets I_{i}, and using that $\sum_{j=0}^{k-1} 2^{\max \{0, j-1\}}=2^{k-1}<$ $\left|I_{i}\right|$, it suffices to show that the family of sets $\left(J_{j}\right), j=k, \ldots, n$, with each set repeated $2^{j-1} N=2^{j+k-1} k$ times, satisfies the Marriage Lemma condition. However, this holds because $\left|J_{j}\right|=2^{2 j-1} j \geq 2^{j+k-1} k$ when $j \geq k$.

The second claim follows from the fact that the dimension of the projection q_{n} is 2^{n} and that $\mathrm{w}-\operatorname{Div}_{m}\left(\left\langle q_{n}\right\rangle, C\left(\left(S^{2}\right)^{d_{n}}\right)\right)=\infty$ whenever $m>\operatorname{dim}\left(q_{n}\right)$.

Theorem 7.15. There is a simple unital infinite dimensional AH-algebra A which satisfies $\operatorname{Div}_{*}(A)=\infty$.

Proof. Let A be the simple AH-algebra constructed in Lemma 7.7 with respect to the choice of $\left(J_{j}\right)$ from Lemma 7.14. Recall that A is an inductive limit of a sequence of unital C^{*}-algebras $A_{1} \rightarrow A_{2} \rightarrow \cdots$, where

$$
A_{n}=q_{n}\left(C\left(\left(S^{2}\right)^{d_{n}}\right) \otimes \mathcal{K}\right) q_{n}
$$

It follows from Lemma 7.14 that $\mathrm{w}^{-\operatorname{Div}_{2^{k}}}\left(A_{n}\right)>2^{k} k$ when $n \geq k$, and $\mathrm{w}-\operatorname{Div}_{2^{k}}\left(A_{n}\right)=\infty$ when $n<k$. This entails that $\operatorname{Div}_{2^{k}}(A)>2^{k} k$ by Proposition 3.6. Finally, by Proposition 4.1 (ii),

$$
\operatorname{Div}_{*}(A)=\limsup _{k \rightarrow \infty} \operatorname{Div}_{2^{k}}(A) / 2^{k}=\infty
$$

As remarked in Section 4, if A is any unital C^{*}-algebra, then $\operatorname{Div}_{*}(A)=0$ if and only if A is properly infinite, and $\operatorname{Div}_{*}(A) \in[1, \infty]$ otherwise. Moreover, $\operatorname{Div}_{*}(A)=1$ if and only if A is almost divisible (and not properly infinite). In other words, the range of the invariant $\operatorname{Div}_{*}(\cdot)$ is contained in the set $\{0\} \cup[1, \infty]$, and $\operatorname{Div}_{*}(A) \leq 1$ if and only if A is almost divisible.

We can easily produce examples of simple, unital, infinite dimensional C^{*}-algebras A such that $\operatorname{Div}_{*}(A)=0$ (eg., A could be a Cuntz algebra), or such that $\operatorname{Div}_{*}(A)=1$ (eg., A is any simple, unital, infinite-dimensional C^{*}-algebra of real rank zero, cf. Example 3.15). The theorem above provides an example of a simple, unital, infinite dimensional C^{*}-algebra A where $\operatorname{Div}_{*}(A)=\infty$.

It follows from Corollary 7.12 that $\operatorname{Div}_{*}(\cdot)$ attains infinitely many values in the interval $(1, \infty)$, when restricted to the class of unital, simple, infinite dimensional C^{*}-algebras, and that the possible values of $\operatorname{Div}_{*}(\cdot)$ in this interval is upwards unbounded. We do not know if all values in the interval $(1, \infty)$ are thus attained. For that matter we cannot exhibit any number in the interval $(1, \infty)$ which for sure is the value of $\operatorname{Div}_{*}(A)$ for some simple unital infinite dimensional C^{*}-algebra A.

Divisibility of infinite tensor products

We end this section by giving yet another class of examples of simple unital C^{*}-algebras with bad divisibility properties. The ones we construct below are of the form $\bigotimes_{j=1}^{\infty} A_{j}$, where the A_{j} 's are unital simple infinite dimensional C^{*}-algebras. In particular, such $C^{*}-$ algebras need not absorb the Jiang-Su algebra tensorially. It remains an open problem if $\bigotimes_{j=1}^{\infty} A$ absorbs the Jiang-Su algebra whenever A is a simple unital infinite dimensional C^{*}-algebra (or a unital C^{*}-algebra without characters), cf. [DT09].

It was shown in [HRW07, Example 4.8] that there exists a sequence $\left(A_{n}\right)$ of homogeneous C^{*}-algebras of rank two such that $\bigotimes_{n=1}^{\infty} A_{n}$ does not absorb the Jiang-Su algebra tensorially. (It is an easy consequence of this that the Jiang-Su algebra cannot embed unitally into $\bigotimes_{n=k}^{\infty} A_{n}$ for some k.) Of course, one can regroup the tensor factors A_{n} to get a new sequence $\left(B_{n}\right)$ of unital C^{*}-algebras each of which has infinite rank and where the Jiang-Su algebra does not embed into $\bigotimes_{n=1}^{\infty} B_{n}$. It is not known if every unital C^{*}-algebra of infinite rank admits an embedding of a unital simple infinite dimensional C^{*}-algebra. If it were true, then Theorem 7.17 below would follow from [HRW07, Example 4.8] .

We introduce some notation to keep track of the combinatorics. Define a total order on the set $\mathbb{N} \times \mathbb{N}_{0}$ by

$$
(k, j) \leq(\ell, i) \Longleftrightarrow k+j<\ell+i \quad \text { or } \quad(k+j=\ell+i \text { and } k \leq \ell)
$$

For each $(k, j) \in \mathbb{N} \times \mathbb{N}_{0}$ and for each integer $m \geq k$ let $S(m ; k, j)$ denote the set of all m-tuples $\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in \mathbb{N}_{0}^{m}$ such that $i_{k}=j$ and $\left(\ell, i_{\ell}\right)<(k, j)$ for all $\ell \neq k$.

Lemma 7.16. Let $N \geq 1$ be an integer. For each integer $k \geq 1$, let $\left(J_{j}^{(k)}\right)_{j=1}^{\infty}$ be a sequence of subsets of \mathbb{N} such that $J_{j}^{(k)} \cap J_{i}^{(\ell)}=\varnothing$ whenever $(k, j) \neq(\ell, i)$, and such that

$$
\left|J_{j}^{(k)}\right|=\max _{m \geq k} \sum_{\left(i_{1}, \ldots, i_{m}\right) \in S(m ; k, j)} N \prod_{t=1}^{m} 2^{\max \left\{i_{t}-1,0\right\}}
$$

(The quantity on the right-hand side is finite because $S(m ; k, j)$ is finite for all (k, j) and all $m \geq k$, and $S(m ; k, j)=\varnothing$ when $m>k+j$.) Let $d_{n}^{(k)} \in \mathbb{N}$ and $q_{n}^{(k)} \in C\left(\left(S^{2}\right)^{d_{n}^{(k)}}\right) \otimes \mathcal{K}$ be as defined in Lemma 7.7 associated with the sequence $\left(J_{j}^{(k)}\right)_{j=1}^{\infty}$. It then follows that

$$
\mathrm{w}-\operatorname{Div}_{2}\left(\left\langle q_{n}^{(1)} \otimes q_{n}^{(2)} \otimes \cdots \otimes q_{n}^{(m)}\right\rangle, C\left(\left(S^{2}\right)^{d_{n}^{(1)}}\right) \otimes C\left(\left(S^{2}\right)^{d_{n}^{(2)}}\right) \otimes \cdots \otimes C\left(\left(S^{2}\right)^{d_{n}^{(m)}}\right)\right)>N
$$

for all positive integers n and m.
Proof. Let $T(n, m)$ be the set of all non-zero m-tuples $\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in \mathbb{N}_{0}^{m}$ such that $i_{k} \leq n$ for all $k=1,2, \ldots, m$. Adopt the convention $J_{0}^{(k)}=\varnothing$ for all k and let p_{\varnothing} denote the trivial ($=$ constant) one-dimensional projection. We can then express the projection $q_{n}^{(1)} \otimes q_{n}^{(2)} \otimes \cdots \otimes q_{n}^{(m)}$ as follows:

$$
1 \oplus \sum_{\left(i_{1}, \ldots, i_{m}\right) \in T(n, m)}\left(\prod_{t=1}^{m} 2^{\max \left\{i_{t}-1,0\right\}}\right) \cdot p_{J_{i_{1}}^{(1)}} \otimes p_{J_{i_{2}}^{(2)}} \otimes \cdots \otimes p_{J_{i_{m}}^{(m)}}
$$

By Proposition 7.4 it suffices to show that the Euler class of the projection

$$
\sum_{\left(i_{1}, \ldots, i_{m}\right) \in T(n, m)}\left(N \prod_{t=1}^{m} 2^{\max \left\{i_{t}-1,0\right\}}\right) \cdot p_{J_{i_{1}}^{(1)}} \otimes p_{J_{i_{2}}^{(2)}} \otimes \cdots \otimes p_{J_{i_{m}}^{(m)}}
$$

is non-zero, or, equivalently, that the Euler class of the projection

$$
\sum_{\left(i_{1}, \ldots, i_{m}\right) \in T(n, m)}\left(N \prod_{t=1}^{m} 2^{\max \left\{i_{t}-1,0\right\}}\right) \cdot p_{J_{i_{1}}^{(1)} \cup J_{i_{2}}^{(2)} \cup \ldots \cup J_{i_{m}}^{(m)}}
$$

is non-zero. By Rør03, Proposition 4.5], cf. Example 7.6, it suffices to show that the family of sets $J_{i_{1}}^{(1)} \cup J_{i_{2}}^{(2)} \cup \cdots \cup J_{i_{m}}^{(m)}$, where $\left(i_{1}, \ldots, i_{m}\right) \in T(n, m)$ and where the set $J_{i_{1}}^{(1)} \cup J_{i_{2}}^{(2)} \cup \cdots \cup J_{i_{m}}^{(m)}$ is repeated $N \cdot \prod_{t=1}^{m} 2^{\max \left\{i_{t}-1,0\right\}}$ times, admits a matching.

Construct a matching by selecting the matching elements for the $N \cdot \prod_{t=1}^{m} 2^{\max \left\{i_{t}-1,0\right\}}$ copies of the set $J_{i_{1}}^{(1)} \cup J_{i_{2}}^{(2)} \cup \cdots \cup J_{i_{m}}^{(m)}$ inside the subset $J_{j}^{(k)}$, where (k, j) is the largest of the elements $\left(1, i_{1}\right),\left(2, i_{2}\right), \ldots,\left(m, i_{m}\right)$. To check that this works, i.e., to see that $J_{j}^{(k)}$ is large enough, let $T(n, m ; k, j)$ be the set of those m-tuples $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ in $T(n, m)$ for which

$$
(k, j)=\max \left\{\left(1, i_{1}\right),\left(2, i_{2}\right), \ldots,\left(m, i_{m}\right)\right\}
$$

Then $T(n, m ; k, j) \subseteq S(m ; k, j)$, and so it follows by the assumption on $\left|J_{j}^{(k)}\right|$ that

$$
\left|J_{j}^{(k)}\right| \geq \sum_{\left(i_{1}, \ldots, i_{m}\right) \in T(n, m ; k, j)} N \prod_{t=1}^{m} 2^{\max \left\{i_{t}-1,0\right\}}
$$

The suggested matching is therefore possible.
The theorem below shows that an infinite tensor product of simple unital infinite dimensional C^{*}-algebras does not necessarily have good divisibility properties. Any such C^{*}-algebra $A=\bigotimes_{n=1}^{\infty} A_{n}$ will have (many) non-trivial central sequences, i.e., the central sequence algebra $A_{\omega} \cap A^{\prime}$ with respect to an ultrafilter ω on \mathbb{N} is non-trivial. For example, $C M_{m}(\mathbb{C})$ embeds into $A_{\omega} \cap A^{\prime}$ for all m, albeit, not necessarily with full image. However, in the example constructed below, one cannot embed the Jiang-Su algebra into $A_{\omega} \cap A^{\prime}$.

Theorem 7.17. For each integer $N>2$, there exists a sequence $\left(A_{n}\right)$ of unital simple infinite dimensional C^{*}-algebras (in fact, AH-algebras) such that

$$
\mathrm{w}-\operatorname{Div}_{2}\left(\bigotimes_{n=1}^{\infty} A_{n}\right)>N
$$

In particular, $\bigotimes_{n=1}^{\infty} A_{n}$ does not absorb the Jiang-Su algebra \mathcal{Z}, and it does not even admit a unital embedding of \mathcal{Z}.

Proof. Let A_{k} be the simple unital AH-algebra constructed in Lemma 7.7 associated with the sequence $\left(J_{j}^{(k)}\right)_{j=1}^{\infty}$ from Lemma 7.16. Then A_{k} is an inductive limit of a sequence, $A_{k}(1) \rightarrow A_{k}(2) \rightarrow \cdots$, of unital homogeneous C^{*}-algebras with unital connecting maps, where

$$
A_{k}(n)=q_{n}^{(k)}\left(C\left(\left(S^{2}\right)^{d_{n}^{(k)}}\right) \otimes \mathcal{K}\right) q_{n}^{(k)}
$$

The infinite tensor product $\bigotimes_{n=1}^{\infty} A_{n}$ is the inductive limit of the sequence

$$
A_{1} \rightarrow A_{1} \otimes A_{2} \rightarrow A_{1} \otimes A_{2} \otimes A_{3} \rightarrow \cdots
$$

with unital connecting maps. It therefore suffices to show that w- $\operatorname{Div}_{2}\left(\bigotimes_{k=1}^{m} A_{k}\right)>N$ for every m, cf. Proposition 3.6. Now, $\bigotimes_{k=1}^{m} A_{k}$ is the inductive limit of the sequence

$$
\bigotimes_{k=1}^{m} A_{k}(1) \rightarrow \bigotimes_{k=1}^{m} A_{k}(2) \rightarrow \bigotimes_{k=1}^{m} A_{k}(3) \rightarrow \cdots
$$

with unital connecting mappings, and so, again by Proposition 3.6, it suffices to show that

$$
\mathrm{w}-\operatorname{Div}_{2}\left(\bigotimes_{k=1}^{m} A_{k}(n)\right)>N
$$

for every m and n. The latter is precisely the content of Lemma 7.16.

8 Ultrapowers

In this section we show that our divisibility properties behave well with respect to taking direct products and ultrapowers of sequences of unital C^{*}-algebras. This has the surprising consequence that such products and ultrapowers may admit characters even if all the C^{*} algebras in the ingoing sequence are unital, simple and infinite dimensional.

We define the notion of "almost characters" and show that the existence of such is related to the invariant $\mathrm{w}-\operatorname{Div}_{2}(\cdot)$. It follows in particular that simple unital infinite dimensional C^{*}-algebras can have almost characters.

First we need some technical lemmas:
Lemma 8.1. Let A be a unital C^{*}-algebra and let $\left(I_{\lambda}\right)$ be an upward directed family of ideals of A. Set $\overline{\bigcup I_{\lambda}}=I$. It follows that

$$
\begin{aligned}
\operatorname{Div}_{m}(A / I)= & \inf _{\lambda} \operatorname{Div}_{m}\left(A / I_{\lambda}\right), \quad \operatorname{Dec}_{m}(A / I)=\inf _{\lambda} \operatorname{Dec}_{m}\left(A / I_{\lambda}\right) \\
& \mathrm{w}^{\prime}-\operatorname{Div}_{m}(A / I)=\operatorname{inf~}_{\lambda} \mathrm{w}-\operatorname{Div}_{m}\left(A / I_{\lambda}\right)
\end{aligned}
$$

for all positive integers m.

Proof. The inequality " \leq " in all three cases follows from Remark 3.5 since we have a unital *-homomorphism $A / I_{\lambda} \rightarrow A / I$ for each λ. We prove the reverse inequality " \geq " only in the case of $\operatorname{Dec}_{m}(\cdot)$; the proofs of the other two instances are similar.

Set $\operatorname{Dec}_{m}(A / I)=n$, and let us show that $\operatorname{Dec}_{m}\left(A / I_{\lambda}\right) \leq n$ for some λ. Find $x_{1} \ldots, x_{m}$ in $\mathrm{Cu}(A / I)$ be such that

$$
x_{1}+x_{2}+\cdots+x_{m} \leq\langle 1\rangle \leq n x_{j}
$$

for all j. Find positive contractions a_{1}, \ldots, a_{m} in $A \otimes \mathcal{K}$ such that $x_{j}=\left\langle b_{j}\right\rangle$, where $b_{j} \in A / I \otimes \mathcal{K}$ is the image of a_{j} under the quotient mapping $A \rightarrow A / I$. Find $\varepsilon>0$ such that $\langle 1\rangle \leq n\left\langle\left(b_{j}-\varepsilon\right)_{+}\right\rangle$for all j. It follows from [KR00, Lemma 4.12] that there are positive elements $c, c_{1}^{\prime}, \ldots, c_{m}^{\prime}$ in $I \otimes \mathcal{K}$ such that

$$
\left\langle\left(a_{1}-\varepsilon / 2\right)_{+}\right\rangle+\cdots+\left\langle\left(a_{m}-\varepsilon / 2\right)_{+}\right\rangle \leq\langle 1\rangle+\langle c\rangle, \quad\langle 1\rangle \leq n\left\langle\left(a_{j}-\varepsilon\right)_{+}\right\rangle+\left\langle c_{j}^{\prime}\right\rangle
$$

for all j. There is $\delta>0$ such that

$$
\left\langle\left(a_{1}-\varepsilon\right)_{+}\right\rangle+\cdots+\left\langle\left(a_{m}-\varepsilon\right)_{+}\right\rangle \leq\langle 1\rangle+\left\langle(c-\delta)_{+}\right\rangle, \quad\langle 1\rangle \leq n\left\langle\left(a_{j}-\varepsilon\right)_{+}\right\rangle+\left\langle\left(c_{j}^{\prime}-\delta\right)_{+}\right\rangle .
$$

Since $\bigcup I_{\lambda}$ is dense in I, it follows that $(c-\delta)_{+}$and $\left(c_{j}^{\prime}-\delta\right)_{+}$all belong to $I_{\lambda} \otimes \mathcal{K}$ for some λ. Let $z_{j} \in \operatorname{Cu}\left(A / I_{\lambda}\right)$ be the Cuntz class of the image of the element $\left(a_{j}-\varepsilon\right)_{+}$under the quotient mapping $A \rightarrow A / I_{\lambda}$. Then $z_{1}+\cdots+z_{m} \leq\langle 1\rangle \leq n z_{j}$, whence $\operatorname{Dec}_{m}\left(A / I_{\lambda}\right) \leq n$.

For each $\varepsilon>0$, let $h_{\varepsilon}: \mathbb{R}^{+} \rightarrow[0,1]$ be a continuous functions such that $h_{\varepsilon}(0)=0$ and $h_{\varepsilon}(t)=1$ when $t \geq \varepsilon$.

Lemma 8.2. Let A be a unital C^{*}-algebra. Let $b_{1}, b_{2}, \ldots, b_{n}$ be positive elements in A such that $\sum_{j=1}^{n}\left\langle b_{j}\right\rangle \geq\left\langle 1_{A}\right\rangle$. Then, for some $\varepsilon>0$, there are contractions y_{j} in A such that

$$
\sum_{j=1}^{n} y_{j}^{*} h_{\varepsilon}\left(b_{j}\right) y_{j}=1_{A} .
$$

Proof. By assumption, and by compactness of $\left\langle 1_{A}\right\rangle$, there are elements $v_{j} \in A$ such that $\sum_{j=1}^{n} v_{j}^{*} b_{j} v_{j}=1_{A}$. Thus $\sum_{j=1}^{n} v_{j}^{*}\left(b_{j}-\varepsilon\right)_{+} v_{j}$ is invertible for some $\varepsilon>0$, and so there are elements $w_{j} \in A$ such that $\sum_{j=1}^{n} w_{j}^{*}\left(b_{j}-\varepsilon\right)_{+} w_{j}=1_{A}$. Put $y_{j}=\left(b_{j}-\varepsilon\right)_{+}^{1 / 2} w_{j}$ and notice that $h_{\varepsilon}\left(b_{j}\right)\left(b_{j}-\varepsilon\right)_{+}=\left(b_{j}-\varepsilon\right)_{+}$for all j. Thus

$$
\sum_{j=1}^{n} y_{j}^{*} h_{\varepsilon}\left(b_{j}\right) y_{j}=\sum_{j=1}^{n} y_{j}^{*} y_{j}=1_{A},
$$

which shows that the y_{j} 's are contractions with the desired properties.
Lemma 8.3. Let A be a unital C^{*}-algebra, and let m, n be positive integers.
(i) A is weakly (m, n)-divisible if and only if there exist positive contractions $a_{i j}$ and contractions y_{j} in $A, j=1,2, \ldots, n$ and $i=1,2, \ldots, m$, such that $a_{1 j}, a_{2 j}, \ldots, a_{m j}$ are pairwise equivalent and pairwise orthogonal for all j, and such that $1_{A}=\sum_{j=1}^{n} y_{j}^{*} a_{1 j} y_{j}$.
(ii) A is (m, n)-decomposable if and only if there exist pairwise orthogonal positive contractions a_{i} and contractions $y_{i j}$ in $A, j=1,2, \ldots, n$ and $i=1,2, \ldots, m$, such that $\sum_{j=1}^{n} y_{i j}^{*} a_{i} y_{i j}=1_{A}$ for all i.
(iii) A is (m, n)-divisible if and only if there exist pairwise equivalent and pairwise orthogonal positive contractions a_{i} and contractions y_{j} in $A, j=1,2, \ldots, n$ and $i=$ $1,2, \ldots, m$, such that $\sum_{j=1}^{n} y_{j}^{*} a_{1} y_{j}=1_{A}$.
Proof. We identify A with the sub- C^{*}-algebra $1_{A}(A \otimes \mathcal{K}) 1_{A}$ of $A \otimes \mathcal{K}$.
(i). "If". Put $x_{j}=\left\langle a_{1 j}\right\rangle=\left\langle a_{i j}\right\rangle \in \mathrm{Cu}(A)$. Then

$$
m x_{j}=\sum_{i=1}^{m}\left\langle a_{i j}\right\rangle=\left\langle\sum_{i=1}^{m} a_{i j}\right\rangle \leq\left\langle 1_{A}\right\rangle=\left\langle\sum_{j=1}^{n} y_{j}^{*} a_{1 j} y_{j}\right\rangle \leq \sum_{j=1}^{n}\left\langle y_{j}^{*} a_{1 j} y_{j}\right\rangle \leq \sum_{j=1}^{n}\left\langle a_{1 j}\right\rangle=\sum_{j=1}^{n} x_{j} .
$$

"Only if". Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathrm{Cu}(A)$ be such that $m x_{j} \leq\left\langle 1_{A}\right\rangle \leq x_{1}+x_{2}+\cdots+x_{n}$. Choose $x_{j}^{\prime} \ll x_{j}$ such that $\left\langle 1_{A}\right\rangle \leq x_{1}^{\prime}+x_{2}^{\prime}+\cdots+x_{n}^{\prime}$. For each fixed $j=1,2, \ldots, n$, apply Lemma 2.4 (ii) to the relation $m x_{j} \leq\left\langle 1_{A}\right\rangle$ to obtain pairwise orthogonal and pairwise equivalent positive elements $b_{1 j}, b_{2 j}, \ldots, b_{m j}$ in A such that $x_{j}^{\prime} \leq\left\langle b_{i j}\right\rangle \leq x_{j}$ for all $i=$ $1, \ldots, m$. Then $\sum_{j=1}^{n}\left\langle b_{1 j}\right\rangle \geq\left\langle 1_{A}\right\rangle$, and so it follows from Lemma 8.2 that there are $\varepsilon>0$ and contractions $y_{1}, y_{2}, \ldots, y_{n}$ in A such that $\sum_{j=1}^{n} y_{j}^{*} h_{\varepsilon}\left(b_{1 j}\right) y_{j}=1_{A}$. The contractions y_{j} together with the positive contractions $a_{i j}=h_{\varepsilon}\left(b_{i j}\right)$ are then as desired.
(ii). "If". Put $x_{i}=\left\langle a_{i}\right\rangle \in \operatorname{Cu}(A)$. Then

$$
\sum_{i=1}^{m} x_{i}=\sum_{i=1}^{m}\left\langle a_{i}\right\rangle=\left\langle\sum_{i=1}^{m} a_{i}\right\rangle \leq\left\langle 1_{A}\right\rangle=\left\langle\sum_{j=1}^{n} y_{i j}^{*} a_{i} y_{i j}\right\rangle \leq \sum_{j=1}^{n}\left\langle y_{i j}^{*} a_{i} y_{i j}\right\rangle \leq \sum_{j=1}^{n}\left\langle a_{i}\right\rangle=n x_{i}
$$

for all i.
"Only if". Let $x_{1}, x_{2}, \ldots, x_{m} \in \mathrm{Cu}(A)$ be such that $x_{1}+x_{2}+\cdots+x_{m} \leq\left\langle 1_{A}\right\rangle \leq n x_{j}$. Choose $x_{i}^{\prime} \ll x_{i}$ such that $\left\langle 1_{A}\right\rangle \leq n x_{i}^{\prime}$. Apply Lemma 2.4 (ii) to the relation $x_{1}+x_{2}+$ $\cdots+x_{m} \leq\left\langle 1_{A}\right\rangle$ to find pairwise orthogonal positive elements $b_{1}, b_{2}, \ldots, b_{m}$ in A such that $x_{i}^{\prime} \leq\left\langle b_{i}\right\rangle \leq x_{i}$ for all i. For each $i=1,2, \ldots, m$, we then have $n\left\langle b_{i}\right\rangle \geq\left\langle 1_{A}\right\rangle$, so by Lemma 8.2 there are $\varepsilon>0$ and contractions $y_{i 1}, y_{i 2}, \ldots, y_{\text {in }}$ in A such that $\sum_{j=1}^{n} y_{i j}^{*} h_{\varepsilon}\left(b_{i}\right) y_{i j}=1_{A}$. The contractions $y_{i j}$ together with the positive contractions $a_{i}=h_{\varepsilon}\left(b_{i}\right)$ are then as desired.
(iii). "If". Put $x=\left\langle a_{1}\right\rangle=\left\langle a_{i}\right\rangle \in \mathrm{Cu}(A)$. Then

$$
m x=\sum_{i=1}^{m}\left\langle a_{i}\right\rangle=\left\langle\sum_{i=1}^{m} a_{i}\right\rangle \leq\left\langle 1_{A}\right\rangle \leq\left\langle\sum_{j=1}^{n} y_{j}^{*} a_{1} y_{j}\right\rangle \leq \sum_{j=1}^{n}\left\langle y_{j}^{*} a_{1} y_{j}\right\rangle \leq \sum_{j=1}^{n}\left\langle a_{1}\right\rangle=n x .
$$

"Only if". Let $x \in \operatorname{Cu}(A)$ be such that $m x \leq\left\langle 1_{A}\right\rangle \leq n x$. Choose $x^{\prime} \ll x$ such that $\left\langle 1_{A}\right\rangle \leq n x^{\prime}$. Apply Lemma 2.4 (ii) to the relation $m x \leq\left\langle 1_{A}\right\rangle$ to obtain pairwise orthogonal and pairwise equivalent positive elements $b_{1}, b_{2}, \ldots, b_{m}$ in A such that $x^{\prime} \leq\left\langle b_{j}\right\rangle \leq x$. Then $n\left\langle b_{1}\right\rangle \geq\left\langle 1_{A}\right\rangle$, and so by Lemma 8.2 there are $\varepsilon>0$ and contractions $y_{1}, y_{2}, \ldots, y_{n}$ in A such that $\sum_{j=1}^{n} y_{j}^{*} h_{\varepsilon}\left(b_{1}\right) y_{j}=1_{A}$. The contractions y_{j} together with the positive contractions $a_{i}=h_{\varepsilon}\left(b_{i}\right)$ are then as desired.

If $\left(A_{k}\right)$ is a sequence of C^{*}-algebras, then we denote by $\prod_{k=1}^{\infty} A_{k}$ the C^{*}-algebra of all bounded sequences $\left(a_{k}\right)$, with $a_{k} \in A_{k}$. If ω is a (free) filter on \mathbb{N}, then denote by $c_{\omega}\left(\left\{A_{k}\right\}\right)$ the closed two-sided ideal in $\prod_{k=1}^{\infty} A_{k}$ consisting of those sequences $\left(a_{k}\right)$ for which $\lim _{\omega}\left\|a_{k}\right\|=0$. Finally, denote the quotient $\prod_{k=1}^{\infty} A_{k} / c_{\omega}\left(\left\{A_{k}\right\}\right)$ by $\prod_{\omega} A_{k}$.

Proposition 8.4. Let $\left(A_{k}\right)$ be a sequence of unital C^{*}-algebras. Then, for all integers $m \geq 2$ and for any free filer ω on \mathbb{N} we have:
(i) $\operatorname{Div}_{m}\left(\prod_{k=1}^{\infty} A_{k}\right)=\sup _{k} \operatorname{Div}_{m}\left(A_{k}\right), \quad \operatorname{Div}_{m}\left(\prod_{\omega} A_{k}\right)=\limsup _{\omega} \operatorname{Div}_{m}\left(A_{k}\right)$.
(ii) $\operatorname{Dec}_{m}\left(\prod_{k=1}^{\infty} A_{k}\right)=\sup _{k} \operatorname{Dec}_{m}\left(A_{k}\right), \quad \operatorname{Dec}_{m}\left(\prod_{\omega} A_{k}\right)=\limsup _{\omega} \operatorname{Dec}_{m}\left(A_{k}\right)$.

Proof. We only prove (i). The proofs of (ii) and (iii) are very similar.
We have unital *-homomorphisms $\prod_{k=1}^{\infty} A_{k} \rightarrow A_{n}$ for all n. Therefore the inequality " \geq " holds in the first identity in (i) (and also in (ii) and (iii)), cf. Remark 3.5.

We show next that $\operatorname{Div}_{m}\left(\prod_{k=1}^{\infty} A_{k}\right) \leq \sup _{k} \operatorname{Div}_{m}\left(A_{k}\right)$. Let n be a positive integer such that $\operatorname{Div}_{m}\left(A_{k}\right) \leq n$ for all k. Then, by Lemma 8.3 (i), for each k we can find positive contractions $a_{i j}^{(k)}$ and contractions $y_{j}^{(k)}$ in A_{k}, for $j=1,2, \ldots, n$ and $i=1,2, \ldots, m$, such that $a_{1 j}^{(k)}, a_{2 j}^{(k)}, \ldots, a_{m j}^{(k)}$ are pairwise orthogonal and equivalent for all j, and such that

$$
1_{A_{k}}=\sum_{j=1}^{n}\left(y_{j}^{(k)}\right)^{*} a_{1 j}^{(k)} y_{j}^{(k)}
$$

Put

$$
a_{i j}=\left(a_{i j}^{(k)}\right) \in \prod_{k=1}^{\infty} A_{k}, \quad y_{j}=\left(y_{j}^{(k)}\right) \in \prod_{k=1}^{\infty} A_{k}
$$

Then $a_{1 j}, a_{2 j}, \ldots, a_{m j}$ are pairwise orthogonal and equivalent, and $\sum_{j=1}^{n} y_{j}^{*} a_{1 j} y_{j}$ is equal to the unit of $\prod_{k=1}^{\infty} A_{k}$. By Lemma 8.3 (i), this shows that $\prod_{k=1}^{\infty} A_{k}$ is (m, n)-divisible, whence $\operatorname{Div}_{m}\left(\prod_{k=1}^{\infty} A_{k}\right) \leq n$.

To prove the second part of (i) note first that we have a natural unital (surjective) *-homomorphism $\prod_{k \in I} A_{k} \rightarrow \prod_{\omega} A_{k}$ for each $I \in \omega$. We can therefore use Remark 3.5 and the first identity in (i) to conclude that

$$
\operatorname{Div}_{m}\left(\prod_{\omega} A_{k}\right) \leq \operatorname{Div}_{m}\left(\prod_{k \in I} A_{k}\right)=\sup _{k \in I} \operatorname{Div}_{m}\left(A_{k}\right)
$$

which shows that $\operatorname{Div}_{m}\left(\prod_{\omega} A_{k}\right) \leq \lim \sup _{\omega} \operatorname{Div}_{m}\left(A_{k}\right)$.

We proceed to prove the reverse inequality. For each $I \in \omega$ consider the ideal $J(I)$ in $\prod_{k=1}^{\infty} A_{k}$ consisting of those sequences $\left(a_{k}\right)$ for which $a_{k}=0$ for all $k \in I$. Then

$$
c_{\omega}\left(\left\{A_{k}\right\}\right)=\overline{\bigcup_{I \in \omega} J(I)},
$$

(where ω is ordered by reverse inclusion). We can now use Lemma 8.1 and the first identity in (i) to conclude that

$$
\begin{aligned}
\operatorname{Div}_{m}\left(\prod_{\omega} A_{k}\right) & =\inf _{I \in \omega} \operatorname{Div}_{m}\left(\left(\prod_{k=1}^{\infty} A_{k}\right) / J(I)\right)=\inf _{I \in \omega} \operatorname{Div}_{m}\left(\prod_{k \in I} A_{k}\right) \\
& =\inf _{I \in \omega} \sup _{k \in I} \operatorname{Div}_{m}\left(A_{k}\right)=\limsup _{\omega} \operatorname{Div}_{m}\left(A_{k}\right) .
\end{aligned}
$$

If we combine the proposition above with Corollary 5.6 (i) we obtain:
Corollary 8.5. Let $\left(A_{k}\right)$ be a sequence of unital C^{*}-algebras such that $\lim _{k \rightarrow \infty} \mathrm{w}$ - $\operatorname{Div}_{2}\left(A_{k}\right)=$ ∞. Then $\prod_{k=1}^{\infty} A_{k}$ has a character, and so does $\prod_{\omega} A_{k}$ for each free filter ω on \mathbb{N}.

If we combine the corollary above with Theorem 7.9, then we obtain the following surprising fact:

Corollary 8.6. There is a sequence $\left(A_{k}\right)$ of unital simple infinite dimensional C^{*}-algebras such that $\prod_{k=1}^{\infty} A_{k}$ and $\prod_{\omega} A_{k}$ have characters for each free filter ω on \mathbb{N}.

Clearly, none of the C^{*}-algebras A_{k} in the corollary above can have a character. However, they have "almost characters" in the sense defined below. This is one way of understanding how the product C^{*}-algebra can have a character when none of the individual C^{*}-algebras has one.

Definition 8.7. Let $N \geq 2$ be an integer and let $\varepsilon>0$. A unital C^{*}-algebra A is said to have (N, ε)-characters if for every N-tuple $u_{1}, u_{2}, \ldots, u_{N}$ of unitaries in A there exists a state ρ on A such that $\left|\rho\left(u_{j}\right)\right| \geq 1-\varepsilon$ for $j=1,2, \ldots, N$.

A state ρ on a unital C^{*}-algebra is a character if and only if $|\rho(u)|=1$ for all unitary elements $u \in A$. Most simple C^{*}-algebras that we know of do not have $(2, \varepsilon)$-characters for small $\varepsilon>0$. For example, if A is a C^{*}-algebra which contains unitaries u, v such that $\left\|u v u^{*} v^{*}-\lambda 1_{A}\right\|<\eta$ for some $\lambda \in \mathbb{T}$ and for some $\eta<|1-\lambda|$, then A does not admit any $(2, \varepsilon)$-character for some small enough $\varepsilon>0$. Indeed, if ρ is a state on A such that $|\rho(u)|$ and $|\rho(v)|$ are close to 1 , then $\rho\left(u v u^{*} v^{*}\right)$ is close to 1 .

Proposition 8.8. A unital C^{*}-algebra has a character if and only if it has (N, ε)-characters for all pairs (N, ε), where $N \geq 2$ is an integer and $\varepsilon>0$.

Proof. The "only if" part is trivial. Assume that A is a unital C^{*}-algebra that has (N, ε) characters for all pairs (N, ε). For each finite subset F of the unitary group of A and for each $\varepsilon>0$, let $S(F, \varepsilon)$ denote the set of states ρ on A such that $|\rho(u)| \geq 1-\varepsilon$ for all $u \in F$. Then, by assumption, $S(F, \varepsilon)$ is non-empty. It follows that $\bigcap_{(F, \varepsilon)} S(F, \varepsilon)$ is non-empty, and any state in this intersection is a character.

Proposition 8.9. Let $\left(A_{k}\right)$ be a sequence of unital C^{*}-algebras, and let ω be a free ultrafilter on \mathbb{N}. Then $\prod_{\omega} A_{k}$ has a character if and only if for each integer $N \geq 2$ and for each $\varepsilon>0$ there exists $I \in \omega$ such that A_{k} has (N, ε)-characters for each $k \in I$.

Proof. We prove first the "if" part. By Proposition 8.8 it suffices to show that $\prod_{\omega} A_{k}$ has (N, ε)-characters for all (N, ε). Fix (N, ε) and find $I \in \omega$ such that A_{k} has (N, ε)-characters for each $k \in I$. Let u_{1}, \ldots, u_{N} be unitaries in $\prod_{\omega} A_{k}$, and let $\left(u_{j}^{(k)}\right) \in \prod_{k=1}^{\infty} A_{k}$ be a unitary lift of u_{j}. Then for each $k \in I$ there is a state ρ_{k} on A_{k} such that $\left|\rho_{k}\left(u_{j}^{(k)}\right)\right| \geq 1-\varepsilon$ for $j=1,2, \ldots, N$. Choose arbitrary states ρ_{k} on A_{k} for $k \notin I$ and define a state ρ on $\prod_{\omega} A_{k}$ by $\rho(x)=\lim _{\omega} \rho_{k}\left(x_{k}\right)$, where $\left(x_{k}\right) \in \prod_{k=1}^{\infty} A_{k}$ is a lift of x. (A priori, ρ defines a state on $\prod_{k=1}^{\infty} A_{k}$, and one checks that it vanishes on the ideal $\left.c_{\omega}\left(\left\{A_{k}\right\}\right).\right)$ Then

$$
\left|\rho\left(u_{j}\right)\right|=\lim _{k \rightarrow \omega}\left|\rho_{k}\left(u_{j}^{(k)}\right)\right| \geq \inf _{k \in I}\left|\rho_{k}\left(u_{j}^{(k)}\right)\right| \geq 1-\varepsilon
$$

for $j=1,2, \ldots, N$, which shows that $\prod_{\omega} A_{k}$ has (N, ε)-characters.
Suppose next that $\prod_{\omega} A_{k}$ has a character ρ. Fix (N, ε), and let J be the set of those $k \in \mathbb{N}$ for which A_{k} does not have (N, ε)-characters. For each $k \in J$ choose unitaries $u_{j}^{(k)}$ in $A_{k}, j=1,2, \ldots, N$, such that there is no state ρ^{\prime} on A_{k} for which $\left|\rho^{\prime}\left(u_{j}^{(k)}\right)\right| \geq 1-\varepsilon$ for all $j=1,2, \ldots, N$. Choose arbitrary unitaries $u_{j}^{(k)} \in A_{k}$ for $k \notin J$, and let u_{j} be the unitary element $\left(u_{j}^{(k)}\right)$ in $\prod_{k=1}^{\infty} A_{k}$. Let B be the (separable) sub- C^{*}-algebra of $\prod_{\omega} A_{k}$ generated by the unitaries $\pi_{\omega}\left(u_{j}\right)$, where π_{ω} is the quotient mapping $\prod_{k=1}^{\infty} A_{k} \rightarrow \prod_{\omega} A_{k}$. By Kir06, Lemma 2.5] there is a sequence ρ_{k} of pure states on A_{k} such that $\rho\left(\pi_{\omega}(x)\right)=\lim _{\omega} \rho_{k}\left(x_{k}\right)$ for all $x=\left(x_{k}\right) \in \prod_{k=1}^{\infty} A_{k}$ with $\pi_{\omega}(x) \in B$. Now,

$$
1=\left|\rho\left(\pi_{\omega}\left(u_{j}\right)\right)\right|=\lim _{\omega}\left|\rho_{k}\left(u_{j}^{(k)}\right)\right|=\liminf _{k \rightarrow \omega}\left|\rho_{k}\left(u_{j}^{(k)}\right)\right|=\sup _{I \in \omega} \inf _{k \in I}\left|\rho_{k}\left(u_{j}^{(k)}\right)\right| .
$$

It follows that there exists $I \in \omega$ such that $\left|\rho_{k}\left(u_{j}^{(k)}\right)\right| \geq 1-\varepsilon$ for all $k \in I$ and for all $j=1,2, \ldots, N$. This entails that $I \cap J=\varnothing$. Hence A_{k} has (N, ε)-characters for all $k \in I$.

We can relate the existence of (N, ε)-characters on a C^{*}-algebra A to the divisibility quantity w- $\operatorname{Div}_{2}(A)$.

Theorem 8.10. For each pair (N, ε), where $N \geq 2$ is an integer and $\varepsilon>0$, there exists an integer $n \geq 2$ such that every unital C^{*}-algebra A which satisfies $\mathrm{w}-\operatorname{Div}_{2}(A) \geq n$ has (N, ε)-characters. Conversely, for every integer $n \geq 2$ there exists a pair (N, ε), where $N \geq 2$ is an integer and where $\varepsilon>0$, such that every unital C^{*}-algebra A which has (N, ε)-characters satisfies $\mathrm{w}-\operatorname{Div}_{2}(A) \geq n$.

Proof. Suppose that the first claim were false. Then there would exist a pair (N, ε) and a sequence $\left(A_{n}\right)$ of unital C^{*}-algebras such that w - $\operatorname{Div}_{2}\left(A_{n}\right) \geq n$ and none of the A_{n} 's have (N, ε)-characters. However, if ω is any free ultrafilter \mathbb{N}, then $\prod_{\omega} A_{n}$ has a character by Corollary 8.5, whence A_{n} has (N, ε)-characters for each n in some subset $I \in \omega$, a contradiction.

Suppose next that the second statement were false. Then there would exist an integer $n \geq 2$ and a sequence $\left(A_{k}\right)$ of unital C^{*}-algebras such that A_{k} has $(k, 1 / k)$-characters but $\mathrm{w}-\operatorname{Div}_{2}\left(A_{k}\right)<n$. Let ω be a free ultrafilter on \mathbb{N}. It then follows from Proposition 8.9 that $\prod_{\omega} A_{k}$ has a character. Hence w- $\operatorname{Div}_{2}\left(\prod_{\omega} A_{k}\right)=\infty$, whence $\lim _{\omega} \mathrm{w}-\operatorname{Div}_{2}\left(A_{k}\right)=\infty$ by Proposition 8.4, a contradiction.

Corollary 8.11. For each pair (N, ε), where $N \geq 2$ is an integer and $\varepsilon>0$, there exists a unital simple infinite dimensional C^{*}-algebra which has (N, ε)-characters.

We end this section by giving several equivalent formulation of some well-known open problems for C^{*}-algebras. Recall that a C^{*}-algebra A has the Global Glimm Halving property if there is a *-homomorphism $C M_{2}(\mathbb{C}) \rightarrow A$ whose image is full in A.

Proposition 8.12. The following statements are equivalent:
(i) Every unital C^{*}-algebra that has no finite dimensional representation has the Global Glimm Halving property.
(ii) For all unital C^{*}-algebras A, if $\mathrm{w}-\operatorname{Div}_{m}(A)<\infty$ for all $m \geq 2$, then $\operatorname{Div}_{2}(A)<\infty$.
(iii) For every sequence $\left(A_{k}\right)$ of unital C^{*}-algebras, if $\sup _{k} \mathrm{w}-\operatorname{Div}_{m}\left(A_{k}\right)<\infty$ for all m, then $\sup _{k} \operatorname{Div}_{2}\left(A_{k}\right)<\infty$.

Proof. (i) \Leftrightarrow (ii). A has no finite dimensional representations if and only if $\operatorname{rank}(A) \geq m$ for all m, which by Corollary 5.4 (iii) is equivalent to $\mathrm{w}-\operatorname{Div}_{m}(A)<\infty$ for all m. It was shown in Corollary 5.4 (i) that the Global Glimm Halving property holds for A if and only if $\operatorname{Div}_{2}(A)<\infty$.
(ii) \Rightarrow (iii). Given a sequence $\left(A_{k}\right)$ of unital C^{*}-algebras such that $\sup _{k}{ }^{\mathrm{w}}$ - $\operatorname{Div}_{m}\left(A_{k}\right)<$ ∞ for all m. Consider the C^{*}-algebra $A=\prod_{k=1}^{\infty} A_{k}$. Then w- $\operatorname{Div}_{m}(A)=\sup _{k} \mathrm{w}$ - $\operatorname{Div}_{m}\left(A_{k}\right)<$ ∞ by Proposition 8.4. Thus $\operatorname{Div}_{2}(A)<\infty$, which implies that $\sup _{k} \operatorname{Div}_{2}\left(A_{k}\right)=\operatorname{Div}_{2}(A)<$ ∞, again by Proposition 8.4.
(iii) \Rightarrow (ii) is trivial: Take $A_{k}=A$ for all k.

Proposition 8.13. The following statements are equivalent:
(i) All unital C^{*}-algebras A that have no finite dimensional representation contain two positive full elements that are orthogonal to each other.
(ii) For all unital C^{*}-algebras A, if $\mathrm{w}-\operatorname{Div}_{m}(A)<\infty$ for all $m \geq 2$, then $\operatorname{Dec}_{2}(A)<\infty$.

Proof. (i) \Leftrightarrow (ii). As in the proof of Proposition 8.12, A has no finite dimensional representations if and only if $\mathrm{w}-\operatorname{Div}_{m}(A)<\infty$ for all m. It was shown in Corollary 5.4 (ii) that A contains two positive full elements that are orthogonal to each other if and only if $\operatorname{Dec}_{2}(A)<\infty$.
(ii) \Rightarrow (iii) is similar to the proof of (ii) \Rightarrow (iii) in Proposition 8.12. (iii) \Rightarrow (ii) is trivial.

9 Infinite elements

Following KR00, a Cuntz class u in the Cuntz semigroup of a C^{*}-algebra A is said to be properly infinite if it satisfies $u=2 u$ (whence $u=\infty \cdot u$). Similarly, a countably generated Hilbert module over A is properly infinite if its Cuntz class is properly infinite. We saw in Proposition 3.4 how infiniteness of a Cuntz class can arise from a certain type of divisibility property. In this section we shall investigate this and related phenomena further with emphasis on the following property:

Definition 9.1. Let A be a C^{*}-algebra, let $n \geq 1$ be an integer, and let u be an element in $\mathrm{Cu}(A)$. We say that u is (ω, n)-decomposable if there exist x_{1}, x_{2}, \ldots such that $\sum_{i=1}^{\infty} x_{i} \leq u$ and $u \leq n x_{i}$ for all i.

If u is (ω, n)-decomposable, then u is (m, n)-decomposable for all m. In particular, by Proposition 3.4 (ii), it follows that $n u$ is properly infinite.

The condition in the definition above can be reformulated in several different ways:
Lemma 9.2. Let A be a C^{*}-algebra, let $n \geq 1$ be an integer, and let u be an element of $\mathrm{Cu}(A)$. Then the following conditions are equivalent:
(i) u is (ω, n)-decomposable,
(ii) there exist x_{1}, x_{2}, \ldots such that $\sum_{i=1}^{\infty} x_{i} \leq u$ and $n x_{i}=\infty \cdot u$ for all i,
(iii) there exist x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots such that $\sum_{i=1}^{\infty} x_{i} \leq u, y_{i-1} \leq y_{i} \leq n x_{i}$ for all i, and $\infty \cdot u \leq \infty \cdot \sup y_{i}$,
(iv) there exist x_{1}, x_{2}, \ldots such that $\sum_{i=1}^{\infty} x_{i} \leq u$ and $n \sum_{j=k}^{\infty} x_{j}=\infty \cdot u$ for all k.

Proof. (i) \Rightarrow (ii). Suppose that x_{1}, x_{2}, \ldots satisfy $\sum_{i=1}^{\infty} x_{i} \leq u \leq n x_{j}$. Let $\left\{I_{i}\right\}_{i=1}^{\infty}$ be a partition of the natural numbers into infinite sets. Then the elements $x_{i}^{\prime}=\sum_{j \in I_{i}} x_{j}$ witness that condition (ii) holds.

To get (ii) \Rightarrow (iii), set $y_{i}=\infty \cdot u$ for all i and choose $\left(x_{i}\right)_{i=1}^{\infty}$ that satisfies (ii).
(iii) \Rightarrow (iv). Let $\left(x_{i}\right)_{i=1}^{\infty}$ and $\left(y_{i}\right)_{i=1}^{\infty}$ be as in (iii). Then $n \sum_{i=k}^{\infty} x_{i} \geq \infty \cdot y_{k}$. Observe that the left side of this inequality decreases as k increases. Thus, $n \sum_{i=k}^{\infty} x_{i} \geq \infty \cdot y_{k^{\prime}}$ for all $k^{\prime} \geq k$. Taking the supremum over all $k^{\prime} \geq k$ we get $n \sum_{i=k}^{\infty} x_{i} \geq \infty \cdot \sup y_{i} \geq \infty \cdot u$.
(iv) \Rightarrow (i). Suppose that x_{1}, x_{2}, \ldots satisfy the condition in (iv). Let $\left(u_{i}\right)_{i=1}^{\infty}$ be such that $u_{i} \ll u_{i+1}$ for all i and $\sup _{i} u_{i}=u$. Then there exists a sequence $1=k_{0}<k_{1}<\cdots$
such that the elements $x_{i}^{\prime}=\sum_{j=k_{i-1}}^{k_{i}-1} x_{j}$ satisfy $x_{i}^{\prime} \geq u_{i}$ for all i. Let $\left\{I_{i}\right\}_{i=1}^{\infty}$ be a partition of the natural numbers into infinite sets. Then the elements $x_{i}^{\prime \prime}=\sum_{j \in I_{i}} x_{j}^{\prime}$ satisfy the condition in Definition 9.1.

It was shown in OPR that the Corona Factorization Property for a C^{*}-algebra is equivalent to a condition for its Cuntz semigroup, that we here shall refer to as (CFP4S). A complete ordered abelian semigroup is said to have (CFP4S) if whenever $\left(x_{i}\right)_{i=1}^{\infty}$ is a full sequence, $x^{\prime} \ll x_{1}$, and $\left(y_{i}\right)_{i=1}^{\infty}$ is such that $m y_{i} \geq x_{i}$ for all i and some m, then there exists n such that $\sum_{i=1}^{n} y_{i} \geq x^{\prime}$. Recall that a full sequence is one that is increasing and such that $\sup x_{i}$ is a full element, i.e., $\infty \cdot \sup x_{i}$ is the largest element of the semigroup (which we shall denote by ∞).

In Section 6 we discussed a related notion, called the strong Corona Factorization Property, and its analog for the Cuntz semigroup.

The proposition below relates the (CFP4S) with the notion of (ω, m)-divisibility. In fact, it is a consequence of this proposition that a semigroup in the category $\mathbf{C u}$ has a full elements which is (ω, m)-divisible and not properly infinite if and only if the semigroup does not satisfy (CFP4S).

Proposition 9.3. The following four conditions are equivalent for any object S in the category $\mathbf{C u}$.
(i) S has property $(C F P 4 S)$.
(ii) For every sequence $\left(y_{i}\right)_{i=1}^{\infty}$ in S, if there is a full sequence $\left(x_{i}\right)_{i=1}^{\infty}$ in S such that $m y_{i} \geq x_{i}$ for some m and for all i, then $\sum_{i=1}^{\infty} y_{i}=\infty$.
(iii) For every sequence $\left(y_{i}\right)_{i=1}^{\infty}$ in S, if $m y_{i}=\infty$ for some m and for all i, then $\sum_{i=1}^{\infty} y_{i}=$ ∞.
(iv) For every sequence $\left(y_{i}\right)_{i=1}^{\infty}$ in S, if $\sum_{i=n}^{\infty} m y_{i}=\infty$ for some m and for all n, then $\sum_{i=1}^{\infty} y_{i}=\infty$.
(v) For every full element y in S, if y is (ω, m)-decomposable for some m, then y is properly infinite (whence $y=\infty$).

Proof. (i) \Rightarrow (ii). Apply the (CFP4S) to the tail sequences $\left(x_{i}\right)_{i=n}^{\infty}$ and $\left(y_{i}\right)_{i=n}^{\infty}$. Then we get $x^{\prime} \leq \sum_{i=n}^{N} y_{i} \leq \sum_{i=n}^{\infty} y_{i}$ for all $x^{\prime} \ll x_{n}$, whence $\infty=\sup _{n} x_{n} \leq \sum_{i=1}^{\infty} y_{i}$.
(ii) \Rightarrow (i). If $\left(x_{i}\right)$ is a full sequence and if $\left(y_{i}\right)$ is another sequence such that $x_{i} \leq m y_{i}$, then $\sum_{i=1}^{\infty} y_{i}=\infty$ by (ii). In particular, if $x^{\prime} \ll x_{1}$, then $x^{\prime} \leq \sum_{i=1}^{n} y_{i}$ for some n by the definition of compact containment.
(ii) \Rightarrow (iii). Suppose that (ii) holds and that $\left(y_{i}\right)$ is a sequence in S such that $m y_{i}=\infty$ for all i. Then $\infty=\sum_{i=1}^{\infty} y_{i}$ by (ii) with $x_{i}=\infty$ for all i.
(iii) \Rightarrow (v). Suppose that (iii) holds, and that $y \in S$ is full and (ω, m)-decomposable. Then y satisfies condition (ii) of Lemma 9.2, so there exists a sequence $\left(y_{i}\right)$ such that $\sum_{i=1}^{\infty} y_{i} \leq y$ and $m y_{i}=\infty \cdot y=\infty$ for all i. But then $\sum_{i=1}^{\infty} y_{i}=\infty$ because (iii) holds, whence $y=\infty$.
(v) \Rightarrow (iv). Suppose that (v) holds and let $\left(y_{i}\right)_{i=1}^{\infty}$ be a sequence in S such that $\sum_{i=n}^{\infty} m y_{i}=\infty$ for some m and for all n. Put $y=\sum_{i=1}^{\infty} y_{i}$. We must show that $y=\infty$. We know that $m y=\infty$, so y is full. It is easy to see that y satisfies condition (iv) of Lemma 9.2 , so y is (ω, m)-decomposable. Hence $y=\infty$ by the assumption that (v) holds.
(iv) \Rightarrow (ii). Let $\left(x_{i}\right)_{i=1}^{\infty}$ be a full sequence in S, let $m \geq 1$ be a positive integer, and let $\left(y_{i}\right)$ be such that $m y_{i} \geq x_{i}$ for all i. Then

$$
\sum_{i=n}^{\infty} m y_{i} \geq \sum_{i=n}^{\infty} x_{i} \geq \sum_{i=k}^{\infty} x_{i} \geq \infty \cdot x_{k}
$$

for all $k \geq n$. As $\infty=\sup _{k} \infty \cdot x_{k}$, we conclude that $\sum_{i=n}^{\infty} m y_{i}=\infty$ for all n. By (iv) this entails that $\sum_{i=1}^{\infty} y_{i}=\infty$, and in particular that $x_{1} \leq \sum_{i=1}^{\infty} y_{i}$.

In the following example we describe a Cuntz semigroup with an element u that is ($\omega, 2$)decomposable but not properly infinite. In particular, $2 u$ is properly infinite while u is not. This example is well known in other contexts, and it was discussed in the paragraph preceding Corollary 7.3 .

Example 9.4. Let $X=\left(S^{2}\right)^{\infty}$ be a countable cartesian product of 2-dimensional spheres, and let $p_{i} \in C(X, \mathcal{K})$ be the one-dimensional projection arising as the pull back of a nontrivial rank one projection p in $C\left(S^{2}\right) \otimes \mathcal{K}$ along the i th coordinate projection $X \rightarrow S^{2}$, cf. the comments above Corollary 7.3. Let e be a trivial one-dimensional projection. Then $e \not \approx \bigoplus_{i=1}^{N} p_{j}$ for all N, because the Euler class of the projection on the right-hand side is non-trivial.

Put $x_{i}=\left\langle p_{i}\right\rangle, v=\langle e\rangle$, and put $u=\sum_{i=1}^{\infty} x_{i}$. Then $v \not \leq u, v \leq 2 x_{i}$, and $u+u=\infty \cdot v=$ $\infty \cdot u$. Hence $2 \sum_{j=i}^{\infty} x_{i}=\infty \cdot v=\infty \cdot u$, and so u is ($\omega, 2$)-decomposable; but u is not properly infinite.

We now look more closely at the properties of (ω, n)-decomposable elements.
Proposition 9.5. Let $\left(a_{i}\right)_{i=0}^{\infty}$ be a sequence of mutually orthogonal positive elements in a C^{*}-algebra A such that $\sum_{i=0}^{\infty} a_{i}$ converges to a strictly positive element in A. Assume that $n \geq 1$ is an integer such that $\sum_{j \geq i} n\left\langle a_{i}\right\rangle=\infty$ for all i. Then $A \otimes B$ is stable for every σ-unital C^{*}-algebra B with $\operatorname{rank}(\bar{B}) \geq n$.
Proof. Set $\sum_{i=0}^{\infty} a_{i}=a \in A$ and let b be a strictly positive element in B. Notice that $a \otimes b$ is a strictly positive element of $A \otimes B$. In order to prove stability of $A \otimes B$ we will use the stability criterion obtained in [HR98]: $A \otimes B$ is stable if for every $\varepsilon>0$ there exists a positive element c in A which is orthogonal to $(a \otimes b-\varepsilon)_{+}$and satisfies $\left\langle(a \otimes b-\varepsilon)_{+}\right\rangle \leq\langle c\rangle$.

Arguing as in the proof of (iv) \Rightarrow (i) in Lemma 9.2, we may replace $\sum_{j \geq i} n\left\langle a_{i}\right\rangle=\infty$ by the stronger assumption that $n\left\langle a_{i}\right\rangle=\infty$ for all i. By Theorem 5.3 (iii), $\operatorname{rank}(B) \geq n$ is equivalent to weak (n, ω)-divisibility for $\langle b\rangle$. Thus there exist a sequence $\left(x_{i}\right)_{i=1}^{\infty}$ in $\mathrm{Cu}(B)$ such that $n x_{i} \leq\langle b\rangle$ for all i and $\sum_{i=1}^{\infty} x_{i}=\infty$. We can form a new sequence $\left(x_{i}^{\prime}\right)_{i=1}^{\infty}$ in which each x_{i} appears repeated infinitely often. In this way we may assume without loss
of generality that $\sum_{i \geq j}^{\infty} x_{i}=\infty$ for all j. Find positive elements b_{i} in B such that $x_{i}=\left\langle b_{i}\right\rangle$ and $\left\|b_{i}\right\| \leq 2^{-i}$. Then

$$
(a \otimes b-\varepsilon)_{+}=\sum_{i=1}^{\infty}\left(a_{i} \otimes b-\varepsilon\right)_{+}=\sum_{i=1}^{N}\left(a_{i} \otimes b-\varepsilon\right)_{+},
$$

for some integer $N \geq 1$. Set $c=\sum_{i>N} a_{i} \otimes b$. Then c is orthogonal to $(a \otimes b-\varepsilon)_{+}$. Also,

$$
\left\langle a_{i} \otimes b\right\rangle=\left\langle a_{i}\right\rangle \otimes\langle b\rangle \geq n\left\langle a_{i}\right\rangle \otimes\left\langle b_{i}\right\rangle=\infty \cdot\langle a\rangle \otimes\left\langle b_{i}\right\rangle
$$

for each i. (Here we have used that $n\left\langle a_{i}\right\rangle=\infty$ for all i). Hence

$$
\langle c\rangle=\sum_{i>N}\left\langle a_{i} \otimes b\right\rangle=\sum_{i>N} \infty \cdot\langle a\rangle \otimes\left\langle b_{i}\right\rangle=\infty .
$$

Thus, $\left\langle(a \otimes b-\varepsilon)_{+}\right\rangle \leq \infty=\langle c\rangle$. This shows that $A \otimes B$ is stable.
The proposition above can be applied to the C^{*}-algebra $A=P(C(X) \otimes \mathcal{K}) P$ arising from Example 9.4 with $P=\bigoplus_{i=1}^{\infty} p_{i} \in \mathcal{M}(C(X) \otimes \mathcal{K})$. The C^{*}-algebra A is not stable (because $e \notin A$ while $e \in M_{2}(A)$), but $A \otimes B$ is stable for every C^{*}-algebra B that does not have a character by Proposition 9.5 and Example 9.4 .

The example obtained in Rør97] of a simple C^{*}-algebra A of stable rank 1 such that $M_{n}(A)$ is stable, while $M_{n-1}(A)$ is not stable, likewise satisfies the hypotheses of Proposition 9.5. In fact, to the authors knowledge, every example of a C^{*}-algebra that tensored with $M_{n}(\mathbb{C})$ becomes stable also has the stronger property of becoming stable after being tensored with any C^{*}-algebra that has no representations of dimension less than n. This raises the following question:

Question 9.6. Is there a C^{*}-algebra A such that $M_{2}(A)$ is stable but $A \otimes B$ is not stable for some C^{*}-algebra B without characters?

Proposition 9.7. The following statements are equivalent for every C^{*}-algebra A with a strictly positive element a.
(i) $\langle a\rangle$ is (ω, n)-decomposable.
(ii) A contains a full hereditary subalgebra B such that $B \otimes C$ is stable for any C^{*}-algebra C such that $\operatorname{rank}(C) \geq n$.
(iii) A contains a full hereditary subalgebra B such that $M_{n}(B)$ is stable.

Proof. (i) \Rightarrow (ii). Let $\left(x_{i}\right)_{i=1}^{\infty}$ be such that $\sum_{i=1}^{\infty} x_{i} \leq\langle a\rangle$ and $n x_{i}=\infty$. Let $b \in A \otimes \mathcal{K}$ be strictly positive and let $b_{i} \in A \otimes \mathcal{K}$ be mutually orthogonal elements such that $\left\langle b_{i}\right\rangle=x_{i}$. We can find mutually orthogonal positive elements a_{i} in A such that $\left\langle a_{i}\right\rangle \leq\left\langle b_{i}\right\rangle, n\left\langle a_{i}\right\rangle \geq$ $\left\langle(b-1 / i)_{+}\right\rangle$, and such that $\sum_{i=1}^{\infty} a_{i}$ is convergent. It then follows from Proposition 9.5 that (ii) holds when B is the hereditary sub- C^{*}-algebra generated by $\sum_{i=1}^{\infty} a_{i}$.
(ii) \Rightarrow (iii) is clear.
(iii) \Rightarrow (i). Since A is σ-unital, and B is stably isomorphic to A, B is σ-unital too. Let b be a strictly positive element in B.

Use [OPR, Lemma 5.3] to find a sequence $\left(b_{k}\right)$ of pairwise orthogonal positive elements in B such that $\left\langle(b-1 / k)_{+}\right\rangle \leq n\left\langle(b-1 / k)_{+}\right\rangle \leq n\left\langle b_{k}\right\rangle$ for all k. Then condition (iii) of Lemma 9.2 is satisfied with $u=\langle b\rangle, x_{k}=\left\langle b_{k}\right\rangle$, and $y_{k}=\left\langle(b-1 / k)_{+}\right\rangle$, whence $\langle b\rangle$ is (ω, n)-decomposable.

Finally, by the fact that $\langle b\rangle \leq\langle a\rangle \leq \infty \cdot\langle b\rangle$, it follows by the equivalence of (i) and (ii) in Lemma 9.2 that $\langle a\rangle$ is (ω, n)-decomposable.

Definition 9.8. Let $n \in \mathbb{N}$ and $u \in \operatorname{Cu}(A)$. We call u weakly (ω, n)-divisible if for every $u^{\prime} \ll u$ there exist $x_{i} \in \operatorname{Cu}(A), i=1,2, \ldots, n$, such that $\infty \cdot x_{i} \leq u$ and $u^{\prime} \leq \sum_{i=1}^{n} x_{i}$.

Observe that if u is weakly (ω, n)-divisible, then u is weakly (m, n)-divisible for all $m \in \mathbb{N}$, whence $n u$ is properly infinite by Proposition 3.4.

We will next give an example of a Cuntz semigroup element that is weakly ($\omega, 2$)divisible but not properly infinite. This example needs some preparatory results. Let us first recall an example given by Dixmier and Doaudy in [DD63].

Example 9.9 (Dixmier-Douady, [DD63, §17]). Let B_{∞} denote the closed unit ball of $l_{2}(\mathbb{N})$ endowed with the weak topology. Let $l_{2}\left(B_{\infty}\right)$ denote the $C\left(B_{\infty}\right)$-Hilbert module of continuous maps from B_{∞} to $l_{2}(\mathbb{N})$. We will construct a countably generated $C\left(B_{\infty}\right)$ Hilbert module D such that $l_{2}\left(B_{\infty}\right) \hookrightarrow D \hookrightarrow l_{2}\left(B_{\infty}\right)$ but $D \nsubseteq l_{2}\left(B_{\infty}\right)$.

Let $x: B_{\infty} \rightarrow l_{2}(\mathbb{N}) \oplus \mathbb{C}$ be the function given by

$$
x(z)=z+\sqrt{1-\|z\|^{2}} \cdot e, \text { for } z \in B_{\infty}
$$

Here e is a generator of the summand \mathbb{C} in the direct sum $l_{2}(\mathbb{N}) \oplus \mathbb{C}$. Consider the $C\left(B_{\infty}\right)$ module D_{0} of functions from B_{∞} to $l_{2}(\mathbb{N}) \oplus \mathbb{C}$ that have the form $y+x \lambda$, with $y \in l_{2}\left(B_{\infty}\right)$ and $\lambda \in C\left(B_{\infty}\right)$ (the action of $C\left(B_{\infty}\right)$ is defined by pointwise scalar multiplication). The module D_{0} is a pre-Hilbert C^{*}-module over $C\left(B_{\infty}\right)$ when endowed with the pointwise inner product. Indeed, if $y_{1}+x \lambda_{1}$ and $y_{2}+x \lambda_{2}$ are vectors in D_{0} then

$$
\left\langle y_{1}+x \lambda_{1}, y_{2}+x \lambda_{2}\right\rangle=\left\langle y_{1}, y_{2}\right\rangle+\left\langle y_{1}, z\right\rangle \lambda_{2}+\overline{\lambda_{1}}\langle z, y\rangle+\overline{\lambda_{1}} \lambda_{2} \in C\left(B_{\infty}\right) .
$$

Let D denote the completion of D_{0} with respect to the norm induced by its $C\left(B_{\infty}\right)$-valued inner product. Observe that $l_{2}\left(B_{\infty}\right) \hookrightarrow D_{0} \subseteq D$. Since D is countably generated, we also have that $D \hookrightarrow l_{2}\left(B_{\infty}\right)$ by Kasparov's stabilization theorem. Let us see that $D \not \equiv l_{2}\left(B_{\infty}\right)$. Consider $E \subseteq D$, the orthogonal complement of $\{x\}$. Then $E=\overline{E_{0}}$, where

$$
\begin{equation*}
E_{0}=\left\{y+x \lambda \in D \mid\langle y(z), z\rangle+\lambda(z)=0 \text { for all } z \in B_{\infty}\right\} \tag{9.1}
\end{equation*}
$$

It was implicitly shown by Dixmier and Douady, and explicitly pointed out by Blanchard and Kirchberg ([BK04a, Proposition 3.6]), that for any $v \in E$ there exists $z \in B_{\infty}$ such
that $\langle v, v\rangle(z)=0$. That is, every section of E vanishes at some point (we will reprove this fact in Proposition 9.10 below). Notice that

$$
D=E+x \cdot C\left(B_{\infty}\right) \cong E \oplus C\left(B_{\infty}\right)
$$

It can be deduced from this that $D \not \equiv l_{2}\left(B_{\infty}\right)$ (see [DD63, Proposition 19]).
Let B_{3} denote the unit ball in \mathbb{R}^{3}. Let $f \in M_{2}\left(C\left(B_{3}\right)\right)^{+}$be defined as

$$
f(x, y, z)=\frac{1}{2}\left(\begin{array}{cc}
1+z & x-i y \\
x+i y & 1-z
\end{array}\right) .
$$

(The function f is a homeomorphism from B_{3} to the set of positive elements of $M_{2}(\mathbb{C})$ with trace 1. On the boundary 2-sphere of B_{3} it agrees with the tautological rank 1 projection.) Consider the $C\left(B_{3}\right)$-module associated to f :

$$
\begin{equation*}
F:=\overline{f\binom{C\left(B_{3}\right)}{C\left(B_{3}\right)}} . \tag{9.2}
\end{equation*}
$$

Proposition 9.10. Let B_{∞} and B_{3} be as before. Let $X=\prod_{i \in I} X_{i}$, where each X_{i} is either B_{∞} or B_{3} and the index set I is non-empty. For each i, let H_{i} be the pull-back along the projection map $\pi_{i}: X \rightarrow X_{i}$ of either the module E defined in Example 9.9 or the module F defined in (9.2). Finally, let H be the $C(X)$-module defined by $H=\bigoplus_{i \in I} H_{i}$. Then $C(X)$ does not embed in H as a $C(X)$-module (i.e., for every $v \in H$ there exists $z \in X$ such that $\langle v, v\rangle(z)=0)$.

Notice that if every X_{i} agrees with B_{3}, the above proposition can be proven using standard methods in algebraic topology (e.g., characteristic classes). Indeed, it suffices to restrict to the boundary 2-sphere of each X_{i} and use that on that set F is the tautological rank 1 projective module. It is the inclusion of the spaces B_{∞} in the definition of X that forces us to use a different route in the proof.

Proof. Let $v \in H$, and write $v=\sum_{i \in I} v_{i}$, with $v_{i} \in H_{i}$. In order to show $\langle v, v\rangle(z)=0$ for some $z \in X$, it suffices to prove this for v belonging to a dense submodule of H. For suppose that $\left(v^{(n)}\right)$ is a sequence in H such that $v^{(n)} \rightarrow v$ and $\left\langle v^{(n)}, v^{(n)}\right\rangle\left(z_{n}\right)=0$ for some $z_{n} \in X$. Then by the compactness of X there exists a subsequence $\left(z_{n_{k}}\right)$ such that $z_{n_{k}} \rightarrow z \in X$, and so $\langle v, v\rangle(z)=0$. Thus, we may assume that the index set I is finite. Furthermore, for the indices i such that $H_{i}=\pi_{i}^{*}(E)$, we may assume that $v_{i} \in H_{i}^{\prime}$, where $H_{i}^{\prime} \subseteq H_{i}$ is the pull back along π_{i} of the dense submodule E_{0} defined in (9.1).

In the sequel, we assume that $I=\{1,2, \ldots, n\}, X_{i}=B_{\infty}$ for $i=1,2, \ldots, n_{1}$, and $X_{i}=B_{3}$ for $i=n_{1}+1, \ldots, n$, where $n_{1} \leq n$.

We will argue by contradiction that $\langle v, v\rangle(z)=0$ for some $z \in X$. Suppose that $\langle v, v\rangle$ is invertible, and assume without loss of generality that $\langle v, v\rangle=1$. Observe that, for each $i \leq n_{1}, v_{i}$ is a function from X into the unit ball of $l_{2}(\mathbb{N}) \oplus \mathbb{C}$, while for $n_{1}<i \leq n$ the entry v_{i} is a function from X into the unit ball of $\mathbb{C} \oplus \mathbb{C}$ (let us denote it by B_{4}).

Let $h_{0}: l_{2}(\mathbb{N}) \oplus \mathbb{C} \rightarrow l_{2}(\mathbb{N})$ denote the projection onto the first direct summand and let $h_{1}: B_{4} \rightarrow B_{3}$ denote the Hopf fibration (extended to the unit ball):

$$
h_{1}\left(z_{0}, z_{1}\right):=\left(2 z_{0} \overline{z_{1}},\left|z_{0}\right|^{2}-\left|z_{1}\right|^{2}\right)
$$

Let $\lambda:[0,1] \rightarrow[0,1]$ be such that $\lambda(0)=0, \lambda(t)=1$ for $t \in\left[\frac{1}{n}, 1\right]$, and λ is linear in $\left[0, \frac{1}{n}\right]$. Define $\tilde{h}_{0}, \tilde{h}_{1}: B_{4} \rightarrow B_{3}$ by

$$
\tilde{h}_{0}(w)=h_{0}\left(\frac{\lambda(|w|)}{|w|} w\right), \quad \tilde{h}_{1}(w)=-h_{1}\left(\frac{\lambda(|w|)}{|w|} w\right) .
$$

Consider the continuous map $\Phi: X \rightarrow X$ given by the vector of functions

$$
\Phi:=\left(\tilde{h}_{0} \circ v_{1}, \tilde{h}_{0} \circ v_{2}, \ldots, \tilde{h}_{0} \circ v_{n_{1}}, \tilde{h}_{1} \circ v_{n_{1}+1}, \ldots, \tilde{h}_{1} \circ v_{n}\right) .
$$

Since X is a compact convex subset of the vector space $\left(l_{2}(\mathbb{N})\right)^{n_{1}} \times\left(\mathbb{R}^{3}\right)^{n-n_{1}}$, the map Φ has a fixed point by the Schauder fixed point theorem. Let $\tilde{z}:=\left(\tilde{z}_{i}\right)_{i=1}^{n} \in X$ be a fixed point of Φ. Since $\|v(\tilde{z})\|=1$, we must have $\left\|v_{i}(\tilde{z})\right\| \geq \frac{1}{n}$ for at least one index i. Notice that both \tilde{h}_{0} and \tilde{h}_{1} map all vectors of norm at least $1 / n$ into the unit sphere of either B_{∞} or B_{3}. It follows that the fixed point \tilde{z} satisfies $\left\|\tilde{z}_{i}\right\|=1$ and $\tilde{z}_{j}=0$ for all $j \neq i$.

There are two cases to consider: $i \leq n_{1}$ and $i>n_{1}$. Suppose that $i \leq n_{1}$. The general form of $v_{i} \in H_{i}^{\prime}$ is $f+\left(z_{i}+\sqrt{1-\left\|z_{i}\right\|^{2}} e\right) \alpha$, for some $f: X \rightarrow l_{2}(\mathbb{N})$ and $\alpha \in C(X)$. Since $\left\|\tilde{z}_{i}\right\|=1$, we have

$$
v_{i}(\tilde{z})=f(\tilde{z})+\alpha(\tilde{z}) \tilde{z}_{i}=\tilde{z}_{i}
$$

$\operatorname{But}\left\langle f(\tilde{z}), \tilde{z}_{i}\right\rangle+\alpha(\tilde{z})=0$. This contradicts that $\left\|\tilde{z}_{i}\right\|=1$.
Suppose that $i>n_{1}$. Since $z_{i} \mapsto v_{i}\left(\cdots, z_{i}, \cdots\right)$, with $z_{i} \in S^{2}$, is a section of the tautological bundle on S^{2}, we have $h_{1} \circ v_{i}(z)=z_{i}$ whenever $z_{i} \in S^{2}$. It follows that $\tilde{h}_{1} \circ v_{i}(\tilde{z})=-\tilde{z}_{i}$. But $\tilde{h}_{1} \circ v_{i}(\tilde{z})=\tilde{z}_{i}$, by the fixed point property of \tilde{z}. This again contradicts that $\left\|\tilde{z}_{i}\right\|=1$.

We are now prepared to give examples of weakly ($\omega, 2$)-divisible elements which are not properly infinite.

Example 9.11. Let $X=B_{\infty} \times B_{3}$ and consider the Hilbert module $H=\pi_{1}^{*}(E) \oplus \pi_{2}^{*}(F)$, described in the statement of the previous proposition. We have shown that $[C(X)] \nsubseteq[H]$. In particular, $[H]$ is not properly infinite (since it is full). Let us show that $[H]$ is weakly $(\omega, 2)$-divisible. Consider the open sets $U:=B_{\infty} \times B_{3}^{+}$and $V:=B_{\infty} \times B_{3}^{-}$, where B_{3}^{+} and $B_{3}^{-}=$are (open) upper and lower hemispheres of B_{3} that together cover B_{3} (e.g., $B_{3}^{+}=B_{3} \backslash\{(0,0,1)\}$ and $\left.B_{3}^{-}=B_{3} \backslash\{(0,0,-1)\}\right)$. We claim that $l_{2}(U) \hookrightarrow H C_{0}(U)$ and $l_{2}(V) \hookrightarrow H C_{0}(V)$. Indeed, we have

$$
\begin{aligned}
H C_{0}(U) & =\pi_{1}^{*}(E) C_{0}(U) \oplus \pi_{2}^{*}(F) C_{0}(U) \\
& =\pi_{1}^{*}(E) C_{0}(U) \oplus \pi_{2}^{*}\left(F C_{0}\left(B_{3}^{+}\right)\right) .
\end{aligned}
$$

On the other hand, $F C_{0}\left(B_{3}^{+}\right) \cong C_{0}\left(B_{3}^{+}\right) \oplus C_{0}\left(B_{3}^{+} \backslash S^{2}\right)$. This follows from RT11, Theorem 4.3], where it is shown that the isomorphism class of a Hilbert module over a space of dimension at most 3 is determined by the restrictions of the Hilbert module to the subsets where it has constant fibrewise rank. Observe that $F C_{0}\left(B_{3}^{+}\right)$has rank 1 on $B_{3} \cap S^{2}$, rank 2 on $B_{3}^{+} \backslash S^{2}$, and furthermore it induces trivial vector bundles when restricted to those sets. Thus, $F C_{0}\left(B_{3}^{+}\right) \cong C_{0}\left(B_{3}^{+}\right) \oplus C_{0}\left(B_{3}^{+} \backslash S^{2}\right)$. Since $\pi_{2}^{*}\left(C_{0}\left(B_{3}^{+}\right)\right)=C_{0}(U)$, we get that

$$
\begin{aligned}
H C_{0}(U) & \cong \pi_{1}^{*}(E) C_{0}(U) \oplus C_{0}(U) \oplus \pi_{2}^{*}\left(F C_{0}\left(B_{3}^{+} \backslash S^{2}\right)\right) \\
& \cong \pi_{1}^{*}\left(E \oplus C\left(B_{\infty}\right)\right) C_{0}(U) \oplus \pi_{2}^{*}\left(F C_{0}\left(B_{3}^{+} \backslash S^{2}\right)\right)
\end{aligned}
$$

But $l_{2}\left(B_{\infty}\right) \hookrightarrow D=E \oplus C\left(B_{\infty}\right)$. Thus, $l_{2}(U) \hookrightarrow H C_{0}(U)$. Symmetrically, we have that $l_{2}(V) \hookrightarrow H C_{0}(V)$. It follows that $\left[H C_{0}(U)\right]$ and $\left[H C_{0}(V)\right]$ are properly infinite, and $[H] \leq\left[H C_{0}(U)\right]+\left[H C_{0}(V)\right]$. Thus, $[H]$ is weakly $(\omega, 2)$-divisible.

Remark 9.12. The previous example answers a question posed in KR00, Question 3.10]: If a and b are properly infinite positive elements, is $a+b$ properly infinite? In the language of Hilbert modules, this question asks whether H is properly infinite if $H=\overline{H_{1}+H_{2}}$, and $H_{1}, H_{2} \subseteq H$ are properly infinite submodules of H. We obtain a counterexample taking H as in the previous example, $H_{1}=H C_{0}(U)$ and $H_{2}=H C_{0}(V)$.

Example 9.13. In this example we answer (in the negative) the following question, posed in [KR00, Question 3.4]: if [H] is properly infinite, is the unit of $B(H)$ a properly infinite projection? Let $X=B_{\infty} \times\left(B_{3}\right)^{\infty}$ and consider the Hilbert $C(X)$-module

$$
H=C(X) \oplus \pi_{1}^{*}(E) \oplus \bigoplus_{i=2}^{\infty} \pi_{i}^{*}(F)
$$

The module $C(X) \oplus \pi_{1}^{*}(E)$ is the pull back along π_{1} of the Dixmier-Douady module D. Since $l_{2}\left(C\left(B_{\infty}\right)\right)$ embeds in $D, l_{2}(C(X))$ embeds in $C(X) \oplus \pi_{1}^{*}(E)$. Thus, $[H]$ is properly infinite. Also, the direct sum of the module $\bigoplus_{i=2}^{\infty} \pi_{i}^{*}(F)$ with itself gives $l_{2}(C(X))$ (because $F \oplus F$ contains $C\left(B_{3}\right)$ as a direct summand). Therefore, $H \oplus H \cong l_{2}(C(X))$. However, H is not isomorphic to $l_{2}(C(X))$, because every section of $\pi_{1}^{*}(E) \oplus \bigoplus_{i=2}^{\infty} \pi_{i}^{*}(F)$ vanishes, and so adding the trivial rank 1 module to it cannot yield the trivial Hilbert module $l_{2}(C(X))$ (see the proof of $D \not \equiv l_{2}\left(C\left(B_{\infty}\right)\right.$) in [DD63, Proposition 19]). It follows that $H \oplus H$ is not a direct summand of H, i.e., the unit of $B(H)$ is not properly infinite.

References

$\left[\mathrm{ABG}^{+}\right] \quad$ P. Ara, N. P. Brown, D. Guido, F. Lledo, F. Perera, and A. Toms, The Cuntz semigroup and the classification of C^{*}-algebras, Contemporary Mathematics 534 (2011), vii +168 p.
[BK04a] E. Blanchard and E. Kirchberg, Global Glimm halving for C^{*}-bundles, J. Operator Theory 52 (2004), no. 2, 385-420.
[BK04b] \quad, Non-simple purely infinite C^{*}-algebras: the Hausdorff case, J. Funct. Anal. 207 (2004), no. 2, 461-513.
[BPT08] N. Brown, F. Perera, and A. S. Toms, The Cuntz semigroup, the Elliott conjecture, and dimension functions on C^{*}-algebras, J. Reine Angew. Math. 621 (2008), 191211.
[CEI08] K. T. Coward, G. A. Elliott, and C. Ivanescu, The Cuntz semigroup as an invariant for C^{*}-algebras, J. Reine Angew. Math. 623 (2008), 161-193.
[DD63] J. Dixmier and A. Douady, Champs continus d'espaces hilbertiens et de C^{*}-algèbres, Bull. Soc. Math. France 91 (1963), 227-284.
[DHTW09] M. Dădărlat, I. Hirshberg, A. Toms, and W. Winter, The Jiang-Su Algebra does not always embed, Math. Res. Lett. 16 (2009), no. 1, 23-26.
[DT09] M. Dădărlat and A. Toms, \mathcal{Z}-stability and infinite tensor powers of C^{*}-algebras, Adv. Math. 220 (2009), no. 2, 341-366.
[Dup76] M. J. Dupré, Classifying Hilbert bundles. II, J. Funct. Anal. 22 (1976), no. 3, 295-322.
[ER06] G. A. Elliott and M. Rørdam, Perturbation of Hausdorff moment sequences, and an application to the theory of C^{*}-algebras of real rank zero, Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, Springer, Berlin, 2006, pp. 97-115.
[ERS] G. A. Elliott, L. Robert, and L. Santiago, The cone of lower semicontinuous traces on a C^{*}-algebra, American J. Math. 113 (2011), no. 4, 969-1005.
[HR98] J. Hjelmborg and M. Rørdam, On stability of C^{*}-algebras, J. Funct. Anal. 155 (1998), no. 1, 153-170.
[HRW07] I. Hirshberg, M. Rørdam, and W. Winter, $C_{0}(X)$-algebras, stability and strongly self-absorbing C^{*}-algebras, Math. Ann. 339 (2007), no. 3, 695-732.
[Hus94] D. Husemoller, Fibre Bundles, 3rd. ed., Graduate Texts in Mathematics, no. 20, Springer Verlag, New York, 1966, 1994.
[Kir06] E. Kirchberg, Central sequences in C^{*}-algebras and strongly purely infinite C^{*} algebras, Operator Algebras (Berlin) (S. Neshveyev C. Skau O. Bratteli, ed.), Abel Symp., vol. 1, Springer, 2006, pp. 175-232.
[KOS03] A. Kishimoto, N. Ozawa, and S. Sakai, Homogeneity of the pure state space of a separable C^{*}-algebra, Canad. Math. Bull. 46 (2003), no. 3, 365-372.
[KR00] E. Kirchberg and M. Rørdam, Non-simple purely infinite C^{*}-algebras, American J. Math. 122 (2000), 637-666.
[KR02] , Infinite non-simple C^{*}-algebras: absorbing the Cuntz algebra $\mathcal{O} _\infty$, Advances in Math. 167 (2002), no. 2, 195-264.
[MS74] J.W. Milnor and J.D. Stasheff, Characteristic classes, no. 76, Princeton Univ Pr, 1974.
[OPR] E. Ortega, F. Perera, and M. Rørdam, The Corona Factorization property, Stability, and the Cuntz semigroup of a C^{*}-algebra., Int. Math. Res. Not. IMRN. 2012 (2012), no. 1, 34-66.
[PR04] F. Perera and M. Rørdam, AF-embeddings into C^{*}-algebras of real rank zero, J. Funct. Anal. 217 (2004), no. 1, 142-170.
[PT07] F. Perera and A. S. Toms, Recasting the Elliott conjecture, Math. Ann. 338 (2007), no. 3, 669-702.
[Rob11] L. Robert, The cone of functionals on the Cuntz semigroup, 2011.
[RT11] L. Robert and A. Tikuisis, Hilbert C^{*}-modules over a commutative C^{*}-algebra, Proc. Lond. Math. Soc. (3) 102 (2011), no. 2, 229-256.
[Rør97] M. Rørdam, Stability of C^{*}-algebras is not a stable property, Documenta Math. 2 (1997), 375-386.
[Rør03] , A simple C^{*}-algebra with a finite and an infinite projection, Acta Math. 191 (2003), 109-142.
[Rør04] , The stable and the real rank of \mathcal{Z}-absorbing C^{*}-algebras, International J. Math. 15 (2004), no. 10, 1065-1084.
[RW10] M. Rørdam and W. Winter, The Jiang-Su algebra revisited, J. Reine Angew. Math 642 (2010), 129-155.
[Vil98] J. Villadsen, Simple C^{*}-algebras with perforation, J. Funct. Anal. 154 (1998), no. 1, 110-116.
[Win] W. Winter, Nuclear dimension and \mathcal{Z}-stability of pure C^{*}-algebras, Invent. Math., 187 (2012), 259-342.

Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

E-mail address: leonel@math.ku.dk

Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

E-mail address: rordam@math.ku.dk

[^0]: *This research was supported by the Danish National Research Foundation (DNRF) through the Centre for Symmetry and Deformation

