Ref. (Elliot-Kucerovsky) We say that a C^*-algebra A has the Corona Factorization Property (CFP) if any full projection in $M(A\otimes K)$ is properly infinite.

A projection is full if it generates all of $M(A\otimes K)$.

"p is properly infinite if $(p^*p)\leq (2,0)$" in the Murray-von Neumann sense.

Theorem (Kucerovsky-K Ng) Let A be a separable C^*-algebra. Then A has the CFP iff every norm-full extension is nuclearly absorbing.

Theorem (Kucerovsky-K, Kucerovsky-K Ng) Let A be a separable C^*-algebra. TFAE:

(i) A has the CFP

(ii) Every full projection in $M(A\otimes K)$ is properly infinite.

(iii) Every strictly full element in $M(A\otimes K)$ is properly infinite.

Strictly full element is every non-zero element in $C^*(A)$ is full.

Properly infinite: $(a,a)\leq (2,0)$ in the Glimm sense.

Examples (i) Simple C^*-algebras with Real Rank 0, stable rank 1 and weakly unperforated K_0 groups.

(ii) Purely infinite simple C^*-algebras.

(iii) X compact Hausdorff metric space with finite dimension ω, $C(X)$ satisfies the CFP.

(iv) $C(\mathbb{R}^2)$ does not have the CFP.
(vi) Rørdam's example of a simple C^*-algebra with a finite and an infinite projection does not have the CFP.

Rørdam constructed a C^*-algebra A such that fits into

$$0 \to B \to C \to A \to 0$$

with B, A stable, C not stable.

Rørdam constructed a C^*-algebra A with $M_n(A)$ stable and A not stable.

Theorem (Kucerovsky - Ng)

(i) If B has the CFP, then:

- $0 \to B \to C \to A \to 0$, C stable when B, A are.

(ii) A has the CFP \Rightarrow $D = A \otimes K$ hereditary and full implies $M_n(D)$ stable for some n.

Outline proof of part (ii)

(\Rightarrow) Assume A has the CFP. Let $D = A \otimes K$ be a hereditary subalgebra of $A \otimes K$ and full and such that $M_n(D)$ is stable. We want to show that D is stable.

We have

$$D \text{ full } \Rightarrow D \otimes K = A \otimes K \Rightarrow D \text{ has the CFP.}$$

In $M(D \otimes K)$, take $P = 1 \otimes e_n$, then $D = P(D \otimes K)P$ is full and hereditary in $D \otimes K$.

$M(D \otimes K)$ is properly infinite.

We can embed $Q_n \hookrightarrow M(D \otimes K)$ unitally. If e_i's are the isometries coming from Q_n, take $Q := \sum_i e_i P e_i$.

Let $Q = M_n(P(D \otimes K)P) = M_n(D)$, full, stable.

This implies by Brown's theorem that

$$nP \sim 1 \Rightarrow \text{CFP}$$

It follows $1 \leq nP \leq P \Rightarrow P \sim 1 \Rightarrow P(D \otimes K)P \cong D$.
\((\leq)\) Take \(P\) a full projection \(P\) in \(M(A \otimes K)\)

Then
\[
P \text{ full } \Rightarrow \exists n \ni P^* P = T \Rightarrow M_n(P(A \otimes K)P) \cong A \otimes K
\]

for some \(n\)

\[P(A \otimes K)P\] is stable \(\Rightarrow M(P(A \otimes K)P)\) is properly infinite with unit \(P\)

\(\Rightarrow P\) is properly infinite

The CFP in the real rank zero situation

Give a \(C^*\)-alg. \(A\)

\(\mathcal{C}(A) = \overline{P M_{\infty}(A)}\) where \(P M_{\infty}(A) = \) projections in \(M_{\infty}(A)\)

\(\mathcal{C}(A)\) is an abelian semigroup with zero

\(CP_{\infty}\) equivalence class of \(P\)

\(CP_{\infty} + [q] = \overline{[0, \infty)} = [P + q]\)

\(P \leq q \Leftrightarrow p - p' \leq q\) defines an order on \(\mathcal{C}(A)\) which is algebraic \(CP_{\infty} + CP_{\infty} = [P] + [0] = [P]\)

Ref \(\mathcal{C}(A)\) an abelian semigroup \(V\) is said to be a \(C^*\)-algebra if:

\(a + b = c + d\) in \(V\) then \(\exists (x_{ij})\) such that

\[
\begin{array}{cccc}
 c & d \\
 a & x_{11} & x_{12} \\
 b & x_{21} & x_{22}
\end{array}
\]

\(\begin{array}{c}
 a \\
 b \\
 c \\
 d
\end{array} = \begin{array}{cc}
 x_{11} & x_{12} \\
 x_{21} & x_{22}
\end{array}\)
Theorem (Zhang, Ara–Pardo)
If \(A \) has real rank zero, then \(V(A) \) is a refinement semigroup.

- \(V = \{0, u, x, y, u^2\} \) where \(2u = 0 \) is an example of a Riesz semigroup that is not a refinement semigroup for all \(a, c, d \in V \).

Def. A semigroup \(V \) is Riesz if for all \(a, c, d \in V \), there are \(x_1, x_2 \in V \) such that \(a = x_1 + x_2 \) and \(x_1 \leq c \), \(x_2 \leq d \).

Weak divisibility

Def. \(V \) is locally semiprime (with order given by the addition operation) if \(V \) is a subsemigroup of \(V \).

Example A \(C^* \)-alg., \(p \) is a projection if \([p] \in V(A) \) is an order-unit if \(V \times V \leq V \).

Denote by \(V^* = \{ u \in V \mid u \text{ is an order-unit} \} \)

- \(V^* \) is a subsemigroup of \(V \)

Def. \(V \) is simple if \(V \) is simple and \(\{0\} \).

Example \(V(A) \) is simple if \(A \) is a simple \(C^* \)-alg.

Def. An element \(x \in V \) is weakly divisible if there are \(u, z \in V \) such that \(x = 2u + 3z \).

Say that \(V \) has weak divisibility of order-units when every order-unit is weakly divisible.

Remark: If \(V \) has weak divisibility (WD) of order-units, then given \(u, z \in V^* \), \(u = 2x + 3y \) and take \(u = x + y, w = x + 2y \).

Then \(u = v + w, u \leq w \), and \(v, w \in V^* \).

We will show that if \(A \) has real rank zero and if \(1 \) is properly infinite, then \(V(A) \) has WD of order-units (this applies to \(M(A \otimes K) \) when \(A \) has real rank zero because \(V(M(A \otimes K)) \) has refinement and \(1 \) is properly infinite).
Lemma: \(V \) is refinement with \(W \) d. of order-units. Then,

given \(a, b, c \in V \) such that \(W \leq a, b \)
\((a, b \leq c \) if \(a, b \) are in an order-unit \)

Proof:
Split \(W = u_1 + u_2 \), \(V = v_1 + v_2 \) with \(u_1, v_1 \in V^* \)

\(u_1 \in V^* \Rightarrow v_2 \leq u_1 \) for some \(v_2 \)

Then, \(v_1 + v_2 = u_1 \), for some \(v_1 \)

Refinement such that:

\[
\begin{array}{c|ccccc}
 & u_1 & u_2 & \ldots & u_n & v_1 & v_2 & \ldots & v_m \\
 w & = & w_1 & + \ldots & + w_n & = & v_1 & \leq v_2 & \leq \ldots & \leq v_m \\
 t & = & t_1 & + \ldots & + t_n & & t_1 & > t_2 & > \ldots & > t_m \\
\end{array}
\]

Let \(v_n = W \). Then \(W \leq v_i, u_i \). \(W \) is an order unit because \(v_i \) is

\[W + (v_i) = u_i. \]

\[\Box \]

Def. An ideal \(I \) in \(V \) is a subring such which is order-
hereditary. \(\forall x, y \in I \Rightarrow x \land y \in I \)

Example: A close ideal of \(A \) \(\Rightarrow V(A) \) in an ideal of \(V(A) \)

Def. \(\forall i = N \) where \(x \lor y \Rightarrow x \land y = y + t \) for some \(t \in I \)

Example: \(A \) has real range zero. \(V(A) \lor (I) \Rightarrow V(A) \ni I \)

Def. An element \(x \) is an atom if \(x \neq 0 \) and

\[x = a + b \Rightarrow a = 0 \text{ or } b = 0 \]

If \(V \) has refinement,

\(x \) is an atom \(\Rightarrow \langle x \rangle = \{ 0, x, 2x, 3x, \ldots \} \) is an ideal.
If \(V \) is refinement, then \(u \) is weakly divisible \(\Rightarrow \)

\([u]\) in \(V_I \) for any \(I \) is not an atom

Proposition: If \(V \) contains a properly infinite order unit \(u \)

\((2u \leq u)\) then \(V \) has w.d. of order units

Proof: Take any order-unit \(v \).

\[v \text{ order-unit } \Rightarrow v \leq su \]

\[u \leq sv \] for some \(m \). Then \(2(mv) = mv + mv \leq u + u < u < mv \)

\[\Rightarrow mv \text{ is properly infinite} \]

If \(I \) is any ideal, look at \(V_I \). \([mv]\) is properly infinite

so \([v]\) cannot be an atom. Otherwise \(<[v]\> \cong \mathbb{Z}^+ \)

and contains a properly infinite element. \(\Rightarrow \subseteq \) \(\square \)
Lecture 2

V is a refinement semigroup \(\forall a, b, c, d \in V \) s.t. \(a + b = c + d \)

Then \(\exists (x_i)_{1 \leq i \leq 2} \) s.t.

\[
\begin{align*}
 a &= x_{11} + x_{12} \\
 b &= x_{21} + x_{22} \\
 c &= x_{11} + x_{21} \\
 d &= x_{12} + x_{22}
\end{align*}
\]

\(V^* = \{ u \in V \mid u \text{ is an order unit} \} \)

\(V \) has weak divisibility of order-units \((\forall u \in V^*, u = u \cdot v \text{ with } v \in V^* \) and \(v \geq u \)

Theorem: If \(V \) has refinement and weak divisibility of order-units, then \(V^* \) has refinement.

Outline

Lemma 1 (Goodzik)

If \(\exists \) refinement \(a \mid a_1 \quad a_2 \), \(b \mid b_1 \quad b_2 \in V^+ \)

then \(\exists \) refinement \(c_1 \quad c_2 \)

\[
\begin{align*}
 a &= \frac{a_1}{a_2} \geq \frac{a_1}{a_2} \\
 b &= \frac{b_1}{b_2} \geq \frac{b_1}{b_2}
\end{align*}
\]

Lemma 2: If \(\exists \) refinement \(c \mid d \)

\(a \quad x_{11} \quad x_{12} \quad x_{11}, x_{22} \in V^+ \)

then \(\exists \) refinement \(e \mid f \)

\[
\begin{align*}
 a &= x_{11} \quad x_{12} \quad x_{11}^j \in V^+ \text{ for } 1 \leq j \leq 2
\end{align*}
\]

Proof of the theorem

Suppose \(a + b = c + d \) with \(a, b, c, d \in V^+ \)

Split \(a = x + y \), \(x \geq y \), \(c = u + v \), \(u \geq v \) with \(x, y, u, v \in V^+ \)

by **Lemma 1**

\[
\begin{align*}
 & x \\
 & a + b = c + d \quad x_1 \quad x_2 \quad x_{21} \in V^+
\end{align*}
\]
\[v \leq u + d, \text{ then by Lemma 1 } \]
\[
\begin{array}{c|c|c}
0 & 1 & 0 \\
\hline
1 & 0 & 1 \\
\end{array}
\] with all \(x_{ij} \in V^* \)

By Lemma 2
\[
\begin{array}{c|c|c}
0 & 1 & 2 \\
\hline
1 & 0 & 3 \\
\end{array}
\]

I have that \(b + x = x_{21} + x_{22} \). Find any refinement

\[
\begin{array}{c|c|c}
0 & 1 & 2 \\
\hline
1 & 0 & 3 \\
\end{array}
\]

We have
\[
\begin{array}{c|c|c|c}
0 & 1 & 2 \\
\hline
1 & 0 & 3 \\
\end{array}
\]

Applying Lemma 1
\[
\begin{array}{c|c|c|c|c|c}
0 & 1 & 2 \\
\hline
1 & 0 & 3 \\
\end{array}
\]

After applying Lemma 2, may assume that all \(t_{ij} \)'s are ordered.

We have \(u + d = t_{12} + t_{22} \) \(u, d, t_{12}, t_{22} \in V^* \)

Refine this equality using first part of the proof up to
\[
\begin{array}{c|c|c|c|c|c}
0 & 1 & 2 \\
\hline
1 & 0 & 3 \\
\end{array}
\]

Now:
\[
\begin{array}{c|c|c|c|c|c}
0 & 1 & 2 \\
\hline
1 & 0 & 3 \\
\end{array}
\]

and Lemma 2 \(\implies \) we can get them all
\[
\begin{array}{c|c|c|c|c|c}
0 & 1 & 2 \\
\hline
1 & 0 & 3 \\
\end{array}
\]

Theorem: if \(V \) is a refinement, and if \(u \in V^* \) such that \(uu \) is properly infinite, then \(u = s + t \) with \(s \in V^* \) and \(u, s \), \(t \) properly infinite.
Proof (Sketch) (1) Prove it when \(V \) is simple (\(V = V^* V^0 \)).

(2) \(V \) is properly infinite if \(V \) has weak divisibility for order units.

So by the theorem \(V^* \) is a refinement and simple. Now apply step 1.

Corollary. If \(V \) is a refinement and \(n \geq 1 \) if \(n V \) is such that \(\phi(nV) \) is properly infinite. Then \(\exists t, t_2, \ldots \in V^+ \) such that \(t + t_2 + \cdots + t_k \leq n \).

Proof. By induction.

The CFP for (algebraically ordered) semigroups.

Ref. (i) \(V \) has the strong CFP if \(\forall x, y \in V, m \geq 1 \) and \(x \leq m y \), then \(x \leq y + \cdots + y \) for some \(k \).

(ii) A sequence \(x, x, \ldots \) in \(V \) is called full if \(\forall y \in V, \exists m_n \leq m \) s.t. \(y \leq y_n \).

(c) \(V \) has the CFP if \(\forall x, y, z \in V, m \geq 1 \) and \(x \leq m y, y \leq m z \).

Remark. Strong CFP \(\Rightarrow \) CFP.

If \(V \) is simple, then they are equivalent.

Ref. Give \(x, y \in V \), \(x \leq y \) if \((k+1) x \leq k y \) for \(k \geq 1 \).

We say that \(V \) has \(n \)-comparation if given \(x, y, \ldots \in V \) with \(x \leq y, \forall j \), then \(x \leq y_0 + \cdots + y_k \).

\(n \)-comparation is the same as almost unperforation.
\(n \)-comparison \(\Rightarrow \) \(m \)-comparison \(\forall m \leq n \)

If \(V \) is simple and refinement, then they are equivalent.

\textbf{Example}

Take \(W_n = \langle 0, n+1, n+2 \rangle \leq \mathbb{Z}^+ \). Then \(W_n \) has \(n \)-comparison

\(\text{but not} \ (n-1) \)-comparison.

If \(V \) has \(n \)-comparison \(\Rightarrow \) \(V \) has the strong CFP

\(\Rightarrow \) \(V \) has CFP

\textbf{Proof}

Suppose \(x, x_1, x_2, \ldots, x_\ell, \ldots \) \(m \geq 1 \) and \(x \leq m x_i \ \forall n \)

Take \(z_j = y_j (m+1)^j + \cdots + y_j (m+1)^j) = 0, \ldots, n \)

Then \(m+1 \leq m z \) \(\forall j \)

\(\Rightarrow \) \(x \leq z (m+1)^j + \cdots + \frac{x}{m} \)

\textbf{Theorem}

If \(A \) is separable and has B R Q, then \(A \) has the CFP \(\iff \) \(V(A) \) has the CFP

\textbf{Proof (Outline)}

(\(\Rightarrow \)) Assume \(V(A) \) does not have the CFP

\(V(A \otimes k) \)

Can find \(\mathbb{R} \) \(x, x_\ell \) \(m \geq 1 \), \(\{ x \} \) full, \(x \leq m x_i \ \forall n \)

but \(x \neq x_1, \ldots, x_\ell \ \forall k \)

We have \(x = [x_\ell], \ x = [x] \)

\(\mathbb{R}, \mathbb{P} \) can be taken to be pairwise orthogonal, set

\(\mathbb{E} \mathbb{P}_n = \mathbb{P}, \ \mathbb{E} \mathbb{P}_n = \mathbb{Q} \ \text{in} \ M(A \otimes k) \)

\(\{ x \} \) full \(\Rightarrow \) \(1_{M(A \otimes k)} \leq \mathbb{Q} \)

since \(\mathbb{Q} \) is full, then \(\mathbb{Q} \) is properly infinite and \(\mathbb{P} = \mathbb{Q} \)

\text{where} \(\mathbb{E} \mathbb{P}_n = \mathbb{P} \)

\([x] = [x] \leq m x = m [x] \Rightarrow \mathbb{P} \text{ in full} \Rightarrow \mathbb{P} \text{ in full} \Rightarrow \mathbb{P} \text{ in proper CFP}

\text{full and properly infinite} \Rightarrow \mathbb{Q} \leq P \)

But it is not true because we should have:

\(\frac{x}{m} = \left[\frac{x}{m} \right] + \cdots + \left[\frac{x}{m} \right] = \frac{x}{m} x \)
(⇐) Suppose \(V(A) \) has the CFP and \(P \) is a full projection in \(M(A \otimes K) \). Then \(\text{mp} = 1 \).

As before \(p = I_p = Z_p \), and \(m_p = Z_p \). \([p_1] = m \). \([p_n] \)

Take \(e_n \) such that \(Z e_n = 1 \). Let \(x_n = \sum_{k=1}^{n} [p_k] \). Then \(\sum_{k=1}^{n} x_n \) is a full sequence in \(V(A) \).

\[
\text{mp} = \sum_{i=1}^{n} x_i = [p_{k_1}] + \ldots + [p_{k_{m+1}}] \\
= m \left([p_{k_1}] + \ldots + [p_{k_{m+1}}] \right) \\
\]

\(V(A) \) has CFP \(\Rightarrow x_i \leq \frac{1}{2^1} + \ldots + \frac{1}{2^i} \)

\(x_2 \leq \frac{1}{2^2} + \ldots + \frac{1}{2^2} \)

\(x_4 \leq \frac{1}{2^4} + \ldots + \frac{1}{2^4} \)

This implies \(1 \leq p \).

\(\Rightarrow P \) is properly infinite.

Theorem If \(A \) has RRO, and the CFP, and if \(P \) is a full projection in \(A \) such that \(\text{mp} \) in properly infinite, then \(P \) is properly infinite.

\textbf{Sketch:} \(A \) RRO and CFP \(\Rightarrow V(A) \) is refinement and has the property CFP.

\(u = [p] \) is an order-unit such that \(m u \) is properly infinite.

\(\Rightarrow \) If \(\text{order-unit} \ t_1 \) such that \(m t_1 \) are properly infinite.

\(t_1 + \ldots + t_k \leq u \)

\(u = m t_1 \)

\(\text{CFP} \ u = t_{k+1} + \ldots + t_k \)

\(2u \leq t_1 + \ldots + t_k \text{ SU } \Rightarrow \) \(u \) is properly infinite.
Corollary (Zhang) If A has RRO, the CFP and is simple, then A is either stably finite or purely infinite.

Proof: If all elements in $V(A)$ are finite, then A is stably finite.

If not, $\exists u \in V(A), u \neq 0$ infinite, then A is properly infinite.

If $v \in V(A) \setminus \{0\}$, then $u \leq u v \Rightarrow u v$ is properly infinite.

If u properly infinite, then A is purely infinite. \qed

Question: If $RR(A) = 0$, does A have the CFP?

Theorem: If A has RRO, then $V(A)$ has the strong CFP if and only if all ideals in A have the CFP.

Idea: $V(A)$ is refinement, and $I \mapsto V(I)$ is a lattice isomorphism.

The result follows if:

V refinement: V has the strong CFP if and only if all order ideals have the CFP.