\[\text{Last time} \quad \text{Tucker-Dobr(V+VI)} \]

- \(\Delta(G) = \left\{ N \triangleleft G \mid G/C_N(G) \text{ is amenable} \right\} \)

- \(\Gamma(G) = \left\{ N \triangleleft G \mid N \times G \cap N \text{ amenable} \right\} \)

- Dani's Lemma

Def (173 Kegel-Wehrfritz)

A group \(G \) is said to satisfy **m.c.c.** (minimal condition on centralizers) if \(\{ C_G(B) \mid B \leq G \} \) satisfies D.C.C. (descending chain condition) (i.e., for any \(B \leq G \), \(\exists B_0 \leq B \) finite with \(C_G(B_0) = C_G(B) \))

Prop 13

(*Linear groups satisfy m.c.c.*)

Pf If \(H \leq G \) then \(C_H(B) = C_G(B) \cap H \)

so m.c.c. passes to subgroups.

So suffices to show m.c.c. for \(\text{GL}_n(F) \)

If \(B \leq \text{GL}_n(F) \),

\[C_{\text{GL}_n(F)}(B) = \left\{ x \in \text{M}_n(F) \mid xb = bx \quad \forall x \in B \right\} \]

is exactly the set of solutions to the system of linear equations

\[(xb - bx) = 0, \ b \in B \]

By linear alg / Hilbert basis theorem, \(\exists B_0 \subseteq B \) finite

s.t.

\[C_{\text{GL}_n(F)}(B) = C_{\text{GL}_n(F)}(B_0) \]

Thus \(C_{\text{GL}_n(F)}(B) = C_{\text{GL}_n(F)}(B_0) \) \(\square \)
Remark
BS(m,n) not m.c.c. when |m1|, |m1| > 1 & |m1| + |n1| (so they are not linear)

Lemma
Suppose G is m.c.c. Then

(i) \(AC(G) = I(G) \).
(ii) \(G/C_G(Ac(G)) \) is amenable.
(iii) Every conjugation invariant mean on \(G \) lives on \(AC(G) \).

<pf> We'll show

(iii') Every conj-inv mean \(m \) on \(G \)
\[\exists N \triangleleft G \quad G/C_G(N) \text{ amenable, s.t. } m(N) = 1 \]
(this implies (iii')).

Consider conjugation action \(G \acts G \)
\[\{ GB \mid B \in G \} = \{ C_G(B) \mid B \in G \} \]
satisfies D.C.C.

So by Dani's Lemma, \(G/G_0 \) is amenable,
where \(G_0 = \{ g \in G \mid m(C_G(g)) = 1 \} \)

Let \(N = C_G(G_0) \) be m.c.c. \(\exists F \) finite
with \(N = C_G(F) = \bigcap_{g \in F} C_G(g) \)
by finite additivity \(m(N) = 1 \).
Also \(C_G(N) = G_0 \) so \(G/C_G(N) \) is amenable.
(i) & (ii) By yesterday
\[\exists m \in M(I(G)) \text{ which is } I(G) \times G \text{- inv.} \]

By (iii) \[\exists N \triangleleft G \text{ } G/C_G(N) \text{ amenable } & \text{ } m(N) = 1 \]

Then \[N \leq AC(G) \leq I(G) \]

\[m: \text{ left-invariant under } I(G), \text{ } m(N) = 1 \]

\[\Rightarrow N = AC(G) = I(G) \square \]

Theorem Let \(G \) be m.c.c. Then TFAE

(1) \(G \) is inner-amenable.
(2) \(AC(G) = I(G) \) is infinite.
(3) \(\exists \) short exact sequence

\[1 \to N \to G \to K \to 1 \]

\[K \text{ is amenable, and either } \mathbb{Z}(N) \text{ is infinite or} \]

\[N = LM, \text{ where } L, M \triangleleft G \text{ commuting, } L \cap M \]

\[\text{is finite, } M: \text{ infinite amenable.} \]

\[\langle \text{Pf} \rangle (3) \Rightarrow (2) \Rightarrow (1) \checkmark \]

\[(1) \Rightarrow (2) \text{ if } m \text{ is atomless, conj-inv on } G \]

Then \[m(AC(G)) = 1 \]

\[\Rightarrow AC(G) \text{ is infinite.} \]

(2) \(\Rightarrow \) (3) Let \[N = C_G(AC(G))AC(G) \]

Then \[K = G/N \text{ is amenable.} \]

Case 1: \[C_G(AC(G)) \cap AC(G) \text{ is infinite.} \]

\[= \mathbb{Z}(N) \]
Case 2 \[C_2 \ (A C_2 G_2) \cap \ M \] is finite. M.

\[\square \]

Cost of actions (Levitt)

Let \(G \times (x, \mu) \) be a probability measure preserving (pmp) action. A measurable graph \(G \) on \(X \) is a graphing of undirected no self-loop the action \(G \times (x, \mu) \) if the connected components of \(G \) are precisely the orbits of the action.

The cost of \(G \) is

\[\text{Cost} (G) = \frac{1}{2} \int_x \text{deg}_G (x) \, d\mu(x) \]

\[\text{Cost} (G \times (x, \mu)) = \inf \{ \text{Cost} (G) \mid G \text{ is a graphing of } G \times (x, \mu) \} \]

\(G \) is said to have fixed price if

\[\text{Cost} (G \times (x, \mu)) = \text{Cost} (G \times (y, \nu)) \]

for any two free pmp actions of \(G \).

Fixed price conjecture

Every (countable) group has fixed price.

This is known to hold for many groups.

- Infinite amenable groups \((f.p. = 1) \) (Levitt)
- Finite groups \((f.p. = 1 - \frac{1}{|G|}) \)
- Free groups \(F_n \) \((f.p. = n) \) (Gaboriau '00)
\[\exists (G) \text{ infinite (s.p. = 1)} \]
\[H \times K \text{, infinite amenable group, (s.p. = 1)} \]

Thm (T-D)
(Inner-amenable groups have fixed price = 1)

\[\beta_1^{(s)}(G) \leq \text{Cost}(G) = \inf \left(\text{Cost}(G \cup X) \right) - 1 \]
(Gaboriau)

Open: Is this an equality?

\[\beta_1^{(s)}(\text{inner-amen}) = 0 \]
(T-D)

(Chifan-Sinclair-Udrea)

(Ozawa?)

Def (Popa)
A subgroup \(H \leq G \) is called \(s \)-normal if the set
\[\{ g \in G \mid gHg^{-1} \cap H \text{ is infinite} \} \]
generates \(G \).

\(s \)-normality Lemma (Gaboriau-Furman)
(If \(H \) is \(s \)-normal in \(G \) then

\[\text{Cost}(G \cup (x, \mu)) \leq \text{Cost}(H \cup (x, \mu)) \]

\[\text{finite} \]

Lemma If \(M \) is a normal subgroup of \(G \), then

\[\sup_{G \cup (x, \mu)} \left\{ \text{Cost}(G \cup X) \right\} \leq \sup_{G/H \cup (x, \mu)} \left\{ 1 + \frac{\text{Cost}(G/H \cup X)}{1M} \right\} \]

\[1M (\text{Cost}(G) - 1) \leq \text{Cost}(G/M) - 1 \]
Let G be inner-amenable. Let H be a non-amenable subgroup of G. Then $\exists K \leq G$ with $H \triangleleft G$.

Important Lemma

$G \bowtie X$ amenable G_x amenable $\forall x \in X$

$\Rightarrow G$ amenable.

Improvement

G non-amenable, $G \bowtie X$ amenable

with invariant mean $m \in M(X)$.

$\Rightarrow m(\{x \in X \mid G_x \neq \text{amenable}\}) = 1$

x_0

Assume $m(x_0) < 1$ then $Y := X \setminus x_0$

$G \bowtie Y$ amenable G_y amenable $\forall y \in Y$

$\Rightarrow G$ amenable, contradiction.

(pf) (of Prop) Fix $m^i : G\text{-conj} \text{ inv, atom-less}$

Then $H \bowtie G$ is amenable w/ inv-mean M.

By improvement $\{g \mid C_H(g) \text{ is non-amenable} \}$ has measure 1.

Let $K = \langle H, \{g \in G \mid C_H(g) \text{ is non-amenable} \} \rangle$

Then $H \triangleleft K$ since $gHg^{-1} \cap H \geq C_H(g)$ is infinite for all $g \in G$ s.t. $C_H(g)$ is amenable.

$m(K) = 1 \Rightarrow m(gKg^{-1}) = 1$

$\Rightarrow m(K \cap gKg^{-1}) = 1$

m: atom-less

so $K \cap gKg^{-1}$ is infinite.
Goal now is to find $(C_{H_n})_{n=1}^{\infty}$ of non-amenable subgroups of G with $\text{Sup Cost } (C_{H_n}) \xrightarrow{n \to \infty} 1$.

Since then by g-normality Lemma we get $\text{Sup Cost } (G) \leq 1$.

Prop

Let G be a non-amenable, inner-amenable group.

Then either

1) \exists infinite amenable subgroup $K \leq G$ with $C_g(K)$ non-amenable,

or 2) \exists sequence of finite subgroups $M_n (n \geq 1)$ with $|M_n| \to +\infty$ and $C_g(M_n)$ is non-amenable for all n.

Proof

Atomless\footnote{conj. invariant mean on G}.

Fix atomless mean on G.

By Improvement, (since G is non-amenable)

\[G \overset{\text{coj}}{\underset{G}{\amenable}} \]

\[M : \text{atomless} \]

\[H_1 \]

\[\exists g \in G \setminus \{1\} \text{ with } C_g(g_1) \text{ is non-amenable}. \]

If $\langle g_1 \rangle$ is infinite then (2) holds and we're done.

Otherwise, $\text{m}(\langle g_1 \rangle) = 0$. \footnote{finite set}

So non-amenable of $C_g(g_1) = H_1$ and the improvement, we can find $g_2 \in H_1 \setminus \langle g_1 \rangle$ with $C_{H_1}(g_2)$ non-amenable.

Keep going until we set $|M_n| = \infty$ for $\text{some } n \text{ of } M_1 \supset M_2 \supset M_3 \supset \ldots \quad 1_{M_n} \to \infty$ $C_g(M_1)$ non-amenable.
If \(\mu_n \) is finite, this procedure stops, and we get \((\mu_n)_{n=1}^\infty\) as in (2).

If \(|\mu_n| = \infty \) at some \(n \), \(\mu_n \): amenable subgroup.

Then (1).

Finally if \(\mu_n \) is non-amenable then \(\mu_n \& \mu_n \)

are commuting non-amenable subgroups.

\[
H^{(2)} := H_n, \quad H^{(3)} := \mu_n.
\]

By Improved Lemma

\[
\exists g \mid C_{\mu_n}(g) \text{ is non-amenable} \Rightarrow C_{\mu_n}(g) \text{ is } \delta
\]

has measure 1

Fix some \(g_1 \neq 1 \) in this set, and let \(\mu_1 = \langle g_1 \rangle \)

either something good happens, or \(\forall n \exists \) pairwise commuting

non-amenable subgroups \(H_1^{(n)}, \ldots, H_n^{(n)} \)

Define \(\mu_n \) by taking \(g_1 \in H_1^{(n)} - \{1\} \)

\(g_{n+1} \in H_c^{(n)} - \langle g_1, \ldots, g_c \rangle \)

\(\mu_n = \langle g_1, \ldots, g_n \rangle \)

Then \(|\mu_n| \geq 2^{n-1}\)

and \(H^{(n)} \subseteq C_{\mu_n}(\mu_n) \Rightarrow C_{\mu_n}(\mu_n) \) non-amenable.
Known: \(G \times H \) has some action with cost 1
- And \(G \times H \) has fixed price = 1 whenever \(G \) or \(H \) has an infinite amenable subgroup.

Open Problem
Does \(G \times H \) have fixed price = 1?