The Kadison-Singer Problem in Mathematics and Engineering
Lecture 2: The Paving Conjecture, the R_ϵ-Conjecture, the Bourgain-Tzafriri Conjecture

Master Course on the Kadison-Singer Problem
University of Copenhagen

Pete Casazza

The Frame Research Center
University of Missouri
casazzap@missouri.edu

October 14, 2013
Supported By

The Defense Threat Reduction Agency

NSF-DMS

The National Geospatial Intelligence Agency

The Air Force Office of Scientific Research
The Kadison-Singer Problem went dormant by 1970

In 1979,
The Kadison-Singer Problem went dormant by 1970

In 1979,

Joel Anderson brought it all back to life.
For $T : \ell^r_2 \to \ell^r_2$, $A \subseteq \{1, 2, \ldots, r\}$

we let Q_A denote the orthogonal projection onto $(e_i)_{i \in A}$. So $Q_A T Q_A$ is the $A \times A$ submatrix of T. After a permutation of $\{1, 2, \ldots, r\}$

$$
\begin{bmatrix}
[Q_A T Q_A] & \ldots & .
\vdots & \ddots & \\
\vdots & \ddots & \ddots
\end{bmatrix}
$$
Anderson’s Paving Conjecture

For every $\epsilon > 0$ there exists an $r \in \mathbb{N}$ so that
Paving Conjecture

Anderson’s Paving Conjecture

For every $\epsilon > 0$ there exists an $r \in \mathbb{N}$ so that

for all n and all $T : \ell^n_2 \to \ell^n_2$ whose matrix has zero diagonal

Important: r depends only on ϵ and not on n or T.

(Pete Casazza)
Anderson’s Paving Conjecture

For every $\epsilon > 0$ there exists an $r \in \mathbb{N}$ so that

for all n and all $T : \ell^n_2 \rightarrow \ell^n_2$ whose matrix has zero diagonal

there exists a partition $(A_j)_{j=1}^r$ (called a paving) of $\{1, 2, \ldots, n\}$ so that

\[\| Q A_j^T Q A_j \| \leq \epsilon \| T \|, \]

for all $j = 1, 2, \ldots, r$. \[\text{Important: } r \text{ depends only on } \epsilon \text{ and not on } n \text{ or } T.\]
Anderson’s Paving Conjecture

For every $\epsilon > 0$ there exists an $r \in \mathbb{N}$ so that for all n and all $T : \ell_2^n \to \ell_2^n$ whose matrix has zero diagonal there exists a partition $(A_j)_{j=1}^r$ (called a paving) of $\{1, 2, \ldots, n\}$ so that

$$\|Q_{A_j} T Q_{A_j}\| \leq \epsilon \|T\|,$$

for all $j = 1, 2, \ldots, r$.

Q_{A_j} the orthogonal projection onto span $(e_i)_{i \in A_j}$.
Anderson’s Paving Conjecture

For every \(\epsilon > 0 \) there exists an \(r \in \mathbb{N} \) so that

for all \(n \) and all \(T : \ell_2^n \rightarrow \ell_2^n \) whose matrix has zero diagonal

there exists a partition \((A_j)_{j=1}^r\) (called a paving) of \(\{1, 2, \ldots, n\} \) so that

\[
\|Q_{A_j} T Q_{A_j}\| \leq \epsilon \|T\|, \quad \text{for all } j = 1, 2, \ldots, r.
\]

\(Q_{A_j} \) the orthogonal projection onto span \((e_i)_{i \in A_j}\)

Important: \(r \) depends only on \(\epsilon \) and not on \(n \) or \(T \).
Pictorially

After a permutation we have

\[T = \begin{bmatrix} [T_1] & [T_2] & \cdots & [T_r] \end{bmatrix} \]
After a permutation we have

\[
T = \begin{bmatrix}
[T_1] & [T_2] & \cdots & [T_r]
\end{bmatrix}
\]

\[
T_j = Q_{A_j} T Q_{A_j}
\]
After a permutation we have

\[
T = \begin{bmatrix}
[T_1] \\
[T_2] \\
. \\
. \\
[T_r]
\end{bmatrix}
\]

\[
T_j = Q_{A_j} T Q_{A_j}
\]

\[
\| T_j \| \leq \epsilon \text{ for all } j = 1, 2, \ldots, r
\]
After a permutation we have

\[T = \begin{bmatrix} [T_1] & [T_2] & \cdots & [T_r] \end{bmatrix} \]

\[T_j = Q_{A_j} T Q_{A_j} \]

\[\| T_j \| \leq \epsilon \text{ for all } j = 1, 2, \ldots, r \]

\[r = f(\| T \|, \epsilon). \]
Infinite Paving Conjecture

There are standard methods for passing quantitive finite dimensional results into infinite dimensional results.
Infinite Paving Conjecture

There are standard methods for passing quantitive finite dimensional results into infinite dimensional results. In this case, if we have an infinite matrix T, we pave the primary $n \times n$ submatrices for each n into sets $(A_j^n)_{j=1}^r$.
Infinite Paving Conjecture

There are standard methods for passing quantitative finite dimensional results into infinite dimensional results. In this case, if we have an infinite matrix T, we pave the primary $n \times n$ submatrices for each n into sets $(A^n_j)_{j=1}^r$.

Then note that there is some $1 \leq j \leq r$ so that for infinitely many n, $1 \in A^n_j$.

CONTINUE!
Infinite Paving Conjecture

There are standard methods for passing quantitative finite dimensional results into infinite dimensional results. In this case, if we have an infinite matrix T, we pave the primary $n \times n$ submatrices for each n into sets $(A_j^n)_{j=1}^r$.

Then note that there is some $1 \leq j \leq r$ so that for infinitely many n, $1 \in A_j^n$.

Of these infinitely many n, there is a k and infinitely many n so that $2 \in A_k^n$.

Infinite Paving Conjecture

There are standard methods for passing quantitative finite dimensional results into infinite dimensional results. In this case, if we have an infinite matrix T, we pave the primary $n \times n$ submatrices for each n into sets $(A^n_j)_{j=1}^r$.

Then note that there is some $1 \leq j \leq r$ so that for infinitely many n, $1 \in A^n_j$.

Of these infinitely many n, there is a k and infinitely many n so that $2 \in A^n_k$.

CONTINUE!
Infinite Paving

Infinite Paving Conjecture

Given $\epsilon > 0$ and a bounded operator $T : \ell_2 \to \ell_2$ whose matrix has zero diagonal, there is an $r \in \mathbb{N}$ and a partition $(A_j)_{j=1}^r$ of \mathbb{N} and projections Q_{A_j} so that

$$\|Q_{A_j} T Q_{A_j}\| \leq \epsilon.$$
The Case of Non-Zero Diagonals

Definition

If a matrix T has non-zero diagonal, paving T means to pave it down to the diagonal.

\[\|QA_jTQ A_j\| \leq (1 + \epsilon) \sup_{i \in I} |T_{ii}|. \]
The Case of Non-Zero Diagonals

Definition

If a matrix T has non-zero diagonal, paving T means to pave it down to the diagonal. I.e.

$$\| Q_A T Q_A \| \leq (1 + \epsilon) \sup_{i \in I} |T_{ii}|.$$
Paving Operators

To prove the Paving Conjecture it suffices to prove it for any of the following classes of operators:

1. Operators whose matrices have positive coefficients (Halpern, Kaftal, Weiss).

(Pete Casazza)
Frame Research Center
October 14, 2013 10 / 27
Paving Operators

To prove the Paving Conjecture it suffices to prove it for any of the following classes of operators:

1. Operators whose matrices have positive coefficients (Halpern, Kaftal, Weiss).
2. Self-adjoint Operators
Paving Operators

To prove the Paving Conjecture it suffices to prove it for any of the following classes of operators:

1. Operators whose matrices have positive coefficients (Halpern, Kaftal, Weiss).
2. Self-adjoint Operators
3. Unitary Operators
Paving Operators

To prove the Paving Conjecture it suffices to prove it for any of the following classes of operators:

1. Operators whose matrices have positive coefficients (Halpern, Kaftal, Weiss).
2. Self-adjoint Operators
3. Unitary Operators
4. Positive Operators
Paving Operators

To prove the Paving Conjecture it suffices to prove it for any of the following classes of operators:

1. Operators whose matrices have positive coefficients (Halpern, Kaftal, Weiss).
2. Self-adjoint Operators
3. Unitary Operators
4. Positive Operators
5. Invertible Operators
Paving Operators

To prove the Paving Conjecture it suffices to prove it for any of the following classes of operators:

1. Operators whose matrices have positive coefficients (Halpern, Kaftal, Weiss).
2. Self-adjoint Operators
3. Unitary Operators
4. Positive Operators
5. Invertible Operators
6. Orthogonal Projections
7. Orthogonal Projections with small diagonal paved to $1 - \epsilon$ (Weaver)
8. Orthogonal Projections on ℓ^2_n with constant diagonal $\frac{1}{2}$ (C/Edidin/Kalra/Paulsen)
9. Gram Matrices
10. Lower Triangular matrices (Paulsen/Ragupathi)
Paving Operators

To prove the Paving Conjecture it suffices to prove it for any of the following classes of operators:

1. Operators whose matrices have positive coefficients (Halpern, Kaftal, Weiss).
2. Self-adjoint Operators
3. Unitary Operators
4. Positive Operators
5. Invertible Operators
6. Orthogonal Projections
7. Orthogonal Projections with small diagonal paved to $1 - \epsilon$ (Weaver)
Paving Operators

To prove the Paving Conjecture it suffices to prove it for any of the following classes of operators:

1. Operators whose matrices have positive coefficients (Halpern, Kaftal, Weiss).
2. Self-adjoint Operators
3. Unitary Operators
4. Positive Operators
5. Invertible Operators
6. Orthogonal Projections
7. Orthogonal Projections with small diagonal paved to $1 - \epsilon$ (Weaver)
8. Orthogonal Projections on ℓ_2^{2n} with constant diagonal $\frac{1}{2}$ (C/Edidin/Kalra/Paulsen)
Paving Operators

To prove the Paving Conjecture it suffices to prove it for any of the following classes of operators:

1. Operators whose matrices have positive coefficients (Halpern, Kaftal, Weiss).
2. Self-adjoint Operators
3. Unitary Operators
4. Positive Operators
5. Invertible Operators
6. Orthogonal Projections
7. Orthogonal Projections with small diagonal paved to $1 - \epsilon$ (Weaver)
8. Orthogonal Projections on ℓ^2_n with constant diagonal $\frac{1}{2}$ (C/Edidin/Kalra/Paulsen)
9. Gram Matrices
Paving Operators

To prove the Paving Conjecture it suffices to prove it for any of the following classes of operators:

1. Operators whose matrices have positive coefficients (Halpern, Kaftal, Weiss).
2. Self-adjoint Operators
3. Unitary Operators
4. Positive Operators
5. Invertible Operators
6. Orthogonal Projections
7. Orthogonal Projections with small diagonal paved to $1 - \epsilon$ (Weaver)
8. Orthogonal Projections on ℓ_2^{2n} with constant diagonal $\frac{1}{2}$ (C/Edidin/Kalra/Paulsen)
9. Gram Matrices
10. Lower Triangular matrices (Paulsen/Ragupathi)
Laurent Operators

If $\phi \in L^\infty[0, 1]$, let

$$T_\phi f = \phi \cdot f \quad \text{for all } f \in L^2[0, 1].$$
Laurent Operators

If $\phi \in L^\infty[0, 1]$, let

$$T_{\phi}f = \phi \cdot f \quad \text{for all } f \in L^2[0, 1].$$

Much work was done in 1980’s to solve PC for Laurent Operators by:

Bourgain/Tzafriri

Halpern/Kaftal/Weiss
Laurent Operators

If $\phi \in L^\infty[0,1]$, let

$$T_\phi f = \phi \cdot f \quad \text{for all } f \in L^2[0,1].$$

Much work was done in 1980's to solve PC for Laurent Operators by:

Bourgain/Tzafriri

Halpern/Kaftal/Weiss

We will look at this in detail later.
Riesable verses Pavable

Definition

For \(r \in \mathbb{N} \) and \(0 < \delta \), an operator \(T \) on \(\mathbb{H}_n \) with \(\| T \| = 1 \) is \((\delta, r)\)-Pavable if

\[
\| Q_{A_j} T Q_{A_j} \| \leq \delta \sum_{i \in A_j} |a_i|^2.
\]

Definition

Let \(P \) be a projection on \(\mathbb{H}_n \) with orthonormal basis \((e_i)_{i=1}^n \).

We say that \((P e_i)\) is \((\delta, r)\)-Riesable if

\[
\left\| \sum_{i \in A_j} a_i P e_i \right\|_2 \geq \delta \sum_{i \in A_j} |a_i|^2.
\]
Riesable verses Pavalable

Definition

For $r \in \mathbb{N}$ and $0 < \delta$, an operator T on \mathbb{H}_n with $\|T\| = 1$ is (δ, r)-Pavable if there is a partition $(A_j)_{j=1}^r$ of $\{1, 2, \ldots, n\}$ so that
Riesable verses Pavalable

Definition

For \(r \in \mathbb{N} \) and \(0 < \delta \), an operator \(T \) on \(\mathbb{H}_n \) with \(\| T \| = 1 \) is \((\delta, r)\)-Pavable if there is a partition \((A_j)_{j=1}^r\) of \(\{1, 2, \ldots, n\} \) so that

\[
\| Q_{A_j} T Q_{A_j} \| \leq \delta \sum_{i \in A_j} |a_i|^2.
\]
Riesable verses Pavaible

Definition

For \(r \in \mathbb{N} \) and \(0 < \delta \), an operator \(T \) on \(\mathbb{H}_n \) with \(\| T \| = 1 \) is \((\delta, r)\)-Pavable if there is a partition \((A_j)_{j=1}^r\) of \(\{1, 2, \ldots, n\} \) so that

\[
\| Q_{A_j} T Q_{A_j} \| \leq \delta \sum_{i \in A_j} |a_i|^2.
\]

Definition

Let \(P \) be a projection on \(\mathbb{H}_n \) with orthonormal basis \((e_i)_{i=1}^n\).
Riesable verses Pavable

Definition

For $r \in \mathbb{N}$ and $0 < \delta$, an operator T on \mathbb{H}_n with $\|T\| = 1$ is (δ, r)-Pavable if there is a partition $(A_j)_{j=1}^r$ of $\{1, 2, \ldots, n\}$ so that

$$\|Q_{A_j}TQ_{A_j}\| \leq \delta \sum_{i \in A_j} |a_i|^2.$$

Definition

Let P be a projection on \mathbb{H}_n with orthonormal basis $(e_i)_{i=1}^n$. We say that (Pe_i) is (δ, r)-Riesable if
Riesable verses Pavable

Definition

For \(r \in \mathbb{N} \) and \(0 < \delta \), an operator \(T \) on \(\mathbb{H}_n \) with \(\| T \| = 1 \) is \((\delta, r)\)-Pavable if there is a partition \((A_j)_{j=1}^r\) of \(\{1, 2, \ldots, n\} \) so that

\[
\| Q_{A_j} T Q_{A_j} \| \leq \delta \sum_{i \in A_j} |a_i|^2.
\]

Definition

Let \(P \) be a projection on \(\mathbb{H}_n \) with orthonormal basis \((e_i)_{i=1}^n\). We say that \((Pe_i)\) is \((\delta, r)\)-Riesable if there is a partition \((A_j)_{j=1}^r\) of \(\{1, 2, \ldots, n\} \)
Riesable versus Pavable

Definition

For $r \in \mathbb{N}$ and $0 < \delta$, an operator T on \mathbb{H}_n with $\|T\| = 1$ is (δ, r)-Pavable if there is a partition $(A_j)_{j=1}^r$ of $\{1, 2, \ldots, n\}$ so that

$$\|Q_{A_j} T Q_{A_j}\| \leq \delta \sum_{i \in A_j} |a_i|^2.$$

Definition

Let P be a projection on \mathbb{H}_n with orthonormal basis $(e_i)_{i=1}^n$. We say that (Pe_i) is (δ, r)-Riesable if there is a partition $(A_j)_{j=1}^r$ of $\{1, 2, \ldots, n\}$ so that for all $1 \leq j \leq r$, $(a_i)_{i \in A_j}$ satisfies
Riesable versus Pavaible

Definition

For \(r \in \mathbb{N} \) and \(0 < \delta \), an operator \(T \) on \(\mathbb{H}_n \) with \(\| T \| = 1 \) is \((\delta, r)\)-Pavable if there is a partition \((A_j)_{j=1}^r\) of \(\{1, 2, \ldots, n\} \) so that

\[
\| Q_{A_j} T Q_{A_j} \| \leq \delta \sum_{i \in A_j} |a_i|^2.
\]

Definition

Let \(P \) be a projection on \(\mathbb{H}_n \) with orthonormal basis \((e_i)_{i=1}^n\). We say that \((P e_i)\) is \((\delta, r)\)-Riesable if there is a partition \((A_j)_{j=1}^r\) of \(\{1, 2, \ldots, n\} \) so that for all \(1 \leq j \leq r \), \((a_i)_{i \in A_j}\) satisfies

\[
\| \sum_{i \in A_j} a_i P e_i \|^2 \geq \delta \sum_{i \in A_j} |a_i|^2.
\]
Let \((e_i)_{i=1}^n\) be an orthonormal basis for \(\mathbb{H}_n\).

[Observation]
Relationship

[Observation]

Let \((e_i)_{i=1}^n\) be an orthonormal basis for \(H_n\). Let \(P\) be an orthogonal projection on \(H_n\), let \(J \subset \{1, 2, \ldots, n\}\) and let

\[
\phi = \sum_{i \in J} a_i e_i
\]

with \(\|\phi\| = 1\).

Then

\[
\|\sum_{i \in J} a_i Pe_i\|_2 \geq \delta > 0 \iff \|(I - P)\phi\|_2 \leq 1 - \delta.
\]
Let \((e_i)_{i=1}^n\) be an orthonormal basis for \(\mathbb{H}_n\). Let \(P\) be an orthogonal projection on \(\mathbb{H}_n\), let \(J \subset \{1, 2, \ldots, n\}\) and let

\[\phi = \sum_{i \in J} a_i e_i, \quad \text{with} \quad \|\phi\| = 1.\]
Let \((e_i)_{i=1}^n\) be an orthonormal basis for \(\mathbb{H}_n\). Let \(P\) be an orthogonal projection on \(\mathbb{H}_n\), let \(J \subset \{1, 2, \ldots, n\}\) and let

\[
\phi = \sum_{i \in J} a_i e_i, \quad \text{with} \quad \|\phi\| = 1.
\]

Then

\[
\left\| \sum_{i \in J} a_i P e_i \right\|^2 \geq \delta > 0
\]
Let \((e_i)_{i=1}^n\) be an orthonormal basis for \(\mathbb{H}_n\). Let \(P\) be an orthogonal projection on \(\mathbb{H}_n\), let \(J \subset \{1, 2, \ldots, n\}\) and let\[
\phi = \sum_{i \in J} a_i e_i, \text{ with } \|\phi\| = 1.
\]
Then\[
\| \sum_{i \in J} a_i Pe_i \|^2 \geq \delta > 0 \iff \|(I - P)\phi\|^2 \leq 1 - \delta.
\]
As a Consequence

Theorem

Let \((e_i)_{i=1}^n \) be an orthonormal basis for \(\mathbb{H}_n \). Then
As a Consequence

Theorem

Let \((e_i)_{i=1}^n\) be an orthonormal basis for \(\mathbb{H}_n\). Then \((Pe_i)_{i=1}^n\) is \((\delta, r)\)-Riesable.
As a Consequence

Theorem

Let \((e_i)_{i=1}^n\) be an orthonormal basis for \(\mathbb{H}_n\). Then \((Pe_i)_{i=1}^n\) is \((\delta, r)\)-Riesable

\[\iff \]

\(I - P\) is \((\delta, r)\)-pavable.
The Kadison-Singer Problem went dormant again by 1990
The Kadison-Singer Problem went dormant again by 1990

Gary Weiss reviews the work of Casazza in 2007:
The Kadison-Singer Problem went dormant again by 1990

Gary Weiss reviews the work of Casazza in 2007:

“Casazza has opened the coffin”
KS in Hilbert Space Theory

Definition

\{ \phi_i \}_{i \in I} \text{ is a Riesz Basic Sequence in } H \text{ if there exist Riesz basis bounds } A, B > 0 \text{ so that for all scalars } (a_i)_{i \in I}

\[A \sum_{i \in I} |a_i|^2 \leq \left\| \sum_{i \in I} a_i \phi_i \right\|^2 \leq B \sum_{i \in I} |a_i|^2 \]

If \[a = 1 - \epsilon \], \[B = 1 + \epsilon \]

This is an \(\epsilon\)-Riesz Basic Sequence

Remark: \((\phi_i)_{i=1}^\infty \) is a Riesz basic sequence if and only if the operator \(T: \ell_2 \to \ell_2 \) given by \(T e_i = \phi_i\) is an invertible operator (on its range) where \((e_i)\) is the unit vector basis of \(\ell_2\).

(Pete Casazza)
Frame Research Center
October 14, 2013 16 / 27
Definition

\(\{ \phi_i \}_{i \in I} \) is a Riesz Basic Sequence in \(H \) if there exist Riesz basis bounds \(A, B > 0 \) so that for all scalars \((a_i)_{i \in I} \)

\[
A \sum_{i \in I} |a_i|^2 \leq \left\| \sum_{i \in I} a_i \phi_i \right\|^2 \leq B \sum_{i \in I} |a_i|^2
\]

If \(a = 1 - \epsilon, \ B = 1 + \epsilon \) This is an \(\epsilon \)-Riesz Basic Sequence
Definition

\[\{ \phi_i \}_{i \in I} \text{ is a Riesz Basic Sequence in } H \text{ if there exist Riesz basis bounds } A, B > 0 \text{ so that for all scalars } (a_i)_{i \in I} \]

\[
A \sum_{i \in I} |a_i|^2 \leq \left\| \sum_{i \in I} a_i \phi_i \right\|^2 \leq B \sum_{i \in I} |a_i|^2
\]

If \(a = 1 - \epsilon, \ B = 1 + \epsilon \) This is an \(\epsilon \)-Riesz Basic Sequence

Remark:

\((\phi_i)_{i=1}^{\infty}\) is a Riesz basic sequence if and only if the operator \(T : \ell_2 \to \ell_2 \) given by \(Te_i = \phi_i \) is an invertible operator (on its range) where \((e_i)\) is the unit vector basis of \(\ell_2 \).
\(R_\varepsilon \)-Conjecture

For every \(\varepsilon > 0 \), every unit norm Riesz basic sequence is a finite union of \(\varepsilon \)-Riesz Basic Sequences.
Finite-Dimensional R_{ϵ}-Conjecture

For every $\epsilon > 0$ and every invertible $T \in B(\ell^n_2)$ with $\|Te_i\| = 1$ for $i = 1, 2, \ldots, n$, we have

$$(1 - \epsilon) \sum_{i \in A_j} |a_i|^2 \leq \|\sum_{i \in A_j} a_i Te_i\|_2 \leq (1 + \epsilon) \sum_{i \in A_j} |a_i|^2.$$
Finite-Dimensional R_ε-Conjecture

For every $\varepsilon > 0$ and every invertible $T \in B(\ell_2^n)$ with $\|Te_i\| = 1$ for $i = 1, 2, \ldots, n$,

there is an $r = r(\varepsilon, \|T\|, \|T^{-1}\|) \in \mathbb{N}$ and a partition $(A_j)_{j=1}^r$ of $\{1, 2, \ldots, n\}$ so that
Finite-Dimensional R_{ϵ}-Conjecture

For every $\epsilon > 0$ and every invertible $T \in B(\ell^n_2)$ with $\|Te_i\| = 1$ for $i = 1, 2, \ldots, n$, there is an $r = r(\epsilon, \|T\|, \|T^{-1}\|) \in \mathbb{N}$ and a partition $(A_j)_{j=1}^r$ of $\{1, 2, \ldots, n\}$ so that for all $j = 1, 2, \ldots, r$ and all scalars $(a_i)_{i \in A_j}$ we have
Finite-Dimensional R_ϵ-Conjecture

For every $\epsilon > 0$ and every invertible $T \in B(\ell^n_2)$ with $\|Te_i\| = 1$ for $i = 1, 2, \ldots, n$, there is an $r = r(\epsilon, \|T\|, \|T^{-1}\|) \in \mathbb{N}$ and a partition $(A_j)_{j=1}^r$ of \{1, 2, \ldots, n\} so that for all $j = 1, 2, \ldots, r$ and all scalars $(a_i)_{i \in A_j}$ we have

$$(1 - \epsilon) \sum_{i \in A_j} |a_i|^2 \leq \left\| \sum_{i \in A_j} a_i Te_i \right\|^2 \leq (1 + \epsilon) \sum_{i \in A_j} |a_i|^2.$$
Isomorphisms

Note: This form of KS which is not independent of switching to an equivalent norm on KS.
Isomorphisms

Note: This form of KS which is not independent of switching to an equivalent norm on KS.

Example:
Define for

\[
 f = \sum_{i=1}^{\infty} a_i e_i,
\]
Isomorphisms

Note: This form of KS which is not independent of switching to an equivalent norm on KS.

Example:
Define for

\[f = \sum_{i=1}^{\infty} a_i e_i, \]

\[|||f||| = \max \left\{ \|f\|_2 + \sup_{1 \leq i} |a_i| \right\}. \]
Theorem

The Paving Conjecture implies the R_ϵ-Conjecture.
Theorem

The Paving Conjecture implies the R_ϵ-Conjecture.

Proof: Given $\epsilon > 0$ and a unit norm Riesz basic sequence $(Te_i)_{i=1}^\infty$ with $\|Te_i\| = 1$, let $S = T^* T$.
Theorem

The Paving Conjecture implies the R_ε-Conjecture.

Proof: Given $\varepsilon > 0$ and a unit norm Riesz basic sequence $(T e_i)_{i=1}^\infty$ with $\|T e_i\| = 1$, let $S = T^* T$. Note that the diagonal of S is all ones.
Paving and the R_ϵ-Conjecture

Theorem

The Paving Conjecture implies the R_ϵ-Conjecture.

Proof: Given $\epsilon > 0$ and a unit norm Riesz basic sequence $(Te_i)_{i=1}^\infty$ with $\|Te_i\| = 1$, let $S = T^* T$. Note that the diagonal of S is all ones.

By the Paving Conjecture (infinite form) there is an $r \in \mathbb{N}$ and a partition $(A_j)_{j=1}^r$ of \mathbb{N} so that

$$\|Q_{A_j}(I - S)Q_{A_j}\| \leq \delta\|I - S\|,$$

where $\delta = \epsilon/(\|S\| + 1)$.
Proof Continued

If $\phi = \sum_{i=1}^{\infty} a_i T e_i$,

(Pete Casazza)
Frame Research Center
October 14, 2013
Proof Continued

If \(\phi = \sum_{i=1}^{\infty} a_i T e_i, \)

\[
\left\| \sum_{i \in A_j} a_i T e_i \right\|^2 = \| T Q_{A_j} \|^2
\]
Proof Continued

If \(\phi = \sum_{i=1}^{\infty} a_i Te_i \),

\[
\left\| \sum_{i \in A_j} a_i T e_i \right\|^2 = \| TQ_{A_j} \|^2
\]

= \langle TQ_{A_j} \phi, TQ_{A_j} \phi \rangle

\geq \| Q_{A_j} \phi \|^2 - \delta \| I - S \| \| Q_{A_j} \phi \|^2

\geq (1 - \epsilon) \| Q_{A_j} \phi \|^2

= (1 - \epsilon) \sum_{i \in A_j} |a_i|^2.
If $\phi = \sum_{i=1}^{\infty} a_i T e_i$,

$$\left\| \sum_{i \in A_j} a_i T e_i \right\|^2 = \| T Q_{A_j} \|^2$$

$$= \langle T Q_{A_j} \phi, T Q_{A_j} \phi \rangle$$

$$= \langle T^* T Q_{A_j} \phi, Q_{A_j} \phi \rangle$$

$$\geq \| Q_{A_j} \phi \|^2 - \delta \| I - S \| \| Q_{A_j} \phi \|^2$$

$$\geq (1 - \epsilon) \| Q_{A_j} \phi \|^2.$$
If $\phi = \sum_{i=1}^{\infty} a_i T e_i$,

$$\left\| \sum_{i \in A_j} a_i T e_i \right\|^2 = \| T Q A_j \|^2$$

$$= \langle T Q A_j \phi, T Q A_j \phi \rangle$$

$$= \langle T^* T Q A_j \phi, Q A_j \phi \rangle$$

$$= \langle Q A_j \phi, Q A_j \phi \rangle - \langle Q A_j (I - S) \phi, Q A_j \phi \rangle$$
If $\phi = \sum_{i=1}^{\infty} a_i T e_i$,

$$\left\| \sum_{i \in A_j} a_i T e_i \right\|^2 = \| T Q A_j \|^2$$

$$= \langle T Q A_j \phi, T Q A_j \phi \rangle$$

$$= \langle T^* T Q A_j \phi, Q A_j \phi \rangle$$

$$= \langle Q A_j \phi, Q A_j \phi \rangle - \langle Q A_j (I - S) \phi, Q A_j \phi \rangle$$

$$\geq \| Q A_j \phi \|^2 - \delta \| I - S \| \| Q A_j \phi \|^2$$
Proof Continued

If \(\phi = \sum_{i=1}^{\infty} a_i T e_i \),

\[
\left\| \sum_{i \in A_j} a_i T e_i \right\|^2 = \| T Q A_j \|^2
\]

\[
= \langle T Q A_j \phi, T Q A_j \phi \rangle
\]

\[
= \langle T^* T Q A_j \phi, Q A_j \phi \rangle
\]

\[
= \langle Q A_j \phi, Q A_j \phi \rangle - \langle Q A_j (I - S) \phi, Q A_j \phi \rangle
\]

\[
\geq \| Q A_j \phi \|^2 - \delta \| I - S \| \| Q A_j \phi \|^2
\]

\[
\geq (1 - \epsilon) \| Q A_j \phi \|^2 = (1 - \epsilon) \sum_{i \in A_j} |a_i|^2.
\]
Restricted Invertibility Theorem

Theorem (Bourgain-Tzafriri Restricted Invertibility Theorem - Spielman and Srivastave form)

For any $0 < \epsilon < 1$ and any natural number n, given an orthonormal basis $\{e_i\}_{i=1}^n$ for \mathbb{H}_n
Restricted Invertibility Theorem

Theorem (Bourgain-Tzafriri Restricted Invertibility Theorem - Spielman and Srivastave form)

For any $0 < \epsilon < 1$ and any natural number n, given an orthonormal basis \(\{e_i\}_{i=1}^n \) for \(\mathbb{H}_n \)
and a bounded linear operator \(L : \mathbb{H}_n \rightarrow \mathbb{H}_n \) with \(\|Le_i\| = 1 \), for all \(i = 1, 2, \ldots, n \),
For any $0 < \epsilon < 1$ and any natural number n, given an orthonormal basis \(\{e_i\}_{i=1}^{n} \) for \(\mathbb{H}_n \)

and a bounded linear operator \(L : \mathbb{H}_n \rightarrow \mathbb{H}_n \) with \(\|L e_i\| = 1 \), for all \(i = 1, 2, \ldots, n \),

there is a subset \(I \subset \{ 1, 2, \ldots, n \} \) with

\[
|I| \geq \epsilon^2 \frac{n}{\|L\|^2},
\]
Restricted Invertibility Theorem

Theorem (Bourgain-Tzafriri Restricted Invertibility Theorem - Spielman and Srivastave form)

For any $0 < \epsilon < 1$ and any natural number n, given an orthonormal basis $\{e_i\}_{i=1}^n$ for \mathbb{H}_n

and a bounded linear operator $L : \mathbb{H}_n \to \mathbb{H}_n$ with $\|Le_i\| = 1$, for all $i = 1, 2, \ldots, n$,

there is a subset $I \subset \{1, 2, \ldots, n\}$ with

$$|I| \geq \epsilon^2 \frac{n}{\|L\|^2},$$

so that for all scalars $\{a_i\}_{i \in I}$ we have

$$(1 - \epsilon)^2 \sum_{i \in I} |a_i|^2 \leq \left\| \sum_{i \in I} a_i Le_i \right\|^2.$$
The Size of Our Subset: $\frac{n}{\|L\|^2}$

Suppose $Le_i = e_1$ for all $i = 1, 2, \ldots, n$.
The Size of Our Subset: \(\frac{n}{\|L\|^2} \)

Suppose \(Le_i = e_1 \) for all \(i = 1, 2, \ldots, n \).

Then \(\|L\|^2 = n \) and we can only pick one linearly independent vector \(Le_1 \).
The Size of Our Subset: $\frac{n}{\|L\|^2}$

Suppose $Le_i = e_1$ for all $i = 1, 2, \ldots, n$.

Then $\|L\|^2 = n$ and we can only pick one linearly independent vector Le_1.

Suppose $Le_{2i} = Le_{2i+1} = e_i$.
The Size of Our Subset: $\frac{n}{\|L\|^2}$

Suppose $Le_i = e_1$ for all $i = 1, 2, \ldots, n$.

Then $\|L\|^2 = n$ and we can only pick one linearly independent vector Le_1.

Suppose $Le_{2i} = Le_{2i+1} = e_i$.

Then $\|L\|^2 = 2$ and we can only pick

$$\frac{n}{\|L\|^2} = \frac{n}{2}$$

vectors.
There exists a universal constant $A > 0$ so that

$$\|Te_i\| = 1 \text{ and } \|T\| \leq B,$$

there exists a partition $(A_j)_{j=1}^r$ of $\{1, 2, \ldots, n\}$ so that for all j and all scalars $(a_i)_{i \in A_j}$

$$\|\sum_{i \in A_j} a_i Te_i\|_2 \geq A \sum_{i \in A_j} |a_i|^2.$$
KS in Banach Space Theory

(strong) Bourgain-Tzafriri Conjecture

There exists a universal constant $A > 0$ so that for every $0 < B$ there is a natural number $r = r(B)$.
KS in Banach Space Theory

(Strong) Bourgain-Tzafriri Conjecture

There exists a universal constant $A > 0$ so that

for every $0 < B$ there is a natural number $r = r(B)$

so that for every natural number \(n \) and every operator $T : \ell^n_2 \to \ell^n_2$ with $\|Te_i\| = 1$ and $\|T\| \leq B$, \($\|\sum_{i} a_i Te_i\|_2 \geq A \sum_{i} |a_i|^2$ \)
KS in Banach Space Theory

(strong) Bourgain-Tzafriri Conjecture

There exists a universal constant $A > 0$ so that

for every $0 < B$ there is a natural number $r = r(B)$

so that for every natural number "n" and every operator $T : \ell^n \to \ell^n$ with $\|Te_i\| = 1$ and $\|T\| \leq B$,

there exists a partition $(A_j)_{j=1}^r$ of $\{1, 2, \ldots, n\}$ so that for all j and all scalars $(a_i)_{i \in A_j}$

$$\left\| \sum_{i \in A_j} a_i Te_i \right\|^2 \geq A \sum_{i \in A_j} |a_i|^2$$
(strong) Bourgain-Tzafriri Conjecture

There exists a universal constant $A > 0$ so that for every $0 < B$ there is a natural number $r = r(B)$ so that for every natural number "n" and every operator $T : \ell^n_2 \to \ell^n_2$ with $\|Te_i\| = 1$ and $\|T\| \leq B$,

there exists a partition $(A_j)_{j=1}^r$ of $\{1, 2, \ldots, n\}$ so that for all j and all scalars $(a_i)_{i \in A_j}$

$$\left\| \sum_{i \in A_j} a_i Te_i \right\|^2 \geq A \sum_{i \in A_j} |a_i|^2$$

(weak) Bourgain-Tzafriri Conjecture

$A = f(B)$
The R_ϵ-Conjecture implies the Bourgain-Tzafriri Conjecture.

Proof: If $\|T e_i\| = 1$ for all $i = 1, 2, \ldots$, in $\ell_2 \oplus \ell_2$ let
$$\phi_i = (\sqrt{1 - \epsilon^2} T e_i, \epsilon e_i).$$
The R_ϵ-Conjecture implies the Bourgain-Tzafriri Conjecture.

Proof: If $\|T e_i\| = 1$ for all $i = 1, 2, \ldots$, in $\ell_2 \oplus \ell_2$ let
\[\phi_i = (\sqrt{1 - \epsilon^2} T e_i, \epsilon e_i). \]
Then $\|\phi_i\| = 1$ and (ϕ_i) is a Riesz basic sequence.
The R_ϵ-Conjecture implies the Bourgain-Tzafriri Conjecture.

Proof: If $\|Te_i\| = 1$ for all $i = 1, 2, \ldots$, in $\ell_2 \oplus \ell_2$ let
$\phi_i = (\sqrt{1 - \epsilon^2} Te_i, \epsilon e_i)$.

Then $\|\phi_i\| = 1$ and (ϕ_i) is a Riesz basic sequence.

So we can partition \mathbb{N} into $(A_j)_{j=1}^r$ so that for all $j = 1, 2, \ldots, r$ and all $(a_i)_{i \in A_j} \in \ell_2$ we have
Proof Continued

\[(1 - \epsilon^2) \sum_{i \in A_j} |a_i|^2 \leq \| \sum_{i \in A_j} a_i \phi_i \|^2 \]
Proof Continued

\[
(1 - \epsilon^2) \sum_{i \in A_j} |a_i|^2 \leq \| \sum_{i \in A_j} a_i \phi_i \|^2 \\
= (1 - \epsilon^2) \| \sum_{i \in A_j} a_i T e_i \|^2 + \epsilon^2 \sum_{i \in A_j} |a_i|^2
\]
Proof Continued

\[(1 - \epsilon^2) \sum_{i \in A_j} |a_i|^2 \leq \| \sum_{i \in A_j} a_i \phi_i \|^2 \]

\[= (1 - \epsilon^2) \| \sum_{i \in A_j} a_i T e_i \|^2 + \epsilon^2 \sum_{i \in A_j} |a_i|^2 \]

Hence,

\[\frac{1 - 2\epsilon^2}{1 - \epsilon^2} \sum_{i \in A_j} |a_i|^2 \leq \| \sum_{i \in A_j} a_i T e_i \|^2.\]
Our Tour of the Kadison-Singer Problem

Marcus/Spielman/Srivastava ⇒ Casazza/Tremain Conjecture and Weaver Conjecture KS_r
⇒ Weaver Conjecture
⇒ Paving Conjecture
⇒ R_ϵ-Conjecture
⇒ Bourgain-Tzafriri Conjecture
⇒ Feichtinger Conjecture
⇒ Sundberg Problem

Finally:

Bourgain-Tzafriri Conjecture ⇒ Weaver Conjecture KS_r
⇒ Paving Conjecture
⇔ The Kadison-Singer Problem