
The Kadison-Singer Problem in Mathematics and
Engineering

Lecture 2: The Paving Conjecture, the Rε-Conjecture,
the Bourgain-Tzafriri Conjecture

Master Course on the Kadison-Singer Problem
University of Copenhagen

Pete Casazza

The Frame Research Center
University of Missouri
casazzap@missouri.edu

October 14, 2013



Supported By

The Defense Threat Reduction Agency

NSF-DMS

The National Geospatial Intelligence Agency.

The Air Force Office of Scientific Research

(Pete Casazza) Frame Research Center October 14, 2013 2 / 27



The Kadison-Singer Problem went dormant by 1970

In 1979,

Joel Anderson brought it all back to life.
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KS in Operator Theory

Notation

For T : `r2 → `r2 A ⊆ {1, 2, . . . , r}

we let QA denote the orthogonal projection onto (ei )i∈A. So QATQA is
the A× A submatrix of T . After a permutation of {1, 2, . . . , r}

A

A

[QATQA]. . . . . .
... . . . . . .

...
... . . .

...
...

...


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Paving Conjecture

Anderson’s Paving Conjecture

For every ε > 0 there exists an r ∈ N so that

for all n and all T : `n2 → `n2 whose matrix has zero diagonal

there exists a partition (Aj)
r
j=1 (called a paving) of {1, 2, . . . , n} so that

‖QAj
TQAj

‖ ≤ ε‖T‖, for all j = 1, 2, . . . , r .

QAj
the orthogonal projection onto span (ei )i∈Aj

Important: r depends only on ε and not on n or T .
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Pictorially

After a permutation we have

T =


[T1]

[T2]
. . .

[Tr ]



Tj = QAj
TQAj

,
‖Tj‖ ≤ ε for all j = 1, 2, . . . , r

r = f (‖T‖, ε).
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Infinite Paving Conjecture

There are standard methods for passing quantitive finite dimensional
results into infinite dimensional results.

In this case, if we have an infinite
matrix T , we pave the primary n × n submatrices for each n into sets
(An

j )r
j=1.

Then note that there is some 1 ≤ j ≤ r so that for infinitely many n,
1 ∈ An

j .

Of these infinitely many n, there is a k and infinitely many n so that
2 ∈ An

k .

CONTINUE!
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Infinite Paving

Infinite Paving Conjecture

Given ε > 0 and a bounded operator T : `2 → `2 whose matrix has zero
diagonal, there is an r ∈ N and a partition (Aj)

r
j=1 of N and projections

QAj
so that

‖QAj
TQAj

‖ ≤ ε.
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The Case of Non-Zero Diagonals

Definition

If a matrix T has non-zero diagonal, paving T means to pave it down to
the diagonal.

I.e.
‖QAj

TQAj
‖ ≤ (1 + ε) sup

i∈I
|Tii |.
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Paving Operators
To prove the Paving Conjecture it suffices to prove it for any of the
following classes of operators:

1 Operators whose matrices have positive coefficients (Halpern, Kaftal,
Weiss).

2 Self-adjoint Operators

3 Unitary Operators

4 Positive Operators

5 Invertible Operators

6 Orthogonal Projections

7 Orthogonal Projections with small diagonal paved to 1− ε (Weaver)

8 Orthogonal Projections on `2n
2 with constant diagonal 1

2
(C/Edidin/Kalra/Paulsen)

9 Gram Matrices

10 Lower Triangular matrices (Paulsen/Ragupathi)
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Laurent Operators

Laurent Operators

If φ ∈ L∞[0, 1], let

Tφf = φ · f for all f ∈ L2[0, 1].

Much work was done in 1980’s to solve PC for Laurent Operators by:

Bourgain/Tzafriri

Halpern/Kaftal/Weiss

We will look at this in detail later.
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Riesable verses Pavable

Definition

For r ∈ N and 0 < δ, an operator T on Hn with ‖T‖ = 1 is (δ, r)-Pavable
if

there is a partition (Aj)
r
j=1 of {1, 2, . . . , n} so that

‖QAj
TQAj

‖ ≤ δ
∑
i∈Aj

|ai |2.

Definition

Let P be a projection on Hn with orthonormal basis (ei )
n
i=1. We say that

(Pei ) is (δ, r)-Riesable if there is a partition (Aj)
r
j=1 of {1, 2, . . . , n} so

that for all 1 ≤ j ≤ r , (ai )i∈Aj
satisfies

‖
∑
i∈Aj

aiPei‖2 ≥ δ
∑
i∈Aj

|ai |2.
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Relationship

[Observation]

Let (ei )
n
i=1 be an orthonormal basis for Hn.

Let P be an orthogonal
projection on Hn, let J ⊂ {1, 2, . . . , n} and let

φ =
∑
i∈J

aiei , with ‖φ‖ = 1.

Then
‖
∑
i∈J

aiPei‖2 ≥ δ > 0⇔‖(I − P)φ‖2 ≤ 1− δ.
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As a Consequence

Theorem

Let (ei )
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The Kadison-Singer Problem went dormant again by 1990

Gary Weiss reviews the work of Casazza in 2007:

“Casazza has opened the coffin”
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KS in Hilbert Space Theory

Definition

{φi}i∈I is a Riesz Basic Sequence in H if there exist Riesz basis bounds
A,B > 0 so that for all scalars (ai )i∈I

A
∑
i∈I

|ai |2 ≤

∥∥∥∥∥∑
i∈I

aiφi

∥∥∥∥∥
2

≤ B
∑
i∈I

|ai |2

If a = 1− ε, B = 1 + ε This is an ε-Riesz Basic Sequence

Remark:

(φi )
∞
i=1 is a Riesz basic sequence if and only if the operator T : `2 → `2

given by Tei = φi is an invertible operator (on its range) where (ei ) is the
unit vector basis of `2.
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C/Vershynin Conjecture

Rε-Conjecture

For every ε > 0, every unit norm Riesz basic sequence is a finite union of
ε-Riesz Basic Sequences.
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Finite-Dimensional Rε-Conjecture

Finite-Dimensional Rε-Conjecture

For every ε > 0 and every invertible T ∈ B(`n2) with ‖Tei‖ = 1 for
i = 1, 2, . . . , n,

there is an r = r(ε, ‖T‖, ‖T−1‖) ∈ N and a partition (Aj)
r
j=1 of

{1, 2, . . . , n} so that

for all j = 1, 2, . . . , r and all scalars (ai )i∈Aj
we have

(1− ε)
∑
i∈Aj

|ai |2 ≤ ‖
∑
i∈Aj

aiTei‖2 ≤ (1 + ε)
∑
i∈Aj

|ai |2.
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Isomorphisms

Note: This form of KS which is not independent of switching to an
equivalent norm on KS.

Example:

Define for

f =
∞∑
i=1

aiei ,

|||f ||| = max

{
‖f ‖2 + sup

1≤i
|ai |

}
.
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Paving and the Rε-Conjecture

Theorem

The Paving Conjecture implies the Rε-Conjecture.

Proof: Given ε > 0 and a unit norm Riesz basic sequence (Tei )
∞
i=1 with

‖Tei‖ = 1, let S = T ∗T . Note that the diagonal of S is all ones.

By the Paving Conjecture (infinite form) there is an r ∈ N and a partition
(Aj)

r
j=1 of N so that

‖QAj
(I − S)QAj

‖ ≤ δ‖I − S‖,

where δ = ε/(‖S‖+ 1).
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Proof Continued

If φ =
∑∞

i=1 aiTei ,

∥∥∥∥∥∥
∑
i∈Aj

aiTei

∥∥∥∥∥∥
2

= ‖TQAj
‖2

= 〈TQAj
φ,TQAj

φ〉
= 〈T ∗TQAj

φ,QAj
φ〉

= 〈QAj
φ,QAj

φ〉 − 〈QAj
(I − S)φ,QAj

φ〉
≥ ‖QAj

φ‖2 − δ‖I − S‖‖QAj
φ‖2

≥ (1− ε)‖QAj
φ‖2 = (1− ε)

∑
i∈Aj

|ai |2.
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Restricted Invertibility Theorem

Theorem (Bourgain-Tzafriri Restricted Invertibility Theorem -
Spielman and Srivastave form)

For any 0 < ε < 1 and any natural number n, given an orthonormal basis
{ei}ni=1 for Hn

and a bounded linear operator L : Hn → Hn with ‖Lei‖ = 1, for all
i = 1, 2, . . . , n,

there is a subset I ⊂ {1, 2, . . . , n} with

|I | ≥ ε2 n

‖L‖2
,

so that for all scalars {ai}i∈I we have

(1− ε)2
∑
i∈I

|ai |2 ≤ ‖
∑
i∈I

aiLei‖2.
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The Size of Our Subset: n
‖L‖2

Suppose Lei = e1 for all i = 1, 2, . . . , n.

Then ‖L‖2 = n and we can only pick one linearly independent vector Le1.

Suppose Le2i = Le2i+1 = ei .

Then ‖L‖2 = 2 and we can only pick

n

‖L‖2
=

n

2
vectors.
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KS in Banach Space Theory

(strong) Bourgain-Tzafriri Conjecture

There exists a universal constant A > 0 so that

for every 0 < B there is a natural number r = r(B)

so that for every natural number ”n” and every operator T : `n2 → `n2 with
‖Tei‖ = 1 and ‖T‖ ≤ B,

there exists a partition (Aj)
r
j=1 of {1, 2, . . . , n} so that for all j and all

scalars (ai )i∈Aj ∥∥∥∥∥∥
∑
i∈Aj

aiTei

∥∥∥∥∥∥
2

≥ A
∑
i∈Aj

|ai |2

(weak) Bourgain-Tzafriri Conjecture

A = f (B)
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Rε-Conjecture and BT

Theorem

The Rε-Conjecture implies the Bourgain-Tzafriri Conjecture.

Proof: If ‖Tei‖ = 1 for all i = 1, 2, . . ., in `2 ⊕ `2 let
φi = (

√
1− ε2Tei , εei ).

Then ‖φi‖ = 1 and (φi ) is a Riesz basic sequence.
So we can partition N into (Aj)

r
j=1 so that for all j = 1, 2, . . . , r and all

(ai )i∈Aj
we have
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φi = (

√
1− ε2Tei , εei ).

Then ‖φi‖ = 1 and (φi ) is a Riesz basic sequence.

So we can partition N into (Aj)
r
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Proof Continued

(1− ε2)
∑
i∈Aj

|ai |2 ≤ ‖
∑
i∈Aj

aiφi‖2

= (1− ε2)‖
∑
i∈Aj

aiTei‖2 + ε2
∑
i∈Aj

|ai |2

Hence,
1− 2ε2

1− ε2
∑
i∈Aj

|ai |2 ≤ ‖
∑
i∈Aj

aiTei‖2.
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Our Tour of the Kadison-Singer Problem

Marcus/Spielman/Srivastava ⇒ Casazza/Tremain Conjecture

and Weaver Conjecture KSr

⇒ Weaver Conjecture

⇒ Paving Conjecture

⇒ Rε-Conjecture

⇒ Bourgain-Tzafriri Conjecture

⇒ Feichtinger Conjecture

⇒ Sundberg Problem

Finally:

Bourgain-Tzafriri Conjecture ⇒ Weaver Conjecture KSr

⇒ Paving Conjecture

⇔ The Kadison-Singer Problem
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