Characterization of locally reflexive algebras
by an “inner” version of exactness

Eberhard Kirchberg

HU Berlin

Copenhagen, Nov 2011
Some Notation

Let A and B C*-algebras.

$\| \cdot \|_\infty = \| \cdot \|_{\min}$ means the spatial tensor product norm on the algebraic tensor product $A^{**} \circ B^{**}$,

We denote $A^{**} \otimes B^{**}$ the the C*-algebra completion of $A^{**} \circ B^{**}$ with $\| \cdot \|$.

Let $X \subset \mathcal{L}(H_1)$ and $Y \subset \mathcal{L}(H_2)$ closed subspaces (operator spaces). $X \otimes Y$ is the operator space that is the closure of vector space tensor product $X \circ Y$ in $\mathcal{L}(H_1 \otimes H_2)$.
Locally reflexive C*-algebras

Let $X \subset \mathcal{L}(H)$ a unital linear subspace of finite dimension, and $V : X \to A^{**}$ a unital completely contractive map.

In general, it is not possible to find a family $\{V_\gamma\}$ of completely contractive maps $V_\gamma : X \to A$, such that V is the point-$\sigma(A^{**}, A^*)$ limit of the V_γ.

Definition (1)

A is **locally reflexive** (in a matricial sense) if, for every subspaces $X \subset A^{**}$ and $F \subset A^*$ of finite dimension and for every $\varepsilon > 0$ there exists a completely contractive linear map $T : X \to A$ with

$$|x(f) - f(T(x))| \leq \varepsilon \|x\| \cdot \|f\|. \quad \forall x \in X, f \in F.$$

$\mathcal{L}(\ell_2)$ and $C^*(SL(\mathbb{Z}))$ are not locally reflexive.
The C-norm $\| \cdot \|_C$ on $A^{**} \odot B^{**}$

The algebraic tensor product $A^{**} \odot B^{**}$ is a *-subalgebra of $(A \otimes B)^{**}$ in a natural way. The induced C^*-norms on $A^{**} \odot B^{**}$, $A \odot B^{**}$ or $A^{**} \otimes B$ will be denoted by $\| \cdot \|_C$.

Lemma (2)

For $a_1, \ldots, a_n \in A^{**}$, $b_1, \ldots, b_n \in B^{**}$, and $w = \sum_k a_k \otimes b_k$ holds

$$\| w^* w \|_C = (\| w \|_C)^2 = \sup_{\lambda} \sum_{j,k} \lambda((a_j^* a_k) \otimes (b_j^* b_k)) = \sup_{\lambda} \lambda(w^* w)$$

where λ runs over all unital positive linear functionals λ on $A^{**} \odot B^{**}$ that are partially normal on A^{**} and on B^{**}, and are continuous on $A \odot B$ with respect to $\| \cdot \|_{\min}$ on $A \odot B$.
It means, that \(\lambda(a \otimes b) = \langle d_1(a)d_2(b)x, x \rangle \) where \(d_1 : A^{**} \to \mathcal{L}(H) \) and \(d_2 : B^{**} \to \mathcal{L}(H) \) are commuting non-degenerate (= unital) normal *-representations of the von Neumann algebras \(A^{**} \) and \(B^{**} \), and that the *-representation

\[
\sum_k a_k \otimes b_k \mapsto \sum_k d_1(a_k)d_2(b_k)
\]

is continuous on \(A \odot B \) with respect to the minimal C*-norm on \(A \odot B \), and the vector \(x \in H \) has norm \(\|x\| = 1 \).
Lemma (3) (Reduction to separable case)

Suppose that $X \subset A$, $Y \subset A^*$ and $Z \subset A^{**}$ are (norm-)separable subspaces. Then there exist a separable C^*-subalgebra B of A and a normal completely positive map $V : A^{**} \to B^{**} \cong B^{\text{strong}}$

and a projection $P \in V(A^{**})' \cap B^{**}$ such that

1. $X \subset B$ and $V(x) = x$ for all $x \in C^*(X)$,

2. $\rho(V(a)) = \rho(a)$ for all $a \in A^{**}$ and $\rho \in Y$, i.e., V_* fixes Y,

3. $a \mapsto V(a)P$ is multiplicative on $C^*(X \cup Z)$, and P is countably decomposable (in B^{**}),

4. $Py = y = yP$ for all $y \in Y$.

Eberhard Kirchberg (HU Berlin) Characterization of locally reflexive algebras Copenhagen, Nov 2011 7 / 32
In particular, the separable C^*-subalgebra $B \subset A$ and the C^*-morphism
$\phi: C^*(Z \cup X) \to B^{**} \subset A^{**}$ given by $\phi(a) := V(a)P$ satisfy
$X \subset B$, $\rho(\phi(z)) = \rho(z)$ for $\rho \in Y$, $z \in Z$, and $\phi(x) = x$ for $x \in X$.

It yields (the non-trivial part of the proof of):

Lemma (4)

\[
\| \cdot \|_C = \| \cdot \|_{\min \text{ on } A^{**} \odot B}, \quad \text{if and only if,}
\]
\[
\| \cdot \|_C = \| \cdot \|_{\min \text{ on } D^{**} \odot E \text{ for all separable } C^*-\text{subalgebras } D \subset A \text{ and } E \subset B},
\]
\[
\quad \text{if and only if,}
\]
\[
\| \cdot \|_C = \| \cdot \|_{\min \text{ on } (K \otimes A)^{**} \odot B}, \quad \text{if and only if,}
\]
\[
\| \cdot \|_C = \| \cdot \|_{\min \text{ on } (A + \mathbb{C} \cdot 1)^{**} \odot B}.
\]

Notice that $\| \cdot \|_C = \| \cdot \|$ on $A \odot B$.
Let $L \subset A$ a closed left-ideal and $p_L \in A^{**}$ its open support projection, and define linear $\pi : A \otimes B \to (A/L) \otimes B \subset (A/L) \otimes_{\min} B$ by

$$\pi(a \otimes b) := (a + L) \otimes b.$$

Lemma (5)

*If $w \in A \otimes B$ then $w((1 - p_L) \otimes 1) \in A^{**} \otimes B$,

$$\text{dist}(w, L \otimes_{\min} B) = \text{dist}(w, L \otimes B) = \|w((1 - p_L) \otimes 1)\|_C$$

and

$$\|\pi(w)\| = \|w((1 - p_L) \otimes 1)\|_{\min}.$$*
Properties (C), (C’) and (C’’)

Definition (6)

The algebra A has property

(C) if $\| \cdot \|_C = \| \cdot \|_{min}$ on $A^{**} \odot B^{**}$ for every C^*-algebra B,

$(C’)$ if $\| \cdot \|_C = \| \cdot \|_{min}$ on $A \odot B^{**}$ for every C^*-algebra B,

$(C’’)$ if $\| \cdot \|_C = \| \cdot \|_{min}$ on $A^{**} \odot B$ for every C^*-algebra B.

Effros and Haagerup: All this properties pass to subalgebras, $E \subset A$, and properties (C) and $(C’’)$ pass to quotients A/J.

A has property $(C’’)$ if and only if A is locally reflexive.

E.K.(in Crelle J.): $(C’) \Rightarrow$ exactness $\Rightarrow (C)$. In particular, $(C) = (C’)$.
It is known:

- Each exact C*-algebra is locally reflexive.
- A C*-algebra is locally reflexive, if and only if, all its separable C*-subalgebras are locally reflexive.
- Locally reflexive C*-algebras with WEP (of Lance) are nuclear.
- Locally reflexive C*-algebras with a matricial variant of the Grothendieck approximation property are exact.
- Extensions of locally reflexive C*-algebras are locally reflexive, if and only if, the Busby invariant is locally liftable.
- Locally reflexive algebra A is exact, if and only if, A^{**} is a weakly exact W^*-algebra.
Open problems concerning local reflexivity:

Let $A, A_1 \subset A_2 \subset \cdots$ locally reflexive (=: l.r.) C^*-algebras.

(a) Is A exact? In particular: Let G a Gromov example (=: discrete finitely presented group that is not uniformly embeddable into a Hilbert space with respect to its word length metric). Is $C^*_r(G)$ not l.r.? (It is not exact by a result of Ozawa.)

(b) Is $M_{2\infty} \otimes A$ l.r.? (Equivalent to: Is $B \otimes A$ l.r. if B is exact?)

(c) Are inductive limits of l.r. algebras A_n again l.r.?

(d) Is the crossed product $A \rtimes_\alpha \mathbb{Z}$ of A by $\alpha \in \text{Aut}(A)$ again l.r.?

(f) Are reduced free products of l.r. algebras again l.r.?

(g) Suppose A does not have the WEP. Are there states λ on A and μ on $C[0, 1]$ such that $A * 1 \subset A *_{\rho, \mu} C[0, 1]$ is not relatively weakly injective in the reduced free product $A *_{\rho, \mu} C[0, 1]$?

(h) Is A embeddable into simple l.r. C^*-algebra B?
Possible positive answers to questions (a – h) have the following implications:

(c) \Rightarrow (b),
(d) \Rightarrow (b, f),
(a) \Rightarrow (b – f, h),
(d) \Rightarrow (f),
(c, f, g) \Rightarrow (a),
(f) \Rightarrow (h).
Definition (7)

We call a C^*-algebra A **inner exact for** B, if the sequence

$$0 \to L \otimes B \to (\mathcal{K} \otimes A) \otimes B \to ((\mathcal{K} \otimes A)/L) \otimes B \to 0$$

is exact (in the metric sense) for every closed left-ideal $L \subset \mathcal{K} \otimes A$. The algebra A is **inner exact** if A is inner exact for every C^*-algebra B.

By Lemma 5, $\| \cdot \|_C = \| \cdot \|_{\min}$ on $A^{**} \otimes B$ implies that A is *inner exact* for B.

A is inner exact $\iff \forall \ X \subset (\mathcal{K} \otimes A)/L$ with $\text{Dim}(X) < \infty$ and $\varepsilon > 0$,

$\exists \ T : X \to \mathcal{K} \otimes A$ with $\pi_L \circ T = \text{id}_X$ and $\| T \|_{cb} \leq 1 + \varepsilon$.
Reduction to the separable and unital case

Lemma (8)

TFAE:

- A is inner exact for B.
- Every separable C^*-subalgebra of A is inner exact for B.
- $K \otimes A$ is inner exact for B.
- The unitization \tilde{A} is inner exact for B.

Since the same happens for the property that $\| \cdot \|_C = \| \cdot \|_{\min}$ on $A^{**} \otimes B$, it suffices to prove the following Proposition 9 only for separable unital A.
Proposition (9)

\[\| \cdot \|_C = \| \cdot \|_{\min} \text{ on } A^{**} \otimes B, \text{ if and only if, } A \text{ is inner exact for } B. \]

If we combine this with the work of Effros and Haagerup, we get:

Theorem (10) (characterization of locally reflexive algebras)

\(A \) C*-algebra \(A \) is locally reflexive, if and only if, the sequence of operator spaces

\[
0 \to L \otimes B \to (K \otimes A) \otimes B \to ((K \otimes A)/L) \otimes B \to 0
\]

is exact – in the complete metric sense – for every closed left-ideal \(L \) of \(K \otimes A \) and every C*-algebra \(B \).
It is an open question if every locally reflexive algebra is exact. If this question would have a positive answer, then we could get from Theorem 10, or even better from a proof of the following Conjecture 11, an “algebraic” inner characterization of exactness.

Conjecture (11)

If, for every C*-subalgebra $E \subset A$ and every closed ideal J of E the Busby invariant of the extension $0 \to J \to E \to E/J \to 0$ is locally liftable, then A is locally reflexive.
On the Proof of Proposition 9:
Lemmata 4 and 8 show that it suffices to consider the case of separable and unital A.

Proof of “\Rightarrow” follows from Lemmata 4 and 5.

The proof of “\Leftarrow” needs some ideas related to the nc Lusin Theorem and to desired non-commutative versions of the Egorov theorem.

Lemma 2, repeated use of the nc Lusin Theorem (M.Tomita 1959, see book of G.K. Pedersen, Thm. 2.7.3), and $N(x^*x) = N(xx^*)$ for each C^*-norm N on $A^{**} \odot B$ together prove the following lemma.

Lemma (12)

If $\|v^*(p \otimes 1)v\|_C \leq \|v^*(p \otimes 1)v\|_{\text{min}}$ for all $v \in A \odot B$ and all countably decomposable projections $p \in A^{**}$, then $\| \cdot \|_C = \| \cdot \|_{\text{min}}$ on $A^{**} \odot B$.

Eberhard Kirchberg (HU Berlin) Characterization of locally reflexive algebras Copenhagen, Nov 2011 18 / 32
Lemmata 12 and Lemma 2 show that $\| \cdot \|_C = \| \cdot \|_{\text{min}}$ on $A^{**} \odot B$, if for each (fixed) $v \in A \odot B$ and each (fixed) positive partially normal state λ on $A^{**} \odot B^{**}$, that is continuous on $A \odot B$ with respect to $\| \cdot \|_{\text{min}}$, holds

$$\lambda(\nu^*(p \otimes 1)v) \leq \|\nu^*(p \otimes 1)v\|_{\text{min}}$$

for all countably decomposable projection $p \in A^{**}$.
Fix $v \in A \odot B$, λ as above. Find countably decomposable projection c in the center of A^{**} with $pc = p$, $\lambda(c \otimes 1) = 1$, and $\|ac\| = \|a\|$ for all $a \in A$. Then $A^{**}c$ has a faithful normal unital representation on a separable Hilbert space. Thus, the Up-Down Theorem of G.K. Pedersen applies. Since $A \cong Ac \subset A^{**}c$ is unital, we get that each element of A^{**}_+ with norm ≤ 1 (in particular our projection p) is in $((A^1_+)_{\sigma-\text{down}})_{\sigma-\text{up}}$.

We define the set $S = S(A, \lambda, v)$ of $a \in A^{**}$ with $0 \leq a \leq 1$ and the property and $\lambda(v^*(a \otimes 1)v) \leq \|v^*(ac \otimes 1)v\|_{\text{min}}$.

Since $a \in A^{**} \mapsto \|v^*(a \otimes 1)v\|$ is order preserving, and since $a \in A^{**} \mapsto \lambda(v^*(a \otimes 1)v)$ is a normal positive functional, we get that $a \in S$ if $a = \sup_n a_n$ for $a_1 \leq a_2 \leq \cdots \in S$.
Intermediate result:
If $\lambda(v^*(a \otimes 1)v) \leq \|v^*((ca) \otimes 1)v\|_{\min}$ with c as above selected (depending on λ and v) for all $a \in (A_+^{-1})_{\sigma-\text{down}}$, each λ and $v \in A \odot B$, then $\| \cdot \|_C = \| \cdot \|_{\min}$ on $A^{**} \odot B$.

The proof of Proposition 9 becomes complete, if we can find a closed projection $q \in (K \otimes A)^{**}$ such that $e_{11} \otimes (v^*(a \otimes 1)v) = (e_{11} \otimes v)(q \otimes 1)(e_{11} \otimes v)$.
Let A a unital C*-algebra and $0 \leq a_1 \leq a_2 \leq \cdots$ an increasing sequence of contractions in A_+, and $b := \sup_n a_n \in A^{**}$ its $\sigma(A^{**}, A^*)$-limit (i.e., weak limit). Denote by e_{ij} the matrix units in \mathcal{K}.

Lemma (13) (Dilation of increasing sequences)

There is a unital *-morphism

$$h: \tilde{\mathcal{K}} := \mathcal{K} + \mathbb{C} \cdot 1 \to \mathcal{M}(\mathcal{K} \otimes A)$$

such that

$$e_{11} \otimes a_n = (e_{11} \otimes 1) h(p_n) (e_{11} \otimes 1),$$

with $p_n := e_{11} + e_{22} + \cdots + e_{nn}$ for all $n \in \mathbb{N}$.
Idea of proof: Modify the Stinespring dilation of the unital c.p. map $V: \tilde{K} \to A$ with $V(e_{ij}) := (a_j - a_{j-1})\delta_{ij}$. Here $a_{-1} := 0$.

Remark (14)

Consider the hereditary C*-subalgebra

$$D := \bigcup_n h(p_n)(\mathcal{K} \otimes A)h(p_n) \subset \mathcal{K} \otimes A.$$

The open projection $p_D \in (\mathcal{K} \otimes A)^{\ast\ast} \cong \mathcal{L}(\ell_2) \overline{\otimes} A^{\ast\ast}$ corresponding to D satisfies $(e_{11} \otimes 1)p_D(e_{11} \otimes 1) = e_{11} \otimes b$ and, for $w \in A \otimes B$:

$$e_{11} \otimes (w^*((1 - b) \otimes 1)w) = (e_{11} \otimes w)^*((1 - p_D) \otimes 1)(e_{11} \otimes w).$$

The last equation completes the proof of Proposition 9.
A noncommutative Egorov problem

Let \(A \) a unital or stable separable \(C^* \)-algebra, and let \(\mu \in A^* \) a positive linear functional on \(A \). The **central support** \(c \in \mathcal{Z}(A^{**}) \) of \(\mu \) is defined as the smallest projection \(c \) in the center \(\mathcal{Z}(A^{**}) \) of \(A^{**} \) with \(\mu(c) = \|\mu\| \). The usual support projection \(p_{\mu} \in A^{**} \) of \(\mu \) is not necessarily in the center of \(A^{**} \).

Question (15) (nc Egorov)

Let \(p \in A^{**} \) a projection, \(\varepsilon > 0 \).
Does there exists a **closed** projection \(q \in A^{**} \) such that

\[
qc \leq p \quad \text{and} \quad \mu(q) + \varepsilon > \mu(p).
\]

Recall here that a projection \(q \in A^{**} \) is **closed** if \(1 - q \) is the **open** support projection \(p_D \) of a closed hereditary \(C^* \)-subalgebra \(D \subset A \).
If $A = C(\Omega)$ is commutative and unital, then the answer is positive and is equivalent to a theorem of Egorov in Measure theory.

There exists partial results that are related to a possible positive answer of question 15. But they are only generalization of a theorem of Lusin.

The above Lemma 13 (together with Remark 14) is a step towards a partial result, but only after stabilizing A with the compact operators.
We obtain in a similar way a “stable” version of a non-commutative Egorov theorem (where we identify $e_{11} \otimes a$ with $a \in A^{**}$):

Theorem (16) (nc Egorov)

Let A a separable unital C*-algebra and $\mu \in A^*$ a positive linear functional with central support (-projection) $c \in Z(A^{**})$, $T \in A^{**}$ with $\|T\| \leq 1$.

Then, for every $\varepsilon > 0$, there exists a **closed** projection $q \in (\mathcal{K} \otimes A)^{**}$ (i.e., $1 - q$ is the open support projection of an hereditary C*-subalgebra $D \subset \mathcal{K} \otimes A$) such that

$$(e_{11} \otimes c)q(e_{11} \otimes c) \leq T \quad \text{and} \quad \mu((e_{11} \otimes 1)q(e_{11} \otimes 1)) + \varepsilon > \mu(T).$$
What about a non-stable version of the characterization of local reflexivity, or only of $\| \cdot \|_C = \| \cdot \|$ on $A^{**} \otimes B$? (We may assume again that A is unital and separable.)

The basic assumption is (equivalent to the assumption), that there is a universal constant $\rho < \infty$ with the property $\|(q \otimes 1)w\|_C \leq \rho \|(q \otimes 1)w\|$ for all closed projections $p \in A^{**}$ and all $w \in A \otimes B$.

Then we need as a property of A that, for each countably decomposable projection $z \in \mathcal{Z}(A^{**})$ and each $b \in (A^1_+)_{\sigma_{\text{down}}}$, normal state $\mu \in A^{*} = (A^{**})_*$ on A^{**} and every $\varepsilon > 0$, there is a closed projection $q \in A^{**}$ and an element $a \in A$ (both depending on ε) such that $za^*qa \leq \varepsilon 1 + (1 + \varepsilon) \sup_n b^{1/n}$ and $\mu(b) \leq 2\varepsilon + \mu(a^*qa)$.

The proof of the conclusion $\| \cdot \|_C = \| \cdot \|_{\text{min}}$ on $A^{**} \otimes B$ under this assumptions is similar to the above given proof of Proposition 9.
[AB] Archbold, R.J., Batty, J.K., C^*-tensor norms and slice maps, J. London Math. Soc. **22** [1980], 127–138. (Theorem 2.4.3)

Proof of “⇒” for Proposition 9:
If $\| \cdot \|_C = \| \cdot \|_{\min}$ on $A^{**} \otimes B$, then $\| \cdot \|_C = \| \cdot \|_{\min}$ on $(\mathcal{K} \otimes A)^{**} \otimes B$, by Lemma 4.

For closed left-ideals $L \subset \mathcal{K} \otimes A$ with open support projection $p_L \in (\mathcal{K} \otimes A)^{**}$ and $w \in (\mathcal{K} \odot A) \odot B$ holds
$$\text{dist}(w, L \odot B) = \|w((1 - p_L) \otimes 1)\|_C \quad \text{and} \quad \|w((1 - p_L) \otimes 1)\|_{\min} = \|(\pi_L \otimes \text{id}_B)(x)\|,$$ by Lemma 5.

Proof of Lemma 12:
We make repeated use of the non-commutative Lusin theorem (from M. Tomita in 1959, see book of G.K. Pedersen, Thm. 2.7.3): Given $x \in H$, $a_1, \ldots, a_n \in A^{**}$, $d_1 : A^{**} \to \mathcal{L}(H)$ normal *-representation $\varepsilon > 0$, then exist countably decomposable $p \in A^{**}$, $a'_k \in A$ with $a'_k p = a_k p$ and $\|x - px\| < \varepsilon$. Then $w = \sum_k a_k \otimes b_k \in A^{**} \odot B$ and $v := \sum_k a'_k \otimes b_k \in A \odot B$ satisfy $w(p \otimes 1) = v(p \otimes 1)$.
The distance $|\rho(w^* w) - \rho((p \otimes 1)w^* w(p \otimes 1))|$ between $\|(d_1 \cdot d_2)(w)x\|^2$ and $\|(d_1 \cdot d_2)(w(p \otimes 1))x\|^2$ is $\leq \varphi(\varepsilon)$ for some increasing continuous function φ with $\varphi(0) = 0$ (if given x and w are fixed).

$$\lambda((p \otimes 1)w^* w(p \otimes 1))^{1/2} \leq \|w(p \otimes 1)\|_C = \|v(p \otimes 1)\|_C = \|v(p \otimes 1)\|.$$

Since $\|v(p \otimes 1)\| = \|w(p \otimes 1)\| \leq \|w\|$ it implies

$$\lambda(w^* w) \leq f(\varepsilon) + \|w^* w\|_{\text{min}},$$

for each $\varepsilon > 0$, hence $\lambda(w^* w) \leq \|w^* w\|_{\text{min}}$.

Now Lemma 2 says $\|w\|_C = \|w\|_{\text{min}}$. \hfill \square
More about the proof of Lemma 13: Consider the unital c.p. map $V: \mathcal{K} \to A$ with $V(e_{ij}) := (a_j - a_{j-1})\delta_{ij}$. Here $a_{-1} := 0$.

The Kasparov-Stinespring dilation defines a countably generated Hilbert A-module H and a unital *-representation $k_1: \tilde{\mathcal{K}} \to \mathcal{L}(H)$ and a vector $x \in H$ such that $\langle x, k(c)x \rangle = V(c)$ for all $c \in \tilde{\mathcal{K}}$.

Then Kasparov triviality theorem gives an Hilbert A-module isomorphism γ from $H \oplus H_A$ onto the Kasparov standard module H_A. Consider H_A as the set $(\mathcal{K} \otimes A)(e_{11} \otimes 1)$ of first columns $\sum e_{n1} \otimes y_n$ in $\mathcal{K} \otimes A$. Then $\mathcal{L}(H_A)$ becomes naturally isomorphic with the multiplier algebra $\mathcal{M}(\mathcal{K} \otimes A)$ of $\mathcal{K} \otimes A$.
Define \(k_2 : \tilde{\mathcal{K}} \to \mathcal{L}(H_A) \) by

\[
k_2(c) := \gamma(k_1(c) \oplus \chi(c)1)\gamma^{-1},
\]

where \(\chi : \tilde{\mathcal{K}} \to \mathbb{C} \) is the unique non-zero character.

The element \(w := \gamma(x) \) is a partial isometry in \(\mathcal{K} \otimes A \) with \(w^*w = e_{11} \otimes 1 \). Since \(A \) is unital, its stabilization \(\mathcal{K} \otimes A \) has stable rank one, and – therefore – we find a unitary

\[
U \in (\mathcal{K} \otimes A) + \mathbb{C} \cdot 1 \subset \mathcal{M}(\mathcal{K} \otimes A)
\]

with \(\gamma(x) = U(e_{11} \otimes 1) \).

The desired unital *-morphism \(h : \tilde{\mathcal{K}} \to \mathcal{M}(\mathcal{K} \otimes A) \) is given by

\[
h(c) := U^*k_2(c)U.
\]