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Topological and algebraic regularity

Consider the following regularity properties for a C∗-algebra A.

(A) A is topologically finite-dimensional.

(B) A absorbs a suitable strongly self-absorbing C∗-algebra tensorially.

(Γ) A has sufficiently regular homological invariants.

(Γ′) The homological invariants of A are algebraically finite-dimensional.

What do these properties mean?
How are they related?
When do they ensure classification?
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Topological dimension

We will use decomposition rank (Kirchberg–W) in the stably finite case,
and nuclear dimension (W–Zacharias) in the general case.

Problem
If dimnucA <∞ and A is (simple and) stably finite, then what is dr A?
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The Jiang–Su algebra

The Jiang–Su algebra Z is a finite analogue of O∞; it may be described as
follows:

I Z is the uniquely determined initial object in the category of strongly
self-absorbing C∗-algebras (W, using ideas of Dadarlat–Rørdam; 2009).

I Z can be written as a stationary inductive limit

lim
→

(Z2∞,3∞ , α),

where

Z2∞,3∞ = {f ∈ C([0, 1],M2∞⊗M3∞) | f (0) ∈ M2∞⊗1, f (1) ∈ 1⊗M3∞}

and α is a trace-collapsing endomorphism of Z2∞,3∞ (Rørdam–W;
2008).
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The Jiang–Su algebra

Z was originally constructed as an inductive limit of algebras of the form

Zp,q = {f ∈ C([0, 1],Mp ⊗Mq) | f (0) ∈ Mp ⊗ 1, f (1) ∈ 1⊗Mq}

with p, q relatively prime; the connecting maps are also not so easy to
describe.

Problem
Present Z as a universal C∗-algebra with (countably many) generators and
relations.

I do have a solution*

*but at this point it’s not a very nice one.
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The Jiang–Su algebra

Recall that there is a bijection

CPCord0(Mq,B)←→ Hom(C0(0, 1]⊗Mq,B).

We use this correspondence to define the “universal C∗-algebra generated by
an order zero map on Mq” by

C∗(φ(q) | φ(q) is c.p.c. order zero with domain Mq)
:= C∗(e(q)

ij | e
(q)
ij (with i, j = 1, . . . , q) satisfyR(q)

ord0).

Here,R(q)
ord0 are the same relations as for id(0,1] ⊗ eij ∈ C0((0, 1])⊗Mq, when

writing the latter as a universal C∗-algebra, so

C∗(φ(q) | φ(q) is c.p.c. order zero with domain Mq) ∼= C0(0, 1]⊗Mq.
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The Jiang–Su algebra

Next, define
Z(q) := C∗(ϕ(q), ψ(q) | R(q)),

whereR(q) denotes the following set of relations:
I ϕ(q) and ψ(q) are c.p.c. order zero maps with domains Mq and M2,

respectively
I ψ(q)(e11) = 1− ϕ(q)(1Mq)
I ϕ(q)(e11)ψ(q)(e22) = ψ(q)(e22)ϕ(q)(e11) = ψ(q)(e22).

It follows from Rørdam–W that in fact

Z(q) ∼= Zq,q+1.
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The Jiang–Su algebra

Define q(k) ∈ N by setting q(1) := 2 and q(k + 1) := q(k)3.

Suppose (ϕ(q(k)), ψ(q(k))) and (ϕ(q(k+1)), ψ(q(k+1))) are pairs of c.p.c. order
zero maps satisfyingR(q(k)) andR(q(k+1)), respectively.
Define additional relations S(q(k)) by

ϕ(q(k)) = f (ϕ(q(k+1))) ◦ %(q(k)),

(ψ(q(k)))
1
2 (e12) = (1− f (ϕ(q(k+1)))(1q(k+1))

+g(ϕ(q(k+1)))(1q(k+1) − %(q(k))(1q(k))))
1
2 d(ψ(q(k+1)))(e12)

+h(ϕ(q(k+1)))(1q(k+1) − %(q(k))(1q(k)))
1
2 f (ϕ(q(k+1)))(v),

where d, f , g, h ∈ C([0, 1]) are certain piecewise linear functions, v ∈ Mq(k+1)
is a certain partial isometry, and

% : Mq(k) → Mq(k+1)
∼= Mq(k) ⊗Mq(k) ⊗Mq(k)

is the c.p.c. order zero map given by

(idMq(k) ⊗ 1q(k)−1 ⊗ 1q(k))⊕
q(k)⊕
i=1

i
q(k)

· (idMq(k) ⊗ eq(k),q(k) ⊗ eii).
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The Jiang–Su algebra

We then define

Zu := C∗(ϕ(q(k)), ψ(q(k)) | R(q(k)),S(q(k)); k = 1, 2, . . .).

This is a universal C∗-algebra given by countably many generators and
relations; the latter are complicated, but explicit.

¿Theorem? (W, Jacelon; 2010)
Zu ∼= Z .

Next steps:
I Write the relations in a more intuitive manner.
I Prove directly that Zu is strongly self-absorbing.
I Handle ‘the’ monotracial stably projectionless example (as studied by

Kishimoto–Kumjian, Razak, Dean, Jacelon, Robert) in an analogous
manner (to obtain a stably finite version of O2).
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Algebraic dimension

Recall that the Cuntz semigroup

W(A) = M∞(A)+/∼

carries an order ≤ modeled after Murray–von Neumann subequivalence.

Definition (Rørdam)
W(A) is almost unperforated if, for all x, y ∈ W(A) and n,m ∈ N,

(nx ≤ my and n > m) =⇒ x ≤ y.

Definition
W(A) is almost divisible, if for any x ∈ W(A) and n ∈ N, there is y ∈ W(A)
such that

ny ≤ x ≤ (n + 1)y.
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Algebraic dimension

Definition
Let A be separable, simple, unital, m ∈ N. We say A has

I m-comparison, if for any nonzero positive contractions
a, b0, . . . , bm ∈ M∞(A) we have

a - b0 ⊕ . . .⊕ bm

whenever
dτ (a) < dτ (bi)

for every τ ∈ QT(A) and i = 0, . . . ,m.
I strong tracial m-comparison, if for any nonzero positive contractions

a, b ∈ M∞(A) we have
a - b

whenever
dτ (a) <

1
m + 1

τ(b)

for every τ ∈ QT(A).
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Algebraic dimension

In a similar manner, define
I m-almost divisibility

and
I tracial m-almost divisibility.
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Algebraic dimension

Questions

I How are these notions related?

In particular, when does m-comparison imply m̃-almost divisibility?

(Promising results by Dadarlat–Toms.)
I Can these notions help to find range results for the Cuntz semigroup?

W. Winter (University of Nottingham) Dimension,Z-stability, Classification 22.09.2010 17 / 29



Some results

Topological and algebraic regularity

Topological dimension

The Jiang–Su algebra

Algebraic dimension

Some results

The strategy of proof

W. Winter (University of Nottingham) Dimension,Z-stability, Classification 22.09.2010 18 / 29



Some results

Theorem (Robert; 2010)
If dimnucA ≤ m, then A has m-comparison.

Proposition (W; 2010)
If A is separable, simple, unital, with dimnucA ≤ m, then A has tracial
m̃-almost divisibility and strong tracial m̄-comparison for some m̃, m̄ ∈ N.
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Some results

Theorem (W; 2010)
Let A be simple, separable, unital, with locally finite nuclear dimension.
If A has strong tracial m-comparison and tracial m̃-almost divisibility for some
m, m̃ ∈ N, then A is Z-stable.
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Some results

Corollary
Let A be simple, separable, unital, with locally finite nuclear dimension.
Then,

A ∼= A⊗Z ⇐⇒ W(A) ∼= W(A⊗Z).

W. Winter (University of Nottingham) Dimension,Z-stability, Classification 22.09.2010 21 / 29



Some results

Corollary (Using results of Gong, Elliott–Gong–Li, Lin, W)
The class of simple, separable, unital AH algebras with slow dimension
growth satisfies the Elliott conjecture.
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Some results

Corollary
Let A be simple, separable, unital, with finite nuclear dimension.
Then, A is Z-stable.

(This generalizes the earlier result on finite decomposition rank.)
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The strategy of proof

Let us return to

Theorem
Let A be simple, separable, unital, with locally finite nuclear dimension.
If A has strong tracial m-comparison and tracial m̃-almost divisibility for some
m, m̃ ∈ N, then A is Z-stable.
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The strategy of proof

1. We need a unital ∗-homomorphism Z → A∞ ∩ A′; then A ∼= A⊗Z by
an intertwining argument and since Z is strongly self-absorbing.

2. With
Zp,p+1 = {f ∈ C0([0, 1],Mp⊗Mp+1 | f (0) ∈ Mp⊗ 1, f (1) ∈ 1⊗Mp+1},
one can write Z = lim Zpl,pl+1, hence an approximately central sequence
of unital ∗-homomorphisms

Zp,p+1 → A

for any p ∈ N will do.
3. By Rørdam–W, we need to find a c.p.c. order zero map

Φ : Mp → A

and v ∈ A such that

vv∗ = 1A − Φ(1Mp) and v∗v ≤ Φ(e11)

and such that Φ(Mp) and v are approximately central.
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The strategy of proof

The following is a key result for constructing both Φ and v.

Lemma
For m, m̃ ∈ N, there is αm,m̃ > 0 such that the following holds:
Let A be separable, simple, unital, with tracial m̃-almost divisibility.
Let 1A ∈ B ⊂ A be a C∗-subalgebra with dimnucB ≤ m, and let k, l ∈ N.
If

ϕ : Ml → A∞ ∩ B′

is c.p.c. order zero, then there is a c.p.c. order zero map

ψ : Mk → A∞ ∩ B′ ∩ ϕ(Ml)′

such that
τ(ψ(1k)ϕ(1l)b) ≥ αm,m̃ · τ(ϕ(1l)b)

for all b ∈ B+ and τ ∈ T∞(A).
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The strategy of proof

This in turn uses careful analysis of the m-decomposable approximations for
B, m-comparison of B, and tracial m̃-almost divisibility, together with the
following:

Proposition
Let A be separable, simple, unital, with tracial m̃-almost divisibility, and let
d ∈ A∞ be a positive contraction.
Then, there are orthogonal positive contractions

d0, d1 ∈ A∞ ∩ {d}′

satisfying

τ(di f (d)) ≥ 1
4(m̃ + 1)

· τ(f (d)), i = 0, 1,

for all τ ∈ T∞(A) and all f ∈ C0((0, 1])+.
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The strategy of proof

Remark
The proof does not at any stage involve a dichotomy
(stably finite vs. purely infinite).
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