Purely infinite C*-algebras arising from crossed products

joint work with Mikael Rørdam

Adam Sierakowski adam.sierakowski@utoronto.ca

Fields Institute, located at University of Toronto Department of Mathematics and Statistics, York University

Banff, September 21, 2010

Outline

2 Kirchberg algebras arising from exact groups

・ロト ・日下・ ・日下・ ・日・ うへぐ

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Question

Which C*-dynamical systems give raise to purely infinite crossed products?

Question

Which C*-dynamical systems give raise to purely infinite crossed products?

- $a, b \in A^+, a \preceq b \iff \exists (x_n) \text{ in } A \text{ such that } x_n^* b x_n \to a.$
- $a \in A^+$ is properly infinite if $a \oplus a \preceq a$.
- A is *purely infinite* if all positive elements are properly infinite.

We need to know something about the ideal structure of the crossed products!

Definition (S)

A C^* -dynamical system (A, G) is said to be *separating* if A separates ideals in $A \rtimes_r G$.

Proposition (S)

Let (A, G) be an C^* -dynamical system with G discrete. Then (A, G) is separating iff a $\preceq_* E(a) \preceq_* a$ for all positive elements in $A \rtimes_r G$.

- $a \preceq_* b \iff a \in \overline{AbA}$.
- $a \precsim b \implies a \precsim_* b$.

• $a \preceq b \iff a \preceq_* b$ if b is properly infinite.

• $a \preceq b \iff a \preceq_* b$ if A is abelian or purely infinite.

Proposition

Let (A, G) be a separating C^* -dynamical system with G discrete. Then $A \rtimes_r G$ is purely infinite iff (i) all $a \in A^+$ are properly infinite in $A \rtimes_r G$, and (ii) $E(a) \preceq a$ for all $a \in (A \rtimes_r G)^+$.

Proof: If $A \rtimes_r G$ is purely infinite (ii) follows from $E(a) \preceq_* a$. Conversely, if (i) and (ii) hold and $a \in (A \rtimes_r G)^+$, then

$$a \oplus a \precsim E(a) \oplus E(a) \precsim E(a) \precsim a$$
,

which shows that *a* is properly infinite.

Question

When is $a \preceq E(a)$, $a \in (A \rtimes_r G)^+$?

• (A, G) is exact = Every G-invariant ideal I in A induces an exact sequence

$$0 \longrightarrow I \rtimes_r G \xrightarrow{\iota \rtimes \mathrm{id}} A \rtimes_r G \xrightarrow{\pi \rtimes \mathrm{id}} A/I \rtimes_r G \longrightarrow 0$$

- (A, G) is exact iff $b \precsim_* E(b)$ for any $b \in (A \rtimes_r G)^+$, by (S)
- True if (A, G) is exact and E(a) properly infinite
- True if $a \in C_c(G, A)$.
- False if (A, G) is not exact (how often does that happen?)

Proposition (S)

Let (A, G) be an exact C^* -dynamical system with G discrete such that the action of G on \widehat{A} is essentially free. Then (A, G) is separating.

- G act essentially free on X = For every closed G-invariant subset Y ⊆ X, the set of points in Y with a trivial isotropy group, is dense in Y.
- \widehat{A} = irreducible representations modulo unitary equivalence

Remark

- (A, G) separating $\Rightarrow (A, G)$ exact
- (C(X), G) separating ⇒ essentially free action, for G countable and (C(X), G) amenable (i.e C(X) ⋊_r G is nuclear)

Question

When is
$$E(a) \preceq a$$
, $a \in (A \rtimes_r G)^+$?

Theorem

Let (A, G) be an exact C*-dynamical system with G discrete. Suppose that the action of G on \widehat{A} is essentially free, that A is separable, and that A has the ideal property (projections in A separate ideals). Then $A \rtimes_r G$ iff

(i) all $a \in A^+$ are properly infinite in $A \rtimes_r G$.

Theorem

Let (A, G) be an exact C^* -dynamical system with G discrete and with $A = C_0(X)$ for some totally disconnected locally compact Hausdorff space X. Suppose that the action of G on X is essentially free. Then the following are equivalent:

- $A \rtimes_r G$ is purely infinite.
- Every projection in A is properly infinite in $A \rtimes_r G$.

Outline

2 Kirchberg algebras arising from exact groups

Question

Which C*-dynamical systems give raise to purely (or properly) infinite crossed products?

Remark

- C(X) ⋊_r G is a purely (or properly) infinite crossed product
 ⇒ G is non-amenable
- G is non-amenable $\Rightarrow C(X) \rtimes_r G$ is a properly infinite crossed product for some compact topological space X

Question

Does every non-amenable group G admit an action on some compact topological space X such that $C(X) \rtimes_r G$ is purely infinite?

Remark

 $C(X) \rtimes_r G$ is a Kirchberg algebra $\Rightarrow G$ is countable, exact and non-amenable.

- countable, using separability
- exact, using nuclearity on $C^*_{\lambda}(G) \subseteq C(X) \rtimes_r G$
- non-amemable, using Følner sequesnces to produce a tracial state on $C(X) \rtimes_r G$

Theorem

Every countable, exact, and non-amenable group G admits an free, minimal, and amenable action on the Cantor set X such that $C(X) \rtimes_r G$ is a Kirchberg algebra in UCT class

One important step: If a direct sum $p \otimes \cdots \otimes p$ of *n* copies of a projection $p \in \ell^{\infty}(G)$ is properly infinite in $M_n(\ell^{\infty}(G) \rtimes_r G)$ then *p* itself is properly infinite in $\ell^{\infty}(G) \rtimes_r G$.

Theorem

Let G be a countable discrete group acting on a set X (eg. X could be G itself). The following are equivalent for every $E \subseteq X$:

- (i) The n-fold direct sum $p = 1_E \oplus \cdots \oplus 1_E$ is properly infinite in $M_n(\ell^{\infty}(X) \rtimes_r G)$ for some n.
- (ii) There is no lower semicontinuous tracial weight τ on $\ell^{\infty}(X) \rtimes_r G$ for which $0 < \tau(1_E) < \infty$.
- (iii) E is G-paradoxical.
- (iv) 1_E is properly infinite in $\ell^{\infty}(X) \rtimes_r G$.
 - τ tracial weight on $A = \mathbb{R}^+$ -linear map $A^+ \to [0, \infty]$ with $\tau(a^*a) = \tau(aa^*), a \in A$
 - *E* is *G*-paradoxical = There exist subsets $V_1, V_2, \ldots, V_{n+m}$ of *E* and $t_1, t_2, \ldots, t_{n+m} \in G$ such that both $(V_j)_1^n$ and $(V_j)_{n+1}^{n+m}$ cover *E*, but $(t_j.V_j)_1^{n+m}$ are pairwise disjoints subsets of *E*

Proof:

(i) \Rightarrow (ii): Find projections e, f below p, equivalent to p. For a tracial weight τ we have that $\tau_n(p) \ge 2\tau_n(p)$ implying that $\tau_n(p)$ and $\tau(1_E)$ is either 0 or ∞ .

 \neg (iii) $\Rightarrow \neg$ (ii): Find a finitely additive *G*-invariant measure μ on P(X) with $\mu(E) = 1$ (Tarski). Construct a lower semicontinuous *G*-invariant weight on $\ell^{\infty}(G)$ from μ and compose it with *E*.

(iii) \Rightarrow (iv): Let $t \mapsto u_t$ be the unitary representation of G in $\ell^{\infty}(X) \rtimes_r G$, and put $s_1 = \sum_{j=1}^n u_{t_j} \mathbb{1}_{V_j}$ and $s_2 = \sum_{j=n+1}^{n+m} u_{t_j} \mathbb{1}_{V_j}$. It follows that $\mathbb{1}_E = s_1^* s_1 = s_2^* s_2$ and $s_1 s_1^* + s_2 s_2^* \leq \mathbb{1}_E$. \Box

Corollary

Suppose that G is non-amenable. Then every projection $p \in \ell^{\infty}(G)$ which is full in $\ell^{\infty}(G) \rtimes_r G$ (not contained in a proper ideal in $\ell^{\infty}(G) \rtimes_G$), is properly infinite in $\ell^{\infty}(G) \rtimes_r G$.

Proof: $1 \preceq p \oplus \cdots \oplus p \preceq 1 \oplus \cdots \oplus 1 \preceq 1$.

Remark

Hjorth and Molberg proved in 2006 that any countable discrete group G admits a free minimal action on the Cantor set X such that the crossed product C*-algebras has a tracial state.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Another important step: Find a suitable sub-C*-algebra A in $\ell^{\infty}(G)$ where every project $p \in A$ that is properly infinite in $\ell^{\infty}(G) \rtimes_r G$, is properly infinite $A \rtimes_r G$.

Proposition

Let G be countable exact group. There exist a separable G-invariant sub-C*-algebra C(X) = A in $\ell^{\infty}(X)$ such that

- (i) The action of G on X is free and amenable $(A \rtimes_r G \text{ is nuclear})$
- (ii) The algebra A is generated by projections
- (iii) Every project $p \in A$ that is properly infinite in $\ell^{\infty}(G) \rtimes_r G$, is properly infinite $A \rtimes_r G$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof:

(i): For $t \neq e$ find partition $G = G_1 \cup G_2 \cup G_3$ st $G_j \cap tG_j = \emptyset$ for j = 1, 2, 3 ($\Rightarrow tx \neq x$ for $x \in \beta G$). Use G is exact iff ($\ell^{\infty}(G), G$) is amenable iff exist a countable sequence in $C_c(G, \ell^{\infty}(G))$ st. Let N be the countable set ensuring the action free and amenable.

(ii) For
$$a \in \ell^{\infty}(G)$$
 find projections $(p_j)_1^{|\sigma(a)|}$ st. $C^*(a) = C^*(p_j)$.

(*iii*) Find countable subsets $N_0 = N, N_1, N_2, ...$ of $\ell^{\infty}(G)$ and countable *G*-invariant sets $P_0, P_1, P_2, ...$ of projections st $\mathcal{P}_{C^*(P_j)} \subseteq N_{j+1} \subseteq^{(ii)} C^*(P_{j+1})$ and $\mathcal{P}_{C^*(P_j)} \cap \mathcal{P}_{prop.inf.} \subseteq C^*(P_{j+1})$. Verify that $A = \overline{\bigcup_j C^*(P_j)}$ does the job. \Box

Proof of Main Theorem:

Up on combining the two important steps we get a separable G-invariant sub-C*-algebra C(X) = A in $\ell^{\infty}(G)$ such that

- (i) The action of G on X is free and amenable $(A \rtimes_r G$ is nuclear)
- (ii) The algebra A is generated by projections
- (iii) Every project $p \in A$ that is properly infinite in $\ell^{\infty}(G) \rtimes_r G$, is properly infinite in $A \rtimes_r G$
- (iv) Every project $p \in \ell^{\infty}(G)$ which is full in $\ell^{\infty}(G) \rtimes_{r} G$, is properly infinite in $\ell^{\infty}(G) \rtimes_{r} G$.

If the action is minimal: $0 \neq p \in A$ full in $A \rtimes_r G$, full in $\ell^{\infty}(G) \rtimes_r G$, properly infinite in $\ell^{\infty}(G) \rtimes_r G$, properly infinite $A \rtimes_r G$. In UCT do to Tu.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Question

How do we compute K-theory?

Question

What is the range of this construction?

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Figure: The Cayley graph for $\mathbb{Z}_2*\mathbb{Z}_3$ with all edges of unit length.

Thank you for your attention :o)