# On the classification of non-simple real rank zero graph $C^{*}$-algebras 

Efren Ruiz<br>Joint work with Søren Eilers and Gunnar Restorff

University of Hawai'i at Hilo

Classification of amenable $C^{*}$-algebras BIRS
23 September 2010

A (directed) graph $E=\left(E^{0}, E^{1}, r, s\right)$ consists of a countable set $E^{0}$ of vertices, a countable set $E^{1}$ of edges, and maps $r, s: E^{1} \rightarrow E^{0}$ which is called the range and source maps.

A Cuntz-Krieger E-family is a set of mutually orthogonal projections $\left\{p_{v}: v \in E^{0}\right\}$ and a set of partial isometries $\left\{s_{e}: e \in E^{1}\right\}$ with orthogonal ranges satisfying the Cuntz-Krieger relations:
(1) $s_{e}^{*} s_{e}=p_{r(e)}$ for all $e \in E^{1}$;
(2) $s_{e} s_{e}^{*} \leq p_{s(e)}$ for every $\boldsymbol{e} \in E^{1}$; and
(3) for every $v \in E^{0}$ with $0<\left|s^{-1}(\{v\})\right|<\infty$

$$
p_{v}=\sum_{\left\{e \in E^{1}: s(e)=v\right\}} s_{e} s_{e}^{*}
$$

The graph $C^{*}$-algebra $C^{*}(E)$ is defined to be the universal $C^{*}$-algebra generated by a Cuntz-Krieger $E$-family.

## Theorem (Raeburn et al)

Let $E$ be a graph satisfying Condition ( $K$ ), i.e., no vertex of $E$ is the base point of exactly one simple cycle.
(1) If $\mathfrak{I}$ is an ideal of $C^{*}(E)$, then there exists a graph $E_{1}$ such that $C^{*}\left(E_{1}\right) \otimes \mathbb{K} \cong \mathfrak{I} \otimes \mathbb{K}$
(2) If $\mathfrak{I}$ is an ideal of $C^{*}(E)$, then there exists a graph $E_{2}$ such that $C^{*}\left(E_{2}\right) \otimes \mathbb{K} \cong C^{*}(E) / \mathfrak{J} \otimes \mathbb{K}$.
(3) If $C^{*}(E)$ is simple, then $C^{*}(E)$ either an AF algebra or a purely infinite, nuclear, simple $C^{*}$-algebra satisfying the UCT.
(4) $C^{*}(E)$ has real rank zero.

Goal. Find an algebraic invariant $F$ such that

$$
C^{*}\left(E_{1}\right) \otimes \mathbb{K} \cong C^{*}\left(E_{2}\right) \otimes \mathbb{K} \Longleftrightarrow \mathrm{F}\left(C^{*}\left(E_{1}\right)\right) \cong \mathrm{F}\left(C^{*}\left(E_{2}\right)\right)
$$

where $E_{1}$ and $E_{2}$ are graphs satisfying Condition (K).

## Conjecture

If $C^{*}\left(E_{1}\right)$ and $C^{*}\left(E_{2}\right)$ are graph $C^{*}$-algebras satisfying Condition $(K)$. Then

$$
C^{*}\left(E_{1}\right) \otimes \mathbb{K} \cong C^{*}\left(E_{2}\right) \otimes \mathbb{K}
$$

if and only if

$$
\mathrm{FK}_{X}^{+}(\mathfrak{A}) \cong \mathrm{FK}_{Y}^{+}(\mathfrak{B})
$$

Goal. Find an algebraic invariant $F$ such that

$$
C^{*}\left(E_{1}\right) \otimes \mathbb{K} \cong C^{*}\left(E_{2}\right) \otimes \mathbb{K} \Longleftrightarrow \mathrm{F}\left(C^{*}\left(E_{1}\right)\right) \cong \mathrm{F}\left(C^{*}\left(E_{2}\right)\right)
$$

where $C^{*}\left(E_{i}\right)$ has finitely many ideals.

## Conjecture

If $C^{*}\left(E_{1}\right)$ and $C^{*}\left(E_{2}\right)$ are graph $C^{*}$-algebras with finitely many ideals. Then

$$
C^{*}\left(E_{1}\right) \otimes \mathbb{K} \cong C^{*}\left(E_{2}\right) \otimes \mathbb{K}
$$

if and only if

$$
\mathrm{FK}_{X}^{+}(\mathfrak{A}) \cong \mathrm{FK}_{Y}^{+}(\mathfrak{B})
$$

## Filtrated, ordered K-theory

Let $\mathfrak{A}$ be a $C^{*}$-algebra with finitely many ideals. Let $X=\operatorname{Prim}(\mathfrak{A})$. Suppose we have ideals $\mathfrak{I} \unlhd \mathfrak{D} \unlhd \mathfrak{B}$ of $\mathfrak{A}$. Then

$$
0 \rightarrow \mathfrak{D} / \mathfrak{I} \rightarrow \mathfrak{B} / \mathfrak{I} \rightarrow \mathfrak{B} / \mathfrak{D} \rightarrow 0
$$

is a short exact sequence of $C^{*}$-algebras. Hence, we get

$$
\begin{gathered}
K_{0}(\mathfrak{D} / \mathfrak{I}) \xrightarrow{\iota_{*}} K_{0}(\mathfrak{B} / \mathfrak{I}) \xrightarrow{\pi_{*}} K_{0}(\mathfrak{B} / \mathfrak{D}) \\
\quad \partial \mid \\
K_{1}(\mathfrak{B} / \mathfrak{D}) \stackrel{\downarrow}{\pi_{*}} K_{1}(\mathfrak{B} / \mathfrak{I}) \stackrel{\partial}{\leftarrow} K_{1}(\mathfrak{D} / \mathfrak{I})
\end{gathered}
$$

$\mathrm{FK}_{X}^{+}(\mathfrak{A})$ of $\mathfrak{A}$ is the collection of all $K$-groups, equipped with order on $K_{0}$ and the natural transformation $\left\{\iota_{*}, \pi_{*}, \partial\right\}$.

Simple : $\quad \mathrm{FK}_{X}^{+}(\mathfrak{A})=\left(K_{0}(\mathfrak{A}), K_{0}(\mathfrak{A})_{+}, K_{1}(\mathfrak{A})\right)$

One-ideal: $\quad \mathrm{FK}_{X}^{+}(\mathfrak{A})$ is the six-term exact sequence in $K$-theory

induced by

$$
0 \rightarrow \mathfrak{I} \rightarrow \mathfrak{A} \rightarrow \mathfrak{A} / \mathfrak{I} \rightarrow 0
$$

If $\mathfrak{B}$ is a $C^{*}$-algebra with $Y=\operatorname{Prim}(\mathfrak{B})$,

$$
\mathrm{FK}_{X}^{+}(\mathfrak{A}) \cong \mathrm{FK}_{Y}^{+}(\mathfrak{B})
$$

if there exists a lattice isomorphism $\beta: \operatorname{Lat}(\mathfrak{A}) \rightarrow \operatorname{Lat}(\mathfrak{B})$ and for all $\mathfrak{I} \unlhd \mathfrak{D}$ ideals of $\mathfrak{A}$, there exists a group isomorphism

$$
\alpha_{*}^{\mathfrak{D}, \mathfrak{I}}: K_{*}(\mathfrak{D} / \mathfrak{I}) \rightarrow K_{*}(\beta(\mathfrak{D}) / \beta(\mathfrak{I}))
$$

preserving all natural transformations and order.

Theorem (Restorff)
Let $\mathfrak{A}$ and $\mathfrak{B}$ be Cuntz-Krieger algebras satisfying Condition (II). Then

$$
\mathfrak{A} \otimes \mathbb{K} \cong \mathfrak{B} \otimes \mathbb{K}
$$

if and only if

$$
\mathrm{FK}_{X}^{+}(\mathfrak{A}) \cong \mathrm{FK}_{Y}^{+}(\mathfrak{B})
$$

## Theorem (Eilers-Sørensen)

Let $E_{1}$ and $E_{2}$ be finite graphs and let $\bar{E}_{i}$ be the amplification of $E_{i}$. Then

$$
C^{*}\left(\bar{E}_{1}\right) \otimes \mathbb{K} \cong C^{*}\left(\bar{E}_{2}\right) \otimes \mathbb{K}
$$

if and only if

$$
\mathrm{FK}_{X}^{+}\left(C^{*}\left(\bar{E}_{1}\right)\right) \cong \mathrm{FK}_{Y}^{+}\left(C^{*}\left(\bar{E}_{2}\right)\right)
$$

$$
E_{1}:\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad E_{2}:\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\bar{E}_{1}:\left[\begin{array}{ccccc}
0 & \infty & 0 & 0 & 0 \\
\infty & 0 & \infty & 0 & 0 \\
0 & 0 & 0 & \infty & 0 \\
0 & 0 & 0 & 0 & \infty \\
0 & 0 & 0 & 0 & \infty
\end{array}\right] \quad \bar{E}_{2}:\left[\begin{array}{ccccc}
\infty & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & \infty \\
0 & 0 & 0 & \infty & \infty \\
0 & 0 & 0 & 0 & \infty \\
0 & 0 & 0 & 0 & \infty
\end{array}\right]
$$

Simple sub-quotients of $C^{*}\left(\bar{E}_{i}\right): \mathbb{K}, \mathcal{O}_{\infty}, \mathcal{O}_{\infty^{2}}, \ldots, \mathcal{O}_{\infty^{k}}$

$$
C^{*}\left(\bar{E}_{1}\right) \otimes \mathbb{K} \cong C^{*}\left(\bar{E}_{2}\right) \otimes \mathbb{K}
$$

## Primitive ideal space is finite and linear

If the primitive ideal space of $C^{*}(E)$ is $X: 1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n$, then

$$
0 \triangleleft \mathfrak{I}_{1} \triangleleft \mathfrak{I}_{2} \triangleleft \cdots \triangleleft \mathfrak{I}_{n}=C^{*}(E)
$$

## Theorem (Eilers-Restorff-R)

Let $C^{*}\left(E_{1}\right)$ and $C^{*}\left(E_{2}\right)$ be graph $C^{*}$-algebras with primitive ideal space $X$. If the finite and infinite simple sub-quotients are separated. Then

$$
C^{*}\left(E_{1}\right) \otimes \mathbb{K} \cong C^{*}\left(E_{2}\right) \otimes \mathbb{K} \Longleftrightarrow \mathrm{FK}_{X}^{+}\left(C^{*}\left(E_{1}\right)\right) \cong \mathrm{FK}_{X}^{+}\left(C^{*}\left(E_{2}\right)\right)
$$

## Theorem (Eilers-Restorff-R)

Let $C^{*}\left(E_{1}\right)$ and $C^{*}\left(E_{2}\right)$ be graph $C^{*}$-algebras with primitive ideal space $X$. If the finite and infinite simple sub-quotients are separated. Then

$$
C^{*}\left(E_{1}\right) \otimes \mathbb{K} \cong C^{*}\left(E_{2}\right) \otimes \mathbb{K} \Longleftrightarrow \mathrm{FK}_{X}^{+}\left(C^{*}\left(E_{1}\right)\right) \cong \mathrm{FK}_{X}^{+}\left(C^{*}\left(E_{2}\right)\right)
$$

- Ideas from Mikael Rørdam's classification result of extensions of Kirchberg algebras by Kirchberg algebras
- UCT of Meyer-Nest
- Kirchberg's result of lifting $\mathrm{KK}(X)$-equivalence to a $C^{*}$-algebra isomorphism


## Example

Let $p$ be a prime number and consider the class of graph $C^{*}$-algebras given by adjacency matrices

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
z & p+1 & 0 \\
y & x & p+1
\end{array}\right]
$$

for $y, z>0$.

$$
0 \triangleleft \mathfrak{I}_{1} \triangleleft \mathfrak{I}_{2} \triangleleft C^{*}(E)
$$

with $\mathfrak{I}_{1}=\mathbb{K}, \mathfrak{I}_{2} / \mathfrak{I}_{1}=\mathcal{O}_{p+1} \otimes \mathbb{K}$, and $\mathfrak{A} / \mathfrak{I}_{2}=\mathcal{O}_{p+1}$.

Let $E_{n}$ be the graph with adjacency matrix

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
n & 3 & 0 \\
1 & 1 & 3
\end{array}\right]
$$

Then

$$
C^{*}\left(E_{n}\right) \otimes \mathbb{K} \cong C^{*}\left(E_{n+4}\right) \otimes \mathbb{K}
$$

## Primitive ideal space is $V$ : <br> 

Suppose $\mathfrak{A}=C^{*}(E)$ has primitive ideal space


Then we have a smallest ideal $\mathfrak{A}(4)$ of $\mathfrak{A}$ and simple $C^{*}$-algebras $\mathfrak{A}(1), \mathfrak{A}(2), \mathfrak{A}(3)$ such that

$$
0 \rightarrow \mathfrak{A}(4) \rightarrow \mathfrak{A} \rightarrow \mathfrak{A}(1) \oplus \mathfrak{A}(2) \oplus \mathfrak{A}(3) \rightarrow 0
$$

is an exact sequence.

## Theorem (Eilers-Restorff-R)

Let $C^{*}\left(E_{1}\right)$ and $C^{*}\left(E_{2}\right)$ be graph $C^{*}$-algebras with primitive ideal space $V$. Then

$$
C^{*}\left(E_{1}\right) \otimes \mathbb{K} \cong C^{*}\left(E_{2}\right) \otimes \mathbb{K} \Longleftrightarrow \mathrm{FK}_{V}^{+}\left(C^{*}\left(E_{1}\right)\right) \cong \mathrm{FK}_{V}^{+}\left(C^{*}\left(E_{2}\right)\right)
$$

for the following cases:
(1) AF-(combination of PI and AF)
(2) PI-(combination of PI and AF with at most 3 PI)
(2) requires

- UCT of Bentmann for accordion spaces for the case with 2 PI
- (Arklint-Restorff-R) lifting isomorphism of filtrated $K$-theory to $\mathrm{KK}(X)$-equivalence for the case with 3 PI

Consider graphs given by

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
x & p+1 & 0 & 0 \\
y & 0 & p+1 & 0 \\
z & 0 & 0 & p+1
\end{array}\right]
$$

$x, y, z>0$. We get an extension

$$
0 \rightarrow \mathbb{K} \rightarrow C^{*}(E) \rightarrow \mathcal{O}_{p+1} \oplus \mathcal{O}_{p+1} \oplus \mathcal{O}_{p+1} \rightarrow 0
$$

With graphs $E_{1}$ and $E_{2}$ given by

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
x & p+1 & 0 & 0 \\
y & 0 & p+1 & 0 \\
z & 0 & 0 & p+1
\end{array}\right] \quad\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
x^{\prime} & p+1 & 0 & 0 \\
y^{\prime} & 0 & p+1 & 0 \\
z^{\prime} & 0 & 0 & p+1
\end{array}\right]
$$

Then

$$
C^{*}\left(E_{1}\right) \otimes \mathbb{K} \cong C^{*}\left(E_{2}\right) \otimes \mathbb{K}
$$

$$
|\{r \in\{x, y, z\}: p \mid r\}|=\left|\left\{r \in\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}: p \mid r\right\}\right|
$$

## Ideas of the proof

Set $\mathfrak{A}_{i}=C^{*}\left(E_{i}\right) \otimes \mathbb{K}$. Let $\alpha: \mathrm{FK}_{X}^{+}\left(\mathfrak{A}_{1}\right) \cong \mathrm{FK}_{X}^{+}\left(\mathfrak{A}_{2}\right)$.
Primitive ideal space linear with 2 points

Theorem (Rørdam, Eilers-Restorff-R)
There exist invertible elements

$$
\beta_{0} \in \operatorname{KK}\left(\mathfrak{I}_{1}, \mathfrak{I}_{2}\right) \quad \text { and } \quad \beta_{2} \in \operatorname{KK}\left(\mathfrak{A}_{1} / \mathfrak{I}_{1}, \mathfrak{A}_{2} / \mathfrak{I}_{2}\right)
$$

such that

$$
\left[\mathfrak{e}_{1}\right] \times \beta_{0}=\beta_{2} \times\left[\mathfrak{e}_{2}\right] \quad \text { in } \quad \operatorname{KK}^{1}\left(\mathfrak{A}_{1} / \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)
$$

Ideas of the proof
Set $\mathfrak{A}_{i}=C^{*}\left(E_{i}\right) \otimes \mathbb{K}$. Let $\alpha: \operatorname{FK}_{X}^{+}\left(\mathfrak{A}_{1}\right) \cong \operatorname{FK}_{X}^{+}\left(\mathfrak{A}_{2}\right)$.
For linear primitive ideal space with n points
Theorem (The UCT of Meyer-Nest)
There exists an invertible element $\beta \in \operatorname{KK}\left(X ; \mathfrak{A}_{1}, \mathfrak{A}_{2}\right)$ such that

$$
\mathrm{KK}(X ; \beta)=\alpha
$$

Theorem (Eilers-Restorff-R)
There exist invertible elements

$$
\beta_{0} \in \operatorname{KK}\left(U ; \mathfrak{I}_{1}, \mathfrak{I}_{2}\right) \quad \text { and } \quad \beta_{2} \in \operatorname{KK}\left(Z ; \mathfrak{A}_{1} / \mathfrak{I}_{1}, \mathfrak{A}_{2} / \mathfrak{I}_{2}\right)
$$

such that

$$
\left[\mathfrak{e}_{1}\right] \times \mathrm{KK}\left(\beta_{0}\right)=\mathrm{KK}\left(\beta_{2}\right) \times\left[\mathfrak{e}_{2}\right] \quad \text { in } \quad \mathrm{KK}^{1}\left(\mathfrak{A}_{1} / \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)
$$

## Theorem (Kirchberg)

Let $\mathfrak{A}$ and $\mathfrak{B}$ be separable, nuclear, simple, stable $C^{*}$-algebras such that $\mathfrak{A}$ and $\mathfrak{B}$ are $\mathcal{O}_{\infty}$-absorbing and $\operatorname{Prim}(\mathfrak{A}) \cong \operatorname{Prim}(\mathfrak{B}) \cong Y$. If $\beta$ is an invertible element in $\mathrm{KK}(Y ; \mathfrak{A}, \mathfrak{B})$, then there exists an isomorphism $\varphi$ from $\mathfrak{A}$ to $\mathfrak{B}$ such that $\mathrm{KK}(\varphi)=\beta$.

## Theorem (Elliott)

Let $\mathfrak{A}$ and $\mathfrak{B}$ be $A F$-algebras. If $\alpha \in \operatorname{KK}(\mathfrak{A} \otimes \mathbb{K}, \mathfrak{B} \otimes \mathbb{K})$ such that

$$
K_{0}(\alpha):\left(K_{0}(\mathfrak{A} \otimes \mathbb{K}), K_{0}(\mathfrak{A} \otimes \mathbb{K})_{+}\right) \cong\left(K_{0}(\mathfrak{B} \otimes \mathbb{K}), K_{0}(\mathfrak{B} \otimes \mathbb{K})_{+}\right)
$$

then there exists an isomorphism $\varphi$ from $\mathfrak{A} \otimes \mathbb{K}$ to $\mathfrak{B} \otimes \mathbb{K}$ such that $\operatorname{KK}(\varphi)=\alpha$.

Lift $\mathrm{KK}\left(\beta_{0}\right)$ and $\mathrm{KK}\left(\beta_{2}\right)$ to isomorphisms $\varphi_{0}$ and $\varphi_{2}$


$$
\left[\widetilde{\mathfrak{e}}_{1}\right]=\left[\widetilde{\mathfrak{e}}_{2}\right] \quad \text { in } \quad \operatorname{KK}^{1}\left(\mathfrak{A}_{1} / \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)
$$

Theorem (Eilers-Tomforde, Eilers-Restorff-R)
Let $C^{*}(E)$ be a graph $C^{*}$-algebra with linear ideal lattice. If finite and infinite simple sub-quotients are separated and $C^{*}(E)$ is not an $A F$ algebra, then

$$
0 \rightarrow \mathfrak{I} \otimes \mathbb{K} \rightarrow C^{*}(E) \otimes \mathbb{K} \rightarrow C^{*}(E) / \mathcal{I} \otimes \mathbb{K} \rightarrow 0
$$

is a full extension.

Results of Kucerovsky-Ng on full extensions implies that

$$
\tilde{\mathfrak{A}}_{1} \cong \tilde{\mathfrak{A}}_{2} \quad \Longrightarrow \quad \mathfrak{A}_{1} \cong \mathfrak{A}_{2}
$$

