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An Exel system (A, α, L) consists of an endomorphism α of a
C∗-algebra A and a transfer operator L for α: a positive linear
map L : A→ A such that L(α(a)b) = aL(b) for a,b ∈ A.

Today A is unital, α(1) = 1 and L(1) = 1. These can all be
relaxed (look in the arXiv under “Brownlowe”).

Example. (Classical Exel systems.) Suppose that σ : X → X is
a surjective local homeomorphism on a compact space X .
Then α : f 7→ f ◦ σ is an endomorphism of C(X ), and there is a
natural transfer operator:

L(f )(x) =
1

|σ−1(x)|
∑

σ(y) = x

f (y).

Example. Fix N ∈ N and define αN ∈ End C(T) by
αN(f )(z) = f (zN).

Example. The shift σ on the one-sided path space E∞.



Suppose (A, α, L) is an Exel system. What is its crossed
product? Exel (ETDS 03) advises as follows:

I View A as a right A-module AL, by defining m · a = mα(a)
for m ∈ AL and a ∈ A.

I Define an A-valued pairing on AL by 〈m,n〉 = L(m∗n); the
properties of the transfer operator L ensure that AL is then
a pre-inner-product module over A.

I Complete to get a right Hilbert A-module ML.

I Observe that φ(a) : m→ am extends to an adjointable
operator on ML, giving a homomorphism φ : A→ L(ML).

I Define a ·m := φ(a)m to make ML into a right-Hilbert A–A
bimodule (or correspondence over A, or Hilbert bimodule
over A).

Now we simply define the Exel crossed product A oα,L N to be
the Cuntz-Pimsner algebra O(ML) of the bimodule.



Suppose that M is a right-Hilbert A–A bimodule. A
representation of M in a unital C∗-algebra B consists of a linear
map ψ : M → B and a homomorphism π : A→ B such that

ψ(a ·m · b) = π(a)ψ(m)π(b) and π(〈m,n〉) = ψ(m)∗ψ(n).

The Toeplitz algebra T (M) is generated by a universal
representation (iM , iA).

For m,n ∈ M, Θm,n denotes the rank-one operator l 7→ m · 〈n, l〉;
K(M) := span{Θm,n : m,n ∈ M} is an ideal in L(M). A
representation (ψ, π) : M → B induces a homomorphism
(ψ, π)(1) : K(M)→ B such that (ψ, π)(1)(Θm,n) = ψ(m)ψ(n)∗.

Say that (ψ, π) is Cuntz-Pimsner covariant if

π(a) = (ψ, π)(1)(φ(a)) whenever φ(a) ∈ K(M).

The Cuntz-Pimsner algebra O(M) is a quotient of T (M) which
is generated by a universal C-P covariant rep (jM , jA).



C-P covariance often has very concrete implications. A finite
sequence {mi : 0 ≤ i < N} in M is a Parseval frame if

m =
N−1∑
i=0

mi · 〈mi ,m〉 for every m ∈ M.

One can interpret this reconstruction formula as saying that the
identity 1 in L(M) is the finite-rank operator

∑N−1
i=0 Θmi ,mi . Thus

C-P covariance of (ψ, π) implies that

π(1) =
N−1∑
i=0

(ψ, π)(1)(Θmi ,mi ) =
N−1∑
i=0

ψ(mi)ψ(mi)
∗. (1)

Indeed, since we also have φ(a) =
∑N−1

i=0 Θa·mi ,mi , C-P
covariance is equivalent to (1)!

In (1), {ψ(mi)} is trying to be a Cuntz family. However, the
ψ(mi) need not be isometries. . .



An orthonormal basis for M is a set {mi : 0 ≤ i < N} which
generates M and satisfies 〈mi ,mj〉 = δi,j1. Every orthonormal
basis is a Parseval frame (just check the reconstruction formula
on m =

∑
i mi · ai and extend by continuity to m ∈ M).

But the converse is not true: if {mi} is a Parseval frame, then
m 7→ {〈mi ,m〉} embeds M (as a right Hilbert module) onto a
direct summand of AN , and if P is the projection on M, then
mi = Pei (Rieffel, Frank-Larson 03).

When {mi} is an orthonormal basis and (ψ, π) is a
Cuntz-Pimsner covariant representation in B, we have

ψ(mi)
∗ψ(mi) = π(〈mi ,mi〉) = π(1),

and {ψ(mi)} is a Cuntz family in π(1)Bπ(1).



For (C(T), αN ,L), the functions {z i : 0 ≤ i < N} form an
orthonormal basis for ML (Packer-Rieffel 03). Since
jC(T)(1) = 1, {jML(z i)} is a Cuntz familiy. Other o/n bases are
even more interesting.

Example. An orthonormal basis {mi : 0 ≤ i < N} for the right
module ML for (C(T), αN ,L) is “a filter bank with perfect
reconstruction”. Of particular interest are filter banks where m0
is “low-pass”: m0(1) = N1/2, m0 is smooth near 1, and m0 6= 0
on a sufficiently large neighbourhood of 1.

Consider the representation M : C(T)→ B(L2(T)) and the
isometry S on L2(T) given by (Sξ)(z) = ξ(zN), and define
ψ(f ) = M(f )S. Then (ψ,M) is a Cuntz-Pimsner covariant
representation of ML, and the corresponding Cuntz family
Si := ψ(mi) defined by (Siξ)(z) = mi(z)ξ(zN) plays a
fundamental role in the construction of wavelets
(Bratteli-Jorgensen 97+, Larsen-R 06, Baggett et al 10).



All of which encouraged Astrid an Huef and I to have a closer
look at the Exel crossed product C(T) oαN ,L N.
Results of Exel-Vershik show it is simple, and results of Katsura
that it is purely infinite. So we computed its K -theory, finding

K0 = Z⊕ (Z/(N − 1)Z) and K1 = Z.

Then we started seeing this K -theory everywhere: this algebra
has been studied in different guises by Deaconu, Brenken,
Kajiwara and Watatani, Katsura, Yamashita, and....

There are other dilations of interest in wavelet theory. An
integer matrix A ∈ Md (Z) is a dilation matrix if all its complex
eigenvalues have |λ| > 1. It induces a covering σA of Td such
that σA(e2πix ) = e2πiAx , and an endomorphism αA of C(Td ). If Σ
is a set of coset representatives for AtZd in Zd , then
{zm : m ∈ Σ} is an orthonormal basis for ML, and
{jML(zm) : m ∈ Σ} is a Cuntz family in C(T) oαA,L N.



We proved (again leaning on Exel-Vershik and Katsura) that
C(Td ) oαA,L N is simple and purely infinite. Then we ran into a
brick wall with the K -theory. Ruy Exel saved us by suggesting
that, instead of trying to apply Pimsner’s six-term sequence, we
look at its proof and try to use the extra information we have,
which is that ML (as a rt module) has an orthonormal basis.

Suppose (C(X ), α, L) is a classical Exel system and
{mi : 0 ≤ i < N} is an orthonormal basis for ML.

Lemma. (EaHR) Define Ω : C(X )→ MN(C(X )) by
Ω(f ) = (〈mj , f ·mk 〉)j,k . Then Ω is a homomorphism, and for
f ∈ C(X ), Ω(α(f )) is the diagonal matrix f1N in MN(C(X )).

Notice that Ki(MN(C(X ))) is canonically isomorphic to
Ki(C(X )), and these isomorphisms (for both i = 0 and i = 1)
take [f1N ] to N[f ]. So the lemma implies that Ω∗ ◦ α∗ is
multiplication by N.



Theorem. (Exel–an Huef–R, 2010) Let (C(X ), α, L) be a
classical Exel system, suppose that {mi : 0 ≤ i < N} is an
orthonormal basis for ML, and that Ω is as in the previous
lemma. Then there is an exact sequence

K0(C(X ))
id−Ω∗ // K0(C(X ))

jC(X)∗ // K0(O(ML))

��
K1(O(ML))

OO

K1(C(X ))
jC(X)∗oo K1(C(X )).

id−Ω∗oo

(2)

We want to apply this to (C(Td ), αA,L). Ji calculated

K∗(C(Td )) = K ∗(Td ) = H∗(Td ,Z) =
∧

H1(Td ,Z) =
∧

[Td ,T].

[Td ,T] is the free abelian group generated by the functions
uk : z = (zi , · · · , zd ) 7→ zk . The matrix of (αA)∗ wrt the basis
{uk} is At . So (αA)∗ =

∧
At :

∧
Zk →

∧
Zk .



We want to compute Ω∗ knowing that Ω∗ ◦ (αA)∗ is multiplication
by N := |det A| and (αA)∗ =

∧
At :

∧
Zk →

∧
Zk . Over Q,

∧
At

is invertible. So if we can find a matrix B over Z such that
B(
∧

At ) = N1d , then Ω∗ = B.

. . . a wee bit of multilinear algebra later, we have formulas for
the kernel and cokernel of id−Ω∗, and the exact sequence on
the previous slide gives short exact sequences for

K0(O(ML)) = K0(C(Td ) oαA,L N) and K1(O(ML)).

Examples. For A =
( 2 1
−1 2

)
, we have det A = 5 > 1 and

K0(O(ML)) = Z/4Z⊕ Z and K1(O(ML)) = Z⊕ (Z/2Z).

For A =
( 2 −1

1 −3

)
, we have det A = −5, and

K0(O(ML)) = (Z/4Z)⊕ (Z/2Z) and K1(O(ML)) = Z/5Z.



An Exel crossed product A oα,L N = O(ML) has a dual action γ
of T such that γz(jA(a)) = jA(a) and γz(jML(m)) = zjML(m),
which lifts to σ : t 7→ γeit of R. What are the KMS states of
(C(Td ) oαA,L N, σ)?

In general, for β ∈ [1,∞), a KMSβ state of (B, σ) is a state ψ
such that ψ(bc) = ψ(cσiβ(b)) for all b, c in a dense
∗-subalgebra of analytic elements (that is, elements such that
t 7→ σt (b) is the restriction of an entire function).

In practice, it is easy to write down enough analytic elements.
Here, C(Td ) oαA,L N is generated by a unitary representation
u : m→ jC(Td )(zm) of Zd and an isometry v = jML(1). Then the
elements umvkv∗lu∗n span a dense ∗-subalgebra of C(Td ) oN),
and are analytic: σt (umvkv∗lu∗n) = eit(k−l)umvkv∗lu∗n.



The elements {umv = jML(zm) : m ∈ Σ} are precisely the Cuntz
family we had earlier, and hence any KMSβ state ψ satisfies

1 = ψ(1) = ψ
(∑

m∈Σ

umvv∗u∗m
)

=
∑
m∈Σ

ψ(v∗u∗mσiβ(umv))

=
∑
m∈Σ

ei(iβ)ψ(v∗u∗mumv) = e−β
∑
m∈Σ

ψ(1)

= e−β|det A|.

Theorem. (LRR) (C(Td ) oαA,L N, σ) has exactly one KMS
state, and it occurs when β = log |det A|.

Write N := |det A|. To see there is a KMSlog N state, use the
dual coaction of Zd [A−1] o Z to build an expectation E onto
C := span{umvkv∗ku∗m}. Then write C =

⋃
k Ck : each Ck is

commutative with dim Ck = Nk , so has a normalised trace, and
these combine to give a trace τ on C. Take ψ := τ ◦ E .
We get a specific formula for ψ(umvkv∗lu∗n), and playing with
the KMS condition shows it is the only possibility.



Consider the Toeplitz algebra T (ML) for (C(Td ), αA,L). It is also
generated by a unitary representation u of Zd and an isometry
v , and the umvkv∗lu∗n still span, but the Cuntz relation becomes
an inequality. We still have a dynamics σ. Write B = At .

Theorem. (LRR) For each β > log |det A| and µ ∈ P(Td ), there
is a KMSβ state ψβ,µ such that ψβ,µ(umvkv∗lu∗n) vanishes
unless k = l and m − n ∈ BkZd , and then equals

(1−|det A|e−β)
∑

{j≥k : n−m∈BjZd}

|det A|j−ke−jβ
∫
Td

zB−j (m−n) dµ(z).

Apart from the one lifted from the unique KMS state on
C(Td ) oαA,L N, these are all the KMS states for (T (ML), σ).

We build ψβ,µ in the Hilbert space of the representation⊕∞
j=0 IndZd

BjZd M ◦ B−j , where M is the representation of Zd on
L2(Td ,dµ) defined by (Mmf )(z) = zmf (z).
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