Spectra of C* algebras, Extensions and R-actions

Eberhard Kirchberg Humboldt-Universität zu Berlin

Sept 5, 2010

C*-Workshop, Banff, Sept 2010

– Typeset by $\ensuremath{\mathsf{FoilT}}\xspace{T_E\!X}$ –

TOC

- Spectra of amenable C*-algebras.
- NC-Selection and semi-split Extensions.
- Study of coherent locally q-compact spaces.
- Application: Exotic line-action on Cuntz algebras.

Conventions and Notations

- Spaces P, X, Y, \ldots are T_0 and *second countable*, algebras A, B, \ldots are *separable*, ...
- ... except corona spaces $\beta(P) \setminus P$, multiplier algebras $\mathcal{M}(B)$, and ideals of corona algebras $Q(B) := \mathcal{M}(B)/B$, the space $\operatorname{Prim}(\mathcal{M}(B))$, ...
- The isomorphisms $\mathcal{I}(A) \cong \mathbb{O}(\operatorname{Prim}(A)) \cong \mathcal{F}(\operatorname{Prim}(A))^{op}$ will be used frequently.
- $\mathbb{Q} := [0,1]^{\infty}$ denotes the Hilbert cube (with its coordinate-wise order).
- A T₀ space X is sober (or "point-complete") if each prime closed subset F of X is a the closure {x} = F of a singleton {x}. (Locally) "compact" means (locally) "quasi-compact" in case of T₀ spaces.

Spectra of amenable algebras (1)

Characterization of Prim(A) for amenable A (H.Harnisch, E.K., M.Rørdam):

Theorem 1. A sober space X is homeomorphic to a primitive ideal space of an amenable C^* -algebra A, if and only if,

there is a Polish I.c. space P and a continuous map $\pi \colon P \to X$ such that

 $\pi^{-1}: \mathbb{O}(X) \to \mathbb{O}(P)$ is injective (=: π is pseudoepimorphic),

and

 $(\bigcap_n \pi^{-1}(U_n))^\circ = \pi^{-1}((\bigcap_n U_n)^\circ)$ for each sequence $U_1, U_2, \ldots \in \mathbb{O}(X)$ (=: π is pseudo-open).

The algebra $A \otimes \mathcal{O}_2 \otimes \mathbb{K}$ is uniquely determined by X up to (unitarily homotopic) isomorphisms.

[–] Typeset by Foil $\mathrm{T}_{E}\mathrm{X}$ –

Spectra of amenable algebras (2)

Notice: A continuous epimorphism $\pi: P \to X$ is not necessarily *pseudo-open*, e.g. $\sum_n \alpha_n 3^{-n} \mapsto \sum_n \alpha_n 2^{-n}$ is continuous epimorphism from the Cantor space $\{0,1\}^{\infty}$ onto [0,1], but no pseudoopen continuous epimorphism from $\{0,1\}^{\infty}$ onto [0,1] exists.

A map $\Psi \colon \mathbb{O}(X) \to \mathbb{O}(Y)$ is **lower semi**continuous if $(\bigcap_n \Psi(U_n))^\circ = \Psi((\bigcap_n U_n)^\circ)$ for each sequence $U_1, U_2, \ldots \in \mathbb{O}(X)$.

(Thus, π is pseudo-open, if and only if, $\Psi := \pi^{-1}$ is lower semi-continuous.)

If one works with *closed sets*, then one has to replace intersections by unions and interiors by closures.

[–] Typeset by Foil $\mathrm{T}_{\!E}\mathrm{X}$ –

NC-Selection and Extensions (1)

Proposition 2. If $\Psi: \mathcal{I}(B) \to \mathcal{I}(A)$ is a lower semi-continuous action of Prim(B) on A and Bis stable, then there exists a lower s.c. action $\mathcal{M}(\Psi): \mathcal{I}(\mathcal{M}(B)) \to \mathcal{I}(A)$ of $Prim(\mathcal{M}(B))$ on A, that has the following properties (i)-(iii):

(i) M(Ψ) is monotone upper semi-continuous
(:= sup's of upward directed families of ideals will be respected).

(ii)
$$\mathcal{M}(\Psi)(J_1) = \mathcal{M}(\Psi)(J_1)$$

if $J_1 \cap \delta_{\infty}(\mathcal{M}(B)) = J_2 \cap \delta_{\infty}(\mathcal{M}(B)).$

(iii) $\mathcal{M}(\Psi)(\mathcal{M}(B,I)) = \Psi(I)$ for all $I \in \mathcal{I}(B)$.

The "extension" $\mathcal{M}(\Psi)$ of Ψ with (i)–(iii) is unique.

NC-Selection and Extensions (2)

For strongly p.i. (not necessarily separable) B and exact A, there is a nuclear *-morphism $h: A \to B$ with $\Psi(J) = h^{-1}(h(A) \cap J)$, if and only if, Ψ is lower s.c. and monotone upper s.c. It yields the following theorem.

Theorem 3. [NC-selection] Suppose that B is stable, $A \otimes \mathcal{O}_2$ contains a regular exact C^* -algebra $C \subset A \otimes \mathcal{O}_2$, and that $\Psi \colon \mathcal{I}(B) \to \mathcal{I}(A)$ is a lower s.c. action of Prim(B) on A.

Then there is a *-morphism $h: A \to \mathcal{M}(B)$ such that $\delta_{\infty} \circ h$ is unitarily equivalent to h, $\Psi(J) = h^{-1}(h(A) \cap \mathcal{M}(B, J))$ and that

 $[h]_J \colon A/\Psi(J) \to \mathcal{M}(B/J) \cong \mathcal{M}(B)/\mathcal{M}(B,J)$

is weakly nuclear for all $J \in \mathcal{I}(B)$.

– Typeset by FoilT $_{\!E\!} \! \mathrm{X}$ –

NC-Selection and Extensions (3)

Here, a subalgebra $C \subset D$ is **regular** if Cseparates the ideals of D and $C \cap (I + J) = (C \cap I) + (C \cap J)$ for all $I, J \in \mathcal{I}(D)$.

Theorem 3 applies to necessary and sufficient criteria for (ideal-system-) equivariant semi-splitness of extensions.

Let $\epsilon \colon B \to E$ a *-monomorphism onto a closed ideal of E and $\pi \colon E \to A$ an epimorphism such that $\epsilon(B)$ is the kernel of π . We denote by $\gamma \colon A \to Q(B) = \mathcal{M}(B)/B$ the Busby invariant of the extension

$$0 \to B \xrightarrow{\epsilon} E \xrightarrow{\pi} A \to 0$$

NC-Selection and Extensions (4)

Consider now general "actions" $\psi_B \colon S \to \mathcal{I}(B)$, $\psi_E \colon S \to \mathcal{I}(E)$, and $\psi_A \colon S \to \mathcal{I}(A)$, of a set S on B, E and A. We require that the extension E is ψ -equivariant:

(a)
$$\epsilon(\psi_B(s)) = \epsilon(B) \cap \psi_E(s) = \epsilon(B)\psi_E(s)$$
, and

(b)
$$\psi_A(s) = \pi(\psi_E(s))$$
 for all $s \in S$.

i.e., $0 \to \psi_B(s) \to \psi_E(s) \to \psi_A(s) \to 0$ is exact for each $s \in S$.

An action $\Phi: \mathcal{I}(A) \to \mathcal{I}(B)$ of Prim(A) on Bis **upper semi-continuous** if Ψ preserves sup of families in $\mathcal{I}(A)$, i.e., $\Psi(I + J) = \Psi(I) + \Psi(J)$ and Ψ is monotone upper semi-continuous.

NC-Selection and Extensions (5)

Lemma 4. There is a unique maximal upper semicontinuous map $\Phi: \mathcal{I}(A) \to \mathcal{I}(B)$ with the property that $\Phi(\psi_A(s)) \subset \psi_B(s)$ for all $s \in S$.

Upper semi-continuous actions Φ have lower semi-continuous (= inf preserving) adjoint maps $\Psi: \mathcal{I}(B) \to \mathcal{I}(A)$ such that (Ψ, Φ) build a Galois connection, i.e., $\Psi(J) \supset I$ iff $J \supset \Phi(I)$. The rule is: The *upper* adjoint is *lower* semi-continuous.

Applications of Theorem 3 to the adjoint Ψ of Φ in Lemma 4 implies the following necessary and sufficient criterion (ii):

NC-Selection and Extensions (6)

Theorem 5. Let B, E, A, ϵ , π , γ , $\psi_Y \colon S \to \mathcal{I}(Y)$ (for $Y \in \{B, E, A\}$) be as above, and let $\Phi \colon \mathcal{I}(A) \to \mathcal{I}(B)$ the map given in Lemma 4.

Suppose, in addition, that A is exact and that B is weakly injective (i.e., has the WEP of Lance).

Then the following properties (i) and (ii) of the extension are equivalent:

- (i) The extension has an S-equivariant c.p. splitting map, i.e., there is a c.p. map $V: A \to E$ with $\pi \circ V = \operatorname{id}_A$ and $V(\psi_A(s)) \subset \psi_E(s)$ for all $s \in S$.
- (ii) The Busby invariant $\gamma \colon A \to Q(B)$ is nuclear, and,

 $\pi_B(\mathcal{M}(B, \Phi(J))) \supset \gamma(J) \qquad \forall \ J \in \mathcal{I}(A)$

Coherent Dini spaces (1)

Definition 6. A map $f: X \to [0, \infty)$ is a **Dini function** if it is lower semi-continuous and $\sup f(\bigcap_n F_n) = \inf_n \{\sup f(F_n)\}$ for every decreasing sequence $F_1 \supset F_2 \supset \cdots$ of closed subsets of X.

A sober T_0 space X is a **Dini** space if the supports of the Dini functions build a base of the topology of X.

The Dini functions f are exactly the functions that satisfy the (generalized) **Dini Lemma**: Every upward directed net of l.s.c. functions converges **uniformly** to f if it converges point-wise to f. If a T_0 space X is sober, then a function $f: X \to [0, 1]$ is Dini, if and only if, f is lower semi-continuous and the restriction $f: X \setminus f^{-1}(0) \to (0, 1]_{lsc}$ is proper.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Coherent Dini spaces (2)

The class of Dini spaces X coincides with the class of sober locally compact T_0 spaces with a countable base of its topology.

A subset C of X is **saturated** if C = Sat(C), where Sat(C) means the intersection of all $U \in \mathbb{O}(X)$ with $U \supset C$.

Definition 7. A sober T_0 space X is coherent if the intersection $C_1 \cap C_2$ of two saturated quasicompact subsets $C_1, C_2 \subset X$ is again quasi-compact.

Below, we consider some partial results concerning the open **Question**:

Is every (second-countable) coherent Dini space X homeomorphic to the primitive ideal spaces Prim(A) of some amenable C^* -algebra A?

Let $\mathcal{F}(X)$ denote the lattice of closed subsets $F \subset X$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Coherent Dini spaces (3)

Definition 8. The topological space $\mathcal{F}(X)_{lsc}$ is the set $\mathcal{F}(X)$ with the T_0 order topology that is generated by the complements

 $\mathcal{F}(X) \setminus [\emptyset, F] = \{ G \in \mathcal{F}(X) ; \ G \cap U \neq \emptyset \} =: \mu_U$

of the intervals $[\emptyset, F]$ for all $F \in \mathcal{F}(X)$ (where $U = X \setminus F$).

The Fell-Vietoris topology on $\mathcal{F}(X)$ is the topology, that is generated by the sets μ_U ($U \in \mathbb{O}(X)$) and the sets $\mu_C := \{G \in \mathcal{F}(X); G \cap C = \emptyset\}$ for all quasi-compact $C \subset X$.

 $\mathbb{O}(X) \cong \mathcal{F}(X)^{\mathrm{op}}$ defines the **Larson** topology on $\mathbb{O}(X)$. We denote by $\mathcal{F}(X)_H$ Fell-Vietoris topology.

The space $\mathcal{F}(X)_{lsc}$ is a *coherent Dini* space, and the space $\mathcal{F}(X)_H$ is a *compact Polish* space.

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Coherent Dini spaces (4)

The ordered Hilbert cube \mathbb{Q} is nothing else $\mathcal{F}(Y)$ for $Y := X_0 \uplus X_0 \uplus \cdots$ where $X_0 := (0, 1]_{lsc}$. The Fell-Vietoris topology becomes the usual Hausdorff topology on \mathbb{Q} .

If X is locally quasi-compact sober T_0 space, then a dense sequence g_1, g_2, \ldots in the Dini functions g on X with $\sup g(X) = 1$ defines an order isomorphism $\iota \colon \mathcal{F} \to \mathbb{Q}$ onto a max-closed subset $\iota(\mathcal{F})$ of \mathbb{Q} with $\iota(\emptyset) = 0, \ \iota(X) = 1$ by

$$\iota(F) := (\sup g_1(F), \sup g_2(F), \ldots) \in \mathbb{Q}.$$

The image $\iota(\mathcal{F}(X))$ is closed in \mathbb{Q} (with Hausdorff topology) and ι defines a homeomorphism from $\mathcal{F}(X)$ onto $\iota(\mathcal{F}(X))$ with respect to both topologies on $\mathcal{F}(X)$ and \mathbb{Q} .

Coherent Dini spaces (5)

In this way, $X \cong \eta(X) \subset \overline{\eta(X)}^H \setminus \{0\} \subset \mathcal{F}(X) \subset \mathbb{Q}$, considered as Polish spaces, with $X \ni x \mapsto \eta(x) := \overline{\{x\}} \in \mathcal{F}(X)$.

Theorem 9. Let X a second countable locally (quasi-)compact sober T_0 space. Following properties (i)-(iv) of X are equivalent:

(i) X is coherent.

(ii) The set $\mathcal{D}(X)$ of Dini functions on X is convex.

(iii) $\mathcal{D}(X)$ is min-closed.

(iv) $\mathcal{D}(X)$ is multiplicatively closed.

Coherent Dini spaces (6)

It is known that, X is coherent, if and only if, the image $\eta(X) \cong X$ in $\mathcal{F}(X) \setminus \{\emptyset\}$ is closed in $\mathcal{F}(X) \setminus \{\emptyset\}$ with respect to the Fell-Vietoris topology on $\mathcal{F}(X)$.

- Lemma 10. (1) Each closed subset $F \subset \mathbb{Q}_H$ is a coherent locally compact sober subspace F_{lsc} of \mathbb{Q}_{lsc} , and is the intersection of an decreasing sequence F_k of closed subspaces of \mathbb{Q}_H that are continuously order-isomorphic to spaces $G_k \times \mathbb{Q}$ with $G_k \subset [0,1]^{n_k}$ a finite union of n_k -dimensional (small) cubes.
- (II) If $F = \bigcap_k F_k$ for a sequence $F_1 \supset F_2 \supset \cdots$ of closed subsets in \mathbb{Q}_H , and if each $(F_k)_{lsc} \subset \mathbb{Q}_{lsc}$ is the primitive ideal space of an amenable C^* algebra, then F_{lsc} is the primitive ideal space of an amenable C^* -algebra.

Coherent Dini spaces (7)

Lemma 10 applies to $F := \eta(\mathcal{F}(X))$ for all Dini spaces X, and to $F := \{0\} \cup \eta(X)$ for all coherent Dini spaces X.

Corollary 11. If there is a coherent sober l.c. space X that is not homeomorphic to the primitive ideal space of an amenable C^* -algebra, then there is $n \in \mathbb{N}$ and a finite union Y of (Hausdorff-closed and small) cubes in $[0,1]^n$ such that Y with induced order-topology is not the primitive ideal space of any amenable C^* -algebra.

Theorem 12. [O.B. loffe, E.K.] If $G \subset [0,1]^n$ is a finite union of (small) cubes, then the space G_{lsc} has a decomposition series $U_1 \subset U_2 \subset \cdots \subset U_k$, by open subsets $U_\ell \subset G_{lsc}$ such that $U_{\ell+1} \setminus U_\ell$ is the primitive ideal space of an amenable C^* -algebra.

Now combine above results with the following conjecture.

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Coherent Dini spaces (8)

Let X a Dini space and $U \subset X$ open.

Conjecture 13. The space X is homeomorphic to the primitive ideal space of an amenable C^* -algebra if U and $X \setminus U$ are homeomorphic to primitive ideal spaces of amenable C^* -algebras.

This Conjecture implies that Dini spaces are primitive ideal spaces of amenable C^* -algebras — if they have decomposition series by open subsets $\{U_{\alpha}\}$ with coherent spaces $U_{\alpha+1} \setminus U_{\alpha}$.

A Dini space X is the primitive ideal space of an AF-algebra if U and $X \setminus U$ are primitive ideal spaces of AF-algebras.

Proposition 14. Conjecture 13 reduces, in the case where X is coherent, to the case, where $X \setminus U = \{p\}$ is a singleton and $U \cong Prim(B)$, and where B is an inductive limit of algebras $B_n \cong C_0(\Gamma_n \setminus \{g_n\}) \otimes M_{k_n}$ for connected pointed graphs (Γ_n, g_n) .

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Exotic \mathbb{R} -actions (1)

Theorem 15. [N.Ch. Phillips, E.K.] Suppose that A is an amenable C*-algebra, G an amenable l.c. group, and that G acts minimally by $\alpha: G \to \operatorname{Homeo}(\operatorname{Prim}(A))$ on $\operatorname{Prim}(A)$. Then there exists a continuous group-action $\beta: G \to \operatorname{Aut}(B)$ on the C*-algebra $B := A \otimes \mathcal{O}_2 \otimes \mathbb{K}$ that implements α , and has crossed product $B \rtimes_{\beta} G \cong \mathcal{O}_2 \otimes \mathbb{K}$.

A part of the proof is an G-equivariant improvement of Theorem 1. Then the spectra of the actions will be enriched by tensoring (infinitely often if necessary) with the natural action of G on $\mathcal{O}_{\infty} \cong \mathcal{O}(L_2(G))$.

Definition 16. [N.C.Phillips compactification] Let $\Xi(P)$ denote the prime T_0 space $P \cup \{\infty\}$ with topology given by the system of open subsets

 $\mathbb{O}(\Xi(P)) = \{ \emptyset, \Xi(P) \setminus C ; \ C \subset P, \ \text{compact in } P \}.$

Exotic \mathbb{R} -actions (2)

Theorem 17. [N.Ch. Phillips, E.K.] There exists an amenable C^* -algebra A with $Prim(A) \cong \Xi(P)$.

If we apply the above theorems to $\Xi(G)$, we get:

Corollary 18. Every non-compact amenable l.c. group G has a co-action $\widehat{\beta}$ on $\mathcal{O}_2 \otimes \mathbb{K}$ such that $B := (\mathcal{O}_2 \otimes \mathbb{K}) \rtimes \widehat{G}$ is prime and the (dual) action β of G on B is minimal and toplogically free.

If $G := \mathbb{R} = \widehat{G}$, there is also an action $\widehat{\beta}$ of $\mathbb{R} = \widehat{\mathbb{R}}$ on \mathcal{O}_2 itself with this property.

General extensions (1)

The existence problem for extensions reduces in case of non-coherent X to the case where $U \cong$ Prim(B) with $B \cong B \otimes \mathcal{O}_2 \otimes \mathbb{K}$ is an inductive limit of algebras $B_n \cong C_0(\Gamma_n \setminus \{g_n\}) \otimes M_{k_n}$ for connected pointed graphs (Γ_n, g_n) , and where $F := X \setminus U$ is homeomorphic to $(0, 1]_{lsc}$.

This is equivalent to the below formulated question:

Given sequences of positive contractions $T_1, T_2, \ldots \in \mathcal{M}(B)_+$ and isometries $V_n \in \mathcal{M}(B)$ with $T_{n+1} = V_n^* T_n V_n$. Let $\gamma(J) := \lim_n ||T_n + \mathcal{M}(B, J)||$, and suppose that, for each $J \in \mathcal{I}(B)$ and $n \in \mathbb{N}$, there is $b := b_{n,J} \in B$ such that

$$(\delta_{\infty}(T_n) - \gamma(J))_+ - \delta_{\infty}(b) \in \mathcal{M}(B, J),$$

i.e., $\delta_{\infty}(\mathcal{M}(\pi_J)(T_n) - \gamma(J)_+) \in \delta_{\infty}(B/J).$

General extensions (2)

Question 19. Does there exist a contraction $S \in \mathcal{M}(B)_+$ such that

 $\|\mathcal{M}(\pi_J)(S)\| = \|S + \mathcal{M}(B, J) + B\| = \gamma(J)$

for each $J \in \mathcal{I}(B)$.

If the answer is positive, then the element $\pi_B(S) \in Q(B)$ defines the desired Busby invariant of the desired extension.