



# Beyond classification of Cuntz-Krieger algebras

Sara Arklint

September 22, 2010 Slide 1/8



### Theorem (Restorff)

Filtrated K-theory  $\overline{FK}$  stably classifies Cuntz-Krieger algebras satisfying condition (II).

#### Definition

Filtrated K-theory  $\overline{FK}(A)$  of A consist of all groups  $K_*(J/I)$  with  $I \subseteq J$  ideals in A, together with all maps



induced by  $J/I \hookrightarrow K/I \twoheadrightarrow K/J$  when  $I \trianglelefteq J \trianglelefteq K \trianglelefteq A$ .

#### Sara Arklint — Beyond classification of Cuntz-Krieger algebras — September 22, 2010 Slide 2/8



- Does FK strongly classify the Cuntz-Krieger algebras up to stable isomorphism?
- Does (FK, [1<sub>A</sub>]) classify the Cuntz-Krieger algebras up to unital isomorphism?
- Does FK stably classify the purely infinite graph C\*-algebras with a finite ideal lattice?
- Let A be a purely infinite, separable, nuclear C\*-algebra in the bootstrap class and with a finite ideal lattice.
  If FK(A) ≅ FK(B) for B a Cuntz-Krieger algebra, is A then stably isomorphic to a Cuntz-Krieger algebra?

#### Theorem (Kirchberg)

Let A and B be  $O_{\infty}$ -absorbing, separable, nuclear C\*-algebras with  $Prim(A) \cong Prim(B) \cong X$ . Then any KK(X)-equivalence between A and B lifts to an X-equivariant isomorphism between  $A \otimes \mathbb{K}$  and  $B \otimes \mathbb{K}$ .



## Theorem (Meyer-Nest)

For X finite linear space, the UCT holds, i.e. the sequence

 $\mathsf{Ext}(\mathsf{FK}_X(A),\mathsf{FK}_X(B)) \hookrightarrow \mathsf{KK}_*(X;A,B) \twoheadrightarrow \mathsf{Hom}(\mathsf{FK}_X(A),\mathsf{FK}_X(B))$ 

is exact for all separable  $C^*$ -algebras A and B over X where A lies in the bootstrap class  $\mathcal{B}(X)$ .

#### Theorem (Bentmann)

For X finite accordion space, the UCT holds.

### Corollary

For purely infinite, separable, nuclear C\*-algebras A and B with all simple subquotients in the bootstrap class and with  $Prim(A) \cong Prim(B) \cong X$  finite accordion space, any isomorphism between  $FK_X(A) = \overline{FK}(A)$  and  $FK_X(B) = \overline{FK}(B)$  lifts to an X-equivariant isomorphism between  $A \otimes \mathbb{K}$  and  $B \otimes \mathbb{K}$ .

Sara Arklint — Beyond classification of Cuntz-Krieger algebras — September 22, 2010 Slide 4/8



- Does FK strongly classify the Cuntz-Krieger algebras up to stable isomorphism?
- Does FK stably classify the purely infinite graph C\*-algebras with a finite ideal lattice?
- Let A be a purely infinite, separable, nuclear C\*-algebra in the bootstrap class and with a finite ideal lattice.
  If FK(A) ≅ FK(B) for B a Cuntz-Krieger algebra, is A then stably isomorphic to a Cuntz-Krieger algebra?



#### Theorem (Meyer-Nest)

There exist a finite space  $X_0$  and purely infinite, separable, nuclear  $C^*$ -algebras A and B with  $Prim(A) \cong Prim(B) \cong X_0$  and  $A, B \in \mathcal{B}(X_0)$  satisfying that

$$\mathsf{FK}_{X_0}(A) \cong \mathsf{FK}_{X_0}(B), \quad \mathsf{KK}_*(X; A, B)^{-1} = \emptyset.$$



### Theorem (Meyer-Nest)

For the space  $X_0$  there exists a functor FK' for which the sequence

 $\mathsf{Ext}(\mathsf{FK}'(A),\mathsf{FK}'(B)) \hookrightarrow \mathsf{KK}_*(X_0;A,B) \twoheadrightarrow \mathsf{Hom}(\mathsf{FK}'(A),\mathsf{FK}'(B))$ 

is exact for all separable  $C^*$ -algebras A and B over  $X_0$  where A lies in the bootstrap class  $\mathcal{B}(X_0)$ .

#### Theorem (A-Restorff-Ruiz)

For C<sup>\*</sup>-algebras A and B over  $X_0$  with A of real rank zero, any isomorphism between  $FK_{X_0}(A)$  and  $FK_{X_0}(B)$  lifts to an isomorphism between FK'(A) and FK'(B).

### Corollary

For purely infinite, separable, nuclear  $C^*$ -algebras A and B with all simple subquotients in the bootstrap class, with  $Prim(A) \cong Prim(B) \cong X_0$  and with A of real rank zero, any isomorphism between  $FK_{X_0}(A) = \overline{FK}(A)$  and  $FK_{X_0}(B) = \overline{FK}(B)$  lifts to an  $X_0$ -equivariant isomorphism between  $A \otimes \mathbb{K}$  and  $B \otimes \mathbb{K}$ .

