Investerings- og finansieringsteori, F02, ugeseddel 11

Seneste forlæsninger
Mandag 15/4: Afslutning på kapitel 8. I afsnit 8.5 om swap-contrakter er der desværre en række Ø'er, der dukker op forkerte steder. Man kan selv rette formlerne eller antage $\delta = 1$. Man kan dog også bare downlade den rettede version, jeg har lagt ud på hjemmesiden.

Førstekommende forlæsninger
Øvelserne 29/4 eller 3/5

Vh,

Rolf
Opgaver til øvelserne 29/4 eller 3/5 (dvs. uge 18)

1. S99 opg. 2 fra de gamle I&F-teori-eksamensopgaver.

2. S95 opg. 2 fra de gamle I&F-teori-eksamensopgaver.

3. S99 opg. 1 fra de gamle I&F-teori-eksamensopgaver. (Det er sådan en blanding mellem ting fra kap. 4-5 og ting, der lugter af kap. 9.)

4. S00 opg. 3 fra de gamle I&F-teori-eksamensopgaver. Denne opgave var ikke noget stort hit blandt de studerende.

5. Betragt et set-up som i afsnit 9.2. Lad x_{gmv} betegne porteføljevægtene for den globale minimum-varians-portefølje og lad x_{mv} være vægte for en vilkårlig portefølje i minimum-variansmængden (også kaldet den kritiske rand). Lad r_{gmv} og r_{mv} betegne afkastraterne (der er stokastiske). Vis at

$$\text{Cov}(r_{gmv}, r_{mv}) = \text{Var}(r_{gmv}).$$

Vink: Betragt funktionen givet ved $\alpha \mapsto \text{Var}(\alpha r_{mv} + (1 - \alpha)r_{gmv})$. Hvor mon den har minimum?

6. (Det kan evt. være en stor fordel at huske tilbage til en af de første uger, hvor vi lærte at regne med matricer i Excel.)

Betragt en kap. 9-økonomi med 3 usikre aktiver og antag at

$$
\mu = \begin{bmatrix} 0.06 \\ 0.08 \\ 0.075 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 0.06 & -0.01 & 0.01 \\ -0.01 & 0.08 & -0.02 \\ 0.01 & -0.02 & 0.09 \end{bmatrix}.
$$

Find matricerne A og $\Sigma^{-1}|\mu - 1|A^{-1}$. Betemt porteføljevægtene for minimum-variansmængden samt den minimale varians (begge dele som funktion af en krævet forventet afkastate r_P). Tegn den kritiske rand i (varians, forventet afkast)-rummet og i (standard afvigelse, forventet afkast)-rummet. Indtegn også enkeltaktiverne i disse diagrammer. (Disse kaldes kort for (μ, σ^2)- og (μ, σ)-diagrammer.)

Nu indføres et risikofrit aktiv med en afkastate på 0.05 (dvs. en risikofri rente på 5%). Det antages at dette ikke ændrer på μ og Σ. Bestem den nye efficiente rand ("Capital Market Line" i noterne). Indtegn denne i (μ, σ^2) og (μ, σ)-diagrammerne fra før. Hvad er den forventede afkastate på tangentporteføljen? (Altså den portefølje på CML med fuld investering i de usikre aktiver. Ligevægtsargumentet i CAPM gjør at dette også er markedsporaføljen.)

Find β'erne for de tre enkelt-aktiver mht. tangentporteføljen, og vis at CAPM-relationen holder. Er det en overraskelse?

3
(En mulig måde man kan slå en krølle på sådan en opgave.) Det viser sig at den omtalte risikofrie rente på 5% kun er en indlånsrente; udlånsrenten er på 8%. Diskuter, for eksempel ved hjælp af en graf, hvad det betyder for den efficiente rand.

(En anden måde at slå en krølle.) Antag nu igen at indlånsrente = udlånsrente = 5%. Betragt en investør med en nyttefunktion der afhænger af forventet afkast på hans porteføljes afkast (r_P) og variansen på dette (σ_P^2) på følgende (simple) vis:

$$U(r_P, \sigma_P^2) = r_P - \frac{\sigma_P^2}{\tau},$$

hvor τ er en positiv konstant kaldet risikotolerancen. Spørgsmålet er nu hvilken portefølje denne investør helt konkret vil vælge at investere i. Man kan løse de algebraisk a la afsnit 9.2. Men her skal det klares med geometriske argumenter. (Hvorved man generelt skal være opmærksom på om man “argumenterer i” (μ, σ^2)- eller (μ, σ)-diagrammer.) Argumenter først for at investoren altid vælger en portefølje på den efficiente rand (CML). Husk at en isokvant udtrykker sammenhængen mellem σ_P^2 og r_P for givet nytteniveau. Argumenter for at investoren vil vælge $(\tilde{r}_P(\tau), \tilde{\sigma}_P^2(\tau))$ således at i det optimale punkt er hældningen på CML lig hældningen på hans nyttefunktion-sisokvanter. (Tænk fx tilbage på dine talrige(?) mikroøkonomi-kurser.) Find endelig $(\tilde{r}_P(\tau), \tilde{\sigma}_P^2(\tau))$ for $\tau = 0.01, 0.1, 1, 2, 5, 10, 25, 100, 1000.$ Kommenter.