Opgave 1

I denne opgave betragtes en 3-periode model for kursen (målt i danske kroner; DKK), S, på en aktie, der ikke udbetalers dividende. Den mulige udvikling er fastlagt ved nedenstående gitter. (Med tidspunkter, aktiekurser og sandsynligheder.) Desuden findes der et risikofrit aktiv (bankbogen) med en rente på 5% per periode.

![Diagram](image)

Spg. 1a [10 pts]

Vis at denne model er arbitragefri og komplet. Bøj om ækvivalente martingalmål Q (fx ved for alle gitterets knuder at bestemme den betingede springsandsynlighed q).
Spg. 1.b [10 pts]
Nu indfører en såkaldt logstocktion. Det er en kontrakt med følgende pay-off på tidspunkt 3:
\[
\left(K \ln \left(\frac{S(3)}{K} \right) \right)^+ = \begin{cases}
K \ln(S(3)/K) & \text{hvis } S(3) \geq K \\
0 & \text{hvis } S(3) < K
\end{cases}
\]
hvor \(K \) er en deterministisk strike kurs (eller: exercise kurs).
Hvad er den arbitragefri pris på tidspunkt 0 på en logstocktion med \(K = 115 \)?
Hvilken portefølje (i aktie og bankbog) skal man købe på tidspunkt 0 for at replikere ("hedge") logstocktionen? (En perfekt replikation kræver som bekendt, at porteføljen justeres dynamisk, men beregningen ønskes kun foretaget for tidspunkt 0.)

Spg. 1.c [10 pts]
Du arbejder i et mindre investeringsfirma, der har solgt en strike-115 logstocktion til en kunde. Altså: Dit firma skal betale \(K \ln \left(\frac{S(3)}{K} \right) \) DKK til kunden på tidspunkt 3. Fra din chef har du fået til opgave at lave en portefølje, hvis værdi på tidspunkt 3 er mindst lige så stor som det. I skal betale til køberen af logstocktionen. Døsuden vil chefen have et bud på hvor meget I skal kræve, at køberen betaler på tidspunkt 0.
Den underliggende aktie handles på en børs, hvor dit firma skal betale 1 DKK i gebyr per handel (uanset størrelsen), mens det er gebyrfrit at låne penge i banken. Hvad er transaktionsomkostningerne forbundet med at replikere logstocktionen med en dynamisk strategi?

På børsen, hvor aktien handles, findes også call-optioner (på aktien) med en lang række strike kurser. Der er også transaktionsomkostninger på 1 DKK for en handel med call-optioner, men der er ikke gebyr på at modtage dens pay-off. Markedet for call-optioner er domineret af meget store investorer for hvilke transaktionsomkostninger er forsvindende, så den pris dit firma observerer (hvorfølget I altså skal betale transaktionsomkostningerne på call optionerne) er en arbitrage-fri pris, der findes på tilsvarende måde som i Spg. 1.b. Hvad er prisen på en strike-115 call-option med udløb på tidspunkt 3?

Hvor billigt synes du, dit firma skal sælge logstocktionen?

Opgave 2

Betragt nedenstående gitter (med tidspunkter, renter og støkkelydigheder) for udviklingen i den korte rente (1-periode spotrenten \(\rho \)) under et ækvivalent martingalmål \(Q \):
Spg. 2.a [10 pts]
Bestem nulkuponobligationspriserne (”zero-coupon bond prices”; 5 betydende cifre), nulkuponrenterne og 1-periode forwardrenterne gældende på tidspunkt 0 for så mange løbetider som muligt.

Spg. 2.b [10 pts]
Giv en definition af varigheden for en deterministisk betalingsrække \((c_1, c_2, c_3)\) med betalinger på tid 1, 2, og 3.
Hvad er kursen (dvs. den arbitragefri pris, naturligvis i modellen fra Spg. 2.a) på tid 0 på en 3-årig serieobligation (hovedstol 100) med en kuponrente på 5%? Hvad er obligationens varighed?

Spg. 2.c [10 pts]
Find \(E^Q(\rho(t))\) for \(t = 0, 1, 2\). Er \(\rho\)-processen en \(Q\)-martingal? Sammenlign \(E^Q(\rho(t))\) med (tid 0) forwardrenterne. Er de ens? Bør de være ens?

Opgave 3

Betragt en porteføljevalgsmodel med 3 usikre aktiver (aktier, nummereret 1, 2 og 3), hvis afkastrater har forventede værdier \((\mu)\) og kovarianser \((\Sigma)\) givet ved:

\[
\mu = \begin{bmatrix} 0.08 \\ 0.12 \\ 0.15 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 0.20 & -0.10 & -0.05 \\ -0.10 & 0.30 & 0.25 \\ -0.05 & 0.25 & 0.40 \end{bmatrix}.
\]
Spg. 3.a [10 pts]
I første omgang antages modellen ikke at have et risikofrit aktiv. Bestem den kritiske rand ("the minimum variance portfolio frontier/locus") og den efficiente rand ("the efficient frontier") og vægtene for porteføljerne på disse. Det kan være nyttigt at kende disse to matricer:

\[
A = [\mu \ 1]^T \Sigma^{-1} [\mu \ 1] = \begin{bmatrix}
1.34541 & 12.2941 \\
12.2941 & 112.941
\end{bmatrix}
\]

og

\[
\Sigma^{-1} [\mu \ 1] A^{-1} = \begin{bmatrix}
-15.74344 & 2.026239 \\
2.04081 & 0.163265 \\
13.7026 & -1.18950
\end{bmatrix}.
\]

Illustrer grafisk.

Nu indføres et risikofrit aktiv (der beholdes i resten af opgaven) med en afkastrate på 0.07 (dvs. 7%).

Spg. 3.b [10 pts]
Forklar hvad tangentporteføljen er, og illustrer grafisk hvordan den kan findes. Det oplyses nu, at den forventede afkastrate på tangentporteføljen kan beregnes til 0.11048. Bestem den nye efficiente rand.

I det følgende antages, at tangentporteføljen er markedsporteføljen.

Spg. 3.c [10 pts]
Investeringsrådgivningsfirmaet GetRichQuick.com opererer med tre typer investorer: De konervative, de almindelige og de agressive. De anbefaler følgende investeringsstrategier for de forskellige typer:

<table>
<thead>
<tr>
<th>Investortype</th>
<th>%-del af formuen i aktiv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Riskofrit</td>
</tr>
<tr>
<td>Konserativ</td>
<td>50</td>
</tr>
<tr>
<td>Almindelig</td>
<td>25</td>
</tr>
<tr>
<td>Agressiv</td>
<td>5</td>
</tr>
</tbody>
</table>

Opskriv CAPM-relationen, beregn beta (\(\beta\)) for den til "Almindelige" investorer anbefalede portefølje, og undersøg om CAPM-relationen holder for denne portefølje.

Spg. 3.d [10 pts]
Med basis i den i kurset gennemgåede teori for (middelværdi-varians)-optimalt 1-periode porteføljevalg (dvs. noternes kap. 9) bedes du kommentere GetRichQuick.com’s rådgivning.

Chefen for GetRichQuick.com har dog følgende standard-svar:
Naturligvis anvender vi teorien om (middelværdi-variante)-optimalt 1-periode porteføljevalg. Men vi bruger en _avanceret statistisk teknik_ for estimation af forventede afstrater og kovarianser. Så ikke alene _er vores rådgivning konsistent med teorien, den er også bedre end hvad andre foreslår._

Hvad siger du til det?