Empirically: Variations in “the” short rate “explains” “a large percentage” of the “variation” of the whole term structure. (“The tail wagging the dog”)

An model where only real-world short rate dynamics are specified is not complete. Just think in terms of # traded assets and # sources of risk.

We get consistency relation between ZCBs of different maturities. (So nice we may forget we have a “problem” at all.)

We extend the usual PDE derivation to stochastic interest rates. A line of reasoning first done in Vasicek(1977).
Look (first) at the case where

\[dr(t) = \mu(t, r(t))dt + \sigma(t, r(t))dW^\mathbb{P}(t) \]

where \(\mu \) and \(\sigma \) are functions and \(W^\mathbb{P} \) is a 1-dimensional Brownian motion under the real-world probability measure \(\mathbb{P} \). So \(r \) is Markov wrt. its own filtration.

Suppose all kinds of ZCB exist. The “formal” equation

\[P(t; T) = \mathbb{E}_t^\mathbb{Q} \left(\exp \left(- \int_t^T r(u)du \right) \right) \]

makes us conjecture that

\[P(t; T) = F(t, r(t); T) \]
for some smooth function F (of 3 variables.)

Hide T-dependence in a superscript and use Itô to get

$$\frac{dF^T}{F^T} = \left(\frac{F^T_t + \mu F^T_r + \frac{1}{2} \sigma^2 F^T_{rr}}{F^T} \right) dt + \frac{\sigma F^T_r}{F^T} dW^P(t)$$

Now make a self-financing portfolio with a T-ZCB and an S-ZCB. V is the value process and (u_T, u_S) relative portfolio weights. From Chapter 7 we have

$$\frac{dV}{V} = u_T \frac{dF^T}{F^T} + u_S \frac{dF^S}{F^S}$$

$$= (u_T \alpha^T + u_S \alpha^S) dt + (u_T \sigma^T + u_S \sigma^S) dW^P(t)$$
By construction we must have $u_T + u_S = 1$, but still 1 degree of freedom. A clever choice is $u_T \sigma^T + u_S \sigma^S = 0$.

The dW^P-term vanishes, we get

$$u_T = \frac{-\sigma^S}{\sigma^T - \sigma^S}$$

(symmetric in S), and

$$\frac{dV}{V} = \frac{\alpha^S \sigma^T - \alpha^T \sigma^S}{\sigma^T - \sigma^S} \ dt.$$

must $= r(t)$ otherwise arbitrage
Rewriting

\[
\frac{\alpha^S - r(t)}{\sigma^S} = \frac{\alpha^T - r(t)}{\sigma^T}
\]

LHS doesn’t depend on \(T \), RHS doesn’t depend on \(S \) \(\Rightarrow \) the ratio is independent of maturity:

\[
\frac{\alpha^S - r(t)}{\sigma^S} := \lambda(r(t); t).
\]

\(\lambda \): “market price of risk”; interpretation as excess expected return relative to volatility. Has to be exogenously specified.

Usually: Postulate form that gives same structure under \(\mathbb{P} \) and \(\mathbb{Q} \) — a subtlety that people may be obtuse about.
Substitute back and get the term structure PDE:

\[F_t^T + (\mu - \lambda \sigma)F_r^T + \frac{1}{2}\sigma^2 F_{rr}^T = rF_T \quad \text{and} \quad F^T(T; r) = 1 \]

This may be Feynman-Kac represented (see Björk’s Exercise 5.12) and we may change measure:

\[F(t, r(t); T) = E_t^Q \left(\exp \left(- \int_t^T r(s) ds \right) \right) \]

where

\[dr(s) = (\mu - \lambda \sigma) ds + \sigma dW_s^Q \]

Note: Clearly \(P(t; T)/\beta(t) \) is a \(Q \)-martingale.
Writing

\[\frac{dP(t; T)}{P(t; T)} = \alpha^T(t; T)dt + \sigma^T(t; T)dW^P = r(t)dt + \sigma^T(t; T) \left(dW^P + \frac{\alpha^T - r(t)}{\sigma^T} dt \right) \]

shows that pieces fit.

We’re still not very concrete.