Asset Pricing II: 3rd Hand-In

Hand in answers at the lectures on April 16-17, 2009.

The first two exercises are of “mostly conceptual nature”. The last one is very much the opposite.

Kindly,

Rolf

Self-Financing Strategies

On the homepage I have posted an exercise from a book about continuous-time finance. One that Bjarne came across. You are not asked — directly at least — to solve the exercise. Rather, you must:

1. Explain why the result that parts a.-e. lead to is strictly speaking correct, but completely obvious and somewhat beside the point. (What is the only way that \((1, -\delta(t))\) can be self-financing?)

2. Comment on the last five lines of the exercise. (Is the “it’s OK in discrete time”-statement correct?)

Stochastic Volatility Models

First, read Björk’s Chapter 15 and convince yourself that that looks a lot like Chapter 21, which was covered at the lectures.

Second: A stochastic volatility model for a stock price, \(S\), could look like this

\[
\begin{align*}
 dS(t) &= \beta S(t) + \sqrt{V(t)}S(t)dW_1(t), \\
 dV(t) &= \xi V(t)dt + \gamma V(t)dW_2(t),
\end{align*}
\]
where W_1 and W_2 are independent Brownian motions, and we think of ξ and γ as constants. Argue that this puts us in the realm of Björk’s Chapter 15. Think about the following:

- In the sense of Assumption 15.3.1: What should the X-variables be? What are the μ- and δ-functions?

- What is the system of equations that the λ-vector(process) must solve? In particular and in the sense of equations (15.14-15): What is the first entry of the α-vector? What is the first row of the σ-matrix?

- Can we tell what λ_1 is? What about λ_2?

Show that under an equivalent martingale measure we have

$$dS = rS(t)dt + \sqrt{V(t)}S(t)dW_1^Q(t)$$

and

$$dV(t) = (\xi - \gamma\lambda_2(t, S(t), V(t)))V(t)dt + \gamma V(t)dW_2^Q(t),$$

and argue that if we assume that λ_2 is an honest-to-God constant, then the change of measure can be subsumed (“soaked up”) by a change of parameter. Suppose the dynamics of the volatility is changed to

$$dV(t) = \kappa(\theta - V(t))dt + \sigma\sqrt{V(t)}\left(\rho dW_1(t) + \sqrt{1-\rho^2}dW_2(t)\right),$$

How would you interpret the parameter ρ? How does this change the analysis of the independent geometric Brownian motion case from above? What are now dS and dV under an equivalent martingale measure? To ensure that the P to Q change can be “soaked up” by a parameter change, what assumptions need to be made about the functional form of λ_2? What if $\lambda_1 = \lambda_2 = 0$? What if $\lambda_2 = 0$ but $\lambda_1 \neq 0$?

The CIR ZCB Formula

(Arguably, this is not the most creative of exercises, but afterward you can walk around the finance community with a smug expression on your face.) Verify the formula for zero-coupon bonds prices the Cox-Ingersoll-Ross model given in Proposition 22.6 in Björk.
A constructive hint is the following: The ODE for \(B \) reads

\[
\frac{dB}{dt} = ab^2 - bB - 1 = a(B - c_1)(B - c_2)
\]

for some appropriate constants (it’s your job to find them; the are roots of a quadratic equation). This ODE is of a form you can use separation of variables on. Consult the differential equation section of your 1st year math-book. The message is that you have to look at

\[
\int \frac{dB}{(B - c_1)(B - c_2)} + c = a \int dt,
\]

where you “forget” that \(B \) is a function in the left-hand side integral, which then becomes

\[
\frac{\ln |B - c_2|}{c_2 - c_1} + \frac{\ln |B - c_1|}{c_1 - c_2}.
\]

The right-hand side is just \(at \). Determine the constant of integration, \(c \), from the boundary/terminal condition, and solve for \(B \) in terms of \(t \). (You need to take appropriate “sign care” when removing the \(| \cdot | \)’s.)

For the \(A \)-function, a change of variable leads to an integral, that is almost of the same form as above — and can at least be looked up. Note that Björk’s \(A_0 \)-function in Proposition 22.6 is the logarithm of the \(A \)-function in Proposition 22.2.