Hedging with a (Possibly) Wrong Volatility

In this exercise we consider a general arbitrage-free stock price model in a world where there exists a bank-account on which the interest rate is 0, i.e.

\[dS(t) = \sigma(t)S(t)dW^Q(t), \]

where \(\sigma \) is an arbitrary (up to regularity conditions, that you needn’t worry about) stochastic process.

Consider a simple contingent claim on \(S \) with pay-off function \(g \), i.e. it pays \(g(S(T)) \) to the holder at time \(T \).

Let \(\tilde{\sigma} \in \mathbb{R} \) be given and define the function \(F : [0; T] \times \mathbb{R} \to \mathbb{R} \) as the solution to the (familiar) partial differential equation (subscripts denote differentiation)

\[F_t(t, x) + \frac{1}{2} \tilde{\sigma}^2 x^2 F_{xx}(t, x) = 0 \quad \text{for } t < T, \quad F(T, x) = g(x). \]

Consider, finally, a trading strategy \(h \) that holds \(h_1(t) = F_x(t, S(t)) \) units of the stock and \(h_2(t) = F(t, S(t)) - S(t)F_x(t, S(t)) \) units of the bank account at time \(t \).

Show that this trading strategy replicates the pay-off of the \(g \)-claim, i.e. that its value process, say \(V^h \), satisfies \(V^h(T) = g(S(T)) \).

Show that the self-financing condition for this trading strategy boils down to the equation

\[\frac{1}{2}(\sigma^2(t) - \tilde{\sigma}^2)S^2(t)F_{xx}(t, S(t)) = 0 \quad (1) \]

holding (almost everywhere, in an appropriate sense, that you needn’t worry about).

Argue that “usual results” are obtained when \(\sigma(t) = \tilde{\sigma} \), and that in general the \(h \)-strategy can be interpreted as “trying to replicate as if it were the Black/Scholes
model”.

Remark: The result in (1) may alternatively be formulated by saying that \(h \) has an extra financing need of

\[
\frac{1}{2} \int_0^T \left(\sigma^2(t) - \tilde{\sigma}^2(t) \right) S_x(t) F_{xx}(t, S(t)) dt,
\]

and is sometimes called the “1st fundamental theorem of derivative trading”. It has consequences for hedging in misspecified models: If we consider a convex claim (in the sense that \(F_{xx} > 0 \)) and if there is an upper bound on the \(\sigma \)-process, then a super-replicating strategy is achieved by “Black/Scholes \(\Delta \)-hedging with the upper bound”.

Markovian Representation of HJM-models

Consider a Heath-Jarrow-Morton setup as in Björk chapters 20 and 23. For notational clarification we write \(\sigma_f(t, T) \) for forward rate volatilities and \(\sigma_P(t, T) \) for zero-coupon bond price volatilities. Furthermore we assume dynamics to be driven by a 1-dimensional Brownian motion and the we work directly under an equivalent martingale measure \(Q \), meaning that we are implicitly assuming the model to be arbitrage-free.

Show that

\[
\sigma_P(t, T) = -\int_t^T \sigma_f(t, u) du. \tag{2}
\]

Show that

\[
f(t, T) - f(0, T) = -\int_0^t \sigma_f(s, T) \sigma_P(s, T) ds + \int_0^t \sigma_f(s, T) dW(s). \tag{3}
\]

Assume that

\[
\sigma_f(t, T) = \sigma e^{-\kappa(T-t)},
\]

where \(\sigma \) and \(\kappa \) are (positive) constants. Differentiate (3) wrt. \(T \) (indicated by “subscript \(T \)” and use Leibniz’ rule (ie. “differentiate (under) an integral”), equation (2), and equation (3) “read from right to left” to show that

\[
f_T(t, T) - f_T(0, T) = \int_0^t \sigma^2_f(s, T) ds + \kappa(f(0, T) - f(t, T)) \quad \text{for all} \quad T. \tag{4}
\]
Put
\[\phi(t) = \int_0^t \sigma_r^2(s,t)ds. \]
(Of course \(\phi \) can then be found more explicitly, but there is little need to.) Evaluate (4) at “\(T = t \)” and use Björk’s Proposition 20.5 to show that the short rate dynamics are
\[dr(t) = \left(\kappa(f(0,t) - r(t)) + \phi(t) + f_T(0,t) \right) dt + \sigma dW(t). \]
(5)

Suppose that we generalize the form of the forward rate volatility to
\[\sigma_f(t, T) = \sigma(r(t)) e^{-\int_t^T \kappa(u) du}, \]
(6)
where \(\sigma \) and \(\kappa \) are deterministic functions. (And keep the previous definition of \(\phi \).) Show that in this case we have
\[dr(t) = \left(\kappa(t)(f(0,t) - r(t)) + \phi(t) + f_T(0,t) \right) dt + \sigma(r(t))dW(t). \]
(7)
(Your old calculations should almost all carry over verbatim.) Use Leibniz’ rule to show that
\[d\phi(t) = (\sigma^2(r(t)) - 2\kappa(t)\phi(t))dt. \]
(8)
Equations (7)-(8) show that under an assumption of multiplicative separability of the forward rate volatility (ie. (6)), the 2-dimensional process \((r, \phi)\) is Markovian wrt. its own filtration. (And that the 1-dimensional process \(r \) might not be.)

Long Rates and Modelling (In)Consistency

Björk’s exercise 22.7.

Remark: Björk says that “obviously the limit will depend on \(r(t) \) and \(t \)”. To me it seems more obvious that the limit – if it exists – does not depend on \(r(t) \) and \(t \). Neither is true, but it can be shown that if the process \(f^\infty(t) := \lim_{T \to \infty} f(t,T) \) is well-defined, then it is increasing. And that there are models – fairly strange ones, though – where the limit depends non-trivially on \(r(t) \).