THE EQUATION \(\sigma_p (s, t) = \int_t^T c(s, u) dW(u) \)

Follows from Th 18. in Brock (The Asset Pricing Model).

We know that under friction:

\[dP(t, T) = r(t) P(t, T) dt + \sigma_p (t, T) P(t, T) dW^q(t) \]

This fits into Prop 15.5 with:

\[m(t, T)'' = r(t) \]
\[\nu(t, T)'' = \sigma_p (t, T) \]

This means that \(m'' = 0 \) and \(\nu'' = -\sigma_q \)

Hence from (1) in Prop 16.5

\[d[f(t, T)] = -\sigma_q (t, T) \sigma_p (t, T) dt + \sigma_q (t, T) dW^q(t) \]

Or on differential form

\(\frac{d}{dt} [f(t, T) - f(0, T)] = -\int_0^t \sigma_q (s, T) \sigma_p (s, T) ds + \int_0^t \sigma_q (s, T) dW^q(s) \)
Now we assume

\[\sigma(T,t) = \sigma e^{-k(t-T)} \]

\[\text{Diff (**) w.r.t. } T \text{ a integrating.} \]

\[\frac{g_T(t,T) - g_T(0,T)}{h_1} = - \int_0^t \left(\sigma_T(s,T) \sigma_T(s,T) + \sigma_T(s,T) \sigma_T(s,T) \right) ds \]

\[+ \int_0^t \left(\frac{\partial}{\partial T} \sigma_T(s,T) \right) dW^9(s) \] (eq. 2)

We have

\[\frac{\partial}{\partial T} \sigma_T(s,T) = - \sigma_T(s,T) \]

AND

\[\frac{\partial}{\partial T} \sigma_T(s,T) = - k \sigma_T(s,T) = - k \sigma_T(s,T) \]

So close the calculus (eq. 2)

(eq. 2) = \[\int_0^t \sigma_T^2(s,T) ds \]

\[+ k \left(\int_0^s \sigma_T(s,T) \sigma_T(s,T) dW^9(s) - \int_0^t \sigma_T(s,T) dW^9(s) \right) \]

\[= - (g(t,T) - g(0,T)) \text{ by (eq. 1))} \]
\[\mathcal{S}_T (l, t) - \mathcal{S}_T (0, t) = \int_0^t \sigma_g (s, t) \, ds + K (\mathcal{S}_T (0, t) - \mathcal{S}_T (l, t)) \]

Put \(\phi (t) = \int_0^t \sigma_g (s, t) \, ds \)

Setting \(T = t \) in (43) gives

\[\mathcal{S}_T (l, t) = \mathcal{S}_T (0, t) + \phi (t) + K (\mathcal{S}_T (0, t) - \mathcal{S}_T (l, t)) \]

Apply (2) from Prop. 15.5 and note that

\["d (l, t)" = - \sigma_g (l, t) \frac{\partial \mathcal{S}_T (l, t)}{\partial l} = 0 \]

\["\sigma (l, t)" = \sigma_g (l, t) \frac{\partial \mathcal{S}_T (l, t)}{\partial l} = 0 \]

\[\mathcal{S}_T (l, t) \text{ given by (44)} \]

To get

\[d \mathcal{S}_T (l, t) = \left[K (\mathcal{S}_T (l, t) - r(t)) + \phi (t) - \mathcal{S}_T (l, t) \right] dt + \sigma \, dW \]
In this case

\[\mathrm{d}X(t) = M(t, r(t)) \, \mathrm{d}t + b(t, r(t)) \, \mathrm{d}W(t) \]

for PCR's \(M = b \) ("only dep on \(r(t) \)
- and not "things" in drift & vol.")

Hence \(r \) is Markovian w.r.t. its own filtration

I.o.w. the dist.

\[F_{\tau \mid S} \] depends on on \(S \)'s_value.

This means that a one approach can be
used to price derivatives.

When/If

\[\sigma(t, \tau) = \sigma(r(t)) \, e^{-\int_0^T \mu(u) \, \mathrm{d}u} \]

The exact same calculations show that

\[\mathrm{d}R(t) = \int k(t) \left(\mathcal{F}_t - r(t) \right) + \phi(t) + \mathcal{F}_t \, \mathrm{d}W(t) \]
\[\Phi(t) = \int_0^t \sigma^2(r(s)) \Theta^2 \int_s^t k(u) \, du \, ds \]

Note that \(\Phi \) isn't deterministic; it captures some path dependence. For \(\Phi \) is not Markovian with its own filtration.

But from Leibniz's Rule

\[d \Phi(t) = \left(\sigma^2(r(t)) - 2 \int_0^t k(u) \, du \right) \, dA \]

So the 2-Dim System \((r, \Phi)\) is Markovian.

And a PDB approach with an extra state variable (to which no 2nd derivatives are connected) can be used.