The vol smile problem

The comparative liquidity of vanilla and exotic options in the major forex markets makes them a useful experimental laboratory for testing volatility smile models. Here, Alexander Lipton examines a wide range of models in this context and identifies the variants that perform best.

For many years, practitioners and academics have tried to analyse the volatility smile phenomenon and understand its implications for derivatives pricing and risk management. In a nutshell, the volatility smile means that vanilla options with different maturities and strikes have different implied Black-Scholes (1973) volatilities. Accordingly, accurate pricing and hedging of options cannot be achieved within the standard Black-Scholes framework. The objectives of the volatility smile studies are threefold: to find a model for pricing vanilla options across all strikes and maturities; to develop a reliable hedging strategy for these options; and to price and hedge exotic options consistently with vanilla options.

The purpose of this Masterclass article is to describe the state of the art in the pricing and hedging of options on foreign exchange rates from a financial engineer’s prospective. These notes are accessible for quants, risk managers and traders alike. First, we describe a series of increasingly complex models that can be used to price and hedge vanilla options consistently with the market. We emphasise that, although all these models can encapsulate the pricing information for the most liquid calls, C, and puts, P, as a rule, this information is highly standardised: calls and puts are characterised by their deltas, \(\Delta \), rather than strikes, \(K \), and only \(10\Delta \), \(25\Delta \) out-of-the-money calls and puts and \(\Delta \)-neutral straddles are considered. Moreover, to express market preferences directly, for a given maturity we introduce \(10\Delta \) and \(25\Delta \) risk reversals (RRs) and strangles (STRs):\

\[
RR(T, \Delta) = \sigma^C(T, \Delta) - \sigma^P(T, \Delta),
\]

\[
STR(T, \Delta) = \frac{1}{2} \left(\sigma^C(T, \Delta) + \sigma^P(T, \Delta) \right) - \sigma(\Delta, \text{neutral})
\]

Broadly speaking, RRs and STRs are characteristics of the market skew and smile respectively. When RRs are positive (negative), the market sentiment favours the underlying (accounting) currency. The most liquid maturities are one-week, two-week, one-month, two-month, three-month, six-month, 12-month and 24-month. On occasion, other maturities and deltas are considered. A typical volatility matrix is given in table A.

At this stage, we have to confront the first problem: the market data is too sparse. This problem is resolved via interpolation. A number of interpolation schemes have been proposed. Usually, cubic splining in the \(\Delta \)-direction and linear splining in the \(T \)-direction are adequate. One aspect that needs to be addressed is a proper choice of the asymptotic behaviour of volatility for very small deltas. At present, one can confidently assume that dealers have reliable implied volatility surfaces \(\sigma(T, \Delta) \) or \(\sigma(T, K) \) extending all the way to the 1% \(\Delta < 50 \) and \(1\text{-week} < T < 2 \text{-year} \).

The volatility surface corresponding to table A is shown in figure 1. In principle, we can think of \(\sigma \) as a function of four arguments, \(\sigma(T, S, T, K) \), even though at any given time we can see only its projection, \(\sigma(T, S, T, K) \).

A detailed account of the volatility smile problem in the forex context, including an extensive bibliography, is given in a recent book by Lipton (2001).

Market overview

A recent survey by Risk of 12 leading forex dealers (Risk May 2001, pages 44–49; see also the Bank for International Settlements’ 1998 survey for the overall market) showed that, in 2000, the total unadjusted notional volume of forex options was $13,000 billion. The majority of these were plain vanilla calls and puts with short (less than one month) (38.5%), and medium maturities (one–18 months) (52.5%). These were followed by barrier options (4%), long-term vanilla options (maturities of more than 18 months) (1.5%), digitals (1%), Asians (0.7%) and more exotic products, such as volatility, variance and correlations swaps, and Parisian, various accrual-style, passport and some multi-currency options. The dominant 32% of the market are in dollar/yen options, with euro/dollar options coming a close second at 28.5%. A large percentage share of barrier and Asian options suggests that, in effect, a number of exotic options in the forex market are commoditised with significantly reduced margins. (A similar situation arises in the fixed-income market, where some exotic options, such as Bermudan swaptions, are highly commoditised.) Thus, building an adequate volatility smile model is necessary for successfully dealing in the competitive forex derivatives market.

Typical smile patterns

In view of its importance, we use the euro/dollar market as our main example. The exchange rate \(S_E \) represents the number of dollars one needs to pay to receive one euro. In general, when \(S = A/U \), the numerator and denominator currencies are called the accounting and underlying currencies, respectively. We start with the markets for vanilla options. These markets are characterised by their implied volatility matrices, \(\sigma(T, \Delta) \), which encapsulate the pricing information for the most liquid calls, \(C \), and puts, \(P \). As a rule, this information is highly standardised: calls and puts are characterised by their deltas, \(\Delta \), rather than strikes, \(K \), and only \(10\Delta \), \(25\Delta \) out-of-the-money calls and puts and \(\Delta \)-neutral straddles are considered. Moreover, to express market preferences directly, for a given maturity we introduce \(10\Delta \) and \(25\Delta \) risk reversals (RRs) and strangles (STRs):

\[
RR(T, \Delta) = \sigma^C(T, \Delta) - \sigma^P(T, \Delta),
\]

\[
STR(T, \Delta) = \frac{1}{2} \left(\sigma^C(T, \Delta) + \sigma^P(T, \Delta) \right) - \sigma(\Delta, \text{neutral})
\]

Typical smile patterns

In view of its importance, we use the euro/dollar market as our main example. The exchange rate \(S_E \) represents the number of dollars one needs to pay to receive one euro. In general, when \(S = A/U \), the numerator and denominator currencies are called the accounting and underlying currencies, respectively. We start with the markets for vanilla options. These markets are characterised by their implied volatility matrices, \(\sigma(T, \Delta) \), which encapsulate the pricing information for the most liquid calls, \(C \), and puts, \(P \). As a rule, this information is highly standardised: calls and puts are characterised by their deltas, \(\Delta \), rather than strikes, \(K \), and only \(10\Delta \), \(25\Delta \) out-of-the-money calls and puts and \(\Delta \)-neutral straddles are considered. Moreover, to express market preferences directly, for a given maturity we introduce \(10\Delta \) and \(25\Delta \) risk reversals (RRs) and strangles (STRs):

\[
RR(T, \Delta) = \sigma^C(T, \Delta) - \sigma^P(T, \Delta),
\]

\[
STR(T, \Delta) = \frac{1}{2} \left(\sigma^C(T, \Delta) + \sigma^P(T, \Delta) \right) - \sigma(\Delta, \text{neutral})
\]

Typically, we can think of \(\sigma \) as a function of four arguments, \(\sigma(T, S, T, K) \), even though at any given time we can see only its projection, \(\sigma(T, S, T, K) \).

An adequate choice of this function is a matter of much debate and has crucial risk management implications.

Daily variations of the spot rate and the corresponding volatility parameters are very significant. Figure 2 shows the behaviour of the \(\Delta \)-neutral volatilities, RRs and STRs in the euro/dollar market as functions of calendar time for one year. This variability attracted a considerable attention of econometricians who developed various schemes to capture its idiosyncrasies. In the euro/dollar market, there is a strong positive correlation between the spot and RRs.

A. Euro/dollar market: September 10, 2001

<table>
<thead>
<tr>
<th>Time Delta</th>
<th>10C</th>
<th>25C</th>
<th>Neutral</th>
<th>25P</th>
<th>10P</th>
<th>Euro</th>
<th>Dollar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-week</td>
<td>14.02</td>
<td>12.76</td>
<td>12.07</td>
<td>12.05</td>
<td>12.75</td>
<td>4.35</td>
<td>3.54</td>
</tr>
<tr>
<td>1-month</td>
<td>13.66</td>
<td>12.49</td>
<td>11.83</td>
<td>11.80</td>
<td>12.41</td>
<td>4.34</td>
<td>3.49</td>
</tr>
<tr>
<td>2-month</td>
<td>13.63</td>
<td>12.52</td>
<td>11.91</td>
<td>11.92</td>
<td>12.56</td>
<td>4.28</td>
<td>3.40</td>
</tr>
<tr>
<td>3-month</td>
<td>13.48</td>
<td>12.43</td>
<td>11.88</td>
<td>11.94</td>
<td>12.59</td>
<td>4.24</td>
<td>3.35</td>
</tr>
<tr>
<td>6-month</td>
<td>13.73</td>
<td>12.71</td>
<td>12.11</td>
<td>12.22</td>
<td>12.85</td>
<td>4.10</td>
<td>3.32</td>
</tr>
<tr>
<td>12-month</td>
<td>13.78</td>
<td>12.80</td>
<td>12.26</td>
<td>12.41</td>
<td>13.08</td>
<td>3.95</td>
<td>3.43</td>
</tr>
<tr>
<td>24-month</td>
<td>13.61</td>
<td>12.66</td>
<td>12.20</td>
<td>12.38</td>
<td>13.10</td>
<td>4.01</td>
<td>3.99</td>
</tr>
</tbody>
</table>

Spot rate \(S_E \) is 0.8998
One useful source of information encapsulated in the volatility surface is the implied distribution of the forex rates for a given maturity. This distribution is given by the formula due to Breeden & Litzenberger (1978), which can be derived by twice differentiating the usual risk-neutral valuation formula for a call option with respect to its strike:

$$p(T,K) = e^{-rT}\sigma^2_{\text{skew}} \left[C(T,K) \right]$$

(1)

We show probability density functions (PDFs) for one-month rates in figure 3. For comparison, we also show Gaussian PDFs with the corresponding at-the-money volatility. Even a cursory inspection of figure 3 reveals that the implied distributions have fatter tails and sharper peaks compared with the reference normal distributions. In other words, they are leptokurtic. It is not difficult to manufacture such distributions for a given maturity (for instance, a mixture of independent normal distributions can be used). However, to do so in a systematic way across all maturities is much more difficult.

Generalisations of Black-Scholes: possibilities and pitfalls

The presence of skews, smiles and, to a lesser degree, term structures violates the most basic assumptions of the Black-Scholes model and makes it necessary to revisit the concept of pricing and hedging of vanilla options. Thus, to accommodate market reality, it is necessary to extend the Black-Scholes model in a meaningful fashion. In particular, one needs to generate leptokurtic distributions via a stochastic process for the spot and possibly some additional hidden variables. The main difficulty is that there are many processes that can be used for this purpose, and their relative merits and drawbacks partly depend on a specific problem at hand.

A number of models have been proposed in the literature: the local volatility models of Dupire (1994), Derman & Kani (1994) and Rubinstein (1994); a jump-diffusion model of Merton (1976); stochastic volatility models of Hull & White (1988), Heston (1993) and others; mixed stochastic jump-diffusion models of Bates (1996) and others; regime switching models of Dupire (1996), JP Morgan (1999), Lipton & McGhee (2001), Britten-Jones & Neuberger (2000), Blacher (2001) and others; regime switching models, etc. Too often, these models are chosen ad hoc; for instance, on the grounds of their tractability and solvability. However, the right criterion, as advocated by a number of practitioners and academics, is to choose a model that produces hedging strategies for both vanilla and exotic options resulting in profit and loss distributions that are sharply peaked at zero. (Recall that in the classical Black-Scholes model such a distribution is described by a delta function.)

Black-Scholes models

The stochastic differential equation (SDE) that describes the standard geometrical Brownian motion (GBM) for S_t is used in the Black-Scholes (1973) theory is:

$$\frac{dS_t}{S_t} = r^0 dt + \sigma dW_t$$

(2)

where $r^0 = r^p - r^f$, and r^p, r^f are interest rates in the accounting and underlying currencies, respectively, and σ is the forex volatility. The pricing problem for a call has the form:

$$C^{(BS)}(T,S) = (S - K)_+, \quad C^{(BS)}(T,S) = S - K_+$$

The price $C^{(BS)}$ is given by the formula:

$$C^{(BS)}(0,S,T,K) = e^{-rT}S - \frac{\sigma^2}{2}T \int_0^T \frac{e^{-rT}}{2\pi} \frac{d\sigma}{\sqrt{1 + 1/4}} dW_t$$

(3)

which can be derived by representing the payout of a call in the form:

$$(S - K)_+ = S - \min[K,S]$$

and dealing with the bounded component of the payout.

As we will see below, all exactly solvable models generate prices that are simple generalisations of (3). We note that an interesting alternative approach to the derivation of formulas similar to (3) has been developed by Bakshi & Madan (2000), who used the apparatus of characteristic functions and gave a spanning interpretation to the Fourier transform of the state prices.

Local volatility models

The most straightforward approach to generalise the governing SDE for S_t:

$$\frac{dS_t}{S_t} = r^0 dt + \sigma(t,S_t) dW_t$$

where the local volatility $\sigma(t,S)$ is a deterministic function of its arguments. The pricing equation for a European-style call, say, is:

$$C^{(L)}(T,S) = \frac{\sigma^2}{2} \left(\frac{\partial^2 C^{(L)}}{\partial S^2} K^2 + \frac{\partial C^{(L)}}{\partial S} \right) + \rho \left(\frac{S C^{(L)}}{K} \rho C^{(L)} \right) - \rho C^{(L)} = 0$$

Since there is just one source of uncertainty, this model is complete and all options can be perfectly delta-hedged.

In general, for a given local volatility one has to solve the pricing problem numerically. However, in some cases, such as the term structure (TS) model, $C^{(TS)} = \sigma(t)$, the constant elasticity of variance (CEV) model, $C^{(CEV)} = \sigma_0 (S^\rho)$, and the hyperbolic (H) volatility model:
3. PDF for one-month euro/dollar forex rate

\[\text{RR}(T, \Delta) = \sigma^2(T, \Delta) - \sigma^2(\Delta, \Delta), \]

it can be solved analytically. These analytical solutions are useful for illustrative purposes.

The most important qualitative feature of a local volatility model is that the smile changes with the spot, or, in other words, that \(\sigma \) depends on both \(S \) and \(K \), rather than on the moneyness \(S/K \) alone. To put it differently, even if initially such a model generates a smile, as spot moves it will necessarily generate a skew. This fact has important hedging implications. For local volatility models, the magnitude of the corresponding \(\Delta \) is different from the one observed in the market.

To illustrate the above observations, we consider the hyperbolic volatility model. The hyperbolic volatility model with positive roots was analysed by Zuhlsdorff (1999) and Lipton (2000). To be concrete, we assume that:\n
\[\alpha > 0, \beta > 0, \gamma > 0, \quad \lambda > 0. \]

The corresponding pricing equation for a call is:

\[C^{(D)}(0, S, T, K) = e^{-rT}S \phi(S) - \frac{e^{-rT}K}{2\pi} \int_{-\infty}^{\infty} e^{-f(k + 1/2)} \phi(k) \, dk, \]

where \(f(k + 1/2) \) is the jump diffusion price as:

\[C^{(D)}(0, S, T, K) = e^{-rT}S \phi(S) - \frac{e^{-rT}K}{2\pi} \int_{-\infty}^{\infty} e^{-f(k + 1/2)} \phi(k) \, dk, \]

Qualitatively, jump diffusion models produce distributions of returns that are mixtures of normal distributions and do have attractive leptokurtic features, at least for short maturities. By construction, the jump diffusion implied volatility depends only on the moneyness, \(\xi = S/K \), and, hence, is relative in nature. Thus, if a model generates a smile initially, it will continue to generate a smile when spot moves.

Merton (1976) showed that for the lognormal distribution of jump sizes it is possible to represent the price of a call as a weighted average of the standard Black-Scholes prices. In general, the pricing problem has to be solved via the Fourier transform method. We generalise (3) and represent the jump diffusion price as:

\[C^{(D)}(0, S, T, K) = e^{-rT}S \phi(S) - \frac{e^{-rT}K}{2\pi} \int_{-\infty}^{\infty} e^{-f(k + 1/2)} \phi(k) \, dk, \]

For short maturities, this surface has a profound skew that rapidly disappears when maturity increases. When applicable, Merton’s infinite sum representation is easier to deal with than the general Fourier representation.

Stochastic volatility models. Figure 2 suggests that the at-the-money volatility behaves randomly. Accordingly, we need to model its evolution as a stochastic process, on a par with the evolution of the option price itself. For illustrative purposes, we choose the popular Heston (1993) model with mean-reverting volatility and assume that:

\[\frac{dS_t}{S_t} = r dt + \sqrt{\vartheta_t} dW^t, \quad d\vartheta_t = \kappa (\theta - \vartheta_t) dt + \xi \sqrt{\vartheta_t} dW^t, \]

where \(W^t, W^v \) are two correlated Wiener processes with correlation \(\rho \). All stochastic volatility models are incomplete. To avoid a lengthy discussion of the market price of risk, we simply consider their risk-neutralised versions.

The corresponding pricing equation for a call is:

\[C^{(D)}(S_t) = \frac{1}{2} \sigma^2 \int_{-\infty}^{\infty} \phi(k) \, dk, \]

where \(\phi(k) \) is the jump diffusion price as:

\[C^{(D)}(S_t) = \frac{1}{2} \sigma^2 \int_{-\infty}^{\infty} \phi(k) \, dk, \]

It is clear that the implied volatilities generated in the stochastic volatility framework are relative in nature. Accordingly, the smile parameters (RRs and STRs) do not change with the spot, but do change with the instantaneous volatility. Such models are capable of producing a rich variety of smile and term structure patterns. Compared with jump diffusion models, these patterns are much less profound for small maturities but tend to persist for longer ones. Stochastic volatility models can easily fit the forex markets, except for very short maturities. Unfortunately, experience suggests that the corresponding hedging strategies are not perfect and tend to produce profit and loss distributions that are not sufficiently sharply peaked.

A simple and intuitive way of understanding the meaning of stochastic volatility models is to view them as vehicles for averaging of Black-Scholes prices with respect to volatility and possibly spot values. For zero correlation, \(\rho = 0 \), a simple scenario analysis yields the following exact representation:

\[C^{(SV)} = \int C^{(BS)}(S_t, \sigma) \, d\sigma, \]

\[\sigma = \sqrt{\sigma^2 \vartheta t}, \]

where \(\sigma \) is the average volatility (Hull & White, 1988). For non-zero correlation, we can write \(S_t \) as a product of two random processes, one of which is uncorrelated with \(\vartheta \) and the other is perfectly correlated with it, and represent \(C^{(SV)} \) as:

WWW.RISK.NET • FEBRUARY 2002 RISK
4. ‘Universal’ implied volatility

\[C^{(SV)} = \int C^{(BS)} \left(e^{-rT} S, \sigma^2 T \right) g(\sigma, \tau)d\sigma d\tau, \quad J = \int \sigma d\sigma \]

(Willard, 1997). Even though it is difficult to find the PDF’s \(f \) and \(g \), the above formulas are still very useful since they reduce the dimensionality of the problem and allow one to price vanilla options efficiently via a one-dimensional Monte Carlo method. For \(p = 0 \), when only the volatility is averaged, the smile is necessarily symmetric. The approximate correction to the Black-Scholes price is proportional to \(\varepsilon^2 \) and is positive when \(d_s > 1 \). For \(p \neq 0 \), when both the volatility and spot are averaged, the skew that arises in a natural way is a dominant factor. The corresponding price correction is proportional to \(\varepsilon \) and is positive when \(pd > 0 \).

To obtain a more detailed picture, we solve the pricing problem directly via the Fourier transform method. The corresponding price is:

\[C^{(SV)}(0, S, v, T, K) = e^{-rT} S \int_{-\infty}^{\infty} \left[e^{-\frac{1}{2} \sigma^2 t} \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \left(e^{i(k\sigma + \frac{1}{2}K)} - 1 \right) \frac{d\sigma}{\sqrt{1 - \rho^2}} \right] dk \]

\[\sigma_0 = \frac{\varepsilon}{\sigma} \left[\psi_+ + 2 \ln \left(\frac{\psi_+ \psi_- e^{\varepsilon \psi_-}}{2e^{\varepsilon \psi_+}} \right) \right] \]

\[\psi_+ = \frac{\sqrt{\frac{k^4 + 1}{\pi T}}}{2r} \int_{-\infty}^{\infty} \frac{1}{\sqrt{1 - \rho^2}} \left[\psi_+ \psi_- e^{\varepsilon \psi_-} \right] \]

where \(\hat{K} = K - \rho\varepsilon \). This formula is much better suited for the purposes of numerical integration than its more popular standard counterpart because the integrand is non-singular. A convenient way to evaluate the corresponding integral is via the fast Fourier transform.

Universal volatility models. To account for the local, jump and stochastic features of the spot and its volatility, we need to combine all the above models and consider the following dynamics for the pair \(S, v \):

\[\frac{dS_t}{S_t} = \left(\alpha^1 - \lambda \theta \right) dt + \sqrt{\alpha^1} \sigma^1(t, S_t) dW^{(S)}_t + \left(\varepsilon^1 - 1 \right) dN_t \]

\[dv_t = \kappa \left(\theta - v_t \right) dt + \varepsilon \sqrt{v_t} dW^{(v)}_t \]

It is also easy to add jumps in volatility but for our purposes it is not necessary. The corresponding pricing equation is:

\[C_t^{(UV)} + \frac{1}{2} \varepsilon \left(\sigma^2 (t, S)^2 C_t^{(UV)} + 2 \rho \sigma (t, S) C_{\sigma}^{(UV)} + \varepsilon^2 C_{vv}^{(UV)} \right) \]

\[+ \left(\rho^2 - \lambda \right) \sigma^2 C_{\sigma}^{(UV)} +\kappa \left(\theta - v \right) C_{\sigma}^{(UV)} \]

\[+ \lambda \int_{-\infty}^{\infty} C_{\sigma}^{(UV)}(\varepsilon^1 S(t, \sigma^1)) d\sigma - \left(\rho^2 + \lambda \right) C_{\sigma}^{(UV)} = 0 \]

This model is very rich and generates implied volatilities with both absolute and relative features. Moreover, it allows one to fine-tune the magnitudes of \(\varepsilon, \lambda, \) etc, and to achieve a proper mix of local, jump and stochastic features of the problem.

Unfortunately, it is very difficult to find explicitly solvable universal models. While combining jump diffusions and stochastic volatilities is straightforward since both are relative in nature, mixing stochastic and local volatilities requires a considerable effort. We assume that \(\sigma_1 = \sigma_1^{BS} \), where \(\sigma_1^{BS} \) is given by (4), while \(\rho = 0 \). The price \(C^{(UV)} \), which can be found via a combination of the Fourier series method and an affine ansatz, has the form (5), with:

\[E_p = \int e^{\alpha^{(SV)}(T_s) - \frac{1}{2} \beta^{(SV)}(T_s) \sigma^2} \]

where \(\alpha^{(SV)}, \beta^{(SV)} \) are given by formulas (7) with \(\rho = 0 \) and \(\varepsilon = \sigma^2 \). Figure 4 shows the implied volatility for a representative choice of parameters.

Calibration

In the previous section, we showed how to calculate prices and implied volatilities of vanilla options for given parameters characterising local, jump and stochastic components. However, there is no guarantee that our choice of these parameters is compatible with the market. To ensure that this is the case, we need to solve the calibration problem. From a mathematical standpoint, it is an ill-posed and unstable inverse problem. This fact is illustrated by the classical formula that connects the implied and local volatilities in the presence of the term structure:

\[\sigma_1(T) = \sqrt{\frac{d}{dT} (\sigma^2(T) - 1)} \frac{d}{dT} \]

It is clear that successful application of this formula depends on our knowledge of \(\sigma_1 \) for all maturities and on its good behaviour.

A naive approach to calibration is based on calculating prices of options for the most liquid strikes and maturities on an individual basis and modifying the parameters of the model until there is a match with the market. Unless analytical pricing formulas are available, this is a very tedious and time-consuming task. However, when such formulas are known, this approach can be very efficient. Figure 5 shows the quality of a typical calibration to the market based on formula (6) for the price of a call option in the stochastic volatility framework. It is clear that the pure stochastic volatility model cannot handle very short maturities properly, otherwise the quality of calibration is respectable. By introducing jumps and term structure of parameters, it is possible to improve the quality of calibration by an order of magnitude.
Fortunately, by using the Fokker-Planck equation for the PDF $P(0, S, v, T, K, w)$, where (S, v) and (K, w) are the spot and variance values at times 0 and T respectively, combined with the Breeden & Litzenberger formula (1), we can greatly accelerate the calibration procedure by pricing all the relevant calls at once. The Fokker-Planck problem corresponding to the general process (8) has the form:

$$P_t - \frac{1}{2}\left(\omega^2_v(T,K)K^2\frac{\partial}{\partial K}P\right)_{K} - (\rho\omega_v(T,K)K\frac{\partial}{\partial K}P)_{K} - \frac{1}{2}(\sigma^2_w v(T,K)\frac{\partial}{\partial w})_{w}$$

$$+ \left([\sigma^2(T,K)w^{-1}(K) P(K,0)]_{K} + \lambda \int \frac{1}{2} \frac{\partial^2}{\partial v^2} P(v) dv + \frac{1}{2} \frac{\partial}{\partial v} P(v) dv = 0 \right)$$

$$P(O,K,w) = \delta(S-K)\delta(v-w)$$

We introduce the unconditional PDF:

$$Q(0,S,v,T,K,w) = \int P(0,S,v,T,K,w) dv$$

and integrate the Fokker-Planck problem to obtain:

$$Q_t - \frac{1}{2} \left(v(T,K) \sigma^2_v(T,K) K^2 \frac{\partial}{\partial K} Q \right)_{K} + \left(\sigma^2(T,K)w^{-1}(K) Q(K,0) \right)_{K} - \lambda \int Q \frac{1}{2} \frac{\partial^2}{\partial v^2} Q(v) dv + \lambda Q = 0,$n

$$Q(0,K) = \delta(S-K)$$

where v is the conditional stochastic variance, which is defined as follows:

$$v(T,K) = \int v P(T,K,v) dv$$

The Breeden-Litzenberger formula relates Q and C as follows:

$$Q(T,K) = e^{2\sigma^2_v(T,K)} C_{\sigma^2_v(T,K)}(K)$$

$$Q(T,e^{-1}K) = e^{2\sigma^2_v(T,K)} C_{\sigma^2_v(T,K)}(K)$$

We use this relation to get the following forward equation for C:

$$C_t - \frac{1}{2} v(T,K) \sigma^2_v(T,K) K^2 C_{\sigma^2_v(T,K)}(K) + \sigma^2(T,K)w^{-1}(K) C(K,0) - \lambda \int C \frac{1}{2} \frac{\partial^2}{\partial v^2} C(v) dv + \lambda C = 0,$n

$$C(O,K) = (S-K)^2$$

This equation allows us to price all the relevant calls in one sweep. In different special cases, it was derived by Dupire (1996), Anderson & Andreasen (2000) and others. However, an explicit combination of equations (11) and (12) seems to be new.

We can use equation (12) to get:

$$\sigma^2_v(T,K) = \frac{1}{2} \int C \left(\sigma^2(T,K) v^{-1}(K) \frac{\partial}{\partial v} C(K,0) - \lambda\int C \frac{1}{2} \frac{\partial^2}{\partial v^2} C(v) dv + \lambda C \right) dv$$

In principle, the two-dimensional information encapsulated in equation (13) is sufficient to calibrate $\sigma^2_v(T,K)$ to the market. However, in practice, the calibration is very involved.

When the volatility is deterministic, so that $v(T,K) = \sigma^2_0$, equation (13) defines the local volatility similar to (10). However, since the calculation requires interpolating the original implied volatility matrix and involves numerical differentiation, it is prone to instabilities and has to be avoided. A better alternative is to choose a particular functional form for σ^2_0, such as cubic-linear spline, and to use equation (12) to price liquid vanilla options.

It is relatively easy to incorporate jumps into the picture, as was done by Anderson & Andreasen (2000). However, it is difficult to handle the stochastic component efficiently. The simplest approach is to replace equations (12) and (13) by their explicit finite difference approximations and to perform the forward induction in the spirit of Jamshidian (1991). A conceptually similar method based on the forward Markov chain approximation was proposed by Britten-Jones & Neuberger (2000). This tree-like approach tends to be numerically unstable and in practice should be replaced by a hybrid approach with both explicit and implicit features (Lipton & McGhee, 2001). However, the latter approach cannot be described here due to the lack of space. ■

Alexander Lipton is a director in the forex product development group at Deutsche Bank in New York. He is grateful to his colleagues Christopher Berry and William McGhee for their invaluable help, and to Marsha Lipton and anonymous referees for constructive comments and suggestions that helped to improve the original presentation.

REFERENCES

Andersen L and J Andreasen, 2000
Jump-diffusion processes: volatility smile fitting and numerical methods for pricing
Review of Derivatives Research 4, pages 231–262

Bakshi G and D Madan, 2000
Volatility models for optimal delta-vega hedging of exotic derivative securities in multi-factor models
Review of Derivatives Research 4, pages 231–262

Blacher G, 2001
A new approach for designing and calibrating stochastic volatility models for optimal delta-vega hedging of exotic options
Conference presentation at Global Derivatives 2001, Juan-les-Pins

Black F and M Scholes, 1973
The pricing of options and corporate liabilities
Journal of Political Economy 81, pages 637–659

Breeden D and R Litzenberger, 1978
Prices of state-contingent claims implicit in options prices
Journal of Business 55, pages 621–652

Britten-Jones M and A Neuberger, 2000
Option prices, implied prices processes, and stochastic volatility
Working paper

Derman E and I Kani, 1994
Riding on a smile
Risk, January, pages 32–39

Dupire B, 1994
Pricing with a smile
Risk, January, pages 32–39

Dupire B, 1996
A unified theory of volatility
Working paper

Heston S, 1993
A closed-form solution for options with stochastic volatility with applications to bond and currency options
Review of Financial Studies 6, pages 327–343

Hull J and A White, 1988
An analysis of the bias in option pricing caused by a stochastic volatility
Advances in Futures and Options Research 3, pages 29–61

Ingersoll J, 1996
Valuing foreign exchange options with a bounded exchange rate process
Review of Derivatives Research 1, pages 159–181

Jamshidian F, 1991
Forward induction and construction of yield curve diffusion models
Journal of Fixed Income 1, pages 62–74

JP Morgan, 1999
Pricing exotic under smile
Risk November, pages 72–75

Lipton A, 2000
Exact pricing formula for call and double-no-touch options in the universal volatility framework
Working paper

Lipton A, 2001
Mathematical methods for foreign exchange
World Scientific

Lipton A and W McGhee, 2001
An efficient implementation of the universal volatility model
Working paper

Merton R, 1976
Option pricing when underlying stock returns are discontinuous

Rady S, 1997
Option pricing in the presence of natural boundaries and a quadratic diffusion term
Finance and Stochastics 1, pages 331–344

Rubinstein M, 1983
Displaced diffusion option pricing
Journal of Finance 38, pages 213–217

Willard B, 1997
Calculating prices and sensitivities for path-dependent derivative securities in multi-factor models
Journal of Derivatives 5, pages 45–61

Zuqsdorff C, 1999
The pricing of derivatives on assets with stochastic volatility
Working paper