1 StatLearn Theoretical exercise 2

Let X be a p-dimensional stochastic variable and Y a scalar stochastic variable. Let some mapping $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be given, and assume given some other mapping $L: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$. We think of f as a predictor function used for predicting samples of Y from samples of X, and we think of L as a loss function used for assessing the quality of approximation of Y by $f(X)$. We define $\operatorname{EPE}(f)=E L(Y, f(X))$ as the expected prediction error. This expression depends explicitly on f and implicitly on the joint distribution of (X, Y), and cannot be calculated exactly in practice.

Considering observation pairs $\left(x_{i}, y_{i}\right), i \leq n$, and assuming given an estimator $\hat{f}\left(x_{i}\right)$ of $f\left(x_{i}\right)$ based on $\left(x_{i}, y_{i}\right)$, we may define $\overline{\operatorname{err}}=\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \hat{f}\left(x_{i}\right)\right)$ as the training error. This expression depends solely on the observation pairs $\left(x_{i}, y_{i}\right)$, and can be calculated exactly in practice.

Now keep the observations of the independent variables $\left(x_{i}\right)$ fixed, and let Y_{i} denote independent samples with Y_{i} having the conditional distribution of Y given $X=x_{i}$. We then define the stochastic training error by $\overline{\operatorname{err}}_{s}=\frac{1}{n} \sum_{i=1}^{n} L\left(Y_{i}, \hat{f}_{s}\left(x_{i}\right)\right)$, where $\hat{f}_{s}\left(x_{i}\right)$ is the estimator of $f\left(x_{i}\right)$ based on the fixed independent variables $\left(x_{i}\right)$ and the stochastic responses $\left(Y_{i}\right)$. This expression depends on the observations $\left(x_{i}\right)$ and $\left(Y_{i}\right)$, and can be calculated exactly in practice. Furthermore, we may also define $\operatorname{Err}_{\text {in }}=\frac{1}{n} \sum_{i=1}^{n} E L\left(Y_{i}^{\prime}, \hat{f}_{s}\left(x_{i}\right)\right)$ as the expected in-sample error, where $\left(Y_{i}^{\prime}\right)$ are independent samples from the conditional distribution of Y given $X=x_{i}$, and $\hat{f}_{s}\left(x_{i}\right)$ remains the estimator of $f\left(x_{i}\right)$ based on $\left(x_{i}\right)$ and $\left(Y_{i}\right)$. This expression depends on the observations $\left(x_{i}\right)$ and on the conditional distribution of Y given X, and cannot be calculated exactly in practice. The expected optimism is then eop $=\operatorname{Err}_{\mathrm{in}}-E \overline{\operatorname{err}}_{s}$. This expression depends on the observations $\left(x_{i}\right)$ and on the conditional distribution of Y given X, and cannot be calculated exactly in practice.

Note that all of $\overline{\mathrm{err}}, \overline{\operatorname{err}}_{s}, \operatorname{Err}_{\mathrm{in}}$ and eop depend only on the fitted values $\hat{f}_{s}\left(x_{i}\right)$ and not on any full estimate of f. This distinction will allow us extra flexibility in the following.

Exercise 1.1. Show that with L being the squared error loss, eop $=\frac{2}{n} \sum_{i=1}^{n} \operatorname{cov}\left(\hat{f}_{s}\left(x_{i}\right), Y_{i}\right)$.

Solution. Plugging in the expression for the loss function and expanding terms, we obtain

$$
\begin{aligned}
\mathrm{eop} & =\operatorname{Err}_{\mathrm{in}}-E \overline{\operatorname{err}}_{s} \\
& =\frac{1}{n} \sum_{i=1}^{n} E\left(\left(Y_{i}^{\prime}-\hat{f}_{s}\left(x_{i}\right)\right)^{2}-\left(Y_{i}-\hat{f}_{s}\left(x_{i}\right)\right)^{2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} E\left(\left(Y_{i}^{\prime}\right)^{2}-2 Y_{i}^{\prime} \hat{f}_{s}\left(x_{i}\right)+\hat{f}_{s}\left(x_{i}\right)^{2}-\left(Y_{i}^{2}-2 Y_{i} \hat{f}_{s}\left(x_{i}\right)+\hat{f}_{s}\left(x_{i}\right)^{2}\right)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} E\left(Y_{i}^{\prime}\right)^{2}-2 E Y_{i}^{\prime} \hat{f}_{s}\left(x_{i}\right)-E Y_{i}^{2}+2 E Y_{i} \hat{f}_{s}\left(x_{i}\right)
\end{aligned}
$$

Now, Y_{i}^{\prime} and Y_{i} has the same distribution, namely the conditional distribution of Y given $X=x_{i}$, and therefore the moments and second moments are equal. Furthermore, $\left(Y_{i}^{\prime}\right)$ is independent of $\left(Y_{i}\right)$, in particular independent of $\hat{f}_{s}\left(x_{i}\right)$, and we therefore find

$$
\begin{aligned}
\text { eop } & =\frac{1}{n} \sum_{i=1}^{n} 2 E Y_{i} \hat{f}_{s}\left(x_{i}\right)-2 E Y_{i}^{\prime} \hat{f}_{s}\left(x_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} 2 E Y_{i} \hat{f}_{s}\left(x_{i}\right)-2\left(E Y_{i}^{\prime}\right)\left(E \hat{f}_{s}\left(x_{i}\right)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} 2 E Y_{i} \hat{f}_{s}\left(x_{i}\right)-2\left(E Y_{i}\right)\left(E \hat{f}_{s}\left(x_{i}\right)\right) \\
& =\frac{2}{n} \sum_{i=1}^{n} \operatorname{cov}\left(\hat{f}_{s}\left(x_{i}\right), Y_{i}\right)
\end{aligned}
$$

as required.

Now consider a $n \times n$ matrix \mathbf{S}, understood to be depending only on the observations $\left(x_{i}\right)$. Let $\hat{\mathbf{f}}$ denote the vector of fitted values, $\hat{\mathbf{f}}_{i}=\hat{f}_{s}\left(x_{i}\right)$. Assume that $\hat{\mathbf{f}}=\mathbf{S Y}$, where \mathbf{Y} is the n-dimensional vector whose i 'th entry is Y_{i}. Assume that the conditional variance of Y given $X=x$ does not depend on x, and let σ^{2} denote the common value of the conditional variance.

Exercise 1.2. Show that $\sum_{i=1}^{n} \operatorname{cov}\left(\hat{f}_{s}\left(x_{i}\right), Y_{i}\right)=\sigma^{2} \operatorname{tr} \mathbf{S}$.

Solution. Using linearity of the covariance, we find

$$
\begin{aligned}
\sum_{i=1}^{n} \operatorname{cov}\left(\hat{f}_{s}\left(x_{i}\right), Y_{i}\right) & =\sum_{i=1}^{n} \operatorname{cov}\left((\mathbf{S Y})_{i}, Y_{i}\right) \\
& =\sum_{i=1}^{n} \operatorname{cov}\left(\sum_{j=1}^{n} \mathbf{S}_{i j} Y_{j}, Y_{i}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{S}_{i j} \operatorname{cov}\left(Y_{j}, Y_{i}\right) \\
& =\sum_{i=1}^{n} \mathbf{S}_{i i} V Y_{i} \\
& =\sigma^{2} \sum_{i=1}^{n} \mathbf{S}_{i i} \\
& =\sigma^{2} \operatorname{tr} \mathbf{S} .
\end{aligned}
$$

Exercise 1.3. Let $\hat{\sigma}^{2}$ denote an unbiased estimator of σ^{2}. Define $\hat{\operatorname{Err}}_{\mathrm{in}}=\overline{\operatorname{err}}_{s}+\frac{2}{n}(\operatorname{tr} \mathbf{S}) \hat{\sigma}^{2}$. Show that the mean of $\hat{\operatorname{Err}}_{\mathrm{in}}$ is $\operatorname{Err}_{\mathrm{in}}$.

Solution. Combining our previous results of Exercise 1.1 and Exercise 1.2, we have

$$
\begin{aligned}
E \hat{\operatorname{Err}}_{\text {in }} & =E \overline{\operatorname{err}}_{s}+\frac{2}{n}(\operatorname{tr} \mathbf{S}) E \hat{\sigma}^{2} \\
& =\operatorname{Err}_{\mathrm{in}}-\operatorname{eop}+\frac{2}{n}(\operatorname{tr} \mathbf{S}) \sigma^{2} \\
& =\operatorname{Err}_{\mathrm{in}}-\frac{2}{n} \sum_{i=1}^{n} \operatorname{cov}\left(\hat{f}_{s}\left(x_{i}\right), Y_{i}\right)+\frac{2}{n}(\operatorname{tr} \mathbf{S}) \sigma^{2} \\
& =\operatorname{Err}_{\mathrm{in}} .
\end{aligned}
$$

Exercise 1.3 shows that for prediction methods where the fitted values are a linear function of the responses given the design matrix, we have a simple estimator for the in-sample error, which is often of interest to us.

Next, we define the generalization error as $\operatorname{Err}=E L\left(Y^{\prime}, \hat{f}\left(X^{\prime}\right)\right)$, where \hat{f} is the predictor function estimate based on $\left(X_{i}\right)$ and $\left(Y_{i}\right)$ and take interest in estimating Err. To this end, we assume that the diagonal of \mathbf{S} does not contain any ones, and define

$$
\hat{f}^{-i}\left(x_{i}\right)=\sum_{j \neq i} \frac{\mathbf{S}_{i j}}{1-\mathbf{S}_{i i}} y_{j}
$$

and think of $\hat{f}^{-i}\left(x_{i}\right)$ as the fitted value at x_{i} for the data set excluding x_{i}. Note that $\hat{f}^{-i}\left(x_{i}\right)$ is this the predicted value of the response for a point outside of the data set, and thus requires an prediction methodology for obtaining predicted values outside of our observed independent variables, for example through a full estimate of f. We then define the leave-one-out cross-validation estimator of Err as

$$
\hat{\operatorname{Err}}=\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \hat{f}^{-i}\left(x_{i}\right)\right)
$$

Exercise 1.4. Show that $y_{i}-\hat{f}^{-i}\left(x_{i}\right)=\frac{y_{i}-\hat{f}\left(x_{i}\right)}{1-\mathbf{S}_{i i}}$.

Solution. This follows as

$$
\begin{aligned}
y_{i}-\hat{f}^{-i}\left(x_{i}\right) & =y_{i}-\sum_{j \neq i} \frac{\mathbf{S}_{i j}}{1-\mathbf{S}_{i i}} y_{j} \\
& =\frac{1}{1-\mathbf{S}_{i i}}\left(y_{i}\left(1-\mathbf{S}_{i i}\right)-\sum_{j \neq i} \mathbf{S}_{i j} y_{j}\right) \\
& =\frac{1}{1-\mathbf{S}_{i i}}\left(y_{i}-\sum_{j=1}^{n} \mathbf{S}_{i j} y_{j}\right) \\
& =\frac{y_{i}-\hat{f}\left(x_{i}\right)}{1-\mathbf{S}_{i i}}
\end{aligned}
$$

Exercise 1.5. Explain why the above result may be used to compute $\hat{\text { Err }}$ with squared error loss efficiently using the diagonal elements of \mathbf{S}.

Solution. We find

$$
\begin{aligned}
\hat{\operatorname{Err}} & =\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \hat{f}^{-i}\left(x_{i}\right)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{f}^{-i}\left(x_{i}\right)\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\frac{y_{i}-\hat{f}\left(x_{i}\right)}{1-\mathbf{S}_{i i}}\right)^{2}
\end{aligned}
$$

which allows fast computation given \hat{f} and the diagonal of \mathbf{S}, removing the need to calculate each $\hat{f}^{-i}\left(x_{i}\right)$ separately.

Exercise 1.6. Show that the assumption $\hat{f}^{-i}\left(x_{i}\right)=\left(1-\mathbf{S}_{i i}\right)^{-1} \sum_{j \neq i} \mathbf{S}_{i j} Y_{j}$ is equivalent to assuming that the fit at $x_{i}, \hat{f}_{s}\left(x_{i}\right)$, based on the reduced data set excluding the i 'th observation pair, is the same as the fit at x_{i} based the data set exchanging the i 'th observation pair with $\left(x_{i}, \hat{f}_{s}^{-i}\left(x_{i}\right)\right)$.

Solution. The property that the fit at $x_{i}, \hat{f}_{s}\left(x_{i}\right)$, based on the reduced data set excluding the i 'th observation pair is the same as the fit at x_{i} based the data set exchanging the i 'th observation pair with $\left(x_{i}, \hat{f}_{s}^{-i}\left(x_{i}\right)\right)$ may, be formalized as:

$$
\left(\mathbf{S}\left(\mathbf{Y}-\left(Y_{i}-\hat{f}^{-i}\left(x_{i}\right)\right) e_{i}\right)\right)_{i}=\hat{f}^{-i}\left(x_{i}\right)
$$

where e_{i} denotes the unit vector in the i 'th direction. The left-hand side is

$$
\begin{aligned}
\left(\mathbf{S}(\mathbf{x})\left(\mathbf{Y}-\left(Y_{i}-\hat{f}^{-i}\left(x_{i}\right)\right) e_{i}\right)\right)_{i} & =\sum_{j=1}^{n} \mathbf{S}_{i j}\left(\mathbf{Y}-\left(Y_{i}-\hat{f}^{-i}\left(x_{i}\right)\right) e_{i}\right)_{i} \\
& =\sum_{j=1}^{n} \mathbf{S}_{i j} \mathbf{Y}_{j}-\left(Y_{i}-\hat{f}_{s}^{-i}\left(x_{i}\right)\right) \mathbf{S}_{i i} \\
& =\mathbf{S}_{i i} f_{s}^{-i}\left(x_{i}\right)+\sum_{j \neq i} \mathbf{S}_{i j} \mathbf{Y}_{j}
\end{aligned}
$$

and so the requirement is that $\left(1-\mathbf{S}_{i i}\right) \hat{f}_{s}^{-i}\left(x_{i}\right)=\sum_{j \neq i} \mathbf{S}_{i j} \mathbf{Y}_{j}$, which yields the result.
Exercise 1.7. Show that least squares regression and ridge regression linear smoothers satisfying the regularity criterion on leave-one-out estimates. Show that the k-nearest neighbor method satisfies the regularity criterion if the leave-one-out estimates are based on the $(k-1)$ nearest neighbor method.

Solution. For the least squares regression, we are given a response $y \in \mathbb{R}^{n}$ and a design matrix \mathbf{X} of full column rank, and the estimate of the prediction function is then obtained as $\hat{f}(x)=x^{t}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} y$. The estimate of the prediction function for the reduced data set is then $\hat{f}^{-i}(x)=x^{t}\left(\left(\mathbf{X}_{-i}\right)^{t} \mathbf{X}_{-i}\right)^{-1}\left(\mathbf{X}_{-i}\right)^{t} y_{-i}$, where \mathbf{X}_{-i} is the $(n-1) \times p$ matrix obtained by removing the i th row of \mathbf{X}, and y_{-i} is the $(n-1)$-dimensional vector obtained by removing the i 'th entry of y. We have

$$
\begin{aligned}
& \left\|y-\left(y_{i}-\hat{f}^{-1}\left(x_{i}\right)\right) e_{i}-\mathbf{X} \beta\right\|_{2}^{2} \\
= & \left\|y_{-i}-\mathbf{X}_{-i} \beta\right\|_{2}^{2}+\left(y_{i}-\left(y_{i}-\hat{f}^{-1}\left(x_{i}\right)\right)-x_{i}^{t} \beta\right)^{2} \\
= & \left\|y_{-i}-\mathbf{X}_{-i} \beta\right\|_{2}^{2}+\left(\hat{f}^{-1}\left(x_{i}\right)-x_{i}^{t} \beta\right)^{2} .
\end{aligned}
$$

The first term is minimized for $\left.\beta_{-i}=\left(\mathbf{X}_{-i}\right)^{t} \mathbf{X}_{-i}\right)^{-1}\left(\mathbf{X}_{-i}\right)^{t} y_{-i}$, and this argument incidentally also minimizes the second term, yielding the value zero. Therefore, we conclude

$$
\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left\|y-\left(y_{i}-\hat{f}^{-1}\left(x_{i}\right)\right) e_{i}-\mathbf{X} \beta\right\|_{2}^{2}=\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left\|y_{-i}-\mathbf{X}_{-i} \beta\right\|_{2}^{2}
$$

As both these argument minima are solutions to ordinary least squares problems, we conclude

$$
\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t}\left(y-\left(y_{i}-\hat{f}^{-1}\left(x_{i}\right)\right) e_{i}\right)=\left(\left(\mathbf{X}_{-i}\right)^{t} \mathbf{X}_{-i}\right)^{-1} \mathbf{X}_{-i}^{t} y_{-i}
$$

and in particular the fitted values, obtained by multiplying by x_{i}^{t} on the right, coincide. The left-hand side becomes the fitted value at x_{i} for the full data set with y_{i} exchanged by $f^{-i}\left(x_{i}\right)$, and the right-hand side becomes the fitted value at x_{i} for the reduced dataset. This proves the result in the least squares regression case.

Next, we consider the ridge regression case. Let $\lambda \geq 0$ be given. Here, the estimate of the prediction function is $\hat{f}(x)=x^{t}\left(\mathbf{X}^{t} \mathbf{X}+\lambda I_{p}\right)^{-1} \mathbf{X}^{t} y$, and the corresponding estimate of the
prediction function for the reduced data set is $\hat{f}^{-i}(x)=x^{t}\left(\left(\mathbf{X}_{-i}\right)^{t} \mathbf{X}_{-i}+\lambda I_{p}\right)^{-1}\left(\mathbf{X}_{-i}\right)^{t} y_{-i}$. As before, we find

$$
\begin{aligned}
& \left\|y-\left(y_{i}-\hat{f}^{-1}\left(x_{i}\right)\right) e_{i}-\mathbf{X} \beta\right\|_{2}^{2}+\lambda\|\beta\|_{2}^{2} \\
= & \left\|y_{-i}-\mathbf{X}_{-i} \beta\right\|_{2}^{2}+\left(y_{i}-\left(y_{i}-\hat{f}^{-1}\left(x_{i}\right)\right)-x_{i}^{t} \beta\right)^{2}+\lambda\|\beta\|_{2}^{2} \\
= & \left\|y_{-i}-\mathbf{X}_{-i} \beta\right\|_{2}^{2}+\lambda\|\beta\|_{2}^{2}+\left(\hat{f}^{-1}\left(x_{i}\right)-x_{i}^{t} \beta\right)^{2} .
\end{aligned}
$$

The first two terms are minimized for $\left.\beta_{-i}=\left(\mathbf{X}_{-i}\right)^{t} \mathbf{X}_{-i}+\lambda I_{p}\right)^{-1}\left(\mathbf{X}_{-i}\right)^{t} y_{-i}$, and as in the least squares case, this argument also minimizes the second term, and so we obtain

$$
\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left\|y-\left(y_{i}-\hat{f}^{-1}\left(x_{i}\right)\right) e_{i}-\mathbf{X} \beta\right\|_{2}^{2}+\lambda\|\beta\|_{2}^{2}=\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left\|y_{-i}-\mathbf{X}_{-i} \beta\right\|_{2}^{2}+\lambda\|\beta\|_{2}^{2},
$$

and therefore

$$
\left(\mathbf{X}^{t} \mathbf{X}+\lambda I_{p}\right)^{-1} \mathbf{X}^{t}\left(y-\left(y_{i}-\hat{f}^{-1}\left(x_{i}\right)\right) e_{i}\right)=\left(\left(\mathbf{X}_{-i}\right)^{t} \mathbf{X}_{-i}+\lambda I_{p}\right)^{-1} \mathbf{X}_{-i}^{t} y_{-i}
$$

As in the least squares case, this shows that the fitted value at x_{i} for the full data set with y_{i} exchanged by $f^{-i}\left(x_{i}\right)$ and the fitted value at x_{i} for the reduced data set match, as desired.

Finally, we consider the k-nearest neighbor method. As before, we are given an n-dimensional response vector y and an $n \times p$ design matrix \mathbf{X}, and the estimate of the prediction function is $\hat{f}(x)=\frac{1}{k} \sum_{j=1}^{n} 1_{\left(x_{j} \in N(x)\right)} y_{j}$, where $N(x)$ is a neighborhood of x containing k points. Note that in contrast to the case for least squares and ridge regression, \hat{f} is not linear, although the fitted values $\hat{\mathbf{f}}$ is a linear function of y. We base the estimate of the prediction function for the reduced data set on the $(k-1)$-nearest neighbor method, and put $\hat{f}^{-i}(x)=\frac{1}{k-1} \sum_{j \neq i} 1_{\left(x_{j} \in N^{-i}(x)\right)} y_{j}$, where $N^{-i}(x)$ are the neighborhoods for the reduced data set containing $k-1$ points each.

We wish to calculate the fitted value at x_{i} for the full data set with y_{i} exchanged by $f^{-i}\left(x_{i}\right)$. As the reduced data set does not contain x_{i}, we have $N^{-i}\left(x_{i}\right)=N\left(x_{i}\right) \backslash\left\{x_{i}\right\}$, and so

$$
\begin{aligned}
& \frac{1}{k} \sum_{j \neq i} 1_{\left(x_{j} \in N\left(x_{i}\right)\right)} y_{j}+\frac{1}{k} 1_{\left(x_{i} \in N\left(x_{i}\right)\right)} f^{-i}\left(x_{i}\right) \\
= & \frac{1}{k} \sum_{j \neq i} 1_{\left(x_{j} \in N\left(x_{i}\right)\right)} y_{j}+\frac{1}{k}\left(\frac{1}{k-1} \sum_{j \neq i} 1_{\left(x_{j} \in N^{-i}\left(x_{i}\right)\right)} y_{j}\right) \\
= & \frac{1}{k} \sum_{j \neq i} y_{j}\left(1_{\left(x_{j} \in N^{-i}\left(x_{i}\right)\right)}+\frac{1}{k-1} 1_{\left(x_{j} \in N^{-i}\left(x_{i}\right)\right)}\right) \\
= & \frac{1}{k}\left(1+\frac{1}{k-1}\right) \sum_{j \neq i} 1_{\left(x_{j} \in N^{-i}\left(x_{i}\right)\right)} y_{j} \\
= & \frac{1}{k-1} \sum_{j \neq i} 1_{\left(x_{j} \in N^{-i}\left(x_{i}\right)\right)} y_{j},
\end{aligned}
$$

which is $f^{-i}\left(x_{i}\right)$.

We now define

$$
\mathrm{GCV}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{Y_{i}-\hat{f}\left(x_{i}\right)}{1-\frac{1}{n} \operatorname{tr} \mathbf{S}}\right)^{2}
$$

and call GCV the generalized cross-validation estimator.
Exercise 1.8. Show that

$$
\left(\frac{Y_{i}-\hat{f}\left(x_{i}\right)}{1-\frac{1}{n} \operatorname{tr} \mathbf{S}}\right)^{2} \approx\left(Y_{i}-\hat{f}\left(x_{i}\right)\right)^{2}\left(1+\frac{2}{n} \operatorname{tr} \mathbf{S}\right)
$$

and use this to obtain an approximate relation between GCV and $\hat{\operatorname{Err}_{\mathrm{in}}}$.

Solution. Put $f(x)=(1-x)^{-2}$, we then have $f^{\prime}(x)=2(1-x)^{-3}$, so that in particular, $f(1)=1$ and $f^{\prime}(1)=2$, yielding the first-order Taylor approximation $(1-x)^{-2} \approx 1+2 x$, and so

$$
\left(\frac{Y_{i}-\hat{f}\left(x_{i}\right)}{1-\frac{1}{n} \operatorname{tr} \mathbf{S}}\right)^{2}=\left(Y_{i}-\hat{f}\left(x_{i}\right)\right)^{2}\left(1-\frac{1}{n} \operatorname{tr} \mathbf{S}\right)^{-2} \approx\left(Y_{i}-\hat{f}\left(x_{i}\right)\right)^{2}\left(1+\frac{2}{n} \operatorname{tr} \mathbf{S}\right)
$$

The estimate of the in-sample error considered previously was $\hat{\operatorname{Err}_{\mathrm{in}}}=\overline{\operatorname{err}}_{s}+\frac{2}{n}(\operatorname{tr} \mathbf{S}) \hat{\sigma}^{2}$. We therefore obtain

$$
\begin{aligned}
\mathrm{GCV} & =\frac{1}{n} \sum_{i=1}^{n}\left(\frac{Y_{i}-\hat{f}\left(x_{i}\right)}{1-\frac{1}{n} \operatorname{tr} \mathbf{S}}\right)^{2} \\
& \approx \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\hat{f}\left(x_{i}\right)\right)^{2}\left(1+\frac{2}{n} \operatorname{tr} \mathbf{S}\right) \\
& =\left(1+\frac{2}{n} \operatorname{tr} \mathbf{S}\right) \overline{\operatorname{err}}_{s} \\
& =\left(1+\frac{\hat{\mathrm{Err}}_{\mathrm{in}}-\overline{\operatorname{err}}_{s}}{\hat{\sigma}^{2}}\right) \overline{\operatorname{err}}_{s}
\end{aligned}
$$

If we further assume that we estimate $\hat{\sigma}^{2}$ with the stochastic training error, that is, $\hat{\sigma}^{2}=\overline{\operatorname{err}}_{s}$, we find $\mathrm{GCV}=\hat{E r r}_{\mathrm{in}}$.

