
1 StatLearn Theoretical exercise 2

Let X be a p-dimensional stochastic variable and Y a scalar stochastic variable. Let some
mapping f : Rp → R be given, and assume given some other mapping L : R × R → R. We
think of f as a predictor function used for predicting samples of Y from samples of X, and
we think of L as a loss function used for assessing the quality of approximation of Y by f(X).
We define EPE(f) = EL(Y, f(X)) as the expected prediction error. This expression depends
explicitly on f and implicitly on the joint distribution of (X,Y ), and cannot be calculated
exactly in practice.

Considering observation pairs (xi, yi), i ≤ n, and assuming given an estimator f̂(xi) of

f(xi) based on (xi, yi), we may define err = 1
n

∑n
i=1 L(yi, f̂(xi)) as the training error. This

expression depends solely on the observation pairs (xi, yi), and can be calculated exactly in
practice.

Now keep the observations of the independent variables (xi) fixed, and let Yi denote indepen-
dent samples with Yi having the conditional distribution of Y given X = xi. We then define
the stochastic training error by errs = 1

n

∑n
i=1 L(Yi, f̂s(xi)), where f̂s(xi) is the estimator

of f(xi) based on the fixed independent variables (xi) and the stochastic responses (Yi).
This expression depends on the observations (xi) and (Yi), and can be calculated exactly in

practice. Furthermore, we may also define Errin = 1
n

∑n
i=1EL(Y ′i , f̂s(xi)) as the expected

in-sample error, where (Y ′i ) are independent samples from the conditional distribution of Y

given X = xi, and f̂s(xi) remains the estimator of f(xi) based on (xi) and (Yi). This expres-
sion depends on the observations (xi) and on the conditional distribution of Y given X, and
cannot be calculated exactly in practice. The expected optimism is then eop = Errin−Eerrs.
This expression depends on the observations (xi) and on the conditional distribution of Y
given X, and cannot be calculated exactly in practice.

Note that all of err, errs, Errin and eop depend only on the fitted values f̂s(xi) and not on
any full estimate of f . This distinction will allow us extra flexibility in the following.

Exercise 1.1. Show that with L being the squared error loss, eop = 2
n

∑n
i=1 cov(f̂s(xi), Yi).

Solution. Plugging in the expression for the loss function and expanding terms, we obtain

eop = Errin − Eerrs

=
1

n

n∑
i=1

E((Y ′i − f̂s(xi))2 − (Yi − f̂s(xi))2)

=
1

n

n∑
i=1

E((Y ′i )2 − 2Y ′i f̂s(xi) + f̂s(xi)
2 − (Y 2

i − 2Yif̂s(xi) + f̂s(xi)
2))

=
1

n

n∑
i=1

E(Y ′i )2 − 2EY ′i f̂s(xi)− EY 2
i + 2EYif̂s(xi).
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Now, Y ′i and Yi has the same distribution, namely the conditional distribution of Y given
X = xi, and therefore the moments and second moments are equal. Furthermore, (Y ′i ) is

independent of (Yi), in particular independent of f̂s(xi), and we therefore find

eop =
1

n

n∑
i=1

2EYif̂s(xi)− 2EY ′i f̂s(xi)

=
1

n

n∑
i=1

2EYif̂s(xi)− 2(EY ′i )(Ef̂s(xi))

=
1

n

n∑
i=1

2EYif̂s(xi)− 2(EYi)(Ef̂s(xi))

=
2

n

n∑
i=1

cov(f̂s(xi), Yi),

as required. �

Now consider a n × n matrix S, understood to be depending only on the observations (xi).

Let f̂ denote the vector of fitted values, f̂i = f̂s(xi). Assume that f̂ = SY, where Y is
the n-dimensional vector whose i’th entry is Yi. Assume that the conditional variance of Y
given X = x does not depend on x, and let σ2 denote the common value of the conditional
variance.

Exercise 1.2. Show that
∑n
i=1 cov(f̂s(xi), Yi) = σ2tr S.

Solution. Using linearity of the covariance, we find

n∑
i=1

cov(f̂s(xi), Yi) =

n∑
i=1

cov((SY)i, Yi)

=
n∑
i=1

cov

 n∑
j=1

SijYj , Yi


=

n∑
i=1

n∑
j=1

Sij cov(Yj , Yi)

=

n∑
i=1

SiiV Yi

= σ2
n∑
i=1

Sii

= σ2tr S.

�
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Exercise 1.3. Let σ̂2 denote an unbiased estimator of σ2. Define Êrrin = errs + 2
n (tr S)σ̂2.

Show that the mean of Êrrin is Errin.

Solution. Combining our previous results of Exercise 1.1 and Exercise 1.2, we have

EÊrrin = Eerrs +
2

n
(tr S)Eσ̂2

= Errin − eop +
2

n
(tr S)σ2

= Errin −
2

n

n∑
i=1

cov(f̂s(xi), Yi) +
2

n
(tr S)σ2

= Errin.

�

Exercise 1.3 shows that for prediction methods where the fitted values are a linear function
of the responses given the design matrix, we have a simple estimator for the in-sample error,
which is often of interest to us.

Next, we define the generalization error as Err = EL(Y ′, f̂(X ′)), where f̂ is the predictor
function estimate based on (Xi) and (Yi) and take interest in estimating Err. To this end,
we assume that the diagonal of S does not contain any ones, and define

f̂−i(xi) =
∑
j 6=i

Sij
1− Sii

yj ,

and think of f̂−i(xi) as the fitted value at xi for the data set excluding xi. Note that f̂−i(xi)
is this the predicted value of the response for a point outside of the data set, and thus
requires an prediction methodology for obtaining predicted values outside of our observed
independent variables, for example through a full estimate of f . We then define the leave-
one-out cross-validation estimator of Err as

Êrr =
1

n

n∑
i=1

L(yi, f̂
−i(xi))

Exercise 1.4. Show that yi − f̂−i(xi) = yi−f̂(xi)
1−Sii

.

3



Solution. This follows as

yi − f̂−i(xi) = yi −
∑
j 6=i

Sij
1− Sii

yj

=
1

1− Sii

yi(1− Sii)−
∑
j 6=i

Sijyj


=

1

1− Sii

yi − n∑
j=1

Sijyj


=

yi − f̂(xi)

1− Sii
.

�

Exercise 1.5. Explain why the above result may be used to compute Êrr with squared error
loss efficiently using the diagonal elements of S.

Solution. We find

Êrr =
1

n

n∑
i=1

L(yi, f̂
−i(xi))

=
1

n

n∑
i=1

(yi − f̂−i(xi))2

=
1

n

n∑
i=1

(
yi − f̂(xi)

1− Sii

)2

,

which allows fast computation given f̂ and the diagonal of S, removing the need to calculate
each f̂−i(xi) separately. �

Exercise 1.6. Show that the assumption f̂−i(xi) = (1 − Sii)
−1∑

j 6=i SijYj is equivalent to

assuming that the fit at xi, f̂s(xi), based on the reduced data set excluding the i’th observation
pair, is the same as the fit at xi based the data set exchanging the i’th observation pair with
(xi, f̂

−i
s (xi)).

Solution. The property that the fit at xi, f̂s(xi), based on the reduced data set excluding
the i’th observation pair is the same as the fit at xi based the data set exchanging the i’th
observation pair with (xi, f̂

−i
s (xi)) may, be formalized as:

(S(Y − (Yi − f̂−i(xi))ei))i = f̂−i(xi),
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where ei denotes the unit vector in the i’th direction. The left-hand side is

(S(x)(Y − (Yi − f̂−i(xi))ei))i =

n∑
j=1

Sij(Y − (Yi − f̂−i(xi))ei)i

=

n∑
j=1

SijYj − (Yi − f̂−is (xi))Sii

= Siif
−i
s (xi) +

∑
j 6=i

SijYj ,

and so the requirement is that (1− Sii)f̂
−i
s (xi) =

∑
j 6=i SijYj , which yields the result. �

Exercise 1.7. Show that least squares regression and ridge regression linear smoothers sat-
isfying the regularity criterion on leave-one-out estimates. Show that the k-nearest neighbor
method satisfies the regularity criterion if the leave-one-out estimates are based on the (k−1)-
nearest neighbor method.

Solution. For the least squares regression, we are given a response y ∈ Rn and a design
matrix X of full column rank, and the estimate of the prediction function is then obtained as
f̂(x) = xt(XtX)−1Xty. The estimate of the prediction function for the reduced data set is

then f̂−i(x) = xt((X−i)
tX−i)

−1(X−i)
ty−i, where X−i is the (n− 1)× p matrix obtained by

removing the i’th row of X, and y−i is the (n− 1)-dimensional vector obtained by removing
the i’th entry of y. We have

‖y − (yi − f̂−1(xi))ei −Xβ‖22
= ‖y−i −X−iβ‖22 + (yi − (yi − f̂−1(xi))− xtiβ)2

= ‖y−i −X−iβ‖22 + (f̂−1(xi)− xtiβ)2.

The first term is minimized for β−i = (X−i)
tX−i)

−1(X−i)
ty−i, and this argument inciden-

tally also minimizes the second term, yielding the value zero. Therefore, we conclude

argmin
β∈Rp

‖y − (yi − f̂−1(xi))ei −Xβ‖22 = argmin
β∈Rp

‖y−i −X−iβ‖22.

As both these argument minima are solutions to ordinary least squares problems, we conclude

(XtX)−1Xt(y − (yi − f̂−1(xi))ei) = ((X−i)
tX−i)

−1Xt
−iy−i,

and in particular the fitted values, obtained by multiplying by xti on the right, coincide.
The left-hand side becomes the fitted value at xi for the full data set with yi exchanged by
f−i(xi), and the right-hand side becomes the fitted value at xi for the reduced dataset. This
proves the result in the least squares regression case.

Next, we consider the ridge regression case. Let λ ≥ 0 be given. Here, the estimate of the
prediction function is f̂(x) = xt(XtX + λIp)

−1Xty, and the corresponding estimate of the
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prediction function for the reduced data set is f̂−i(x) = xt((X−i)
tX−i + λIp)

−1(X−i)
ty−i.

As before, we find

‖y − (yi − f̂−1(xi))ei −Xβ‖22 + λ‖β‖22
= ‖y−i −X−iβ‖22 + (yi − (yi − f̂−1(xi))− xtiβ)2 + λ‖β‖22
= ‖y−i −X−iβ‖22 + λ‖β‖22 + (f̂−1(xi)− xtiβ)2.

The first two terms are minimized for β−i = (X−i)
tX−i + λIp)

−1(X−i)
ty−i, and as in the

least squares case, this argument also minimizes the second term, and so we obtain

argmin
β∈Rp

‖y − (yi − f̂−1(xi))ei −Xβ‖22 + λ‖β‖22 = argmin
β∈Rp

‖y−i −X−iβ‖22 + λ‖β‖22,

and therefore

(XtX + λIp)
−1Xt(y − (yi − f̂−1(xi))ei) = ((X−i)

tX−i + λIp)
−1Xt

−iy−i.

As in the least squares case, this shows that the fitted value at xi for the full data set with yi
exchanged by f−i(xi) and the fitted value at xi for the reduced data set match, as desired.

Finally, we consider the k-nearest neighbor method. As before, we are given an n-dimensional
response vector y and an n × p design matrix X, and the estimate of the prediction func-
tion is f̂(x) = 1

k

∑n
j=1 1(xj∈N(x))yj , where N(x) is a neighborhood of x containing k points.

Note that in contrast to the case for least squares and ridge regression, f̂ is not linear,
although the fitted values f̂ is a linear function of y. We base the estimate of the pre-
diction function for the reduced data set on the (k − 1)-nearest neighbor method, and put

f̂−i(x) = 1
k−1

∑
j 6=i 1(xj∈N−i(x))yj , where N−i(x) are the neighborhoods for the reduced data

set containing k − 1 points each.

We wish to calculate the fitted value at xi for the full data set with yi exchanged by f−i(xi).
As the reduced data set does not contain xi, we have N−i(xi) = N(xi) \ {xi}, and so

1

k

∑
j 6=i

1(xj∈N(xi))yj +
1

k
1(xi∈N(xi))f

−i(xi)

=
1

k

∑
j 6=i

1(xj∈N(xi))yj +
1

k

 1

k − 1

∑
j 6=i

1(xj∈N−i(xi))yj


=

1

k

∑
j 6=i

yj

(
1(xj∈N−i(xi)) +

1

k − 1
1(xj∈N−i(xi))

)

=
1

k

(
1 +

1

k − 1

)∑
j 6=i

1(xj∈N−i(xi))yj

=
1

k − 1

∑
j 6=i

1(xj∈N−i(xi))yj ,

which is f−i(xi). �

6



We now define

GCV =
1

n

n∑
i=1

(
Yi − f̂(xi)

1− 1
n tr S

)2

,

and call GCV the generalized cross-validation estimator.

Exercise 1.8. Show that(
Yi − f̂(xi)

1− 1
n tr S

)2

≈ (Yi − f̂(xi))
2(1 + 2

n tr S),

and use this to obtain an approximate relation between GCV and Êrrin.

Solution. Put f(x) = (1 − x)−2, we then have f ′(x) = 2(1 − x)−3, so that in particular,
f(1) = 1 and f ′(1) = 2, yielding the first-order Taylor approximation (1 − x)−2 ≈ 1 + 2x,
and so (

Yi − f̂(xi)

1− 1
n tr S

)2

= (Yi − f̂(xi))
2(1− 1

n tr S)−2 ≈ (Yi − f̂(xi))
2(1 + 2

n tr S).

The estimate of the in-sample error considered previously was Êrrin = errs + 2
n (tr S)σ̂2. We

therefore obtain

GCV =
1

n

n∑
i=1

(
Yi − f̂(xi)

1− 1
n tr S

)2

≈ 1

n

n∑
i=1

(Yi − f̂(xi))
2(1 + 2

n tr S)

= (1 + 2
n tr S)errs

=

(
1 +

Êrrin − errs
σ̂2

)
errs

If we further assume that we estimate σ̂2 with the stochastic training error, that is, σ̂2 = errs,
we find GCV = Êrrin. �
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