Lecture 3

Statistical Learning, 2011

Niels Richard Hansen
October 12, 2011

$1 \quad$ Solution - Prac 7

This document is produced with Sweave. For that reason all uses of ggplot2 functions for plotting need to be done inside a print - otherwise there will be no figures in the output.

```
> require(MASS) ## for lda
> require(ggplot2)
> require(Matrix) ## for an image of a matrix
> load("prac7.RData")
```


Question 1

> X <- as.matrix(prac7Train[, -16])
> y <- prac7Train[, 16]
$>\mathrm{N}$ <- length (y)
> p <- dim(X)[2]
> Nk <- as.numeric(table(y))
> pairs(X, col = y, pch = 20, cex = 0.4)

(1)

Question 2
First, we pretend that the X-variables are continuous and use density to automatically fit a smooth density to the marginal distributions. It is a little tricky because we need to get evaluations of the kernels at the points we are going to use later, and we need to fit the density for each column in the data frame

```
> values <- lapply(rbind(prac7Train[, -16],
+ prac7Test[, -16]),
+ function(x) sort(unique(x))
+ )
> h <- list()
> for(i in seq_along(values)) {
+ dens1 <- density(X[y == "Caucasian", i])
```

```
+ fitx1 <- findInterval(values[[i]], dens1$x, all.inside = TRUE)
+ dens2 <- density(X[y == "African American", i])
+ fitx2 <- findInterval(values[[i]], dens2$x, all.inside = TRUE)
+ y1 <- as.table(dens1$y[fitx1])
+ names(y1) <- values[[i]]
+ y2 <- as.table(dens2$y[fitx2])
+ names(y2) <- values[[i]]
+ h[[i]] <- list(AA = y2, Caucasian = y1)
+ }
> names(h) <- names(values)
```

```
> logit <- sapply(h, function(x) log((x[[2]])/(x[[1]])))
> logitMelt <- melt(logit)
> print(qplot(x = indices, y = value, data = logitMelt, geom="line") +
+ facet_wrap(~ L1, scale = "free_x"))
```


Misclassification tables.

```
> yTest <- prac7Test[, 16]
```

```
> XTest <- prac7Test[, -16]
> predNaive <- function(X) {
+ yHat <- sapply(1:15,
+ function(i) logit[[i]][as.character(X[, i])]
+ )
log(Nk[2]/Nk[1]) + rowSums(yHat)
}
predictionNaive <- predNaive(X)
> predictionNaiveTest <- predNaive(XTest)
```

And then the misclassification table on the test data.

```
> pred <- table(levels(y)[(predictionNaive > 0) + 1], y)
> print(pred)
\begin{tabular}{lrr}
\multicolumn{2}{c}{ y } & \\
& African American & Caucasian \\
African American & 161 & 18 \\
Caucasian & 12 & 158
\end{tabular}
> print(pred/sum(pred), digits=3)
    y
    African American Caucasian
\begin{tabular}{lrr} 
& African & American \\
Caucasian \\
African American & 0.4613 & 0.0516 \\
Caucasian & 0.0344 & 0.4527
\end{tabular}
> pred <- table(levels(yTest)[(predictionNaiveTest > 0) + 1], yTest)
> print(pred)
            yTest
            African American Caucasian
    African American 71 19
    Caucasian 11 68
print(pred/sum(pred), digits=3)
            yTest
        African American Caucasian
    African American 0.4201 0.1124
    Caucasian 0.0651 0.4024
```

Next, we have to convert the numeric data into a form suitable for the tabulation of the discrete distributions. This is done by converting all the columns in the X matrix as well as the in the test data set into factors.

```
allX <- as.data.frame(lapply(rbind(prac7Train[, -16],
+ prac7Test[, -16]),
+ factor)
+ )
Xtrain <- allX[1:N, ]
```

We compute the estimates of the marginal distributions and construct a plot. Along the way we modify the counts a little by adding an ϵ (pseudo-counts) and then normalize the tables to probability vectors. This is to prevent $0 / 0$ and $\log (0)$ in subsequent computations.

```
counts <- lapply(Xtrain, function(x) tapply(x, y, table))
> epsilon <- 0.01
> h <- lapply(counts,
+ function(x) {
+ lapply(x, function(x) (x+epsilon)/sum(x+epsilon))
+ }
+ )
logit <- sapply(h, function(x) log((x[[2]])/(x[[1]])))
logitMelt <- melt(logit)
> print(qplot(x = Var.1, y = value, data = logitMelt, geom="line") +
+ facet_wrap(~ L1, scale = "free_x"))
```


Computing the training and test error.
> predictionNaive <- predNaive(X)
> predictionNaiveTest <- predNaive (XTest)
> print(qplot(1:N, predictionNaive[order(y)],
$+\quad$ shape=I(20), colour $=\mathrm{y}[\operatorname{order}(\mathrm{y})])$)

Computing the misclassification table on the training data.

```
> pred <- table(levels(y)[(predictionNaive > 0) + 1], y)
> print(pred)
```

y		
	African	American
Caucasian		
African American	161	6
Caucasian	12	170

> print(pred/sum(pred), digits=3)

y		
	African American	Caucasian
African American	0.4613	0.0172
Caucasian	0.0344	0.4871

> pred <- table(levels(yTest) [(predictionNaiveTest > 0) + 1], yTest)

```
print(pred)
    yTest
    African American Caucasian
    African American 65 12
    Caucasian 17
    7 5
    print(pred/sum(pred), digits=3)
    yTest
    African American Caucasian
African American 0.385 0.071
Caucasian 0.101 0.444
```

We can try to smooth the estimated probabilities for instance by convolving with a rectangular kernel.

```
bw <- 1
epsilon <- 0.01
h <- lapply(counts,
function(x) {
+ lapply(x,
    function(x) {
    lab <- names(x)
    x <- convolve(c(rep(0, bw), x, rep(0, bw)),
                            rep(1/(2*bw+1), 2*bw+1), type =
"filter") + epsilon
+ x <- as.table(x/sum(x))
+ names(x) <- lab
+ return(x)
+ }
)
        }
        )
logit <- sapply(h, function(x) log((x[[2]])/(x[[1]])))
logitMelt <- melt(logit)
print(qplot(x = indices, y = value, data = logitMelt, geom="line") +
+ facet_wrap(~L1,scale="free_x"))
```



```
> predictionNaive <- predNaive(X)
> predictionNaiveTest <- predNaive(XTest)
> print(qplot(1:N, predictionNaive[order(y)], shape=I(20), colour =
y[order(y)]))
```


Computing the misclassification tables.

```
> pred <- table(levels(y)[(predictionNaive > 0) + 1], y)
> print(pred)
```

y		
	African American	Caucasian
African American	146	16
Caucasian	27	160

y		
	African American	Caucasian
African American	0.4183	0.0458
Caucasian	0.0774	0.4585

> pred <- table(levels(yTest) [(predictionNaiveTest > 0) + 1], yTest)

```
print(pred)
    yTest
    African American Caucasian
    African American 60 20
    Caucasian 22 67
print(pred/sum(pred), digits=3)
    yTest
    African American Caucasian
African American 0.355 0.118
Caucasian 0.130 0.396
```


Question 3

Computing group means and the estimate of the covariance matrix. The group means can be computed using "simple" R functions. For interactive use this may be useful, but it is generally slower than using linear algebra, which is to be preferred for programming.

```
### A simple solution
groupMeans <- apply(X, 2, function(x) tapply(x, y, mean))
### The linear algebra solution
A <- model.matrix(~ y - 1) ## The design matrix
groupMeans <- 1/Nk * t(A) %*% X
residuals <- X - groupMeans[y, ]
## Alternative is
## residuals <- X - A %*% groupMeans
## but the former works even if we did not compute the design matrix
SigmaHat <- t(residuals) %*% residuals/(N - 3)
## Outer product (all cross-products)
sHat <- sqrt(diag(SigmaHat)) %o% sqrt(diag(SigmaHat))
corHat <- SigmaHat/sHat
```

| | D8S1179 | D21S11 | D7S820 | CSF1PO | D3S1358 | TH01 | D13S317 | D16S539 | D2S1338 | D19S433 | vWA | TPOX | D18S51 | D5S818 | FGA |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| yAfrican American | 27.17 | 59.57 | 19.70 | 21.28 | 31.70 | 15.12 | 23.28 | 21.68 | 41.74 | 26.91 | 32.87 | 17.76 | 32.40 | 23.24 | 45.82 |
| yCaucasian | 25.57 | 59.79 | 20.02 | 22.70 | 32.18 | 15.95 | 22.17 | 22.80 | 41.43 | 27.84 | 33.40 | 18.37 | 30.23 | 23.02 | 43.93 |

Table 1: Group Means

	D8S1179	D21S11	D7S820	CSF1PO	D3S1358	TH01	D13S317	D16S539	D2S1338	D19S433	vWA	TPOX	D18S51	D5S818	FGA
D8S1179	1.00	0.00	0.05	-0.02	-0.02	0.09	0.02	0.02	-0.07	0.08	0.00	0.00	-0.05	0.03	0.00
D21S11	0.00	1.00	0.08	-0.05	-0.04	-0.02	-0.04	-0.03	0.06	-0.07	-0.00	-0.04	-0.02	-0.09	-0.06
D7S820	0.05	0.08	1.00	0.07	-0.09	0.01	0.09	-0.02	-0.07	0.03	0.00	0.02	0.08	0.04	-0.00
CSF1PO	-0.02	-0.05	0.07	1.00	-0.11	0.03	0.08	0.03	-0.05	-0.05	-0.03	0.01	0.04	0.10	0.09
D3S1358	-0.02	-0.04	-0.09	-0.11	1.00	-0.04	-0.01	-0.05	0.03	-0.03	-0.04	0.00	0.05	-0.03	-0.09
TH01	0.09	-0.02	0.01	0.03	-0.04	1.00	-0.06	0.07	-0.07	-0.07	-0.02	0.06	0.01	0.00	0.02
D13S317	0.02	-0.04	0.09	0.08	-0.01	-0.06	1.00	0.02	-0.03	-0.04	-0.03	-0.03	0.01	-0.03	0.01
D16S539	0.02	-0.03	-0.02	0.03	-0.05	0.07	0.02	1.00	-0.01	0.04	0.05	0.03	-0.01	0.01	-0.04
D2S1338	-0.07	0.06	-0.07	-0.05	0.03	-0.07	-0.03	-0.01	1.00	0.06	0.00	-0.12	-0.01	-0.05	0.06
D19S433	0.08	-0.07	0.03	-0.05	-0.03	-0.07	-0.04	0.04	0.06	1.00	-0.08	0.02	0.06	0.03	-0.03
vWA	0.00	-0.00	0.00	-0.03	-0.04	-0.02	-0.03	0.05	0.00	-0.08	1.00	0.02	-0.00	-0.04	0.05
TPOX	0.00	-0.04	0.02	0.01	0.00	0.06	-0.03	0.03	-0.12	0.02	0.02	1.00	0.01	-0.04	-0.01
D18S51	-0.05	-0.02	0.08	0.04	0.05	0.01	0.01	-0.01	-0.01	0.06	-0.00	0.01	1.00	-0.01	-0.01
D5S818	0.03	-0.09	0.04	0.10	-0.03	0.00	-0.03	0.01	-0.05	0.03	-0.04	-0.04	-0.01	1.00	0.02
FGA	0.00	-0.06	-0.00	0.09	-0.09	0.02	0.01	-0.04	0.06	-0.03	0.05	-0.01	-0.01	0.02	1.00

Table 2: Sigmahat

Figure 1: The correlation matrix

Question 4

Fitting lda and logistic regression models.

```
> Xlda <- lda(population ~ ., data = prac7Train)
> Xglm <- glm(population ~ ., data = prac7Train, family = binomial)
```

Computing misclassification tables for LDA.

```
> pred <- table(predict(Xlda)$class, y)
```

> print(pred)

```
                                    y
                                    African American Caucasian
\begin{tabular}{lrr} 
African American & 143 & 22 \\
Caucasian & 30 & 154
\end{tabular}
> print(pred/sum(pred),digits=3)
            y
                African American Caucasian
    African American 0.410 0.063
    Caucasian 0.086 0.441
> pred <- table(predict(Xlda, XTest)$class, yTest)
> print(pred)
\begin{tabular}{lrr}
\multicolumn{2}{c}{ yTest } & \\
& African American & Caucasian \\
African American & 61 & 19 \\
Caucasian & 21 & 68
\end{tabular}
> print(pred/sum(pred), digits=3)
\begin{tabular}{lrr}
\multicolumn{2}{c}{ yTest } \\
& African American & Caucasian \\
African American & 0.361 & 0.112 \\
Caucasian & 0.124 & 0.402
\end{tabular}
```

Computing misclassification tables for logistic regression.

```
> predGlm <- predict(Xglm, type = "response")
> yHat <- levels(y)[as.numeric(predGlm > 0.5) + 1]
> pred <- table(yHat, y)
> print(pred)
```

y			
yHat	African	American	Caucasian
African American	144	24	
Caucasian	29	152	
p print(pred/sum(pred), digits=3)			

y

yHat	African	American
African American	0.4126	0.0688
Caucasian	0.0831	0.4355

```
> predGlm <- predict(Xglm, XTest, type = "response")
> yHat <- levels(y)[as.numeric(predGlm > 0.5) + 1]
> pred <- table(yHat, yTest)
> print(pred)
```

yTest			
yHat	African	American	Caucasian
African American		65	21
Caucasian		17	66
> print(pred/sum(pred), digits=3)			
yTest			
yHat	African	American	Caucasian
African American		0.385	0.124
Caucasian		0.101	0.391

