Lecture 3

Statistical Learning, 2011

Niels Richard Hansen October 12, 2011

1 Solution – Prac 7

This document is produced with Sweave. For that reason all uses of ggplot2 functions for plotting need to be done inside a print – otherwise there will be no figures in the output.

```
> require(MASS) ## for lda
> require(ggplot2)
> require(Matrix) ## for an image of a matrix
> load("prac7.RData")
```

Question 1

```
> X <- as.matrix(prac7Train[, -16])
> y <- prac7Train[, 16]
> N <- length(y)
> p <- dim(X)[2]
> Nk <- as.numeric(table(y))
> pairs(X, col = y, pch = 20, cex = 0.4)
```


Question 2

First, we pretend that the X-variables are continuous and use density to automatically fit a smooth density to the marginal distributions. It is a little tricky because we need to get evaluations of the kernels at the points we are going to use later, and we need to fit the density for each column in the data frame

```
> values <- lapply(rbind(prac7Train[, -16],
+ prac7Test[, -16]),
+ function(x) sort(unique(x))
+ )
> h <- list()
> for(i in seq_along(values)) {
+ dens1 <- density(X[y == "Caucasian", i])</pre>
```

```
fitx1 <- findInterval(values[[i]], dens1$x, all.inside = TRUE)</pre>
+
    dens2 <- density(X[y == "African American", i])</pre>
    fitx2 <- findInterval(values[[i]], dens2$x, all.inside = TRUE)</pre>
+
+
    y1 <- as.table(dens1$y[fitx1])</pre>
    names(y1) <- values[[i]]</pre>
    y2 <- as.table(dens2$y[fitx2])</pre>
    names(y2) <- values[[i]]</pre>
    h[[i]] <- list(AA = y2, Caucasian = y1)</pre>
+
+ }
> names(h) <- names(values)</pre>
> logit <- sapply(h, function(x) log((x[[2]])/(x[[1]])))</pre>
> logitMelt <- melt(logit)</pre>
> print(qplot(x = indices, y = value, data = logitMelt, geom="line") +
```

```
facet_wrap(~ L1, scale = "free_x"))
```


Misclassification tables.

> yTest <- prac7Test[, 16]</pre>

```
> XTest <- prac7Test[, -16]
> predNaive <- function(X) {
+ yHat <- sapply(1:15,
+ function(i) logit[[i]][as.character(X[, i])]
+ )
+ log(Nk[2]/Nk[1]) + rowSums(yHat)
+ }
> predictionNaive <- predNaive(X)
> predictionNaiveTest <- predNaive(XTest)</pre>
```

And then the misclassification table on the test data.

```
> pred <- table(levels(y)[(predictionNaive > 0) + 1], y)
> print(pred)
                  у
                   African American Caucasian
  African American
                                161
                                           18
  Caucasian
                                 12
                                           158
> print(pred/sum(pred), digits=3)
                  у
                   African American Caucasian
  African American
                             0.4613
                                       0.0516
```

```
> pred <- table(levels(yTest)[(predictionNaiveTest > 0) + 1], yTest)
> print(pred)
```

0.4527

0.0344

```
> print(pred)
```

Caucasian

2	Test		
	African	American	Caucasian
African American		71	19
Caucasian		11	68

> print(pred/sum(pred), digits=3)

2	yTest		
	African	American	Caucasian
African American		0.4201	0.1124
Caucasian		0.0651	0.4024

Next, we have to convert the numeric data into a form suitable for the tabulation of the discrete distributions. This is done by converting all the columns in the X matrix as well as the in the test data set into factors.

```
> allX <- as.data.frame(lapply(rbind(prac7Train[, -16],
+ prac7Test[, -16]),
+ factor)
+ )
> Xtrain <- allX[1:N, ]</pre>
```

We compute the estimates of the marginal distributions and construct a plot. Along the way we modify the counts a little by adding an ϵ (pseudo-counts) and then normalize the tables to probability vectors. This is to prevent 0/0 and $\log(0)$ in subsequent computations.

```
> counts <- lapply(Xtrain, function(x) tapply(x, y, table))</pre>
> epsilon <- 0.01
> h <- lapply(counts,
               function(x) {
+
                 lapply(x, function(x) (x+epsilon)/sum(x+epsilon))
+
+
                 }
+
               )
> logit <- sapply(h, function(x) log((x[[2]])/(x[[1]])))</pre>
> logitMelt <- melt(logit)</pre>
  print(qplot(x = Var.1, y = value, data = logitMelt, geom="line") +
>
+
        facet_wrap(~ L1, scale = "free_x"))
```


Computing the training and test error.

```
> predictionNaive <- predNaive(X)
> predictionNaiveTest <- predNaive(XTest)
> print(qplot(1:N, predictionNaive[order(y)],
+ shape=I(20), colour = y[order(y)]))
```


Computing the misclassification table on the training data.

```
> pred <- table(levels(y)[(predictionNaive > 0) + 1], y)
> print(pred)
```

У		
Africa	n American	Caucasian
African American	161	6
Caucasian	12	170

> print(pred/sum(pred), digits=3)

У		
Africa	n American	Caucasian
African American	0.4613	0.0172
Caucasian	0.0344	0.4871

> pred <- table(levels(yTest)[(predictionNaiveTest > 0) + 1], yTest)

> print(pred)

yTest		
Africar	American	Caucasian
African American	65	12
Caucasian	17	75

> print(pred/sum(pred), digits=3)

yTes	t		
Afr	ican	American	Caucasian
African American		0.385	0.071
Caucasian		0.101	0.444

We can try to smooth the estimated probabilities for instance by convolving with a rectangular kernel.

```
> bw <- 1
> epsilon <- 0.01
> h <- lapply(counts,
               function(x) {
+
+
                 lapply(x,
+
                         function(x) {
+
                           lab <- names(x)</pre>
                            x <- convolve(c(rep(0, bw), x, rep(0, bw)),</pre>
+
                                           rep(1/(2*bw+1), 2*bw+1), type =
+
"filter") + epsilon
                            x <- as.table(x/sum(x))</pre>
+
+
                           names(x) <- lab</pre>
+
                           return(x)
+
                           }
                         )
+
                 }
+
+
               )
> logit <- sapply(h, function(x) log((x[[2]])/(x[[1]])))</pre>
> logitMelt <- melt(logit)</pre>
> print(qplot(x = indices, y = value, data = logitMelt, geom="line") +
         facet_wrap(~L1,scale="free_x"))
+
```


> predictionNaive <- predNaive(X)
> predictionNaiveTest <- predNaive(XTest)
> print(qplot(1:N, predictionNaive[order(y)], shape=I(20), colour =
y[order(y)]))

Computing the misclassification tables.

```
> pred <- table(levels(y)[(predictionNaive > 0) + 1], y)
> print(pred)
```

У		
African	American	Caucasian
African American	146	16
Caucasian	27	160

> print(pred/sum(pred), digits=3)

У		
African	American	Caucasian
African American	0.4183	0.0458
Caucasian	0.0774	0.4585

> pred <- table(levels(yTest)[(predictionNaiveTest > 0) + 1], yTest)

> print(pred)

2	rlest		
	African	American	Caucasian
African American		60	20
Caucasian		22	67

> print(pred/sum(pred), digits=3)

yTest African American Caucasian African American 0.355 0.118 Caucasian 0.130 0.396

Question 3

Computing group means and the estimate of the covariance matrix. The group means can be computed using "simple" R functions. For interactive use this may be useful, but it is generally slower than using linear algebra, which is to be preferred for programming.

```
> ### A simple solution
> groupMeans <- apply(X, 2, function(x) tapply(x, y, mean))
> ### The linear algebra solution
> A <- model.matrix(~ y - 1) ## The design matrix
> groupMeans <- 1/Nk * t(A) %*% X
> residuals <- X - groupMeans[y, ]
> ## Alternative is
> ## residuals <- X - A %*% groupMeans
> ## but the former works even if we did not compute the design matrix
> SigmaHat <- t(residuals) %*% residuals/(N - 3)
> ## Outer product (all cross-products)
> sHat <- sqrt(diag(SigmaHat)) %o% sqrt(diag(SigmaHat))
> corHat <- SigmaHat/sHat</pre>
```

Table 2: Sigmahat

Figure 1: The correlation matrix

Question 4

Fitting lda and logistic regression models.

```
> Xlda <- lda(population ~ ., data = prac7Train)
> Xglm <- glm(population ~ ., data = prac7Train, family = binomial)</pre>
```

Computing misclassification tables for LDA.

```
> pred <- table(predict(Xlda)$class, y)
> print(pred)
```

3	У		
	African	American	Caucasian
African American		143	22
Caucasian		30	154

> print(pred/sum(pred),digits=3)

y African American Caucasian African American 0.410 0.063 Caucasian 0.086 0.441

> pred <- table(predict(Xlda, XTest)\$class, yTest)
> print(pred)

yTes	st		
Afi	rican	American	Caucasian
African American		61	19
Caucasian		21	68

> print(pred/sum(pred), digits=3)

уT	est		
A	frican	American	Caucasian
African American		0.361	0.112
Caucasian		0.124	0.402

Computing misclassification tables for logistic regression.

```
> predGlm <- predict(Xglm, type = "response")
> yHat <- levels(y)[as.numeric(predGlm > 0.5) + 1]
> pred <- table(yHat, y)
> print(pred)
```

3	7		
yHat	African	American	Caucasian
African American		144	24
Caucasian		29	152

> print(pred/sum(pred),digits=3)

2	У		
yHat	African	American	Caucasian
African American		0.4126	0.0688
Caucasian		0.0831	0.4355

```
> predGlm <- predict(Xglm, XTest, type = "response")
> yHat <- levels(y)[as.numeric(predGlm > 0.5) + 1]
> pred <- table(yHat, yTest)
> print(pred)
```

	yTest		
yHat	African	American	Caucasian
African American		65	21
Caucasian		17	66

> print(pred/sum(pred), digits=3)

1	yTest		
yHat	African	American	Caucasian
African American		0.385	0.124
Caucasian		0.101	0.391