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Let Σ be a p× p symmetric, positive semidefinite matrix, which is diagonalized as

Σ = V ΛV T

where V is orthogonal and Λ is diagonal with the eigenvalues λ1 ≥ . . . ≥ λp ≥ 0 in
the diagonal. We assume throughout that the eigenvalues are sorted in decreasing
order and that the columns of V , v1, . . . , vp, are in the corresponding order so that
vi is an eigenvector with eigenvalue λi. Define

Hq = span{v1, v2, . . . , vq}

as the subspace spanned by the q first columns of V and letH⊥q denote the orthogonal
complement of Hq, which is then spanned by the remaining p− q columns of V . Let
also H0 = {∅} with H⊥0 = Rp.

Result 1:
λq = vTq Σvq = max

β∈H⊥q−1
||β||=1

βTΣβ. (1)

Proof. For q = 1 and β ∈ Rp we have

βTΣβ = βTV ΛV Tβ =

p∑
i=1

βT viλiv
T
i β =

p∑
i=1

(βT vi)
2λi.

Since v1, . . . , vp form an orthonormal basis
∑p

i=1(β
T vi)

2 = ||β||2, hence if ||β|| = 1
we see that βTΣβ is a convex combination of the eigenvalues λ1 ≥ . . . ≥ λp, which
is thus maximized for βT v1 = 1. That is, for β = v1. The maximum equals λ1.

For general q we assume that β ∈ H⊥q−1 with ||β|| = 1. Then the formula above
reduces to

βTΣβ =

p∑
i=q

(βT vi)
2λi.

By the same argument as above we conclude that the sum is maximized for β = vq
and the maximum equals λq.

Consider then an N × p matrix X, let Σ = XTX, and let Λ and V be as above for
this Σ. Let xi denote the transposed of the i’th row in X. We can think of the xi’s as
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N p-dimensional observations. In the following let Kq ⊆ Rp denote a q-dimensional
subspace of Rp. The rank -q-reconstruction error of the data in X is defined as

min
Kq

N∑
i=1

min
z∈Kq

||xi − z||2,

where the outer minimum is over all q-dimensional subspace. The rank-q-reconstruction
error is given in terms of a q-dimensional subspace that minimizes the total sums of
squared distances from the observations to the subspace. The z ∈ Kq that minimizes
||xi−z||2 is the orthogonal projection onto Kq. It is not a priori clear that the outer
minimum is attained, but we will show that this is indeed the case.

Result 2: With Kq = span{w1, . . . , wq} for any given q orthonormal vectors it holds
that

N∑
i=1

min
z∈Kq

||xi − z||2 =
N∑
i=1

||xi||2 −
q∑

j=1

wT
j Σwj .

Proof. With Wq = [w1 . . . wq] we have that P = WqW
T
q is the orthogonal projection

onto Kq and we find that

N∑
i=1

min
z∈Kq

||xi − z||2 =
N∑
i=1

||xi − Pxi||2

=

N∑
i=1

||xi||2 − ||Pxi||2

where we have used Pythagoras ||xi||2 = ||xi −Pxi||2 + ||Pxi||2. Then we have that

N∑
i=1

||Pxi||2 =
N∑
i=1

xTi Pxi

= tr(XPXT )

= tr(WqW
T
q XTX)

= tr(W T
q ΣWq)

=

q∑
j=1

wT
j Σwj .

Result 3: The rank-q-reconstruction error is attained by Kq = Hq.

Proof. We prove this by induction. For q = 1, Result 1 above shows that βTΣβ
is maximized for β = v1. Thus, by Result 2, the rank-1-reconstruction error is
minimized by K1 = H1.
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For the induction step we assume that the rank-(q−1)-reconstruction error for q ≥ 2
is attained for Kq−1 = Hq−1. Let Kq denote any q-dimensional subspace. Take a unit
vector wq ∈ H⊥q−1 ∩ Kq – the latter being a non-empty subspace by a dimensions

consideration. By Result 1 we know that wT
q Σwq ≤ vqΣvq = λq. Moreover, the

(q − 1)-dimensional subspace, K̃q−1, of Kq orthogonal to wq, has by the induction
hypothesis reconstruction error larger than Hq−1. Letting w1, . . . , wq−1 denote an
orthonormal basis for K̃q−1 it follows from Result 2 that

N∑
i=1

min
z∈Kq

||xi − z||2 =

N∑
i=1

||xi||2 −
q∑

j=1

wT
j Σwj

=
N∑
i=1

||xi||2 −
q−1∑
j=1

wT
j Σwj − wT

q Σwq

=

N∑
i=1

min
z∈K̃q−1

||xi − z||2 − wT
q Σwq

≥
N∑
i=1

min
z∈Hq−1

||xi − z||2 − vTq Σvq

=
N∑
i=1

min
z∈Hq

||xi − z||2.

It is a conclusion from the result above that the sequence of subspaces that minimize
rank-q-reconstruction errors for q = 1, . . . , p is a nested sequence. Although this may
seem reasonable and intuitive, it is not a priori obvious from the definition of the
rank-q-reconstruction error. Thus to have a complete proof it is paramount not
to assume nestedness of the subspaces in the argument above. With an a priori
assumption of nestedness the argument becomes trivial in the light of Results 1 and
2.

For the curious, there is an alternative proof, which does the optimization directly
instead of by induction, and which is essentially a generalization of the argument of
Result 1. We give it below.

Proof. (of Result 3, alternative version) If w1, . . . , wq is any orthonormal set of q
vectors it follows from Result 2 that we need to maximize the quantity

q∑
j=1

wT
j Σwj =

q∑
j=1

p∑
i=1

λi(w
T
j vi)

2 =

p∑
i=1

λi

q∑
j=1

(wT
j vi)

2

over the set of wi’s. For q = 1 the solution is given by Result 1. The difficulty, in
general, is to show that, under the constraint that the wj ’s are orthogonal and that
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∑p
i=1(w

T
j vi)

2 = 1 for j = 1, . . . , q (the wi’s have unit norm), the above quantity is
maximized by, for instance, wj = vj . To give a correct argument we first argue that

q∑
j=1

(wT
j vi)

2 ≤ 1

for i = 1, . . . , p. This follows from the fact that w1, . . . , wq can be enlarged to an
orthonormal basis w1, . . . , wp and then

∑p
j=1(w

T
j vi)

2 = ||vi||2 = 1. Moreover,

p∑
i=1

q∑
j=1

(wT
j vi)

2 = q.

Thus the quantity we seek to maximize can be written as

p∑
i=1

λiai

with ai ∈ [0, 1] and
∑p

i=1 ai = q. In this form it is clear that we maximize the
quantity by taking a1 = . . . = aq = 1 and aq+1 = . . . = ap = 0. As a final remark
this optimum is attained by taking wj = vj for j = 1, . . . , q.

We may note that the rank-q-reconstrution error equals λq+1 + . . .+ λp.

If X = UDV T denotes the singular value decomposition we have λi = d2i . The q first
columns of V form an orthonormal basis of Hq and the coefficients for the projection
of the the xi’s onto this subspace are in the first q columns of UD. The terminology
is usually that these coefficients are called the principal components, that is, the first
column of UD is the first principal component etc. The columns of V are called the
principal component vectors.

In practice, it is common to center the xi’s before the computation of the principal
components, and usually the centering is done using the column means of X. In
that case, Σ equals the empirical covariance matrix up to a factor N − 1. This gives
a second interpretation of the projections. The projection onto the first principal
component vector is the one-dimensional projection that maximizes the (empirical)
variance, the projection onto the second principal component maximizes the (em-
pirical) variance subject to being (empirically) uncorrelated with the first projection
etc. Sometimes, the columns of X are, in addition, scaled by the empirical standard
deviation. Then Σ becomes proportional to the empirical correlation matrix instead.
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