Generic Setup

Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ with $x_{i} \in \mathbb{R}^{p}$.

Categorical variables are coded using dummy variables.
We collect the x-values in a big matrix

$$
\mathbf{X}=\left\{\begin{array}{c}
x_{1}^{T} \\
x_{2}^{T} \\
\vdots \\
x_{N}^{T}
\end{array}\right\}=\left\{\begin{array}{ccc}
x_{1,1} & \ldots & x_{1, p} \\
x_{2,1} & \ldots & x_{2, p} \\
\vdots & & \vdots \\
x_{N, 1} & \ldots & x_{N, p}
\end{array}\right\}
$$

with dimensions $N \times p$.

Figure 14.22 - Threes

In this example the resulting data matrix \mathbf{X} is 130×256.

Linear Algebra - the Mean Value

Matrix computations and decompositions is the key to many theoretical results, and practical success relies heavily on efficient matrix computations.

With 1 the N-dimensional vector with one's at all positions, the column means can be computed as

$$
\bar{x}^{T}=\frac{1}{N} \mathbf{1}^{T} \mathbf{X}
$$

The projection in \mathbb{R}^{N} onto $\mathbf{1}$ and the orthogonal complement $\mathbf{1}^{\perp}$ are given by the matrices

$$
P=\frac{1}{N} \mathbf{1 1} 1^{T}, \quad I_{N}-P=I_{N}-\frac{1}{N} \mathbf{1 1}^{T},
$$

respectively.

Linear Algebra - the Covariance Matrix

The empirical covariance matrix is

$$
\begin{aligned}
(N-1) \hat{\Sigma} & =\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right)^{T}\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \\
& =(\mathbf{X}-P \mathbf{X})^{T}(\mathbf{X}-P \mathbf{X}) \\
& =\left(\left(I_{N}-P\right) \mathbf{X}\right)^{T}\left(I_{N}-P\right) \mathbf{X} \\
& =\mathbf{X}^{T}\left(I_{N}-P\right) \mathbf{X}
\end{aligned}
$$

since $\left(I_{N}-P\right)^{2}=I_{N}-P$.
Often we will use the augmented matrix $\{\mathbf{1} \mathbf{X}\}$ and often we will assume that \mathbf{X} has then been orthogonalized with $\mathbf{1}$. This means that \mathbf{X} has been replaced with $\left(I_{N}-P\right) \mathbf{X}=\mathbf{X}-\mathbf{1} \bar{X}^{T}$. This does not change the column space of $\{\mathbf{1} \mathbf{X}\}$.

Matrix decompositions

A core problem is to find useful decompositions

$$
\mathbf{X}=\mathbf{A B}
$$

for an $N \times p$ matrix \mathbf{A} and a $p \times p$ matrix \mathbf{B}.

The column space of \mathbf{A} and \mathbf{X} is the same.

Objectives include:

- Computational benefits, e.g. efficient and reliable equation solving.
- Approximations: if \mathbf{A}^{q} and \mathbf{B}^{q} for $q<p$ denotes the first q rows and the first q columns, respectively, $\mathbf{A}^{q} \mathbf{B}^{q}$ provides an approximation.
- Projections: \mathbf{A}^{q} holds the coefficients for the expansion of the x_{i} 's in the first q rows \mathbb{B}, whose rows form a basis of \mathbb{R}^{p}.

Singular Value Decomposition

$p^{\prime}=\min \{N, p\}$.

Theorem

If \mathbf{X} is an $N \times p$ matrix there exists an $N \times p^{\prime}$ matrix U, a $p^{\prime} \times p$ matrix V and a diagonal matrix

$$
D=\left\{\begin{array}{ccc}
d_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & d_{p^{\prime}}
\end{array}\right\}
$$

such that $U^{\top} U=I_{p^{\prime}}, V^{T} V=I_{p^{\prime}}, d_{1} \geq \ldots \geq d_{p^{\prime}} \geq 0$ and

$$
\mathbf{X}=U D V^{T}
$$

We call $d_{1}, \ldots, d_{p^{\prime}}$ the singular values. V is an orthogonal matrix with $V^{-1}=V^{T}$ if $p=p^{\prime}$. The columns in U with corresponding $d_{i}>0$ form an orthonormal basis for the column space of \mathbf{X}.

Figure 14.20 - Dimension Reduction

A one dimensional representation of 2D data points is sought.

The natural idea is to minimize the sum of squared distances from the line to the data points perpendicular to the line.

This differs from linear regression where we consider the sum of distances parallel to the 2nd coordinate axis.

Dimension Reduction and Projections

How can we visualize the data in \mathbf{X} ? What is a good low-dimensional projection $P: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ with rank 1,2 or 3 ?

With

$$
V=\left\{V_{q} V_{p-q}\right\}
$$

where V_{q} is $p \times q$, the projection onto the columns of V_{q} is

$$
P_{q}=V_{q} V_{q}^{T} .
$$

Then P_{q} minimizes among all rank q projections the reconstruction error

$$
\sum_{i=1}^{N}\left\|x_{i}-P_{q} x_{i}\right\|^{2}=\operatorname{trace}\left(\left(\mathbf{X}-\mathbf{X} P_{q}\right)\left(\mathbf{X}-\mathbf{X} P_{q}\right)^{T}\right)
$$

Figure 14.21 - Dimension Reduction and PC

The coordinates for the P_{q} projections of the data points in the V_{q} basis are called the q first principal components.

The coordinates are

$$
\begin{aligned}
X V_{q} & =U D V^{T} V_{q} \\
& =U D \operatorname{diag}(1, \ldots, 1,0, \ldots, 0) \\
& =U_{q} D_{q}
\end{aligned}
$$

with U_{q} and D_{q} the matrices with the q first columns from U and D, respectively.

Figure 14.23 - Two First Principal Components for Threes

The first principal component shows primarily the variation in how wide the hand written threes are. The second shows primarily the variation in how thick the drawn line is.

Figure 14.23 - Two First Principal Components for Threes

All pixel values are measured on the same scale so we would only centralize - not scale - the columns.

Factor Analysis

Let $X=\mathbf{A} S+\epsilon$ with \mathbf{A} a $p \times q$ matrix and S a q-vector - the unobserved loadings - with independent coordinates and ϵ a vector of i.i.d. noise variables.

With $\mathbf{X}=U D V^{T}$ the SVD, $\hat{A}=D V^{T} / \sqrt{N}$ and $\hat{S}=\sqrt{N} U$ we can interpret the first q columns of \hat{S} as estimates of the unobserved loadings.

Unfortunately, any $q \times q$ orthogonal transformation of these columns qualify equally well.

Sparse PCA

Recent generalizations of PCA involve attempts to make sparse low-rank reconstructions, e.g. minimization of

$$
\sum_{i=1}^{N}\left\|x_{i}-\Theta V^{T} x_{i}\right\|^{2}+\lambda \sum_{k=1}^{K}\left\|v_{k}\right\|_{2}^{2}+\sum_{k=1}^{K} \lambda_{1 k}\left\|v_{k}\right\|_{1}
$$

subject to Θ being $p \times K$ with orthonormal columns and V being $p \times K$ with columns v_{k}. The penalization ensures that v_{k} has zeroes, thus for the reconstruction of x_{i} in terms of the K-basis in Θ each coefficient depends only on a subset of the coordinates in x_{i}.

Non-negative Matrix Factorization

Another recent idea is for positive matrices to look for factorizations WH such that

- the entries in W and H are all positive,
- W is $N \times q$ and H is $q \times p$ such that $W H$ is a good approximation of \mathbf{X}.

The resulting basis columns in W may be interpretable.
But there is in general no unique positive matrix factorization ...

Figure 14.33 - Non-negative matrix factorization

Figure 14.33 - Non-negative matrix factorization

Computational Shortcuts

Suppose we consider the problem of minimizing

$$
\sum_{i=1}^{N} L\left(y_{i}, \beta_{0}+x_{i}^{T} \beta\right)+\lambda\|\beta\|^{2}
$$

over β_{0} and $\beta \in \mathbb{R}^{p}$ with $p>N$. With $\mathbf{X}=U D V^{T}$ the singular value decomposition (when $p>N, U$ is $N \times N$ orthogonal, D is $N \times N$ diagonal and V is $p \times N$ with $V^{T} V=I_{N}$), then $R=U D$ is an $N \times N$ matrix and

$$
\mathbf{X} \beta=U D V^{T} \beta=R V^{T} \beta=R \theta
$$

where $\theta=V^{T} \beta$ is N-dimensional. Writing $\beta=V \theta+\beta^{\perp}$ with β^{\perp} orthogonal to the columns in V we see that

$$
\|\beta\|^{2}=\|V \theta\|^{2}+\left\|\beta^{\perp}\right\|^{2} \geq\|V \theta\|^{2}=\theta^{T} V^{T} V \theta=\|\theta\|^{2} .
$$

Since $\mathbf{X} \beta$ is unaffected by β^{\perp} this term equals 0 and we need to minimize

$$
\sum_{i=1}^{N} L\left(y_{i}, \theta_{0}+r_{i}^{T} \theta\right)+\lambda\|\theta\|^{2}, \quad \theta \in \mathbb{R}^{N}
$$

