
Generic Setup

Data: (x1, y1), . . . , (xN , yN ) with xi ∈ Rp.

Categorical variables are coded using dummy variables.

We collect the x-values in a big matrix

X =


xT1
xT2
...
xTN

 =


x1,1 . . . x1,p
x2,1 . . . x2,p

...
...

xN,1 . . . xN,p


with dimensions N × p.

If a we need to work with a categorical x-coordinate that can occur on K different levels we
can encode the variable as a (K − 1)-dimensional vector of zero’s and one’s containing just
a single one. This coding is known as dummy variables.

Figure 14.22 – Threes

In this example the resulting data matrix X is 130× 256.

Linear Algebra - the Mean Value

Matrix computations and decompositions is the key to many theoretical results, and practical
success relies heavily on efficient matrix computations.

With 1 the N -dimensional vector with one’s at all positions, the column means can be
computed as

x̄T =
1

N
1TX

The projection in RN onto 1 and the orthogonal complement 1⊥ are given by the matrices

P =
1

N
11T , IN − P = IN −

1

N
11T ,

respectively.
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Linear Algebra - the Covariance Matrix

The empirical covariance matrix is

(N − 1)Σ̂ = (X− 1x̄T )T (X− 1x̄T )

= (X− PX)T (X− PX)

= ((IN − P )X)T (IN − P )X

= XT (IN − P )X

since (IN − P )2 = IN − P .

Often we will use the augmented matrix {1 X} and often we will assume that X has then been
orthogonalized with 1. This means that X has been replaced with (IN − P )X = X− 1x̄T .
This does not change the column space of {1 X} .

Matrix decompositions

A core problem is to find useful decompositions

X = AB

for an N × p matrix A and a p× p matrix B.

The column space of A and X is the same.

Objectives include:

• Computational benefits, e.g. efficient and reliable equation solving.

• Approximations: if Aq and Bq for q < p denotes the first q rows and the first q
columns, respectively, AqBq provides an approximation.

• Projections: Aq holds the coefficients for the expansion of the xi’s in the first q rows
B, whose rows form a basis of Rp.

Note that if p > N , or generally, if the rank of X is not p, the B matrix is not uniquely
determined by A. In that case it may be preferable to look for matrices of dimensions
N × p′ and p′× p with p′ the rank of X, that is, the dimension of the column space spanned
by X. Then B becomes uniquely determined by A, and if needed, it can be arbitrarily
supplemented by p′ − p additional rows to a full basis of Rp.

Singular Value Decomposition

p′ = min{N, p}.

Theorem 1. If X is an N × p matrix there exists an N × p′ matrix U , a p′ × p matrix V
and a diagonal matrix

D =


d1 . . . 0
...

. . .
...

0 . . . dp′
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such that UTU = Ip′ , V TV = Ip′ , d1 ≥ . . . ≥ dp′ ≥ 0 and

X = UDV T .

We call d1, . . . , dp′ the singular values. V is an orthogonal matrix with V −1 = V T if p = p′.
The columns in U with corresponding di > 0 form an orthonormal basis for the column
space of X.

The proof of the singular value decomposition is based on the diagonalization of the sym-
metric, positive definite matrix XTX, that is

XTX = V D2V T

with D2 a diagonal matrix with non-negative entries and V an orthogonal matrix. The U
matrix is then found as

U = XV D−1

provided that all entries in D2 are strictly positive, and we see that

UTU = D−1V TXTXV D−1

= D−1V TV D2V TV D−1

= Ip.

A suitable modification, solving only for the U -columns corresponding to diagonal entries
> 0 and then supplementing the basis, works if some of the entries in D2 are 0.

Figure 14.20 – Dimension Reduction

A one dimensional representation of 2D data points is sought.

The natural idea is to minimize the sum of squared distances from the line to the data points
perpendicular to the line.

This differs from linear regression where we consider the sum of distances parallel to the 2nd
coordinate axis.

Dimension Reduction and Projections

How can we visualize the data in X? What is a good low-dimensional projection P : Rp → Rp

with rank 1, 2 or 3?

With
V = {Vq Vp−q}

where Vq is p× q, the projection onto the columns of Vq is

Pq = VqV
T
q .
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Then Pq minimizes among all rank q projections the reconstruction error

N∑
i=1

||xi − Pqxi||2 = trace((X−XPq)(X−XPq)T )

Note that a computation of the reconstruction error by computing the N ×N matrix (X−
XPq)(X − XPq)T and then computing the trace is a computational waste. All the non-
diagonals in the matrix product are not needed.

We will generally always replace X by X − 1x̄T before attempting a projection onto a
subspace. Because the p coordinates we measure by no means need to be measured on a
common scale it is often also most relevant to normalize the columns to have unit length
before we attempt a dimension reduction. That is, we divide each column by its empirical
standard error. If there are other ways to bring all variables measured on a common scale
that might be preferred. We should note that the projections obtained from the singular
value decomposition are not invariant to marginal scaling of the columns in X.

Figure 14.21 – Dimension Reduction and PC

The coordinates for the Pq projections of the data points in the Vq basis are called the q
first principal components.

The coordinates are

XVq = UDV TVq

= UDdiag(1, . . . , 1, 0, . . . , 0)

= UqDq

with Uq and Dq the matrices with the q first columns from U and D, respectively.

Figure 14.23 – Two First Principal Components for Threes

The first principal component shows primarily the variation in how wide the hand written
threes are. The second shows primarily the variation in how thick the drawn line is.

Figure 14.23 – Two First Principal Components for Threes

All pixel values are measured on the same scale so we would only centralize – not scale –
the columns.
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Factor Analysis

Let X = AS + ε with A a p× q matrix and S a q-vector – the unobserved loadings – with
independent coordinates and ε a vector of i.i.d. noise variables.

With X = UDV T the SVD, Â = DV T /
√
N and Ŝ =

√
NU we can interpret the first q

columns of Ŝ as estimates of the unobserved loadings.

Unfortunately, any q × q orthogonal transformation of these columns qualify equally well.

Sparse PCA

Recent generalizations of PCA involve attempts to make sparse low-rank reconstructions,
e.g. minimization of

N∑
i=1

||xi −ΘV Txi||2 + λ

K∑
k=1

||vk||22 +

K∑
k=1

λ1k||vk||1

subject to Θ being p×K with orthonormal columns and V being p×K with columns vk.
The penalization ensures that vk has zeroes, thus for the reconstruction of xi in terms of
the K-basis in Θ each coefficient depends only on a subset of the coordinates in xi.

Non-negative Matrix Factorization

Another recent idea is for positive matrices to look for factorizations WH such that

• the entries in W and H are all positive,

• W is N × q and H is q × p such that WH is a good approximation of X.

The resulting basis columns in W may be interpretable.

But there is in general no unique positive matrix factorization ...

Figure 14.33 – Non-negative matrix factorization

Figure 14.33 – Non-negative matrix factorization

Computational Shortcuts

Suppose we consider the problem of minimizing

N∑
i=1

L(yi, β0 + xTi β) + λ||β||2
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over β0 and β ∈ Rp with p > N . With X = UDV T the singular value decomposition (when
p > N , U is N ×N orthogonal, D is N ×N diagonal and V is p×N with V TV = IN ), then
R = UD is an N ×N matrix and

Xβ = UDV Tβ = RV Tβ = Rθ

where θ = V Tβ is N -dimensional. Writing β = V θ+β⊥ with β⊥ orthogonal to the columns
in V we see that

||β||2 = ||V θ||2 + ||β⊥||2 ≥ ||V θ||2 = θTV TV θ = ||θ||2.

Since Xβ is unaffected by β⊥ this term equals 0 and we need to minimize

N∑
i=1

L(yi, θ0 + rTi θ) + λ||θ||2, θ ∈ RN .
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