
Kernel Density Estimation

If Y ∈ {1, . . . ,K} and gk denotes the density for the conditional
distribution of X given Y = k the Bayes classifier is

f (x) = argmax
k

πkgk(x)

If ĝk for k = 1, . . . ,K are density estimators – non-parametric kernel
density estimators, say – then using the plug-in principle

f̂ (x) = argmax
k

π̂k ĝk(x)

is an estimator of the Bayes classifier.

This is the non-parametric version of LDA.
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Naive Bayes
High-dimensional kernel density estimation suffers from the curse of
dimensionality.

Assume that the X -coordinates are independent given the Y , then

gk(x) =

p∏
i=1

gk,i (xi )

with gk,i univariate densities.

log
Pr(Y = k |X = x)

Pr(Y = K |X = x)
= log

πk
πK

+ log
gk(x)

gK (x)

= log
πk
πK

+

p∑
i=1

log
gk,i (xi )

gK ,i (xi )︸ ︷︷ ︸
hk,i (x)

= log
πk
πK

+

p∑
i=1

hk,i (x)
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Naive Bayes – Continued

The conditional distribution above is an example of a generalized additive
model. Estimation of hk,i using univariate (non-parametric) density
estimators ĝk,i ;

ĥk,i = log
ĝk,i (xi )

ĝK ,i (xi )

is known as naive – or even idiot’s – Bayes.
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Naive Bayes – Discrete Version

If some or all of the X variables are discrete, univariate kernel density
estimation can be replaced by appropriate estimation of point probabilities.

If all Xi take values in {a1, . . . , an} the extreme implementation of naive
Bayes is to estimate

ĝk,i (r) =
1

Nk

∑
j :yj=k

1(xji = ar ), Nk =
N∑
j=1

1(yj = k).

This is a possible solution procedure for prac 7.
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Generalized Additive Models

A generalized additive model of Y given X is given by a link function g
such that the mean µ(X ) of Y given X is

g(µ(X )) = α + f1(X1) + . . .+ fp(Xp).

This is an extension from general linear models by allowing for non-linear
but univariate effects given by the fi -functions.

The functions are not in general identifiable – and we can face a problem
similar to collinearity, which is known as concurvity.
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Generalized Additive Logistic Regression

An important example arise with Y ∈ {0, 1} with the logit link

g(µ) = log

(
µ

1− µ

)
, µ ∈ (0, 1)

Then

µ(X ) = Pr(Y = 1|X ) =
exp(α + f1(X1) + . . .+ fp(Xp))

1 + exp(α + f1(X1) + . . .+ fp(Xp))

Like logistic regression we can use other link functions like the probit link

g(µ) = Φ−1(µ)

where Φ is the distribution function for the normal distribution.
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Penalized Estimation

The general, penalized minus-log-likelihood function is

lN(α, f1, . . . , fp) +

p∑
j=1

λj

∫ b

a
f ′′j (x)dx

with tuning parameters λ1, . . . , λp. The minimizer, if it exists, consists of
natural cubic splines. For identification purposes we assume

N∑
i=1

fj(xij) = 0, j = 1, . . . , p.

This is equivalent to fj = (fj(x1j), . . . , fj(xNj))T being perpendicular to the
column vector 1 for j = 1, . . . , p. The penalization resolves
overparameterization problems for the non-linear part but not the linear
part of the fit.
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Informal Tests for Non-Linear Effects

Using smoothing splines there is to each estimated function f̂j an
associated linear smoother matrix Sj .

The effective degress of freedom for the non-linear part of the fit is

df j = trace(Sj)− 1

Implementations often do ad hoc χ2-tests for the non-linear part using
χ2-distributions with df j degress of freedom – these test are at best
justified by approximations and simulation studies, and can be used as
guidelines only.
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Spam Email Classification

Whether an email is a spam email or a regular email is a great example of
a problem where prediction is central and interpretation is secondary.

The (simplistic) example in the book deals with 4601 emails to an
employee at Hewlett-Packard.

Each email is dimension reduced to a 57-dimensional vector containing

Quantitative variables of word or special character percentages.

Quantitative variables describing the occurrence of capital letters.
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Figure 9.1 – Non-linear Email Spam Predictor Effects
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CART – Classification and Regression Trees
Trees can be viewed as basis expansions of simple functions

f (x) =
M∑

m=1

cm1(x ∈ Rm)

with R1, . . . ,Rm ⊆ Rp disjoint.
The CART algorithm is a heuristic, adaptive algorithm for basis function
selection.
A recursive, binary partition (a tree) is given by a list of splits

{(t01), (t11, t12), (t21, t22, t23, t24), . . . , (tn1, . . . , tn2n)}

and corresponding split variable indices

{(i01), (i11, i12), (i21, i22, i23, i24), . . . , (in1, . . . , in2n)}

R1 = (xi01 < t01) ∩ (xi11 < t11) ∩ . . . ∩ (xin1 < tn1)

and we can determine if x ∈ R1 in n steps � M = 2n.
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Figure 9.2 – Recursive Binary Partitions

The recursive partition of [0, 1]2 above
and the representation of the partition by
a tree.

A binary tree of depth n can represent
up to 2n partitions/basis functions.

We can determine which Rj an x belongs
to by n recursive yes/no questions.
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Figure 9.2 – General Partitions

A general partition that can not be
represented as binary splits.

With M sets in a general partition we
would in general need of the order M
yes/no questions to determine which of
the sets an x belongs to.
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Figure 9.2 – Recursive Binary Partitions

For a fixed partition R1, . . . ,RM the least
squares estimates are

ĉm = ȳ(Rm) =
1

Nm

∑
i :xi∈Rm

yi

Nm = |{i | xi ∈ Rm}.

The recursive partition allows for rapid
computation of the estimates and rapid
predition of new observations.
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Greedy Splitting Algorithm
With squared error loss and an unknown partition R1, . . . ,RM we would
seek to minimize

N∑
i=1

(yi − ȳ(Rm(i)))2

over the possible binary, recursive partitions. But this is computationally
difficult.

An optimal single split on a region R is determined by

min
j

min
s

 ∑
i :xi∈R(j ,s)

(yi − ȳ(R(j , s)))2 +
∑

i :xi∈R(j ,s)c

(yi − ȳ(R(j , s)c))2


︸ ︷︷ ︸

univariate optimization problem

with R(j , s) = {x ∈ R | xj < s} The tree growing algorithm recursively
does single, optimal splits on each of the partitions obtained in the
previous step.
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Tree Pruning

The full binary tree, T0, representing the partitions R1, . . . ,RM with
M = 2n may be too large. We prune it by snipping of leafs or subtrees.

For any subtree T of T0 with |T | leafs and partition R1(T ), . . . ,R|T |(T )
the cost-complexity of T is

Cα(T ) =
N∑
i=1

(yi − ȳ(Rm(i)(T )))2 + α|T |.

Theorem

There is a finite set of subtrees T0 ⊇ Tα1 ⊃ Tα2 ⊃ . . . ⊃ Tαr with
0 ≤ α1 < α2 < . . . < αr such that Tαi minimizes Cα(T ) for α ∈ [αi , αi+1)
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Node Impurities and Classification Trees
Define the node impurity as the average loss for the node R

Q(R) =
1

N(R)

∑
i :xi∈R

(yi − ȳ(R))2

The greedy split of R is found by

min
j

min
s

(N(R(j , s))Q(R(j , s)) + N(R(j , s)c)Q(R(j , s)c))

with R(j , s) = {x ∈ R | xj < s} and we have

Cα(T ) =

|T |∑
m=1

N(Rm(T ))Q(Rm(T )) + α|T |.

If Y takes K discrete values we focus on the node estimate for Rm(T ) in
tree T as being

p̂m(T )(k) =
1

Nm

∑
i :xi∈Rm(T )

1(yi = k)
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Node Impurities and Classification Trees
The loss functions for classification enter in the specification of the node
impurities used for splitting an cost-complexity computations.

Examples

0-1 loss gives misclassification error impurity:

Q(Rm(T )) = 1−max{p̂(Rm(T ))(1), . . . , p̂(Rm(T ))(K )}

likelihood loss gives entropy impurity:

Q(Rm(T )) = −
K∑

k=1

p̂(Rm(T ))(k) log p̂(Rm(T ))(k)

The Gini index impurity:

Q(Rm(T )) =
K∑

k=1

p̂(Rm(T ))(k)(1− p̂(Rm(T ))(k))
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Figure 9.3 – Node Impurities
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Spam Example
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Spam Example
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Sensitivity and Specificity

The sensitivity is the probability of predicting 1 given that the true value is
1 (predict a case given that there is a case).

sensitivity = Pr(f (X ) = 1|Y = 1)

=
Pr(Y = 1, f (X ) = 1)

Pr(Y = 1, f (X ) = 1) + Pr(Y = 1, f (X ) = 0)

The specificity is the probability of predicting 0 given that the true value is
0 (predict that there is no case given that there is no case).

specificity = Pr(f (X ) = 0|Y = 0)

=
Pr(Y = 0, f (X ) = 0)

Pr(Y = 0, f (X ) = 0) + Pr(Y = 0, f (X ) = 1)
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ROC curves – reciever operating characteristic
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