Kernel Density Estimation

If Y € {1,...,K} and gx denotes the density for the conditional
distribution of X given Y = k the Bayes classifier is

f(x) = argmax gk (x)
k

If g« for k=1,..., K are density estimators — non-parametric kernel
density estimators, say — then using the plug-in principle

f(x) = argmax 78k (x)
k
is an estimator of the Bayes classifier.

This is the non-parametric version of LDA.
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Naive Bayes

High-dimensional kernel density estimation suffers from the curse of
dimensionality.

Assume that the X-coordinates are independent given the Y, then

x) = Hgk,i(X;)
i=1

with g ; univariate densities.

log Pr(Y = kX =x) _ Iogﬂ—i-log &x(x)
Pr(Y = K|X =x) K 8k (x)
gkl(
= lo —Jr log
g Z 8K,i XI)
T—_—

hi,i(x)

P
Tk
— log £ £ N " hyi(x
g ;_1: i(x)
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Naive Bayes — Continued

The conditional distribution above is an example of a generalized additive

model. Estimation of hy ; using univariate (non-parametric) density
estimators gy ;;

;‘_' |Og gk I(XI)
gK I(XI)

is known as naive — or even idiot's — Bayes.
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Naive Bayes — Discrete Version

If some or all of the X variables are discrete, univariate kernel density
estimation can be replaced by appropriate estimation of point probabilities.

If all X; take values in {a1,...,an} the extreme implementation of naive
Bayes is to estimate

1 N

B = = X g a) M= Y10y )

Jiyi=k Jj=1

This is a possible solution procedure for prac 7.
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Generalized Additive Models

A generalized additive model of Y given X is given by a link function g
such that the mean p(X) of Y given X is

g(u(X)) =a+ (X)) + ...+ f(Xp).

This is an extension from general linear models by allowing for non-linear
but univariate effects given by the f;-functions.

The functions are not in general identifiable — and we can face a problem
similar to collinearity, which is known as concurvity.
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Generalized Additive Logistic Regression

An important example arise with Y € {0, 1} with the logit link
g(u) =log (), ne(01)
1—p
Then

B B expla+ A(X1) ..+ (X))
) = PrlY =110 = 1 ola + A 4+ H(X)

Like logistic regression we can use other link functions like the probit link

g(p) = o7 (n)

where © is the distribution function for the normal distribution.
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Penalized Estimation

The general, penalized minus-log-likelihood function is

/N(Oé,fl,..., —I—Z)\/ f” d

with tuning parameters Aq,..., Ap. The minimizer, if it exists, consists of
natural cubic splines. For identification purposes we assume

N
Zf]xl_[ 7 J:177p

i=1

This is equivalent to f; = (fi(x1)), ..., fi(xn;)) " being perpendicular to the
column vector 1 for j = 1,...,p. The penalization resolves
overparameterization problems for the non-linear part but not the linear
part of the fit.
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Informal Tests for Non-Linear Effects

Using smoothing splines there is to each estimated function IA‘J an
associated linear smoother matrix S;.

The effective degress of freedom for the non-linear part of the fit is
dfj = trace(S;) — 1

Implementations often do ad hoc y>-tests for the non-linear part using
x?-distributions with df; degress of freedom — these test are at best
justified by approximations and simulation studies, and can be used as
guidelines only.
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Spam Email Classification

Whether an email is a spam email or a regular email is a great example of
a problem where prediction is central and interpretation is secondary.

The (simplistic) example in the book deals with 4601 emails to an
employee at Hewlett-Packard.

Each email is dimension reduced to a 57-dimensional vector containing
@ Quantitative variables of word or special character percentages.

@ Quantitative variables describing the occurrence of capital letters.
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Figure 9.1 — Non-linear Email Spam Predictor Effects
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CART - Classification and Regression Trees

Trees can be viewed as basis expansions of simple functions

M
F(x) =Y cml(x € Rm)
m=1

with Ry, ..., Ry, C RP disjoint.

The CART algorithm is a heuristic, adaptive algorithm for basis function
selection.

A recursive, binary partition (a tree) is given by a list of splits

{(to1), (t11, t12), (to1, t22, t23, to4), . . ., (tn1, ..., toon)}

and corresponding split variable indices

{(i01), (11, 12), (P21, 22, 123, 124, - - -, (in1,s - - - in2n) }
R = (X;01 < t01) N (X,'11 < t11) n...N (X,'n1 < tnl)

and we can determine if x € Ry in n steps < M = 2",
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Figure 9.2 — Recursive Binary Partitions

The recursive partition of [0, 1]? above
and the representation of the partition by
a tree.

A binary tree of depth n can represent
up to 2" partitions/basis functions.

We can determine which R; an x belongs
to by n recursive yes/no questions.
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Figure 9.2 — General Partitions

A general partition that can not be
represented as binary splits.

With M sets in a general partition we
would in general need of the order M
yes/no questions to determine which of
the sets an x belongs to.
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Figure 9.2 — Recursive Binary Partitions

For a fixed partition Ry,..., Ry the least
squares estimates are

. _ 1
Cm:Y(Rm):/\Tm'Z i
i'x;€Rm
Npm={i| xi € Rm}.
The recursive partition allows for rapid

computation of the estimates and rapid
predition of new observations.
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Greedy Splitting Algorithm
With squared error loss and an unknown partition Ry, ..., Ry we would

seek to minimize
N

Z(Yi — ¥ (Rm(i)))?

i=1
over the possible binary, recursive partitions. But this is computationally
difficult.

An optimal single split on a region R is determined by

minmin (> (i —y(RG,9))*+ D (i —9(RU,5)))

s
J ix;€R(j,s) ix;€R(j,s)¢

univariate optimization problem

with R(j,s) = {x € R| x; < s} The tree growing algorithm recursively
does single, optimal splits on each of the partitions obtained in the
previous step.
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Tree Pruning

The full binary tree, Ty, representing the partitions Ry, ..., Ry with
M = 2" may be too large. We prune it by snipping of leafs or subtrees.

For any subtree T of To with |T| leafs and partition Ry(T),..., R(T)
the cost-complexity of T is

N

D (i = YRy (T)))? + | T1.

i=1

Ca(T)

Theorem

There is a finite set of subtrees To 2 Ty, D Toy, O ... D Ty, with
0<a <ap<...<a, such that T,, minimizes Co(T) for o € [cvj, cvjy1)
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Node Impurities and Classification Trees
Define the node impurity as the average loss for the node R

QR) = g7y 2 (= 7R

i'x;€R
The greedy split of R is found by

mjin msin (N(R(j,s))Q(R(,s)) + N(R(j,s))R(R(,s)°))

with R(j,s) = {x € R| x; < s} and we have
|7l

Ca(T) =Y N(Rn(T)Q(Rm(T)) +alT|.
m=1

If Y takes K discrete values we focus on the node estimate for R,(T) in
tree T as being

(MK =5 > 1yi=4)

M j:xi€Rm(T)
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Node Impurities and Classification Trees

The loss functions for classification enter in the specification of the node

impurities used for splitting an cost-complexity computations.

Examples
@ 0-1 loss gives misclassification error impurity:

Q(Rm(T)) =1 = max{p(Rm(T))(1), .., P(Rm(T))(K)}

@ likelihood loss gives entropy impurity:

K
Q(Rm(T)) = — > _ P(Rm(T))(k)log p(Rm(T))(k)
k=1
@ The Gini index impurity:
K
Q(Rn(T)) = > B(Rm(T))(K)(L = B(Rm(T))(K))
k=1
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Figure 9.3 — Node Impurities
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Spam Example
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Spam Example
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Sensitivity and Specificity

The sensitivity is the probability of predicting 1 given that the true value is
1 (predict a case given that there is a case).

sensitivity = Pr(f(X)=1|Y =1)

Pr(Y =1,f(X) = 1)
Pr(Y =1,f(X) = 1) + Pr(Y = 1, f(X) = 0)

The specificity is the probability of predicting 0 given that the true value is
0 (predict that there is no case given that there is no case).

specificity = Pr(f(X)=0]Y =0)

Pr(Y =0, f(X) = 0)
Pr(Y = 0,f(X) = 0)+ Pr(Y =0, F(X) = 1)
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ROC curves — reciever operating characteristic
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