
Kernel Density Estimation

If Y ∈ {1, . . . ,K} and gk denotes the density for the conditional distribution of X given
Y = k the Bayes classifier is

f(x) = argmax
k

πkgk(x)

If ĝk for k = 1, . . . ,K are density estimators – non-parametric kernel density estimators, say
– then using the plug-in principle

f̂(x) = argmax
k

π̂kĝk(x)

is an estimator of the Bayes classifier.

This is the non-parametric version of LDA.

Naive Bayes

High-dimensional kernel density estimation suffers from the curse of dimensionality.

Assume that the X-coordinates are independent given the Y , then

gk(x) =

p∏
i=1

gk,i(xi)

with gk,i univariate densities.

log
Pr(Y = k|X = x)

Pr(Y = K|X = x)
= log

πk
πK

+ log
gk(x)

gK(x)

= log
πk
πK

+

p∑
i=1

log
gk,i(xi)

gK,i(xi)︸ ︷︷ ︸
hk,i(x)

= log
πk
πK

+

p∑
i=1

hk,i(x)

Naive Bayes – Continued

The conditional distribution above is an example of a generalized additive model. Estimation
of hk,i using univariate (non-parametric) density estimators ĝk,i;

ĥk,i = log
ĝk,i(xi)

ĝK,i(xi)

is known as naive – or even idiot’s – Bayes.

1

Naive Bayes – Discrete Version

If some or all of the X variables are discrete, univariate kernel density estimation can be
replaced by appropriate estimation of point probabilities.

If all Xi take values in {a1, . . . , an} the extreme implementation of naive Bayes is to estimate

ĝk,i(r) =
1

Nk

∑
j:yj=k

1(xji = ar), Nk =

N∑
j=1

1(yj = k).

This is a possible solution procedure for prac 7.

Generalized Additive Models

A generalized additive model of Y given X is given by a link function g such that the mean
µ(X) of Y given X is

g(µ(X)) = α+ f1(X1) + . . .+ fp(Xp).

This is an extension from general linear models by allowing for non-linear but univariate
effects given by the fi-functions.

The functions are not in general identifiable – and we can face a problem similar to collinear-
ity, which is known as concurvity.

Theoretical collinearity state that one of the X-coordinates is a linear combination of the
remaining coordinates. In practice, problems with estimation of parameters arise when
one column in the X-matrix is close to being in the span of the remaining columns. The
treatment of the similar phenomena called concurvity for generalized additive models can
be found in the book Generalized additive models by Trevor Hastie and Robert Tibshirani.
Again, practical problems with concurvity arise if one function is close to being in the span
of the remaining functions.

Generalized Additive Logistic Regression

An important example arise with Y ∈ {0, 1} with the logit link

g(µ) = log

(
µ

1− µ

)
, µ ∈ (0, 1)

Then

µ(X) = Pr(Y = 1|X) =
exp(α+ f1(X1) + . . .+ fp(Xp))

1 + exp(α+ f1(X1) + . . .+ fp(Xp))

Like logistic regression we can use other link functions like the probit link

g(µ) = Φ−1(µ)

where Φ is the distribution function for the normal distribution.

2

Penalized Estimation

The general, penalized minus-log-likelihood function is

lN (α, f1, . . . , fp) +

p∑
j=1

λj

∫ b

a

f ′′j (x)dx

with tuning parameters λ1, . . . , λp. The minimizer, if it exists, consists of natural cubic
splines. For identification purposes we assume

N∑
i=1

fj(xij) = 0, j = 1, . . . , p.

This is equivalent to fj = (fj(x1j), . . . , fj(xNj))
T being perpendicular to the column vector 1

for j = 1, . . . , p. The penalization resolves overparameterization problems for the non-linear
part but not the linear part of the fit.

Informal Tests for Non-Linear Effects

Using smoothing splines there is to each estimated function f̂j an associated linear smoother
matrix Sj .

The effective degress of freedom for the non-linear part of the fit is

dfj = trace(Sj)− 1

Implementations often do ad hoc χ2-tests for the non-linear part using χ2-distributions with
dfj degress of freedom – these test are at best justified by approximations and simulation
studies, and can be used as guidelines only.

Spam Email Classification

Whether an email is a spam email or a regular email is a great example of a problem where
prediction is central and interpretation is secondary.

The (simplistic) example in the book deals with 4601 emails to an employee at Hewlett-
Packard.

Each email is dimension reduced to a 57-dimensional vector containing

• Quantitative variables of word or special character percentages.

• Quantitative variables describing the occurrence of capital letters.

Figure 9.1 – Non-linear Email Spam Predictor Effects

3

CART – Classification and Regression Trees

Trees can be viewed as basis expansions of simple functions

f(x) =

M∑
m=1

cm1(x ∈ Rm)

with R1, . . . , Rm ⊆ Rp disjoint.

The CART algorithm is a heuristic, adaptive algorithm for basis function selection.

A recursive, binary partition (a tree) is given by a list of splits

{(t01), (t11, t12), (t21, t22, t23, t24), . . . , (tn1, . . . , tn2n)}

and corresponding split variable indices

{(i01), (i11, i12), (i21, i22, i23, i24), . . . , (in1, . . . , in2n)}
R1 = (xi01 < t01) ∩ (xi11 < t11) ∩ . . . ∩ (xin1 < tn1)

and we can determine if x ∈ R1 in n steps �M = 2n.

All the remaining sets in the partition corresponding to the 2n leafs are determined similarly
and recursively. It is by far easier to draw a picture of the corresponding tree than to write
down the precise mathematical recursion in terms of indices. A point is that the algorithmic
complexity of determining which of the 2n sets in the partition an x belongs to scales with
n. Thus even for extremely large partitions we can very rapidly determine where a concrete
x belongs.

In practice not all of the 2n partitions need to be present. The tree can be “pruned” so that
some of the leaf are not at depth n.

Figure 9.2 – Recursive Binary Partitions

The recursive partition of [0, 1]2 above and the representation of the partition by a tree.

A binary tree of depth n can represent up to 2n partitions/basis functions.

We can determine which Rj an x belongs to by n recursive yes/no questions.

Figure 9.2 – General Partitions

A general partition that can not be represented as binary splits.

With M sets in a general partition we would in general need of the order M yes/no questions
to determine which of the sets an x belongs to.

Figure 9.2 – Recursive Binary Partitions

For a fixed partition R1, . . . , RM the least squares estimates are

ĉm = ȳ(Rm) =
1

Nm

∑
i:xi∈Rm

yi

4

Nm = |{i | xi ∈ Rm}.

The recursive partition allows for rapid computation of the estimates and rapid predition of
new observations.

Greedy Splitting Algorithm

With squared error loss and an unknown partition R1, . . . , RM we would seek to minimize

N∑
i=1

(yi − ȳ(Rm(i)))
2

over the possible binary, recursive partitions. But this is computationally difficult.

An optimal single split on a region R is determined by

min
j

min
s

 ∑
i:xi∈R(j,s)

(yi − ȳ(R(j, s)))2 +
∑

i:xi∈R(j,s)c

(yi − ȳ(R(j, s)c))2

︸ ︷︷ ︸

univariate optimization problem

with R(j, s) = {x ∈ R | xj < s} The tree growing algorithm recursively does single, optimal
splits on each of the partitions obtained in the previous step.

Note that the complements above are taken within the regionR, that is, R(j, s)c = R\R(j, s).

Tree Pruning

The full binary tree, T0, representing the partitions R1, . . . , RM with M = 2n may be too
large. We prune it by snipping of leafs or subtrees.

For any subtree T of T0 with |T | leafs and partition R1(T), . . . , R|T |(T) the cost-complexity
of T is

Cα(T) =

N∑
i=1

(yi − ȳ(Rm(i)(T)))2 + α|T |.

Theorem 1. There is a finite set of subtrees T0 ⊇ Tα1 ⊃ Tα2 ⊃ . . . ⊃ Tαr with 0 ≤ α1 <
α2 < . . . < αr such that Tαi

minimizes Cα(T) for α ∈ [αi, αi+1)

A proof of the theorem above can be found in Section 7.2 in Pattern Recognition and Neural
Networks by Brian D. Ripley.

The practical consequence of the theorem above is that tree algorithms find this sequence
of pruned trees in the estimation process and then the choice of α can be determined by
validation or cross-validation. We do not need to consider other choices of α than those
corresponding to the precomputed pruned trees.

5

Node Impurities and Classification Trees

Define the node impurity as the average loss for the node R

Q(R) =
1

N(R)

∑
i:xi∈R

(yi − ȳ(R))2

The greedy split of R is found by

min
j

min
s

(N(R(j, s))Q(R(j, s)) +N(R(j, s)c)Q(R(j, s)c))

with R(j, s) = {x ∈ R | xj < s} and we have

Cα(T) =

|T |∑
m=1

N(Rm(T))Q(Rm(T)) + α|T |.

If Y takes K discrete values we focus on the node estimate for Rm(T) in tree T as being

p̂m(T)(k) =
1

Nm

∑
i:xi∈Rm(T)

1(yi = k)

Node Impurities and Classification Trees

The loss functions for classification enter in the specification of the node impurities used for
splitting an cost-complexity computations.

Examples

• 0-1 loss gives misclassification error impurity:

Q(Rm(T)) = 1−max{p̂(Rm(T))(1), . . . , p̂(Rm(T))(K)}

• likelihood loss gives entropy impurity:

Q(Rm(T)) = −
K∑
k=1

p̂(Rm(T))(k) log p̂(Rm(T))(k)

• The Gini index impurity:

Q(Rm(T)) =

K∑
k=1

p̂(Rm(T))(k)(1− p̂(Rm(T))(k))

Note that it is certainly not always the case that all K different cases are present in a single
set Rm, hence some of the estimated conditional probabilities are 0 and we have to remember
that 0 log 0 = 0 yields a continuous extension of p log p in 0.

Figure 9.3 – Node Impurities

6

Spam Example

Spam Example

Sensitivity and Specificity

The sensitivity is the probability of predicting 1 given that the true value is 1 (predict a
case given that there is a case).

sensitivity = Pr(f(X) = 1|Y = 1)

=
Pr(Y = 1, f(X) = 1)

Pr(Y = 1, f(X) = 1) + Pr(Y = 1, f(X) = 0)

The specificity is the probability of predicting 0 given that the true value is 0 (predict that
there is no case given that there is no case).

specificity = Pr(f(X) = 0|Y = 0)

=
Pr(Y = 0, f(X) = 0)

Pr(Y = 0, f(X) = 0) + Pr(Y = 0, f(X) = 1)

ROC curves – reciever operating characteristic

7

