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The following exercises are going to play a central role in the course Statistical
learning, block 4, 2009. The exercises are all of a nature that is somewhere in between
an ordinary exercise and the theory that will be covered by the lectures. The exercises
are divided between the participants so that each exercise is solved by a group of 2
students, who will give a subsequent oral presentation of the solution.

The oral presentation should take approximately 2× 45 minutes, and the presenters
should be careful in the presentation to give sufficient background so that the other
participants can follow the presentation of the solution(s).

The solution and the presentation of a theoretical exercise are, like the compulsory
assignments, evaluated as passed/not-passed.
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1

Principal Components

Let Σ denote a p× p symmetric, positive semidefinite matrix (a covariance matrix).
The principal components are defined to be an orthogonal basis of eigenvectors for
the matrix. In matrix notation this can be written as follows:

Σ = V ΛV T

where V is an orthogonal p × p matrix, V T V = I, and Λ = diag(λ1, . . . ,λp) is
a diagonal p × p matrix with the corresponding eigenvalues. The columns of V
constitute the orthogonal basis of principal components. The eigenvalues are real
and non-negative due to the fact that Σ is symmetric and positive semidefinite. The
usual convention is to organize the eigenvalues in Λ in decreasing order. Note that if
some of the eigenvalues are equal (for instance, if Σ does not have full rank and two
or more of the eigenvalues are 0), then the orthogonal basis and thus the principal
components are not unique.

If X denotes a p-dimensional random variable with covariance matrix Σ, the variance
of a linear combination of the entries in X is

V(
p∑

i=1

βiXi) = V(βT X) = βT Σβ

where β ∈ Rp is any p-dimensional vector.

Let the columns of V (the orthogonal basis of Rp of principal components) be denoted
v1, . . . , vp. Let

Hq = span{v1, v2, . . . , vq}

denote the subspace of Rp spanned by the first (those with largest eigenvalues) q
principal components for q = 1, 2, . . . , p.
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4 Principal Components

Question 1.1. Show that

λq = vT
q Σvq = max

β∈H⊥q−1
βT β=1

βT Σβ. (1.1)

Here H⊥
q−1 denotes the orthogonal complement of Hq−1 in Rp (H⊥

0 = Rp).

This gives a sequence of linear combinations vT
1 X, vT

2 X, . . . , vT
p X.

Question 1.2. Explain that the result above shows that vT
q X is the (unit norm) linear

combination of the rows in X with the maximal variance subject to the constraint that
vT

q X is uncorrelated with the variables vT
1 X, . . . , vT

q−1X.

Consider next the situation that X is an N × p matrix of N repeated observations
of X. The standard estimate of the expectation is

µ̂ =
1
N

N∑

i=1

xi

where xi denotes that i’th row in X. The standard estimate of the covariance matrix
is

Σ̂ =
1

N − 1
(X− 1µ̂T )T (X− 1µ̂T )

with 1 denoting the column vector of ones. As it is common, to ease notation we
will simply assume in the following that X has been centered so that the average of
each column is 0 (formally, X has been replaced by (X− 1µ̂T )). Then the estimate
of Σ is

Σ̂ =
1

N − 1
XTX.

The estimated principal components and corresponding eigenvalues are then the
principal components and eigenvalues for the estimated covariance matrix Σ̂.

Let in the following Kq ⊆ Rp denote a q-dimensional subspace of Rp. The rank -q-
reconstruction error of the data in X is defined as

min
Kq

N∑

i=1

min
z∈Kq

||xi − z||2.

The rank-q-reconstruction error is given in terms of a q-dimensional subspace that
minimizes the total sums of squared distances from the observations to the subspace.
The z ∈ Kq that minimizes ||xi − z||2 is the orthogonal projection onto Kq.

Question 1.3. Fix Kq and let w1, . . . , wq be an orthonormal basis for Kq. Show that

N∑

i=1

min
z∈Kq

||xi − z||2 =
N∑

i=1

||xi||2 − (N − 1)
q∑

j=1

wT
j Σ̂wj .

Question 1.4. Show that the rank-q-reconstruction error is obtained by taking Kq =
Ĥq = span{v̂1, . . . , v̂q} where v̂1, . . . , v̂p are the q first principal components for the
estimated covariance matrix Σ̂. Compute the reconstruction error in terms of the
eigenvalues.
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This means that the best q-dimensional representation of N p-dimensional data
vectors is given by projecting the observations onto the first q principal components
of the estimated covariance matrix. From the principal components for the X-matrix
we get principal components regression where we regress an additional vector y
of real observations on X[v̂1 . . . v̂q]. This means that we take the q first principal
components and form the corresponding q linear combinations of the columns in X.

Question 1.5. Show that the resulting q columns are orthogonal vectors in RN . Ex-
plain how orthogonality implies that we can regress y by regression on each of the
columns separately.

Principal components regression reduce the dimensionality of the covariates (from
p to q) by exploiting the internal distribution of the covariates. In particular, with
q = 1 we get a one-dimensional projection of the covariates and a corresponding
regression of y.

For the final two questions we make the distributional assumption that conditionally
on X the coordinates y1, . . . , yN are independent all with variance σ2.

Question 1.6. Let γ̂β denote the estimated coefficient when we regress y on the
column Xβ for some unit norm β. Show that

min
β:||β||=1

V(γ̂β) = V(γ̂v̂1).

Thus the first principal component provides the one-dimensional projection of the
covariates where the regression coefficient has the least variance. We could instead
ask for the one-dimensional projection that has the largest correlation with y.

Question 1.7. Show that the empirical correlation,

ˆCorr(Y, Xβ) =
yT Xβ√

yT yβT XT Xβ
,

is maximized by taking β = β̂ls – the ordinary least squares regression estimate.
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Ridge Regression

If X denotes an N × p matrix of N p-dimensional covariates and y denotes an N -
dimensional vector of observations we consider the penalized residual sum of squares

RSSλ(β) = (y −Xβ)T (y −Xβ) + λβT β

for a λ > 0. The ridge regression estimate of β is defined as the β that minimizes
this penalized residual sum of squares. For λ > 0 there is always a unique solution.

As is often the case we will assume that the matrix of covariates as well as the
observation vector have been centered, that is, the average of the columns as well as
of y equal 0.

Question 2.1. Solve Exercise 3.5 to show that the assumption above can be made.

The ordinary least squares estimate is obtained by minimizing RSS0(β), and the
solution is only unique if X has rank p (note, since the columns have been centered,
this requires at least p + 1 rows). Any least squares solution βls – unique or not -
fulfills

XTXβls = XT y

and we introduce
t = min

β:XT Xβ=XT y
βT β.

Question 2.2. With X = UDV T the singular value decomposition of X show that if
β̂(λ) is the minimizer of RSSλ(β) then

β̂(λ)T β̂(λ) =
p∑

i=1

d2
i

(d2
i + λ)2

yT uiu
T
i y

where di, i = 1, . . . , p are the singular values and ui, i = 1, . . . , p are the columns of
U in the singular value decomposition.
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8 Ridge Regression

Question 2.3. Use the result above to show that β̂(λ)T β̂(λ) < t for λ > 0 and that
the function

λ %→ s(λ) := β̂(λ)T β̂(λ)

is a continuous, strictly decreasing function whose limit for λ →∞ equals 0.
Thus s maps the interval (0,∞) in a one-to-one manner onto the interval (0, t).

Question 2.4. Show that the minimizer of RSSλ(β) is also a minimizer of

(y −Xβ)T (y −Xβ)

subject to the constraint
βT β ≤ s(λ).

Question 2.5. Conversely, show that a minimizer of

(y −Xβ)T (y −Xβ)

subject to the constraint
βT β ≤ s(λ)

is also a minimizer of RSSλ(β). Argue that the constraint minimization problem above
yields the ordinary least squares estimate whenever s ≥ t.

The constraint minimization formulation provides the interpretation that the solu-
tion is simply a least squares estimate but on a restricted parameter space – restricted
by the norm constraint βT β ≤ s on the norm of the parameter vector β. Thus the
penalization can essentially be regarded as a model restriction. Note, however, the
subtle, data dependent relation between λ and s that makes the transformation
between the two optimization problems data dependent. Thus, using the penaliza-
tion formulation for a fixed λ the nature of the model restriction imposed by λ is
data dependent. In practice, λ may even be determined from the data to optimize
empirically the tradeoff between bias and variance for the ridge regression estimator.

We know that the predicted values without penalization are given as

ŷ = Xβ̂(0) = X(XTX)−1XTy.

Question 2.6. Show that for the projection P = X(XT X)−1XT onto the column
space of X we have trace(P ) = p and P 2 = P .

We also know that the predicted values with penalization are given as

ŷ = Xβ̂(0) = X(XTX + λI)−1XTy.

Question 2.7. Show that for the so-called smoother Sλ = X(XT X + λI)−1XT we
have

trace(Sλ) =
p∑

i=1

d2
i

d2
i + λ

< p.

and S2
λ ≺ Sλ.
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Finite Dimensional Reproducing
Kernel Hilbert Spaces

Let Ω ⊆ Rp and let ϕi : Ω → R be given functions for i ∈ I. Here I is a finite index
set.

Define a kernel K : Ω× Ω → R in terms of the ϕi functions for i ∈ I by

K(x, y) =
∑

i∈I

ϕi(x)ϕi(y).

Define the space of functions HK as the functions f : Ω → R where

f(x) =
∑

i∈I

βiϕi(x)

for a sequence of real coefficients βi ∈ R. This space of functions can be seen as
a finite dimensional vector space spanned by the functions ϕi for i ∈ I. To avoid
redundancy in the representation of f ∈ HK we will always assume that the ϕi

functions are linearly independent.

On HK we define an inner product

〈f, g〉 =
∑

i∈I

βiδi

where f =
∑

i∈I βiϕi and g =
∑

i∈I δiϕi.

Denote by K(·, y) and K(x, ·) the functions

x %→ K(x, y)

for fixed y ∈ Ω and
y %→ K(x, y)
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10 Finite Dimensional Reproducing Kernel Hilbert Spaces

for fixed x ∈ Ω, respectively.

Question 3.1. Show that for any y ∈ Ω we have K(·, y) ∈ HK and that for any
f ∈ HK we have

〈K(·, y), f〉 = f(y).

Then show that for any x ∈ Ω we also have K(x, ·) ∈ HK and that

〈K(·, y), K(x, ·)〉 = K(x, y).

This last property is known as the reproducing property of the space of functions
HK and the kernel K.

The inner product space HK is an example of a finite dimensional Hilbert space.
The norm on this space is defined in terms of the inner product as

||f ||2K = 〈f, f〉 =
∑

i∈I

β2
i

when f =
∑

i∈I βiϕi. Such a Hilbert space is known as a reproducing kernel Hilbert
space due to the fact that the inner product and the kernel “play together” to give
the reproducing property as shown above.

The kernel plays a central role if we want to estimate the coefficients in an expansion
of f ∈ HK from (noisy) data. To estimate the parameters we will minimize the
empirical loss for a loss function L : R×Ω → [0,∞) but with a ridge regression type
of penalty term added.

If we observe (y1, x1), . . . , (yN , xN ) with x1, . . . , xN ∈ Rp and y1, . . . , yN ∈ R we will
minimize

N∑

i=1

L(yi, f(xi)) + λ||f ||2K

over f ∈ HK and for λ ≥ 0 a given constant. Equivalently, we can minimize

N∑

i=1

L(yi,
∑

j∈I

βjϕj(xi)) + λ
∑

j∈I

β2
j

over all sequences (βj)j∈I of real value coefficients. We see the resemblance to ridge
regression in the penalty term that also in this case involves the sum of the squared
coefficients.

If x1, . . . , xN ∈ Rp we define the matrix

K = {K(xi, xj)}i,j=1,...,N .

We assume that the xi’s are all different.

Question 3.2. Show that K is a symmetric, positive semidefinite matrix. When is it
positive definite?
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Question 3.3. Let f =
∑N

i=1 αiK(·, xi). Show that f ∈ HK and that

||f ||2K = αT Kα.

Then show that if ρ ∈ HK is a function orthogonal to the functions K(·, xi) for
i = 1, . . . , N , that is,

〈ρ, K(·, xi)〉 = ρ(xi) = 0

for i = 1, . . . , N , then

N∑

i=1

L(yi, f(xi) + ρ(xi)) + λ||f + ρ||2K ≥
N∑

i=1

L(yi, f(xi)) + λ||f ||2K

with equality if and only if ρ = 0 (ρ is constantly equal to 0).
Question 3.4. Show that the minimizer of

N∑

i=1

L(yi, f(xi)) + λ||f ||2K

is of the form

f(x) =
N∑

i=1

αiK(x, xi)

for some αi ∈ R, i = 1, . . . , N , and show that it can be found by minimizing

L(y,Kα) + λαT Kα (3.1)

where we use vector notation and let L(y, z) =
∑N

i=1 L(yi, zi) for vectors y =
(yi)i=1,...,N and z = (zi)i=1,...,N .
Question 3.5. If L is the squared error loss function, L(y, z) = (y − z)2, show that
the minimizer of (3.1) is unique and given as

α̂ = (K + λI)−1y.

Question 3.6. Show that with Ω = Rp,

K(x, y) = (1 +
p∑

i=1

xiyi)d

is a kernel that is given as a sum of
(p+d

d

)
polynomials (the ϕi functions).

The major point in reproducing kernel Hilbert spaces is that the number of basis
functions, as in the polynomial example above, may we very large – much larger
than N , the number of observations. If the kernel, on the other hand, is easy to
evaluate we can typically solve the minimization problem over HK anyway using
the kernel formulation in (3.1), and the solution is expressed entirely in terms of
kernel evaluations.

A useful, but mathematically more advanced generalization involves infinite dimen-
sional reproducing kernel Hilbert spaces. Starting with a kernel K : Ω×Ω → R with
the property that the matrix K, as defined above, for any dataset x1, . . . , xN ∈ Rp
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and any N ≥ 1, is symmetric and positive definite the Moore-Aronszajn theorem
provides a completely abstract construction of a corresponding reproducing kernel
Hilbert space. The corresponding Hilbert space may be finite dimensional, as the
polynomial example above, or infinite dimensional. The existence of an expansion
of the kernel as an (infinite) sum of ϕi-functions is, however, a more delicate mat-
ter. Under certain regularity conditions the various versions of Mercer’s theorem
provide explicit as opposed to abstract Hilbert spaces in combination with such an
expansion. Note that the literature can be confusing on this point where Mercer’s
theorem is often dragged into the discussion when it is not needed and references to
Mercer’s theorem obscure rather than clarify the picture. We need the reproducing
kernel Hilbert space and the kernel, but the existence of an expansion in terms of ϕi-
functions is actually not needed in general. We used it here in the finite dimensional
case solely to be able to construct the Hilbert spaces explicitly.

There is one catch, which seems most easily understood in terms of finite or infinite
expansions in terms of ϕi-functions. Nice kernels that are easy to evaluate define
implicitly the ϕi-functions and in particularly the scale of these functions. If we want
to scale these basis functions in a different way, e.g. to penalize certain properties
more or less, we would typically loose the efficient evaluation of the kernels. Thus
the price we pay for the easy solution of a minimization problem is that we can not
control the scales of the basis functions and we just have to live with those imposed
by the kernel.
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Penalized Logistic Regression

We have a dataset (y1, x1), . . . , (yN , xN ) with the observations yi ∈ {0, 1} and the
covariates xi ∈ R. We assume that the observations are realizations of iid variables
having the same distribution as (Y,X), where the conditional probability, p(x), of
Y = 1 given X = x is given as

logit(p(x)) = f(x),

or alternatively

p(x) = P (Y = 1|X = x) =
exp(f(x))

1 + exp(f(x))
.

Question 4.1. Show that the minus-log-likelihood function, as a function of the “pa-
rameter” f is given as

l(f) = log(1 + exp(f(xi)))−
N∑

i=1

yif(xi),

where f : R → R is some function (the conditional log-odds).

Assume then that f is given by a finite basis expansion

fβ(x) =
p∑

j=1

βjϕj(x)

with the ϕj-functions known and fixed and β ∈ Rp. Write pβ(x) = exp(fβ(x))
1+exp(fβ(x)) , let

pβ(x) denote the N -dimensional vector of pβ(xi), and introduce the β-dependent
weights

wi(β) = pβ(xi)(1− pβ(xi)).

Let X denote the N × p matrix with the (i, j)’th entry being ϕj(xi).
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14 Penalized Logistic Regression

Question 4.2. Show that the first derivative of l as a function of β is

Dβ(l)(β) = (pβ(x)− y)T X

and that the second derivative is

D2
βl(β) = XT W(β)X.

where W(β) = diag(w1(β), . . . , wN (β)) is the N×N diagonal matrix with the weights
wi(β) in the diagonal.

Question 4.3. Show that a single Newton-Raphson stepa can be written as

β1 = (XT W(β0)X)−1XT W(β0)z(β0)

where
z(β0) = Xβ0 + W(β0)−1(y − pβ0(x)).

aThe solution to Dβ(l)(β0) + (β − β0)T D2
βl(β0) = 0

The entries in the vector z(β0) are sometimes called the adjusted responses. One
can view the Newton-Raphson algorithm as a two-step procedure, where we first
compute the adjusted responses based on the given parameter vector β0, and then
solve the following weighted least squares problem; minimize

(z(β0)−Xβ)TW(β0)(z(β0)−Xβ),

where the weight matrix W(β0) also depends upon β0.

Consider instead the penalized minus-log-likelihood as a function of β;

l1(β;λ) = l(β) +
λ

2
βTΩβ

for λ > 0 and Ω a fixed p× p matrix.

Question 4.4. Show that a step in the Newton-Raphson algorithm for maximizing
l1(β;λ) for fixed λ can be computed in the same way as above except from the fact that
XT W(β0)X is replaced by XT W(β0)X + λΩ. That is, the adjusted response, z(β0),
is computed the same way, but then

β1 = (XT W(β0)X + λΩ)−1XT W(β0)z(β0).

We return to the general setup without a priori restrictions on f . We assume that
the xi’s are all different and are all in the interval [a, b]. We consider the penalized
minus-log-likelihood

l2(f ;λ) = l(f) +
λ

2

∫ b

a
(f ′′(x))2dx

over the set of twice differentiable functions f .
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Question 4.5. Show that, for fixed λ, the minimum of l2(f ;λ) over the the set of
twice differentiable functions on [a, b] is attained for a function

f(x) =
N∑

j=1

βjϕj(x)

where ϕj for j = 1, . . . , N constitute a basis for the set of natural cubic splines with
knots in the xi’s. Consult Exercise 5.7 for the similar problem but with quadratic loss.
Question 4.6. Show that the resulting (finite-dimensional) optimization problem con-
sists of maximizing l1(β;λ) with Ω the N ×N matrix with entries

Ωij =
∫ b

a
ϕ′′i (x)ϕ′′j (x)dx.

Argue that a specific choice of a and b does not matter as long as the xi’s are contained
in the interval [a, b] and that one can take a and b to be the minimum and maximum
of the xi’s, respectively.
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Support Vector Machines

In classification problems with two classes it is common to label the classes as ±1.
Thus we consider an observation y ∈ {−1, 1} and a covariate vector x ∈ Rp. If

f : Rp → R

is any function we can construct a classification procedure by predicting the value
of y for given x as sign(f(x)). If p(x) denotes the conditional probability of y = 1
given x the Bayes classifier is given in this way in terms of the logit transform of
p(x), that is

f(x) = logit(p(x)) = log
p(x)

1− p(x)
.

An arbitrary function produces a correct prediction if yf(x) > 0 and a wrong predic-
tion if yf(x) < 0. Using a zero-one loss function for estimation of f generally leads
to none-uniqueness and a quite awful optimization problem. Other loss functions
used in the literature are the squared error loss

L(y, f(x)) = (y − f(x))2 = (1− yf(x))2,

and the binomial minus-log-likelihood (where we thus regard f to be the logit trans-
form of p(x))

L(y, f(x)) = log(1 + exp(−yf(x))).

A third sensible loss function is defined by

L(y, f(x)) = (1− yf(x))+

where the subscript “+” indicates positive part, that is, z+ = max{z, 0}.
Assume that h : Rp → RM is a fixed function, and let

f(x) = βT h(x) + β0

17



18 Support Vector Machines

for β ∈ RM and β0 ∈ R. Let (y1, x1), . . . , (yN , xN ) be a dataset and consider the
following penalized loss function

N∑

i=1

(1− yif(xi))+ + λβT β (5.1)

with λ > 0. The penalty function is of the same type as in ridge regression, and we
seek to minimize (5.1). If we changed the loss function to the squared error loss, the
minimization would indeed be a ridge regression problem with its explicit solution.

Question 5.1. Show that the function given by (5.1) is strictly convex and has a
unique minimum.
Question 5.2. Show that minimization of (5.1) is equivalent to minimizing

βT β +
1
λ

N∑

i=1

ξi

subject to the constraints

ξi ≥ 0, yi(βT h(xi) + β0) ≥ 1− ξi

for i = 1, . . . , N .
The latter minimization problem is a quadratic optimization problem with linear
constraints – something that can be solved numerically.
If h(x) = (ϕ1(x), ϕ2(x), . . . ,ϕM (x)) we may observe that

f(x) = β0 +
M∑

i=1

βiϕi(x)

so we are working with a setup (almost) like in the exercise on reproducing kernel
Hilbert spaces, where the function we estimate is given as a linear combination of
basis functions. The corresponding kernel reads

K(x, y) =
M∑

i=1

ϕi(x)ϕi(y) = h(x)T h(y),

and we let
K = {K(xi, xj)}i,j=1,...,N = {h(xi)T h(xj)}i,j=1,...,N .

Question 5.3. Show, using the results on reproducing kernel Hilbert spaces, that the
minimizer of (5.1) can be given as

f(x) = β0 +
N∑

i=1

αiK(x, xi)

for β0, αi ∈ R, i = 1, . . . , N , and show that minimization of (5.1) is equivalent to
minimization of

N∑

i=1

(1− yi(β0 + [Kα]i))+ + λαT Kα. (5.2)
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Question 5.4. Show that minimization of (5.2) is equivalent to minimizing

αT Kα +
1
λ

N∑

i=1

ξi

subject to the constraints

ξi ≥ 0, yi(β0 + [Kα]i) ≥ 1− ξi

for i = 1, . . . , N .
The last result is an example of the so-called kernel property, that a potentially
high-dimensional (in general, even infinite dimensional) optimization problem can
be reduced to a manageable optimization problem with the number of parameters
being of the size of the dataset. The crux of the matter is the ability to efficiently
evaluate the kernel, thus it is the implicit structure of the basis expansion of nice
kernels that determines how the penalization affects the resulting estimate.

In the following 3 questions you are going to derive a result which can be obtained
as a consequence of general results from the theory of constraint optimization. How-
ever, you can derive these results here from first principle without the knowledge of
anything but classical calculus.

Question 5.5. Show that if (α0, ξ) is a solution to the minimization problem then
either ξi = 0 or ξi = 1− yi(β0 + [Kα0]i).

In the following we let (α0, ξ) denote a solution. Due to the result above the following
three sets provide a partition of the indices {1, . . . , N}.

A = {i | ξi = 1− yi(β0 + [Kα0]i) > 0}
B = {i | ξi = 0, 1− yi(β0 + [Kα0]i) > 0}
C = {i | ξi = 1− yi(β0 + [Kα0]i) = 0}

Define also

C = {α | 1− yi(β0 + [Kα]i) = 0, i ∈ C}
O = {α | 1− yi(β0 + [Kα]i) > 0, i ∈ A ∪ B}.

Finally we define the vector ỹ ∈ RN by

ỹi =
{

yi if i ∈ A
0 if i .∈ A

Question 5.6. Argue that O is open. Define

L(α) = αT Kα− 1
λ
ỹT Kα− 1

λ

∑

i∈A
1− β0yi.

Show that L(α0) ≤ L(α) for α ∈ C ∩O.
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Define Λ = {λ ∈ RN | λi = 0, i .∈ C} and V = {Kλ | λ ∈ Λ}.
Question 5.7. Show that if ρ ∈ V ⊥ then α0 + ερ ∈ O ∩ C for some ε > 0. Use this
to show that due to fact that α0 is a minimizer in C ∩ O we have ∇L(α0) ∈ V and
conclude that

α0 =
2
λ
ỹT + λ

for some λ ∈ Λ. Conclude in particular that α0,i = 0 for i ∈ B.

We call the points xi with α0,i > 0 the support vectors. We can see from the expansion
of f in terms of the kernel that in reality we only need to expand f in terms of
the kernel evaluated in the support vectors. The result above shows that only the
so-called active constraints for the solution contribute with a support vector. A
sparse solution (many zeros in the α vector) is desirable as this will result in faster
evaluations of the estimated f when we want to apply f for predictions.
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Linear Smoothers and
Cross-Validation

If X is p-dimensional, real random variable, Y a one dimensional, real random vari-
able and f : Rp → R is a predictor of Y given X, a quantity of interest is the
expected prediction error

EPE(f) = E(L(Y, f(X)))

for L : R × R → R the loss function. If f = f̂ is estimated based on the dataset
(x1, y1), . . . , (xN , yN ) then

EPE(f̂) = E(L(Y, f(X))|X1 = x1, . . . , Xn = xn, Y1 = y1, . . . , Yn = y1)

is the expected prediction error for the estimated predictor conditionally on the data.
The training error

err(y1, . . . , yn, x1, . . . , xn) =
1
N

N∑

i=1

L(yi, f̂(xi)),

which is the average loss over the same dataset that was used for estimating f̂ will
generally underestimate the expected prediction error for f̂ . A serious problem is
that the test error will typically be monotonely decreasing as a function of model
complexity and is therefore not of much use in model selection. We assume here that
the pairs (xi, yi) are realization of N iid random variables.

A partial solution to the problem with the test error is to introduce the in-sample
error

Errin =
1
N

N∑

i=1

E(L(Y New
i , f̂(xi))|X1 = x1, . . . , Xn = xn),

21
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which is the average expected loss over the xi’s in the dataset. Note, the expectation
is over the Yi’s and the new, independent variable Y New

i , whose distribution is the
conditional distribution of Yi given Xi = xi. The optimism in the training error is
defined as

op = Errin − E (err(Y1, . . . , Yn, x1, . . . , xn)) .

Question 6.1. Show that with L(y, z) = (y − z)2 the squared error loss,

op =
2
N

N∑

i=1

Cov(f̂(xi), Yi)

where f̂(xi) is a random variable as a function of Y1, . . . , YN .

A linear smoother is an estimating procedure where the N -dimensional vector f̂ of
fitted values f̂(xi) for i = 1, . . . , N is given by

f̂ = Sy

for a matrix S not depending upon the yi observations.

Question 6.2. Show that if the conditional variance

σ2 = V(Y |X = x)

does not dependa upon x then for a linear smoother it holds that

N∑

i=1

Cov(f̂(xi), Yi) = trace(S)σ2.

aAs if Y = f(X) + ε with ε a random variable independent of X.

Question 6.3. Show that if σ̂2 is an unbiased estimator of σ2 then

Êrrin = err +
2
N

trace(S)σ̂2

is an unbiased estimator of the in-sample error Errin when using a linear smoother
given by the smoother matrix S.

The estimate above offers a quantitative compromise – a small training error is
typically obtained by a smoother where trace(S) is large.

An alternative to the in-sample error is to introduce the test or generalization error

Err = E(L(Y, f̂(X)).

The difference from the definition of the expected prediction error above is that
when defining the generalization error we take expectation over (X, Y ) as well as
the variables (X1, Y1), . . . , (XN , YN ) that enter in the computation of f̂ . The typical
estimate of the generalization error is constructed via cross-validation. The general
cross-validation procedure consists of splitting the dataset into groups (K groups
in K-fold cross-validation) and then estimate f on the basis of K − 1 groups and
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estimate the prediction error on the basis of the remaining group. This process is
repeated – leaving out all groups for the estimation one at a time. The special case
is leave-one-out cross-validation or N -fold cross-validation. With f̂−i denoting the
estimated predictor based on all observations except the i’th (xi, yi).
The leave-one-out CV-estimate of Err is defined as

Êrr =
1
N

N∑

i=1

L(yi, f̂
−i(xi)).

We consider the linear smoother given by the smoother matrix S. To come up with
convenient formulas for the leave-one-out CV-estimate we need the smoother for the
whole dataset to be related to the smoother for a dataset where we remove one data
point.

Question 6.4. Show that for a linear smoother with

f̂−i(xi) =
N∑

j=1,j %=i

Sij

1− Sii
yj (6.1)

it holds that

yi − f̂−i(xi) =
yi − f̂(xi)

1− Sii

Question 6.5. Explain why the result above can be used to compute the estimate Êrr
efficiently if we use the squared error loss – if we can compute Sii efficiently.
Explain that (6.1) can be understood as follows: If we estimate f̂−i based on the
dataset excluding (yi, xi) and subsequently include the data point (f̂−i(xi), xi) – using
the predicted value of yi, f̂−i(xi), instead of yi – then the prediction of yi based on
this enlarged dataset is still f̂−i(xi).
Question 6.6. Show that ordinary least squares regression, Ridge regression, and
cubic spline fits are all linear smoothers that fulfill (6.1).

For some smoothers it is computationally easier to compute trace(S) than to com-
pute the diagonal elements themselves. Approximating all diagonal elements by the
constant trace(S)/N (pretending that all diagonal elements are equal) leads to the
so-called generalized1 cross-validation estimate

GCV =
1
N

N∑

i=1

[
yi − f̂(xi)

1− trace(S)/N

]2

.

Question 6.7. Show by a second order Taylor expansion of (1 − x)−2 that if
trace(S) 1 N then

[
yi − f̂(xi)

1− trace(S)/N

]2

2 (yi − f̂(xi))2(1 +
2
N

trace(S)).

Explain how this gives a relation between GCV and the estimate Êrrin of the in-sample
error.

1It seems that “approximate” would have been are better choice than “generalized”.
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