
Large p Small N Problems

When p > N and in particular when p� N new issues arise.

• We are never able to estimate all parameters without regularization. E.g. in a regres-
sion there are p parameters but the X-matrix only has rank N .

• Signals can drown in noise.

• Big matrices, computational challenges.

As a rule of thumb; choose simple methods over complicated methods when p � N , regu-
larize and bet on “sparsity”.

Figure 18.1

Simulation study with Y =
∑p

i=1 βjXj + σε.

Diagonal or Independence LDA

Recall that the estimated LDA classifier can be determined by

δk(x) = log πk −
1
2

(x− µ̂k)T Σ̂−1(x− µ̂k)

and we classify to argmaxk{δk(x)}.

If
Σ̂ = diag(s2

1, . . . , s
2
p)

this simplifies to

δk(x) = −
p∑

j=1

(xj − x̄kj)2

s2
j

+ 2 log πk

where x = (x1, . . . , xp)T and

x̄kj =
1
Nk

∑
i:yi=k

xij

is the average of the j’th coordinate in the k’th group.

Shrunken Centroids

Note that the variance of x̄kj − x̄j is

m2
kσ

2 with m2
k =

1
Nk
− 1
N
.

Introduce the general shrunken centroids

x̄′kj = x̄j +mk(sj + s0)g
(

x̄kj − x̄j

mk(sj + s0)

)
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with s0 a small, positive constant.

g∆(d) = sign(d)(|d| −∆)+

is known as soft thresholding.
g∆(d) = d1(|d| ≥ ∆)+

as hard thresholding.

The research report Maximum likelihood classification in macroarray studies by Jens Ledet
Jensen is available here: http://www.imf.au.dk/publications/rr/2006/imf-rr-2006-474.pdf

Figure 18.4 – Train and Test Error

The parameter ∆ is a tuning parameter for shrunken centroids. With 43 genes, ∆ = 4.3,
we get a training error of 0 – but also a test error of 0.

Figure 18.4 – Centroid Profiles and Shrunken Centroids

Figure 18.3 – Heat Map

Elastic Net

The penalization function
p∑

j=1

α|βj |+ (1− α)β2
j

is known as the elastic net penalty.

For multinomial regression the penalized minus-log-likelihood function is

−
N∑

i=1

log Pr(Y = yi|X = xi) + λ

K∑
k=1

p∑
j=1

α|βkj |+ (1− α)β2
kj

There is an efficient implementation in the glmnet package for R.

Note that intercepts are not penalized and subject to the constraint that they sum to 0. All
other redundancies in the parameterization are dealt with by the penalization.
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Regularized Discriminant Analysis

Choosing the estimator
Σ̂(α) = αΣ̂ + (1− α)diag(Σ̂)

for α ∈ [0, 1] we get a regularized covariance estimator usable for LDA.

The rda function in the rda library does this in combination with nearest shrunken centroids
with regularization="R". With regularization="S" one gets

Σ̂(α) = αΣ̂ + (1− α)Ip

It is a little unclear which of three suggested centroid shrinkage methods from the paper
Guo et al. (2006), see book, that is implemented in rda. ... but I have a qualified guess.

Computational Shortcuts

Suppose we consider the problem of minimizing
N∑

i=1

L(yi, β0 + xT
i β) + λ||β||2

over β0 and β ∈ Rp with p > N . With X = UDV T the singular value decomposition (when
p > N , U is N ×N orthogonal, D is N ×N diagonal and V is p×N with V TV = IN ), then
R = UD is an N ×N matrix and

Xβ = UDV Tβ = RV Tβ = Rθ

where θ = V Tβ is N -dimensional. Writing β = V θ+β⊥ with β⊥ orthogonal to the columns
in V we see that

||β||2 = ||V θ||2 + ||β⊥||2 ≥ ||V θ||2 = θTV TV θ = ||θ||2.

Since Xβ is unaffected by β⊥ this term equals 0 and we need to minimize
N∑

i=1

L(yi, θ0 + rT
i θ) + λ||θ||2, θ ∈ RN .

Support Vector Classifiers

Support vector machines are popular two class classifiers and have a reputation for being
among the best performing.

With yi ∈ {−1, 1}, xi ∈ E and f : E → R we compute the predictor of yi as sign(f(xi)).
With f in the reproducing kernel Hilbert space H estimation is done by minimization of

N∑
i=1

[1− yif(xi)]+ + λ||f ||2H

Thus the loss function L : {−1, 1} × R→ R is special and given as

L(y, z) = [1− yz]+
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