Cross-Validation

Let x:{1,...,N} — {1,..., K} and denote by =% for k =1,..., K the
estimator of f based on the data (x;, y;) with (i) # k.

The (x;, y;) with k(i) = k work as a test dataset for 7% and

=N Ly )

EPE(f %) = i
i:k(i)=k

with Ni = [{i|s(i) = k}|

The K-fold k-cross-validation estimator of Err is the weighted average

_ Ny —k
V., = WEPE( )
k=1
1 .
= NZL(YHf V(x1))
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Figure 7.8 — Err as a Function of N

We should write Err = Err(N) as a
function of the sample size. If fy, f € F
and f minimizes EPE then

EPE(fy) > EPE(f) and

Err(N) = E(L(Y, ?N(X))) > EPE(f)

If we have a consistent estimator;
fny — f, then

Err(N) — EPE(f).
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Cross-Validation

Among several models we will choose the model with smallest CV,,. How
to choose k? How to choose K7

We aim for N = ... = Nk in which case
E(CV,) = Err(N — Ny).

With a steep learning curve at N we need N; to be small or we
underestimate Err.

Extreme case; N-fold or leave-one-out cross-validation with k(i) = i leads
to an almost unbiased estimator of Err(N), but the strong correlation of
the EPE(f~7)’s works in the direction of given a larger variance.
Recommendations are that 5- or 10-fold CV is a good compromise

between bias and variance.
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CV and Linear Smoothers

For many linear smoothers where f= Sy the leave-one-out CV estimator

for squared error loss can be computed as

This is a computational gain as there is no need for N successive
reestimations.

The generalized cross-validation estimator is defined as

1 N
GCV:NE

Details are in Theo.6.

2
yi —fi
1 — trace(S)/N
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The Wrong and The Right Way to Cross-Validate

@ Mess with the data to find variables/methods that seem to be useful.

e Estimate parameters using the selected variables/methods and use
cross-validation to choose tuning parameters.

WRONG

Don’'t mess with the data before the cross-validation.

Cross-Validation must be out side of all modeling steps, including filtering
or variable selection steps.
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Bootstrapping

With B bootstrap datasets and #*b the estimated predictor based on the
b'th bootstrap dataset with indices C, we produce the estimator

EPE(f*?) = Z L(y;, F*°(x))
I¢Cb

using (x;, y;) for i & Cp as the test data for F*b and Np = N — | Cp|

A natural estimator of Err is
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Bootstrapping
Turning things inside-out; Err = E(E(L(Y, F(X))|X, Y)) we can suggest
the leave-one-out bootstrap estimator

Err = NZ Z y,,f*b (7))

bIQCb

with M; = B — |{b|i € Cp}|.

As the average number of distinct variables in a bootstrap sample is

1—(1—N"1)N ~0.632 both Err and Ern™ are expected to estimate
something like Err(0.632N) rather than Err(N).

A correction is suggested

(.632) (1)

Err — 0.368¢Fr + 0.632Err
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Estimates of Expected Prediction Error

If 7 is estimated based on a data set, we can only get an estimate of
EPE(f) by an independent test set (x1,y1),...,(x5,y8) as

B
EPE(F) Bbz—: Vb, F

Bootstrap and cross-validation provide estimates Err of the generalization
error.

e EPE(f) is a random variable with mean Err.
e Erris a random variable with mean Err.

Can Err be regarded as an approximation /estimate of EPE(f)?

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning May 27, 2009 8 /17



Figure 7.15 — The Relation Between Err and EPE(F)

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning May 27, 2009 9 /17



Classification and The Confusion Matrix

For a classifier with two groups we can decompose the errors:

Predicted y
Observed y 1 0
1 Pr(Y=1,f(X)=1) Pr(Y=1,f(X)=0)
0 Pr(Y=0,f(X)=1) Pr(Y=0,f(X)=0)

This is the confusion matrix and

EPE(f) = Pr(Y =0, f(X) = 1) + Pr(Y = 1, f(X) = 0).

As with EPE(?) the confusion matrix can only be estimated using an
independent test dataset. “Estimates” based on e.g. cross-validation are

estimates of E(Pr(Y = k, f(X) = 1)).
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Generalized Additive Models

A generalized additive model of Y given X is given by a link function g
such that the mean p(X) of Y given X is

g(u(X)) =a+ (X)) + ...+ f(Xp).

This is an extension from general linear models by allowing for non-linear
but univariate effects given by the f;-functions.

The functions are not in general identifiable — and we can face a problem
similar to collinearity, which is known as concurvity.
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Recall Naive Bayes
If the X-coordinates are independent given the Y/, then

p
=[] &x.i(x)
i=1

with g ; univariate densities.

Pr(Y = k| X = x) Tk gk(x)
| Ly
BPY = KIX =x) o8 K+OggK(X)
— |og—+Z| gk’(x’)
i=1 gKI /)
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Generalized Additive Logistic Regression

An important example arise with Y € {0, 1} with the logit link

g(p) = log (ﬁﬂ) we (o)

Then

B B expla+ A(X1) ..+ (X))
) = PrlY =110 = 1 ola+ A 4+ H(X)

Like logistic regression we can use other link functions like the probit link
g(u) = (n)

where © is the distribution function for the normal distribution.
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Penalized Estimation

The general, penalized minus-log-likelihood function is

/N(Oé,fl,..., —I—Z)\/ f” d

with tuning parameters Ay, ..., Ap. The minimizer, if it exists, consists of
natural cubic splines. For identification purposes we assume

N
Zf]xl_[ 7 J:177p

i=1

This is equivalent to f; = (fi(x1)), ..., fi(xn;)) " being perpendicular to the
column vector 1 for j = 1,...,p. The penalization resolves
overparameterization problems for the non-linear part but not the linear
part of the fit.
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Informal Tests for Non-Linear Effects

Using smoothing splines there is to each estimated function IA‘J an
associated linear smoother matrix S; — where the linear fit has been
removed.

The effictive degress of freedom for the non-linear part of the fit is
df; = trace(S;) — 1

Many implementations perform ad hoc y?-tests for the non-linear part
using x2-distributions with df; degress of freedom — these test are at best
justified by some simulation studies, and can be used as guidelines only.
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Spam Email Classification

Whether an email is a spam email or a regular email is a great example of
a problem where prediction is central and interpretation is secondary.

The (simplistic) example in the book deals with 4601 emails to an
employee at Hewlett-Packard.

Each email is dimension reduced to a 57-dimensional vector containing
@ Quantitative variables of word or special character percentages.

@ Quantitative variables describing the occurrence of capital letters.
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Figure 9.1 — Non-linear Email Spam Predictor Effects
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