Cross-Validation

Let $\kappa : \{1, ..., N\} \to \{1, ..., K\}$ and denote by \hat{f}^{-k} for k = 1, ..., K the estimator of f based on the data (x_i, y_i) with $\kappa(i) \neq k$.

The (x_i, y_i) with $\kappa(i) = k$ work as a test dataset for \hat{f}^{-k} and

$$\mathsf{EPE}(\hat{f}^{-k}) = \frac{1}{N_k} \sum_{i: \kappa(i) = k} L(y_i, \hat{f}^{-k}(x_i))$$

with
$$N_k = |\{i | \kappa(i) = k\}|$$

The K-fold κ -cross-validation estimator of Err is the weighted average

$$CV_{\kappa} = \sum_{k=1}^{K} \frac{N_{k}}{N} \mathsf{E} \hat{\mathsf{P}} \mathsf{E} (\hat{f}^{-k})$$
$$= \frac{1}{N} \sum_{i=1}^{N} L(y_{i}, \hat{f}^{-\kappa(i)}(x_{i}))$$

Figure 7.8 – Err as a Function of N

We should write $\operatorname{Err} = \operatorname{Err}(N)$ as a function of the sample size. If $\hat{f}_N, f \in \mathcal{F}$ and f minimizes EPE then $\operatorname{EPE}(\hat{f}_N) \geq \operatorname{EPE}(f)$ and

$$Err(N) = E(L(Y, \hat{f}_N(X))) \ge EPE(f)$$

If we have a consistent estimator; $\hat{f}_N \to f$, then

$$Err(N) \rightarrow EPE(f)$$
.

Cross-Validation

Among several models we will choose the model with smallest CV_{κ} . How to choose κ ? How to choose K?

We aim for $N_1 = \ldots = N_K$ in which case

$$E(CV_{\kappa}) = Err(N - N_1).$$

With a steep learning curve at N we need N_1 to be small or we underestimate Frr.

Extreme case; N-fold or leave-one-out cross-validation with $\kappa(i)=i$ leads to an almost unbiased estimator of Err(N), but the strong correlation of the $E\hat{P}E(\hat{f}^{-i})$'s works in the direction of given a larger variance. Recommendations are that 5- or 10-fold CV is a good compromise between bias and variance.

CV and Linear Smoothers

For many linear smoothers where $\hat{\mathbf{f}} = \mathbf{S}\mathbf{y}$ the leave-one-out CV estimator for squared error loss can be computed as

$$CV = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{y_i - \hat{\mathbf{f}}_i}{1 - \mathbf{S}_{ii}} \right]^2$$

This is a computational gain as there is no need for N successive reestimations.

The generalized cross-validation estimator is defined as

$$GCV = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{y_i - \hat{\mathbf{f}}_i}{1 - \mathsf{trace}(\mathbf{S})/N} \right]^2$$

Details are in Theo.6.

The Wrong and The Right Way to Cross-Validate

- Mess with the data to find variables/methods that seem to be useful.
- Estimate parameters using the selected variables/methods and use cross-validation to choose tuning parameters.

WRONG

Don't mess with the data before the cross-validation.

Cross-Validation must be out side of all modeling steps, including filtering or variable selection steps.

Bootstrapping

With B bootstrap datasets and \hat{f}^{*b} the estimated predictor based on the b'th bootstrap dataset with indices C_b we produce the estimator

$$\mathsf{EPE}(\hat{f}^{*b}) = \frac{1}{N_b} \sum_{i \notin C_b} L(y_i, \hat{f}^{*b}(x_i))$$

using (x_i, y_i) for $i \notin C_b$ as the test data for \hat{f}^{*b} and $N_b = N - |C_b|$

A natural estimator of Err is

$$\hat{\mathsf{Err}} = \frac{1}{B} \sum_{b=1}^{B} \mathsf{E} \hat{\mathsf{P}} \mathsf{E} (\hat{f}^{*b}) = \frac{1}{B} \sum_{b=1}^{B} \frac{1}{N_b} \sum_{i \notin C_b} \mathsf{L}(y_i, \hat{f}^{*b}(x_i)).$$

Bootstrapping

Turning things inside-out; $Err = E(E(L(Y, \hat{f}(X))|X, Y))$ we can suggest the leave-one-out bootstrap estimator

$$\hat{\mathsf{Err}}^{(1)} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{M_i} \sum_{b: i \notin C_b} L(y_i, \hat{f}^{*b}(x_i))$$

with $M_i = B - |\{b | i \in C_b\}|$.

As the average number of distinct variables in a bootstrap sample is $1-(1-N^{-1})^N\simeq 0.632$ both $\hat{\rm Err}$ and $\hat{\rm Err}^{(1)}$ are expected to estimate something like ${\rm Err}(0.632N)$ rather than ${\rm Err}(N)$.

A correction is suggested

$$\hat{\mathsf{Err}}^{(.632)} = 0.368\bar{\mathsf{err}} + 0.632\hat{\mathsf{Err}}^{(1)}$$

Estimates of Expected Prediction Error

If \hat{f} is estimated based on a data set, we can only get an estimate of $\mathsf{EPE}(\hat{f})$ by an independent test set $(x_1,y_1),\ldots,(x_B,y_B)$ as

$$E\hat{P}E(\hat{f}) = \frac{1}{B} \sum_{b=1}^{B} L(y_b, \hat{f}(x_b)).$$

Bootstrap and cross-validation provide estimates Err of the generalization error.

- $\mathsf{EPE}(\hat{f})$ is a random variable with mean Err.
- Err is a random variable with mean Err.

Can Err be regarded as an approximation/estimate of EPE(\hat{f})?

Figure 7.15 – The Relation Between \hat{Err} and $EPE(\hat{f})$

Classification and The Confusion Matrix

For a classifier with two groups we can decompose the errors:

	Predicted <i>y</i>	
Observed y	1	0
1	$\Pr(Y=1, f(X)=1)$	Pr(Y = 1, f(X) = 0)
0	$\Pr(Y=0,f(X)=1)$	$\Pr(Y=0,f(X)=0)$

This is the confusion matrix and

$$\mathsf{EPE}(f) = \mathsf{Pr}(Y = 0, f(X) = 1) + \mathsf{Pr}(Y = 1, f(X) = 0).$$

As with EPE(\hat{f}) the confusion matrix can only be estimated using an independent test dataset. "Estimates" based on e.g. cross-validation are estimates of $E(\Pr(Y=k,\hat{f}(X)=I))$.

Generalized Additive Models

A generalized additive model of Y given X is given by a link function g such that the mean $\mu(X)$ of Y given X is

$$g(\mu(X)) = \alpha + f_1(X_1) + \ldots + f_p(X_p).$$

This is an extension from general linear models by allowing for non-linear but univariate effects given by the f_i -functions.

The functions are not in general identifiable – and we can face a problem similar to collinearity, which is known as concurvity.

Recall Naive Bayes

If the X-coordinates are independent given the Y, then

$$g_k(x) = \prod_{i=1}^p g_{k,i}(x_i)$$

with $g_{k,i}$ univariate densities.

$$\log \frac{\Pr(Y = k | X = x)}{\Pr(Y = K | X = x)} = \log \frac{\pi_k}{\pi_K} + \log \frac{g_k(x)}{g_K(x)}$$

$$= \log \frac{\pi_k}{\pi_K} + \sum_{i=1}^p \underbrace{\log \frac{g_{k,i}(x_i)}{g_{K,i}(x_i)}}_{h_{k,i}(x_i)}$$

$$= \log \frac{\pi_k}{\pi_K} + \sum_{i=1}^p h_{k,i}(x_i)$$

Generalized Additive Logistic Regression

An important example arise with $Y \in \{0,1\}$ with the logit link

$$g(\mu) = \log\left(rac{\mu}{1-\mu}
ight), \quad \mu \in (0,1)$$

Then

$$\mu(X) = \Pr(Y = 1|X) = \frac{\exp(\alpha + f_1(X_1) + \ldots + f_p(X_p))}{1 + \exp(\alpha + f_1(X_1) + \ldots + f_p(X_p))}$$

Like logistic regression we can use other link functions like the probit link

$$g(\mu) = \Phi^{-1}(\mu)$$

where Φ is the distribution function for the normal distribution.

Penalized Estimation

The general, penalized minus-log-likelihood function is

$$I_N(\alpha, f_1, \dots, f_p) + \sum_{j=1}^p \lambda_j \int_a^b f_j''(x) dx$$

with tuning parameters $\lambda_1, \ldots, \lambda_p$. The minimizer, if it exists, consists of natural cubic splines. For identification purposes we assume

$$\sum_{i=1}^N f_j(x_{ij}) = 0, \quad j = 1, \ldots, p.$$

This is equivalent to $\mathbf{f}_i = (f_i(x_{1i}), \dots, f_i(x_{Ni}))^T$ being perpendicular to the column vector $\mathbf{1}$ for $j = 1, \dots, p$. The penalization resolves overparameterization problems for the non-linear part but not the linear part of the fit.

Informal Tests for Non-Linear Effects

Using smoothing splines there is to each estimated function \hat{f}_j an associated linear smoother matrix \mathbf{S}_j – where the linear fit has been removed.

The effictive degress of freedom for the non-linear part of the fit is

$$\mathrm{df}_j = \mathsf{trace}(\mathbf{S}_j) - 1$$

Many implementations perform ad hoc χ^2 -tests for the non-linear part using χ^2 -distributions with df_j degress of freedom – these test are at best justified by some simulation studies, and can be used as guidelines only.

Spam Email Classification

Whether an email is a spam email or a regular email is a great example of a problem where prediction is central and interpretation is secondary.

The (simplistic) example in the book deals with 4601 emails to an employee at Hewlett-Packard.

Each email is dimension reduced to a 57-dimensional vector containing

- Quantitative variables of word or special character percentages.
- Quantitative variables describing the occurrence of capital letters.

Figure 9.1 – Non-linear Email Spam Predictor Effects