
Cross-Validation
Let κ : {1, . . . ,N} → {1, . . . ,K} and denote by f̂ −k for k = 1, . . . ,K the
estimator of f based on the data (xi , yi ) with κ(i) 6= k .

The (xi , yi ) with κ(i) = k work as a test dataset for f̂ −k and

ˆEPE(f̂ −k) =
1

Nk

∑
i :κ(i)=k

L(yi , f̂
−k(xi ))

with Nk = |{i |κ(i) = k}|

The K -fold κ-cross-validation estimator of Err is the weighted average

CVκ =
K∑

k=1

Nk

N
ˆEPE(f̂ −k)

=
1

N

N∑
i=1

L(yi , f̂
−κ(i)(xi ))
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Figure 7.8 – Err as a Function of N

We should write Err = Err(N) as a
function of the sample size. If f̂N , f ∈ F
and f minimizes EPE then
EPE(f̂N) ≥ EPE(f ) and

Err(N) = E (L(Y , f̂N(X ))) ≥ EPE(f )

If we have a consistent estimator;
f̂N → f , then

Err(N)→ EPE(f ).
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Cross-Validation

Among several models we will choose the model with smallest CVκ. How
to choose κ? How to choose K?

We aim for N1 = . . . = NK in which case

E (CVκ) = Err(N − N1).

With a steep learning curve at N we need N1 to be small or we
underestimate Err.

Extreme case; N-fold or leave-one-out cross-validation with κ(i) = i leads
to an almost unbiased estimator of Err(N), but the strong correlation of
the ˆEPE(f̂ −i )’s works in the direction of given a larger variance.
Recommendations are that 5- or 10-fold CV is a good compromise
between bias and variance.
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CV and Linear Smoothers

For many linear smoothers where f̂ = Sy the leave-one-out CV estimator
for squared error loss can be computed as

CV =
1

N

N∑
i=1

[
yi − f̂i
1− Sii

]2

This is a computational gain as there is no need for N successive
reestimations.

The generalized cross-validation estimator is defined as

GCV =
1

N

N∑
i=1

[
yi − f̂i

1− trace(S)/N

]2

Details are in Theo.6.
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The Wrong and The Right Way to Cross-Validate

Mess with the data to find variables/methods that seem to be useful.

Estimate parameters using the selected variables/methods and use
cross-validation to choose tuning parameters.

WRONG

Don’t mess with the data before the cross-validation.

Cross-Validation must be out side of all modeling steps, including filtering
or variable selection steps.
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Bootstrapping

With B bootstrap datasets and f̂ ∗b the estimated predictor based on the
b’th bootstrap dataset with indices Cb we produce the estimator

ˆEPE(f̂ ∗b) =
1

Nb

∑
i 6∈Cb

L(yi , f̂
∗b(xi ))

using (xi , yi ) for i 6∈ Cb as the test data for f̂ ∗b and Nb = N − |Cb|

A natural estimator of Err is

Êrr =
1

B

B∑
b=1

ˆEPE(f̂ ∗b) =
1

B

B∑
b=1

1

Nb

∑
i 6∈Cb

L(yi , f̂
∗b(xi )).

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning May 27, 2009 6 / 17



Bootstrapping
Turning things inside-out; Err = E (E (L(Y , f̂ (X ))|X ,Y )) we can suggest
the leave-one-out bootstrap estimator

Êrr
(1)

=
1

N

N∑
i=1

1

Mi

∑
b:i 6∈Cb

L(yi , f̂
∗b(xi ))

with Mi = B − |{b|i ∈ Cb}|.

As the average number of distinct variables in a bootstrap sample is

1− (1− N−1)N ' 0.632 both Êrr and Êrr
(1)

are expected to estimate
something like Err(0.632N) rather than Err(N).

A correction is suggested

Êrr
(.632)

= 0.368ērr + 0.632Êrr
(1)
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Estimates of Expected Prediction Error

If f̂ is estimated based on a data set, we can only get an estimate of
EPE(f̂ ) by an independent test set (x1, y1), . . . , (xB , yB) as

ˆEPE(f̂ ) =
1

B

B∑
b=1

L(yb, f̂ (xb)).

Bootstrap and cross-validation provide estimates Êrr of the generalization
error.

EPE(f̂ ) is a random variable with mean Err.

Êrr is a random variable with mean Err.

Can Êrr be regarded as an approximation/estimate of EPE(f̂ )?
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Figure 7.15 – The Relation Between Êrr and EPE(f̂ )
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Classification and The Confusion Matrix

For a classifier with two groups we can decompose the errors:
Predicted y

Observed y 1 0

1 Pr(Y = 1, f (X ) = 1) Pr(Y = 1, f (X ) = 0)
0 Pr(Y = 0, f (X ) = 1) Pr(Y = 0, f (X ) = 0)

This is the confusion matrix and

EPE(f ) = Pr(Y = 0, f (X ) = 1) + Pr(Y = 1, f (X ) = 0).

As with EPE(f̂ ) the confusion matrix can only be estimated using an
independent test dataset. “Estimates” based on e.g. cross-validation are
estimates of E (Pr(Y = k, f̂ (X ) = l)).
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Generalized Additive Models

A generalized additive model of Y given X is given by a link function g
such that the mean µ(X ) of Y given X is

g(µ(X )) = α + f1(X1) + . . .+ fp(Xp).

This is an extension from general linear models by allowing for non-linear
but univariate effects given by the fi -functions.

The functions are not in general identifiable – and we can face a problem
similar to collinearity, which is known as concurvity.
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Recall Naive Bayes
If the X -coordinates are independent given the Y , then

gk(x) =

p∏
i=1

gk,i (xi )

with gk,i univariate densities.

log
Pr(Y = k |X = x)

Pr(Y = K |X = x)
= log

πk

πK
+ log

gk(x)

gK (x)

= log
πk

πK
+

p∑
i=1

log
gk,i (xi )

gK ,i (xi )︸ ︷︷ ︸
hk,i (xi )

= log
πk

πK
+

p∑
i=1

hk,i (xi )
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Generalized Additive Logistic Regression

An important example arise with Y ∈ {0, 1} with the logit link

g(µ) = log

(
µ

1− µ

)
, µ ∈ (0, 1)

Then

µ(X ) = Pr(Y = 1|X ) =
exp(α + f1(X1) + . . .+ fp(Xp))

1 + exp(α + f1(X1) + . . .+ fp(Xp))

Like logistic regression we can use other link functions like the probit link

g(µ) = Φ−1(µ)

where Φ is the distribution function for the normal distribution.
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Penalized Estimation

The general, penalized minus-log-likelihood function is

lN(α, f1, . . . , fp) +

p∑
j=1

λj

∫ b

a
f ′′j (x)dx

with tuning parameters λ1, . . . , λp. The minimizer, if it exists, consists of
natural cubic splines. For identification purposes we assume

N∑
i=1

fj(xij) = 0, j = 1, . . . , p.

This is equivalent to fj = (fj(x1j), . . . , fj(xNj))T being perpendicular to the
column vector 1 for j = 1, . . . , p. The penalization resolves
overparameterization problems for the non-linear part but not the linear
part of the fit.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning May 27, 2009 14 / 17



Informal Tests for Non-Linear Effects

Using smoothing splines there is to each estimated function f̂j an
associated linear smoother matrix Sj – where the linear fit has been
removed.

The effictive degress of freedom for the non-linear part of the fit is

df j = trace(Sj)− 1

Many implementations perform ad hoc χ2-tests for the non-linear part
using χ2-distributions with df j degress of freedom – these test are at best
justified by some simulation studies, and can be used as guidelines only.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning May 27, 2009 15 / 17



Spam Email Classification

Whether an email is a spam email or a regular email is a great example of
a problem where prediction is central and interpretation is secondary.

The (simplistic) example in the book deals with 4601 emails to an
employee at Hewlett-Packard.

Each email is dimension reduced to a 57-dimensional vector containing

Quantitative variables of word or special character percentages.

Quantitative variables describing the occurrence of capital letters.
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Figure 9.1 – Non-linear Email Spam Predictor Effects

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning May 27, 2009 17 / 17


