
Cross-Validation

Let κ : {1, . . . , N} → {1, . . . ,K} and denote by f̂−k for k = 1, . . . ,K the estimator of f
based on the data (xi, yi) with κ(i) 6= k.

The (xi, yi) with κ(i) = k work as a test dataset for f̂−k and

ˆEPE(f̂−k) =
1
Nk

∑
i:κ(i)=k

L(yi, f̂−k(xi))

with Nk = |{i|κ(i) = k}|

The K-fold κ-cross-validation estimator of Err is the weighted average

CVκ =
K∑
k=1

Nk
N

ˆEPE(f̂−k)

=
1
N

N∑
i=1

L(yi, f̂−κ(i)(xi))

Figure 7.8 – Err as a Function of N

We should write Err = Err(N) as a function of the sample size. If f̂N , f ∈ F and f minimizes
EPE then EPE(f̂N ) ≥ EPE(f) and

Err(N) = E(L(Y, f̂N (X))) ≥ EPE(f)

If we have a consistent estimator; f̂N → f , then

Err(N)→ EPE(f).

Cross-Validation

Among several models we will choose the model with smallest CVκ. How to choose κ? How
to choose K?

We aim for N1 = . . . = NK in which case

E(CVκ) = Err(N −N1).

With a steep learning curve at N we need N1 to be small or we underestimate Err.

Extreme case; N -fold or leave-one-out cross-validation with κ(i) = i leads to an almost
unbiased estimator of Err(N), but the strong correlation of the ˆEPE(f̂−i)’s works in the
direction of given a larger variance. Recommendations are that 5- or 10-fold CV is a good
compromise between bias and variance.

The choice of κ is also of some interest. For N -fold cross validation there is just one choice.
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It may be recommended that κ is chosen as a random subdivision of the data into groups of
prespecified sizes. If we divide the dataset into groups like {1, . . . , N1}, {N1+1, . . . , N1+N2}
we risk that there is some structure in the data that is related to their current ordering,
which mess up the result. It could be that the data had be grouped somehow or sorted.
But if κ is chosen randomly what makes one choice more appropriate than another? If we
generate just a single, random κ it seems most appropriate to keep the same κ for all models
considered, but we can also generate κ1, . . . , κB and compute the estimator

CV =
1
B

B∑
i=1

CVκi

instead. This estimator removes the arbitrary fluctuations of CVκ that are due to a specific
choice of κ at the expense of doing a considerable amount of extra computations.

CV and Linear Smoothers

For many linear smoothers where f̂ = Sy the leave-one-out CV estimator for squared error
loss can be computed as

CV =
1
N

N∑
i=1

[
yi − f̂i
1− Sii

]2

This is a computational gain as there is no need for N successive reestimations.

The generalized cross-validation estimator is defined as

GCV =
1
N

N∑
i=1

[
yi − f̂i

1− trace(S)/N

]2

Details are in Theo.6.

The Wrong and The Right Way to Cross-Validate

• Mess with the data to find variables/methods that seem to be useful.

• Estimate parameters using the selected variables/methods and use cross-validation to
choose tuning parameters.

WRONG

Don’t mess with the data before the cross-validation.

Cross-Validation must be out side of all modeling steps, including filtering or variable
selection steps.

The only thing that one is allowed to is to do computations or selections based on the
x-values alone. This could be to rule out x-values that show a very low variance, say, or
different forms of transformations of the x-values.
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Bootstrapping

With B bootstrap datasets and f̂∗b the estimated predictor based on the b’th bootstrap
dataset with indices Cb we produce the estimator

ˆEPE(f̂∗b) =
1
Nb

∑
i 6∈Cb

L(yi, f̂∗b(xi))

using (xi, yi) for i 6∈ Cb as the test data for f̂∗b and Nb = N − |Cb|

A natural estimator of Err is

Êrr =
1
B

B∑
b=1

ˆEPE(f̂∗b) =
1
B

B∑
b=1

1
Nb

∑
i 6∈Cb

L(yi, f̂∗b(xi)).

Bootstrapping

Turning things inside-out; Err = E(E(L(Y, f̂(X))|X,Y )) we can suggest the leave-one-out
bootstrap estimator

Êrr
(1)

=
1
N

N∑
i=1

1
Mi

∑
b:i6∈Cb

L(yi, f̂∗b(xi))

with Mi = B − |{b|i ∈ Cb}|.

As the average number of distinct variables in a bootstrap sample is 1− (1−N−1)N ' 0.632

both Êrr and Êrr
(1)

are expected to estimate something like Err(0.632N) rather than Err(N).

A correction is suggested

Êrr
(.632)

= 0.368ērr + 0.632Êrr
(1)

It seems to me that the bootstrap methods suggested are trying hard to behave simply like
cross-validation and even Êrr and Êrr

(1)
are not perfect. It does not seem that the bootstrap

based methods have any edge over cross-validation – in particular not if we average over
several cross-validation estimates based on random κ’s. Indeed, cross-validation with random
κ’s can be seen as a structured form of bootstrapping without replacement particularly suited
for estimation of Err.

Estimates of Expected Prediction Error

If f̂ is estimated based on a data set, we can only get an estimate of EPE(f̂) by an inde-
pendent test set (x1, y1), . . . , (xB , yB) as

ˆEPE(f̂) =
1
B

B∑
b=1

L(yb, f̂(xb)).

Bootstrap and cross-validation provide estimates Êrr of the generalization error.
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• EPE(f̂) is a random variable with mean Err.

• Êrr is a random variable with mean Err.

Can Êrr be regarded as an approximation/estimate of EPE(f̂)?

Figure 7.15 – The Relation Between Êrr and EPE(f̂)

The simulation study reveals that despite the fact that Êrr is computed by cross-validation
on the same dataset and f̂ is computed, Êrr and EPE(f̂) show almost no relation, and if
there is a relation it is even one with a negative correlation!

Classification and The Confusion Matrix

For a classifier with two groups we can decompose the errors:

Predicted y
Observed y 1 0

1 Pr(Y = 1, f(X) = 1) Pr(Y = 1, f(X) = 0)
0 Pr(Y = 0, f(X) = 1) Pr(Y = 0, f(X) = 0)

This is the confusion matrix and

EPE(f) = Pr(Y = 0, f(X) = 1) + Pr(Y = 1, f(X) = 0).

As with EPE(f̂) the confusion matrix can only be estimated using an independent test
dataset. “Estimates” based on e.g. cross-validation are estimates of E(Pr(Y = k, f̂(X) =
l)).

Generalized Additive Models

A generalized additive model of Y given X is given by a link function g such that the mean
µ(X) of Y given X is

g(µ(X)) = α+ f1(X1) + . . .+ fp(Xp).

This is an extension from general linear models by allowing for non-linear but univariate
effects given by the fi-functions.

The functions are not in general identifiable – and we can face a problem similar to collinear-
ity, which is known as concurvity.

Theoretical collinearity state that one of the X-coordinates is a linear combination of the
remining coordinates. In practice, problems with estimation of parameters arise when one
column in the X-matrix is close to be in the span of the remaining columns. The treatment
of the similar phenomena called concurvity for generalized additive models can be found
in the book Generalized additive models by Trevor Hastie and Robert Tibshirani. Again,
practical problems with concurvity arise if one functions is close to be in the span of the
remaining functions.
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Recall Naive Bayes

If the X-coordinates are independent given the Y , then

gk(x) =
p∏
i=1

gk,i(xi)

with gk,i univariate densities.

log
Pr(Y = k|X = x)
Pr(Y = K|X = x)

= log
πk
πK

+ log
gk(x)
gK(x)

= log
πk
πK

+
p∑
i=1

log
gk,i(xi)
gK,i(xi)︸ ︷︷ ︸
hk,i(xi)

= log
πk
πK

+
p∑
i=1

hk,i(xi)

Generalized Additive Logistic Regression

An important example arise with Y ∈ {0, 1} with the logit link

g(µ) = log
(

µ

1− µ

)
, µ ∈ (0, 1)

Then

µ(X) = Pr(Y = 1|X) =
exp(α+ f1(X1) + . . .+ fp(Xp))

1 + exp(α+ f1(X1) + . . .+ fp(Xp))

Like logistic regression we can use other link functions like the probit link

g(µ) = Φ−1(µ)

where Φ is the distribution function for the normal distribution.

Penalized Estimation

The general, penalized minus-log-likelihood function is

lN (α, f1, . . . , fp) +
p∑
j=1

λj

∫ b

a

f ′′j (x)dx

with tuning parameters λ1, . . . , λp. The minimizer, if it exists, consists of natural cubic
splines. For identification purposes we assume

N∑
i=1

fj(xij) = 0, j = 1, . . . , p.

This is equivalent to fj = (fj(x1j), . . . , fj(xNj))T being perpendicular to the column vector 1
for j = 1, . . . , p. The penalization resolves overparameterization problems for the non-linear
part but not the linear part of the fit.
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Informal Tests for Non-Linear Effects

Using smoothing splines there is to each estimated function f̂j an associated linear smoother
matrix Sj – where the linear fit has been removed.

The effictive degress of freedom for the non-linear part of the fit is

dfj = trace(Sj)− 1

Many implementations perform ad hoc χ2-tests for the non-linear part using χ2-distributions
with dfj degress of freedom – these test are at best justified by some simulation studies, and
can be used as guidelines only.

Spam Email Classification

Whether an email is a spam email or a regular email is a great example of a problem where
prediction is central and interpretation is secondary.

The (simplistic) example in the book deals with 4601 emails to an employee at Hewlett-
Packard.

Each email is dimension reduced to a 57-dimensional vector containing

• Quantitative variables of word or special character percentages.

• Quantitative variables describing the occurrence of capital letters.

Figure 9.1 – Non-linear Email Spam Predictor Effects
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