
Best Subset Selection

If y1, . . . , yN ∈ R and x1, . . . , xN ∈ Rp and

RSS(q) = min
i1,...,iq

min
β1,...,βq

q∑
j=1

(yj − (β1xj ,i1 + . . .+ βqxj ,iq ))2

is the least residual sum of squares for using any q dimensional submodel,
then what q should I choose?

RSS is a relevant measure for comparison within all q-dimensional models,
but decreases monotely with q.
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Model Selection

The most important question that we have not dealt with yet is:

How do we select an appropriate model among several models of
different/incommensurable complexity?

This is model selection. What is this besides an estimation problem?
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Model Selection
We can always put all considered models into a single parameter set Θ and
consider predictors fθ for θ ∈ Θ. With e.g.

θ̂ = argmin
θ∈Θ

1

N

N∑
i=1

L(yi , fθ(xi ))

the empirical loss minimizer fθ̂ could be a bad predictor. We divide the
parameter space Θ = Θ0 ∪Θ1 into disjoint sets.

Asymmetric test theoretic approach: θ̂1 ∈ Θ1 is preferred over
θ̂0 ∈ Θ0 only if it is improbable as measured by a p-value that θ̂0 is as
good as θ̂1.

Symmetric prediction based approach: Consider

EPE(fθ̂i ) = E (L(Y , fθ̂i (X ))|X,Y)

and choose the one with the least expected prediction error.
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Optimization versus Simplicity

One can say that we have two opposing philosophical directions of how to
draw inference from empirical data:

Trust all aspects of the information in the data on the relation
between y and x as implemented in parameter estimators based on
pure optimization.

Keep it simple. Don’t choose a complicated model over a simpler
model if the simpler model suffice (Occam’s razor).

Model selection/test theory work by the second principle to compensate for
the fact that the optimization procedure may overfit to the given dataset.
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Model or Predictor Assessment

Another problem of some importance is

Having fitted a final predictor f̂ , how will it actually perform?

We have the training error

ērr =
1

N

N∑
i=1

L(yi , f̂ (xi ))

which generally underestimates EPE(f̂ ). The generalization or test error is

Err = E (EPE(f̂ ))

is the expected EPE.

EPE(f̂ ) can only really be estimated if we have an independent test
dataset.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning May 25, 2009 5 / 24



Figure 7.1 – The Bias-Variance Tradeoff

Realizations of training error ērr and expected prediction error EPE(f̂ )
estimated on an independent test dataset as functions of model complexity.
Also the estimates of the expectation of ērr and EPE(f̂ ) are shown.
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The Train-Validate-Test Idea

In a data rich situation we split the data before doing anything else into
three subsets.

On the training data we estimate all parameters besides tuning
parameters (model complexity parameters).

On the validation data we estimate prediction error for the estimated
predictors and optimize over tuning parameters and models.

On the test data we estimate the expected prediction error for the
chosen predictor – no model selection here, please.

Problem: We are almost never in a data rich situation.

Can we justify to throw away data that can be used for estimation and thus
reduction of variance to estimate parameters of secondary importance?
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Figure 7.2 – Space of Models
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Figure 7.3 – Quadratic Loss vs. 0-1 Loss
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Setup

In the following discussion (X1,Y1), . . . , (XN ,YN) denote N i.i.d. random
variables, with Xi a p-dimensional vector.

A concrete realization is denoted (x1, y1), . . . , (xN , yN) and we use
boldface, e.g. Y = (Y1, . . . ,YN)T and y = (y1, . . . , yN)T to denote
vectors.

We can not distinguish in notation between X – the matrix of random
variables X1, . . . ,XN – and X – the matrix of a concrete realization
x1, . . . , xN .
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Mallows’ Cp

With f̂ = Py where P is a projection onto a d-dimensional subspace define

ērr =
1

N

N∑
i=1

(yi − f̂i )
2 =

1

N
||y − f̂||2.

By a standard decomposition

1

N
E (||Ynew − f̂||2|X) =

1

N
E (||Y − f̂||2|X) +

2d

N
σ2

The in-sample error

Errin =
1

N
E (||Ynew − f̂||2|X)

can thus be estimated by

CP = ˆErrin = ērr +
2d

N
σ̂2.
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Mallows’ Cp

CP = ˆErrin = ērr +
2d

N
σ̂2.

is an equivalent of Mallows’ Cp statistics – with σ̂2 estimated from a
“low-bias” model with p degrees of freedom;

σ̂2 =
1

N − p
||y − Qy||2

where Q is a projection on a p-dimensional space.

If Sλ is a smoother and f̂ = Sλy one can generalize Cp as

ˆErrin = ērr +
2trace(Sλ)

N
σ̂2

with σ̂2 estimated from a “low-bias”, or small λ, model, e.g.

σ̂2 =
1

N − trace(2Sλ − S2
λ)
||y − Sλy||2.
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Using Cp

The classical use of Cp is when X is N × p of rank p and
Q = X(XTX)−1XT .

For any choice of d columns we compute Cp and select the model with the
smallest value of CP .

This is equivalent to best subset selection for each d followed by choosing
d that minimizes

NCp = RSS(d) +
2d

N − p
RSS(p)

As a function of d the normal defintion of Cp,

C̃p =
NCp(N − p)

RSS(p)
− N =

(N − p)RSS(d)

RSS(p)
+ 2d − N,

is a monotonely increasing function of Cp.

Minimizing Cp or C̃p is equivalent.
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Generalization Error

Instead of the in-sample error we can consider the generalization or test
error

Err = E (L(Y , f̂ (X ))) = E (E (L(Y , f̂ (X ))|X,Y)) = E (EPE(f̂ ))

Here (X ,Y ) is independent of (X1,Y1), . . . , (XN ,YN) that enter through
f̂ .

Err is the expectation over the dataset of the expected prediction error for
the estimated predictor f̂ .

A small value of Err tells us that the estimation methodology is good and
will on average result in estimators with a small EPE. It does not
guarantee that a concrete realization f̂ has a small EPE!
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In-sample Error and Generalization Error
Note the decomposition

Err = E (L(Y , f̂ (X )))

= E (E (L(Y , f̂ (X ))|X,X ))

' E

(
1

N

N∑
i=1

E (L(Y , f̂ (xi ))|X,X = xi )

)

= E

(
1

N

N∑
i=1

E (L(Y new
i , f̂ (xi ))|X)

)
= E (Errin)

If the p-dimensional model is unbiased E (σ̂2|X) = σ2 and

E (Cp) = E (Êrrin) = E (ērr) +
2d

N
σ2 = E (Errin),

in which case Cp can also be seen as an estimator of Err.
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Linear Smoothers

For f̂ = SλY with Sλ = Sλ(X) not depending upon Y we had

Êrrin = ērr +
2trace(S)

N
σ̂2,

It justifies the definition of trace(Sλ) as the effective degrees of freedom
for model selection – but trace(Sλ) is now X-dependent.
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Likelihood Loss
The generalized decision theoretic setup has sample spaces E and F ,
action space A, decision rule f : E → A and loss functions L : F ×A. If
ha for a ∈ A denotes a collection of densities on F we define the
minus-log-likelihood loss function as

L(y , a) = − log ha(y)

The empirical loss for (x1, y1), . . . , (xN , yN) when using decision rule f is

1

N

N∑
i=1

L(yi , f (xi )) = − log
N∏

i=1

hf (xi )(yi )

With F a class of decision rules empirical risk minimization over F
coincides with conditional maximum likelihood estimation of f ∈ F .
Expected prediction error equals the expectation of (conditional) cross
entropies.

EPE(f ) =

∫ ∫
− log hf (x)(y)g(y |x)dy︸ ︷︷ ︸

cross entropi

g1(x)dx
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Akaike’s Information Criteria – AIC
We take A = {fθ(x , ·)}θ∈Θ,x∈E with Θ being d-dimensional and

fθ : E × F → [0,∞) such that fθ(x , ·) is a probability density on F . Let θ̂N
denote the MLE.

With likelihood loss we define the equivalent of the in-sample error

Errloglik,in = − 1

N

N∑
i=1

E (log fθ̂N (xi ,Y
new
i )|X)

Then one derives the approximation

Errloglik,in '
1

N
E (lN(θ̂N)) +

d

N

where the minus-log-likelihood function in θ̂N

lN(θ̂N) = − 1

N

N∑
i=1

log fθ̂N (xi , yi )

is the equivalent of ērr when using likelihood loss.
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AIC

AIC =
2

N
lN(θ̂N) +

2d

N
We use AIC for model selection by choosing the model among several
possible that minimizes AIC.

Assumptions and extensions:

The models considered must be true. If they are not, d must in
general be replaced by a more complicated quantity d∗ leading to the
model selection criteria

NIC =
2

N
lN(θ̂N) +

2d∗

N
.

For linear regression with Gaussian errors and fixed variance d∗ = d
even when the model is wrong, but this does not hold in general, e.g.
logistic regression.
The estimator θ̂N must be the MLE. Extensions to non-MLE and
non-likelihood loss setups are possible with d replaced again by a
more complicated d∗.
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AIC

For model comparison there is theoretical evidence that

AIC1 − AIC2 =
2

N
(l1

N(θ̂1
N)− l2

N(θ̂2
N)) +

2(d1 − d2)

N

can be a (much) better approximation of the difference in Errloglik,in

when the models are nested than if the models are non-nested.

The deviance equals 2lN(θ̂N) up to an additive constant – often the
value of twice the minus-log-likelihood in the “saturated model”. For
model comparisons we can replace 2lN(θ̂N) by the deviance, but make
sure that all models considered use the same reference model/additive
constant in their definition of the deviance.
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Figure 7.4 – AIC Used for Model Selection

This figure provide some empirical justification of using AIC in a context
where there is no theoretical justification. The 0-1 loss is not a
minus-log-likelihood.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning May 25, 2009 21 / 24



Practical BIC

With the same framework as for AIC

BIC = 2lN(θ̂N) + d log(N)

We choose among several models the one with the smallest BIC.

Up to the scaling by 1/N, BIC is from a practical point of view AIC with 2
replaced by log(N). The theoretical derivation is, however, completely
different.

For N > e2 ' 7.4, BIC penalizes complex models more than simple models
compared to AIC.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning May 25, 2009 22 / 24



AIC in Unconditional Models
With (Pθ)θ∈Θ a parameterized family of probability measures on E × F , hθ
the joint density of (X ,Y ),

lN(θ) = −
N∑

i=1

log hθ(xi , yi )

the joint minus-log-likelihood function, and θ̂N the MLE then

AIC =
2

N
lN(θ̂N) +

2d∗

N
.

Under suitable regularity conditions

E (AIC) = −E (log hθ̂N (X ,Y )) = E (−E (log hθ̂N (X ,Y )|X,Y)︸ ︷︷ ︸
cross entropy

)

is the expected cross entropy of Pθ̂ from the true distribution of (X ,Y ) If
the model is true then d∗ = d where d is the dimension of Θ.
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Other Ideas and Methods

An alternative to the approximations of expectations we can consider
upper bounds.

Let η ∈ [0, 1] and h(F) denote a number – a complexity measure – for the
class F such that with probability at least 1− η

EPE (f̂ ) ≤ ērr + g(h(F), ērr)

The theory by Vapnik based on the Vapnik-Chervonenkis dimension (VC
dimension) provides such upper bounds. General upper bounds are nice
but almost always extremely pessimistic. The theoretical justification is
extremely hard. But it does not rule out the practical use of the upper
bounds for model selection ....
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