
Best Subset Selection

If y1, . . . , yN ∈ R and x1, . . . , xN ∈ Rp and

RSS(q) = min
i1,...,iq

min
β1,...,βq

q∑
j=1

(yj − (β1xj,i1 + . . .+ βqxj,iq ))2

is the least residual sum of squares for using any q dimensional submodel, then what q should
I choose?

RSS is a relevant measure for comparison within all q-dimensional models, but decreases
monotely with q.

Model Selection

The most important question that we have not dealt with yet is:

How do we select an appropriate model among several models of different/incommensurable
complexity?

This is model selection. What is this besides an estimation problem?

Model Selection

We can always put all considered models into a single parameter set Θ and consider predic-
tors fθ for θ ∈ Θ. With e.g.

θ̂ = argmin
θ∈Θ

1
N

N∑
i=1

L(yi, fθ(xi))

the empirical loss minimizer fθ̂ could be a bad predictor. We divide the parameter space
Θ = Θ0 ∪Θ1 into disjoint sets.

• Asymmetric test theoretic approach: θ̂1 ∈ Θ1 is preferred over θ̂0 ∈ Θ0 only if it is
improbable as measured by a p-value that θ̂0 is as good as θ̂1.

• Symmetric prediction based approach: Consider

EPE(fθ̂i
) = E(L(Y, fθ̂i

(X))|X,Y)

and choose the one with the least expected prediction error.

The test theoretic conclusions are of interest for several reasons. In the following discussion
of test theoretic interpretations you should have a linear regression analysis in mind and
the hypothesis we test is whether a single regression parameter is equal to 0. The primary
interest in a test is in the qualitative conclusions that we can draw from a test. If we reject
the test we conclude that one variable does have a statistically significant effect on a response
variable. Thus we can not disregard the variable in our model, and if we did the model would
be biased. If data are from a carefully designed experiment we might even conclude that the
variable has a specific causal effect on the response, and the estimated parameter can even
provide a quantitative measure of the effect. We often talk about confirmatory data analysis
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where we confirm an effect that is hypothesized prior to the data collection by rejecting the
hypothesis that the effect is not present. If data are from an observational study we can
only conclude that the variable has a non-vanishing correlation – conditionally on all other
regressors – with the response. Formally this is still a confirmatory data analysis if we have
a well specified hypothesis about correlation that we set up prior to the data collection, but
in this case we do not get a quantitative estimate of a causal effect by intervention, say, only
a quantitative measure of the (conditional) correlation for new observations sampled in the
same manner.

If we don’t reject the test the conclusion is that a variable does not have a statistically
significant effect on a response variable. This is a vaguer conclusion, and we can not rule
out that there is in fact a small affect, but if the effect is not significant it can be explained
completely as a random error. Since more free parameters generally result in an increased
variance on the parameter estimates we would typically disregard a non-significant variable
and report only parameter estimates for significant parameters. Note, however, that theory
almost never support practice. It is often the case that θ̂0 is almost unbiased conditionally
on the test statistic under the hypothesis that θ ∈ Θ0. However, θ̂1 is rarely unbiased
conditionally on the test statistic. This means that if the hypothesis is true, θ̂0 is a sensible
estimator – even if we only consider it conditionally on having accepted the test. However,
θ̂1 is biased conditionally on rejecting the test. Thus if we carry out multiple, sequential tests
and stop when can not accept further model reductions the resulting estimator is biased. A
second problem is that p-values used on the way in such a sequential procedure are generally
wrong.

In conclusion, the theory for statistical tests is poorly developed for handling any seri-
ous model selection problem and does not in its current form support any commonly used
method. This is the central point when discussing explorative data analysis versus confir-
matory data analysis. The test methodology is most appropriate for testing an a priory
specified hypothesis and not for exploring which hypotheses the data support. The problem
of model selection belongs more naturally to the world of explorative data analysis where
we do not know a priory which models the data will support.

Optimization versus Simplicity

One can say that we have two opposing philosophical directions of how to draw inference
from empirical data:

• Trust all aspects of the information in the data on the relation between y and x as
implemented in parameter estimators based on pure optimization.

• Keep it simple. Don’t choose a complicated model over a simpler model if the simpler
model suffice (Occam’s razor).

Model selection/test theory work by the second principle to compensate for the fact that
the optimization procedure may overfit to the given dataset.

Model or Predictor Assessment

Another problem of some importance is

Having fitted a final predictor f̂ , how will it actually perform?
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We have the training error

ērr =
1
N

N∑
i=1

L(yi, f̂(xi))

which generally underestimates EPE(f̂). The generalization or test error is

Err = E(EPE(f̂))

is the expected EPE.

EPE(f̂) can only really be estimated if we have an independent test dataset.

In the book at this point they introduce the notion of conditional test error – conditioning
on the training data. This is nothing but the expected prediction error for the estimated
predictor f̂ .

Figure 7.1 – The Bias-Variance Tradeoff

Realizations of training error ērr and expected prediction error EPE(f̂) estimated on an
independent test dataset as functions of model complexity. Also the estimates of the expec-
tation of ērr and EPE(f̂) are shown.

The Train-Validate-Test Idea

In a data rich situation we split the data before doing anything else into three subsets.

• On the training data we estimate all parameters besides tuning parameters (model
complexity parameters).

• On the validation data we estimate prediction error for the estimated predictors and
optimize over tuning parameters and models.

• On the test data we estimate the expected prediction error for the chosen predictor –
no model selection here, please.

Problem: We are almost never in a data rich situation.

Can we justify to throw away data that can be used for estimation and thus reduction of
variance to estimate parameters of secondary importance?

Figure 7.2 – Space of Models

Digesting Figure 7.2 provides a core understanding of the bias-variance tradeoff between
complex and simple models. This understanding should be obtained in close connection
with reading about the bias-variance decomposition in Section 7.3. One should note that the
nice additive decomposition into a squared bias term and a variance term of the expectation
of the prediction error in x0 is a consequence of the choice of the loss function being the
squared error loss. For the 0-1 loss often used in classification things work out differently,
see Exercise 7.2.
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Figure 7.3 – Quadratic Loss vs. 0-1 Loss

Setup

In the following discussion (X1, Y1), . . . , (XN , YN ) denote N i.i.d. random variables, with
Xi a p-dimensional vector.

A concrete realization is denoted (x1, y1), . . . , (xN , yN ) and we use boldface, e.g. Y =
(Y1, . . . , YN )T and y = (y1, . . . , yN )T to denote vectors.

We can not distinguish in notation between X – the matrix of random variables X1, . . . , XN

– and X – the matrix of a concrete realization x1, . . . , xN .

Mallows’ Cp

With f̂ = Py where P is a projection onto a d-dimensional subspace define

ērr =
1
N

N∑
i=1

(yi − f̂i)2 =
1
N
||y − f̂ ||2.

By a standard decomposition

1
N
E(||Ynew − f̂ ||2|X) =

1
N
E(||Y − f̂ ||2|X) +

2d
N
σ2

The in-sample error

Errin =
1
N
E(||Ynew − f̂ ||2|X)

can thus be estimated by

CP = ˆErrin = ērr +
2d
N
σ̂2.

Note that Ynew−PY and Y−PYnew have the same conditional distributions given X and
note that Y−PYnew = (I−P )Y +P (Y−Ynew) where the two terms are orthogonal. This
implies that

E(||Ynew − PY||2|X) = E(||Y − PYnew||2|X)
= E(||(I − P )Y||2|X) + E(||P (Y −Ynew)||2|X)

Since the vector Y − Ynew has (conditional) mean 0 and (conditional) covariance matrix
2σ2I the second expectation above equals 2σ2d.

4



Mallows’ Cp

CP = ˆErrin = ērr +
2d
N
σ̂2.

is an equivalent of Mallows’ Cp statistics – with σ̂2 estimated from a “low-bias” model with
p degrees of freedom;

σ̂2 =
1

N − p
||y −Qy||2

where Q is a projection on a p-dimensional space.

If Sλ is a smoother and f̂ = Sλy one can generalize Cp as

ˆErrin = ērr +
2trace(Sλ)

N
σ̂2

with σ̂2 estimated from a “low-bias”, or small λ, model, e.g.

σ̂2 =
1

N − trace(2Sλ − S2
λ)
||y − Sλy||2.

The complete justification of the above generalization of Mallows’ Cp to general smoothers
is sketched in the book and treated in Q 1.1-1.3 in Theo.6.

Using Cp

The classical use of Cp is when X is N × p of rank p and Q = X(XTX)−1XT .

For any choice of d columns we compute Cp and select the model with the smallest value of
CP .

This is equivalent to best subset selection for each d followed by choosing d that minimizes

NCp = RSS(d) +
2d

N − p
RSS(p)

As a function of d the normal defintion of Cp,

C̃p =
NCp(N − p)

RSS(p)
−N =

(N − p)RSS(d)
RSS(p)

+ 2d−N,

is a monotonely increasing function of Cp.

Minimizing Cp or C̃p is equivalent.

The correct, historical definition of Mallows’ Cp is as C̃p above in the framework of multiple
linear regression, see e.g. Wikipedia. When used as a model selection tool in this framework
we can just as well consider Cp as we have defined. They select the same models. Our Cp
is, however, easier to generalize and compare to other methods.
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Generalization Error

Instead of the in-sample error we can consider the generalization or test error

Err = E(L(Y, f̂(X))) = E(E(L(Y, f̂(X))|X,Y)) = E(EPE(f̂))

Here (X,Y ) is independent of (X1, Y1), . . . , (XN , YN ) that enter through f̂ .

Err is the expectation over the dataset of the expected prediction error for the estimated
predictor f̂ .

A small value of Err tells us that the estimation methodology is good and will on average
result in estimators with a small EPE. It does not guarantee that a concrete realization f̂
has a small EPE!

In-sample Error and Generalization Error

Note the decomposition

Err = E(L(Y, f̂(X)))

= E(E(L(Y, f̂(X))|X, X))

' E

(
1
N

N∑
i=1

E(L(Y, f̂(xi))|X, X = xi)

)

= E

(
1
N

N∑
i=1

E(L(Y new
i , f̂(xi))|X)

)
= E (Errin)

If the p-dimensional model is unbiased E(σ̂2|X) = σ2 and

E(Cp) = E(Êrrin) = E(ērr) +
2d
N
σ2 = E(Errin),

in which case Cp can also be seen as an estimator of Err.

The approximation above, ', is an approximation of the true, unknown distribution of X by
the empirical distribution εN = 1

N

∑N
i=1 δxi

. This may in fact not be a completely innocent
approximation.

Linear Smoothers

For f̂ = SλY with Sλ = Sλ(X) not depending upon Y we had

Êrrin = ērr +
2trace(S)

N
σ̂2,

It justifies the definition of trace(Sλ) as the effective degrees of freedom for model selection
– but trace(Sλ) is now X-dependent.

The fact that traceSλ is X-dependent makes it somewhat more difficult to try to relate the
estimate of the in-sample error to the generalization error. For Cp the only approximation
involved is the approximation of the marginal distribution of X by the empirical distribution
of the observed values x1, . . . , xN . For the general, linear smoother we can not easily decouple
traceSλ and σ̂2 – not even if we are able to construct an unbiased estimator σ̂2 of σ2.
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Likelihood Loss

The generalized decision theoretic setup has sample spaces E and F , action space A, decision
rule f : E → A and loss functions L : F ×A. If ha for a ∈ A denotes a collection of densities
on F we define the minus-log-likelihood loss function as

L(y, a) = − log ha(y)

The empirical loss for (x1, y1), . . . , (xN , yN ) when using decision rule f is

1
N

N∑
i=1

L(yi, f(xi)) = − log
N∏
i=1

hf(xi)(yi)

With F a class of decision rules empirical risk minimization over F coincides with conditional
maximum likelihood estimation of f ∈ F . Expected prediction error equals the expectation
of (conditional) cross entropies.

EPE(f) =
∫ ∫

− log hf(x)(y)g(y|x)dy︸ ︷︷ ︸
cross entropi

g1(x)dx

The standard example in this context of the need for the general setup as compared to the
setup where A = F and f is simply the predictor is when F is discrete. For instance, if
F = {0, 1} we might want “the action space” to be the set of probability measures on F –
represented as A = [0, 1] and p ∈ [0, 1] is the probability of Y = 1. A “decision” can then
be the computation of f(x) = Pr(Y = 1|X = x) – the conditional probability that Y = 1
given X = x. What is perhaps more common in this case is that A = R and a “decision” is
the computation of the logit of Pr(Y = 1|X = x), that is

f(x) = logit(Pr(Y = 1|X = x)) = log
Pr(Y = 1|X = x)
Pr(Y = 0|X = x)

the log-odds of Y = 1 conditionally on X = x.

Akaike’s Information Criteria – AIC

We take A = {fθ(x, ·)}θ∈Θ,x∈E with Θ being d-dimensional and fθ : E × F → [0,∞) such
that fθ(x, ·) is a probability density on F . Let θ̂N denote the MLE.

With likelihood loss we define the equivalent of the in-sample error

Errloglik,in = − 1
N

N∑
i=1

E(log fθ̂N
(xi, Y new

i )|X)

Then one derives the approximation

Errloglik,in '
1
N
E(lN (θ̂N )) +

d

N

where the minus-log-likelihood function in θ̂N

lN (θ̂N ) = − 1
N

N∑
i=1

log fθ̂N
(xi, yi)
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is the equivalent of ērr when using likelihood loss.

We let Y1, . . . , YN and Y new
1 , . . . , Y new

N be conditionally independent with the same distribu-
tion given X1 = x1, . . . , XN = xN . The minus-log-likelihood

lN (θ) = −
N∑
i=1

log fθ(xi, Yi)

and the minus-log-likelihood for the new data

l∗N (θ) = −
N∑
i=1

log fθ(xi, Y new
i ).

Letting θ̂N denote the MLE for the original dataset and θ̃N the MLE for the new dataset
then a Taylor expansion of l∗N around θ̃N yields

l∗N (θ̂N ) = l∗N (θ̃N ) +
1
2

(θ̂N − θ̃N )TD2lN (θ̃N )(θ̂N − θ̃N ) + remainderN .

Under suitable regularity assumptions there is a θ0 such that

1√
N
DθlN (θ0)T D→ N(0,K(θ0))

and
1
N
D2
θ lN (θ0) P→ I(θ0)

and the two esimators are independent and asymptotically N(θ0,
1
N I(θ0)−1K(θ0)I(θ0)−1)-

distributed. Consequently
√
N(θ̂N − θ̃N ) D→ N(0, 2I(θ0)−1K(θ0)I(θ0)−1)

E

(
1
N
l∗N (θ̂N )|X

)
' E

(
1
N
l∗N (θ̃N )|X

)
+

1
N

trace(E
(
N(θ̂N − θ̃N )(θ̂N − θ̃N )T |X

)
I(θ0))

' E

(
1
N
lN (θ̂N )|X

)
+

1
N

trace(I(θ0)−1K(θ0))

E
(

1
N l
∗
N (θ̂N )|X

)
is for the likelihood loss the equivalent of the in-sample error for quadratic

loss. If I(θ0) = K(θ0) the trace simplifies to the trace of the d×d identity matrix and is thus
equal to d. This always happens if Θ contains the true parameter. To make likelihood loss
for the Gaussian model (with known variance) equivalent to squared error loss we usually
multiply everything by 2 and define the esimator of twice this in-sample error as

AIC =
2
N
lN (θ̂N ) +

2d
N
.

For a more general quantity that does not rely on the model being true we need to replace
d by trace(I(θ0)−1K(θ0)) with the latter quantity having the obvious draw-back that it
depends upon the unknown matrices I(θ0) and K(θ0), which have to be estimated also.
Simple estimators are

K̂ =
1
N

N∑
i=1

Dθ log fθ̂N
(xi, yi)TDθ log fθ̂N

(xi, yi) and Î =
1
N
D2
θ lN (θ̂N )
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which gives

NIC =
2
N
lN (θ̂N ) +

2
N

trace(Î−1K̂).

If the distribution of Y given X = x is N(f(x), σ2) for an unknown mean value function
f(x), if we take Θ = Rp, if we assume that σ2 is fixed, and if we let fθ = XT θ then

2σ2lN (θ̂N ) = ||y −Xθ̂N ||2

and we see in this case that σ2AIC = Cp. We derived Cp and thus AIC as a valid model
selection quantity even if the model, as in this general case, is wrong. It is no problem to
show explicitly (and perhaps surprisingly) in this case that the identity I(θ0) = K(θ0) in fact
holds. Here θ0 is the θ that minimizes E((f(X)−XT θ)2). If we consider logistic regression
instead this result does not hold. For logistic regression let p(x) = Pr(Y = 1|X = x)
denote the true conditional probability and let W denote the N ×N diagonal matrix with
p(xi)(1−p(xi)) in the diagonal. Then it is straight forward to show that I(β0) = XTW (β0)X
but K(β0) = XTWX – which does not depend upone β0 – hence

trace(I(θ0)−1K(θ0)) = trace((XTW (β0)X)−1XTWX).

With

pβ(x) =
exp((1, xt)β

1 + exp((1, xt)β)
the β0 is the minimizer of

E(−p(X) log pβ(X)−(1−p(X)) log(1−pβ(X))) = E(−p(X)(1, XT )β+log(1+exp((1, XT )β))).

One good starting point for a more theoretical treatment of AIC and other aspects of
statistical decision theory and model selection is Pattern Recognition and Neural Networks
by Brian D. Ripley. I have also heard very positive things about the relatively new book
Model selection and model averaging by Gerda Claeskens and Nils Lid Hjort, but I have not
yet read it myself.

AIC

AIC =
2
N
lN (θ̂N ) +

2d
N

We use AIC for model selection by choosing the model among several possible that minimizes
AIC.

Assumptions and extensions:

• The models considered must be true. If they are not, d must in general be replaced by
a more complicated quantity d∗ leading to the model selection criteria

NIC =
2
N
lN (θ̂N ) +

2d∗

N
.

• For linear regression with Gaussian errors and fixed variance d∗ = d even when the
model is wrong, but this does not hold in general, e.g. logistic regression.

• The estimator θ̂N must be the MLE. Extensions to non-MLE and non-likelihood loss
setups are possible with d replaced again by a more complicated d∗.
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AIC

• For model comparison there is theoretical evidence that

AIC1 −AIC2 =
2
N

(l1N (θ̂1
N )− l2N (θ̂2

N )) +
2(d1 − d2)

N

can be a (much) better approximation of the difference in Errloglik,in when the models
are nested than if the models are non-nested.

• The deviance equals 2lN (θ̂N ) up to an additive constant – often the value of twice
the minus-log-likelihood in the “saturated model”. For model comparisons we can
replace 2lN (θ̂N ) by the deviance, but make sure that all models considered use the
same reference model/additive constant in their definition of the deviance.

Figure 7.4 – AIC Used for Model Selection

This figure provide some empirical justification of using AIC in a context where there is no
theoretical justification. The 0-1 loss is not a minus-log-likelihood.

Practical BIC

With the same framework as for AIC

BIC = 2lN (θ̂N ) + d log(N)

We choose among several models the one with the smallest BIC.

Up to the scaling by 1/N , BIC is from a practical point of view AIC with 2 replaced by
log(N). The theoretical derivation is, however, completely different.

For N > e2 ' 7.4, BIC penalizes complex models more than simple models compared to
AIC.

All the preceeding computations with AIC and BIC have been done in the framework of
the conditional distribution of Y given X. This framework with the likelihood loss has the
strongest resemblence to the pure prediction-loss statistical decision theoretic framework,
though we have to allow for a more general “action space” to accomodate all situations
of practical interest. We can also consider AIC and BIC in the framework of the joint
distribution of (X,Y ).

AIC in Unconditional Models

With (Pθ)θ∈Θ a parameterized family of probability measures on E×F , hθ the joint density
of (X,Y ),

lN (θ) = −
N∑
i=1

log hθ(xi, yi)
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the joint minus-log-likelihood function, and θ̂N the MLE then

AIC =
2
N
lN (θ̂N ) +

2d∗

N
.

Under suitable regularity conditions

E(AIC) = −E(log hθ̂N
(X,Y )) = E(−E(log hθ̂N

(X,Y )|X,Y)︸ ︷︷ ︸
cross entropy

)

is the expected cross entropy of Pθ̂ from the true distribution of (X,Y ) If the model is true
then d∗ = d where d is the dimension of Θ.

The cross entropi of Pθ from the true distribution, lets call it Q and assume that it has
density q, is

H(Q,Pθ) = −
∫

log hθ(x)q(x)dx

is a reasonable measure of how well Pθ approximates Q. The minimal cross entropi of any
measure from Q is H(Q) = H(Q,Q), which is known as the entropy of Q. If Pθ 6= Q then
H(Q,Pθ) > H(Q). The Kullback-Leibler divergence of Pθ from Q is

D(Q||Pθ) =
∫

log
q(x)
hθ(x)

q(x)dx = H(Q,Pθ)−H(Q).

This is a non-symmetric, non-metric “distance” measure of Pθ from Q.

For BIC there is nothing really changes either and

BIC = 2lN (θ̂N ) + d log(N).

Other Ideas and Methods

An alternative to the approximations of expectations we can consider upper bounds.

Let η ∈ [0, 1] and h(F) denote a number – a complexity measure – for the class F such that
with probability at least 1− η

EPE(f̂) ≤ ērr + g(h(F), ērr)

The theory by Vapnik based on the Vapnik-Chervonenkis dimension (VC dimension) pro-
vides such upper bounds. General upper bounds are nice but almost always extremely
pessimistic. The theoretical justification is extremely hard. But it does not rule out the
practical use of the upper bounds for model selection ....
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